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HYPOELLIPTICITY OF THE ∂̄-NEUMANN PROBLEM AT A POINT

OF INFINITE TYPE
∗

LUCA BARACCO† , TRAN VU KHANH‡, AND GIUSEPPE ZAMPIERI†

Abstract. We prove local hypoellipticity of the complex Laplacian � in a domain which has
superlogarithmic estimates outside a curve transversal to the CR directions and for which the holo-
morphic tangential derivatives of a defining function are superlogarithmic multipliers in the sense of
[10].

Key words. Hypoellipticity, ∂̄-Neumann problem, superlogarithmic estimate, infinite type.

AMS subject classifications. 32F10, 32F20, 32N15, 32T25.

1. Introduction. For the pseudoconvex domain Ω ⊂ Cn whose boundary is
defined in local coordinates z = x+ iy in a neighborhood U of zo = 0, by

(1.1) 2xn = exp

(
−

1

(
∑n−1

j=1 |zj|2)
s
2

)
, s > 0,

the tangential Kohn Laplacian �b = ∂̄b∂̄
∗
b + ∂̄∗

b ∂̄b as well as the full Laplacian � =
∂̄∂̄∗ + ∂̄∗∂̄ show very interesting features especially in comparison with the “tube
domain” whose boundary is defined by

(1.2) 2xn = exp

(
−

1

(
∑n−1

j=1 |xj |2)
s
2

)
, s > 0.

(Here zj have been replaced by xj at exponent.) Energy estimates are the same for
the two domains. For the problem on the boundary bΩ, they come as

(1.3) ||(log Λ)
1
su||bΩ <

∼
||∂̄bu||

2
bΩ + ||∂̄∗

bu||
2
bΩ + ||u||2bΩ

for any form u ∈ C∞
c (bΩ ∩ U)k of degree k ∈ [1, n− 2].

Here log Λ is the tangential pseudodifferential operator with symbol log(1+|ξ|2)
1
2 ), ξ ∈

R2n−1, the dual real tangent space. As for the problem on the domain Ω, one has
simply to replace ∂̄b, ∂̄

∗
b by ∂̄, ∂̄∗ and take norms over Ω for forms u in D∂̄∗ , the

domain of ∂̄∗, of degree 1 ≤ k ≤ n − 1; this can be seen, for instance, in [13]. In
particular, these are superlogarithmic estimates if and only if s < 1; otherwise, for
any s > 0 they are compactness estimates. A related problem is that of the local
hypoellipticity of the Kohn Laplacian �b or, with equivalent terminology, the local
regularity of the inverse (modulo harmonics) Green operator Nb = �

−1
b . Similar

is the notion of hypoellipticity of the Laplacian � or the regularity of the inverse
Neumann operator N = �

−1. It has been proved by Kohn in [17] and by the two
last authors in [14] that superlogarithmic estimates suffice for local hypoellipticity of
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the problem in the boundary and in the domain. (Note that hypoellipticity for the
domain, [17] Theorem 8.3, is deduced from microlocal hypoellipticity for the boundary,
[17] Theorem 7.1, but a direct proof is also available, [10] Theorem 5.4.) In particular,
for (1.1) and (1.3), there is local hypoellipticity when s < 1.

As for the more delicate hypoellipticity, in the critical range of indices s ≥ 1,
only the tangential problem has been studied and the striking conclusion is that the
behavior of (1.1) and (1.2) split. The first stays always hypoelliptic for any s (Kohn
[16]) whereas the second is not for s ≥ 1 (Christ [6]). When one tries to relate (∂̄b, ∂̄

∗
b )

on bΩ to (∂̄, ∂̄∗) on Ω, estimates go well through (Kohn [17] Section 8 and Khanh [10]
Chapter 4) but not regularity. In particular, the two conclusions about tangential
hypoellipticity of �b for (1.1) and non-hypoellipticity for (1.2) when s ≥ 1, cannot
be automatically transferred from bΩ to Ω. Now, for the non-hypoellipticity in Ω in
case of the tube (1.2) the authors have obtained in [3] a result of propagation which
is not equivalent but intimately related. The real planes of the variables x1, ..., xn−1

are propagators of holomorphic extendibility from Ω across bΩ. What we prove in
the present paper is the converse, that is, hypoellipticity in Ω for (1.1) when s ≥ 1.
Indeed, we prove local regularity not only for (1.1) but also for the case of higher
exponential type at 0. The model of our domain is the one with boundary

(1.4) 2xn = exp
(
−

1(∑n−1
j=1 exp(− 1

|zj|
mj

)s
)
, mj < 1, s > 0.

Here, the best possible estimate at z1 = 0, ..., zn−1 = 0 is worse than for the domain
with boundary (1.1), that is,

|| log
1
m (1 + log

1
s Λ)u||2 <

∼
Q(u, u), for m := maxmj.

When zj 6= 0 for any j we have of course a 1
2 -subelliptic estimate but, if zj = 0

for some j, then we do not have a subelliptic estimate as it was for (1.1) but just a

log
1
m -estimate; however it is strong enough for our need because it is superlogarithmic

on account of mj < 1 for any j. Also, at z1 = 0, ..., zn−1 = 0, the functions ∂zjr,
j = 1, ..., n − 1 are no more subelliptic multipliers (as in (1.1)); however, they are
superlogarithmic multipliers (again, for mj < 1, j = 1, ..., n− 1). Thus, (1.4) serves
as a model of our main result

Theorem 1.1. Let Ω be a pseudoconvex, rigid, domain of Cn in a neighborhood
of zo = 0 and assume that the ∂̄-Neumann problem satisfies the following properties
for forms of degree ≥ 1

(i) there is a superlogarithmic estimate for (z1, ..., zn−1) 6= 0,
(ii) ∂zjr, j = 1, ..., n− 1, are superlogarithmic multipliers (cf. [15] and [10]).

Then � is locally hypoelliptic at zo for forms of any degreee k ≥ 0.

The proof follows in Section 2. It consists in relating the system on Ω to the
tangential system on bΩ along the guidelines of [17] Section 8, and then in using the
argument of [16] to control the commutators of the energy Q with the derivatives Ds

and the cut-off functions ζ.

Remark 1.2. What we prove is in fact, for a pair ζo ≺ ζ of “nested” cut-off in
tangential directions having support in a neighborhood U of zo,

(1.5) ||ζou||s <
∼
||ζ∂̄u||s + ||ζ∂̄∗u||s + ||u||0, for any u ∈ H⊥

k , k ≥ 0,
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where H⊥
k is the orthogonal to the space of harmonic k-forms and s is the index of

the norm in the Sobolev spaces Hs. Note here that we have in fact Hk = {0} for any
k ≥ 1.

We now observe that bΩ is given only locally in a neighborhodd of zo. We can
continue bΩ leaving it unchanged in a neighborhood of zo, making it strongly pseu-
doconvex elsewhere, in such a way that it bounds a relatively compact pseudoconvex
domain Ω ⊂⊂ Cn (cf. [19]). Thus, by the L2-theory of ∂̄, there is well defined the
Neumann operator N = �

−1. As an immediate consequence of (1.5) we have that

(1.6) ∂̄∗N and ∂̄N are exactly locally Hs-regular at zo

over ker ∂̄ and ker ∂̄∗ respectively.

We specify the action of N on q-forms by the notation Nq and denote by Bq :=
Id−∂̄∗Nq+1∂̄ the Bergman projection and byK(z, w) the Bergman kernel respectively.
From the regularity of ∂̄∗N it follows that the Bergman projection B is also regular.
(Notice that exact regularity is perhaps lost by the presence of ∂̄ in B.) To prove
the local regularity at zo of N itself, we follow now the method of Boas-Straube and
exploit formula (5.36) in [20] in unweighted norms, that is, for t = 0:

Nq = Bq(Nq ∂̄)(Id−Bq−1)(∂̄
∗Nq)Bq

+ (Id−Bq)(∂̄
∗Nq+1)Bq+1(Nq+1∂̄)(Id−Bq).

Now, in the right side, the ∂̄N ’s and ∂̄∗N ’s are evaluated over Ker ∂̄∗ and Ker ∂̄
respectively; thus they are exactly locally regular at zo. The B’s are also locally
regular at zo and therefore such is N . We put in a separate statement our conclusions
for B and also give a complement about K.

Theorem 1.3. We have, for a neighborhood U of zo and for any pair of cut-off
ζo ≺ ζ with support in U

(1.7)

{
||ζoBqα||s <

∼
||ζα||s+1 + ||α||0,

K(z, w)|U×U ∈ C∞((Ω̄× Ω̄) \Diagonal).

Proof. The first of (1.7) has already been discussed. The second follows from the
first by the method of Kerzman [9]. Note that it is explicit, in particular according to
the note added in the proof at p.158, that only the local regularity of Bq in the form
of the first of (1.7) is needed to get the second.

2. Proofs. We need several preliminary results

Proposition 2.1. If (i) and (ii) hold for forms u of degree ≥ 1, they also holds
for functions u ∈ ker ∂̄⊥.

Proof. Since ∂̄ has closed range, then, given u ∈ ker∂̄⊥, we can find a solution v

of degree 1 of

{
∂̄∗v = u, ∂̄v = 0,

||v|| <
∼
||u||.
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Let U be the neighborhood of zo in which (i) and (ii) hold. We have for ζo ∈
C∞

c (U),

|| log(Λ)ζou||
2 =

(
log(Λ)ζou, log(Λ)ζo∂̄

∗v
)

=
(
∂̄ζou, log

2(Λ)ζov
)
+
(
log(Λ)ζou, log

−1(Λ)[log2(Λ)ζo, ∂̄
∗]v
)

≤ ǫ||∂̄ζou||
2

︸ ︷︷ ︸
good

+ cǫ|| log
2(Λ)ζov||

2

︸ ︷︷ ︸
(a)

+ ǫ|| log(Λ)ζou||
2

︸ ︷︷ ︸
absorbable

+ cǫ|| log
−1(Λ)[log2(Λ)ζo, ∂̄

∗]v||2︸ ︷︷ ︸
(b)

.

(2.1)

Observe that, for ζ ≻ ζo

(a) ≤ || log(Λ)ζ log(Λ)ζov||
2 + ||v||2−∞

≤
by (i)

ǫQ(ζ log(Λ)ζov, ζ log(Λ)ζov) + cǫ||ζ log(Λ)ζov||
2
0 + ||v||2−∞

≤ ǫ
(
||ζ log(Λ)ζo∂̄

∗v||2︸ ︷︷ ︸
absorbable

+ ||[∂̄(∗), ζ log(Λ)ζo]v||
2

︸ ︷︷ ︸
(*)

)
+ cǫ||ζ log(Λ)ζov||

2
0︸ ︷︷ ︸

(**)

+ ||v||2−∞,

(2.2)

where ∂̄(∗) denotes either ∂̄∗ or ∂̄. Now,

[∂̄(∗), ζ log(Λ)ζo] ∼ ζ̇ log(Λ)ζo + ζ log(Λ)ζo + ζ log(Λ)ζ̇o.

Hence (*) and (**) are of type ||ζ′′ log(Λ)ζ′v||2 and can therefore be estimated by

||ζ′′ log(Λ)ζ′v||2 <
∼
(i)

ǫQ(ζ′v, ζ′v) + cǫ||ζ
′′v||2

≤ ǫ(||ζ′u||2 + ||[∂̄(∗), ζ′]v||2) + cǫ||ζ
′′v||2

<
∼
cǫ||u||

2
0.

(2.3)

As for (b), we notice that

log−1(Λ)[log2(Λ)ζo, ∂̄
∗] ∼ log(Λ)ζ̇o + ζo,

and hence, for ζ ≻ ζo, ζ̇o

(b) ≤ || log(Λ)ζv||2 + ||ζv||Λ−1

≤ ǫQ(ζv, ζv) + cǫ||ζv||
2
0

≤ ǫ||ζu||20 + ||[∂̄(∗), ζ]v||20 + cǫ||ζv||
2
0

<
∼
cǫ||u||

2
0.

Hence (2.1) can be continued by

≤ ǫ||∂̄ζou||
2 + cǫ||u||

2
0.

Thus (i) also holds for u. The proof that we have the same conclusion for (ii) is the
same as above.
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We note now that (i) implies a compactness estimate, that is, for any ǫ and for
suitable cǫ

||u||20 ≤ ǫQ(u, u) + cǫ||u||
2
−1

for any u ∈ C∞
c (Ω̄) ∩Dk

∂̄∗ , k ≥ 1 or u ∈ C∞
c (Ω̄) ∩ ker ∂̄⊥

k , k = 0.
(2.4)

This follows from a more general fact: a totally real submanifold of bΩ, such as the
yn-line, is a removable set of non-compactness (and we are in this situation since a
superlogarithmic estimate is stronger than a compactness estimate).

Lemma 2.2. Assume that there are compactness estimates on bΩ∩U except from
a totally real subset S. Then we have in fact compactness estimates in the whole
bΩ ∩ U .

Proof. We first prove (2.4) for k ≥ 1. For this we introduce the family of weights

{ϕǫ}ǫ = {
d2
S

ǫ2
}ǫ where dS is the distance to S. These weights are bounded and their

Levi form grows by the rate 1
ǫ2

when dS < ǫ. With these weights in hand and by the
compactness outside S, we get (2.4) from the basic estimate for k ≥ 1 by the same
argument as in [12]. To prove the estimate for k = 0, we make repeated use of (2.4)
in degree 1. This first implies that ∂̄∗ has closed range on 1-forms. In particular,
(ker ∂̄)⊥ = range ∂̄∗. Thus, if u ∈ (ker ∂̄)⊥, then there exists a solution v ∈ (L2)1 to
the equation ∂̄∗

b v = u. Moreover, we can choose v belonging to ker ∂̄. By the basic
estimate for v we have

(2.5) ||v||20 <
∼
||∂̄∗

b v||
2
0.

We also have

(2.6) ||v||2−1 ≤ ǫ||∂̄∗
b v||

2
0 + cǫ||∂̄

∗
b v||

2
−1.

This can be proved by contradiction. If (2.6) is violated, then there is a sequence
vν ∈ (ker ∂̄∗

b )
⊥ such that ||vν ||−1 ≡ 1, ||∂̄∗

b vν ||−1 → 0 and ||∂̄∗
b vν ||0 ≤ c. But we also

have from (2.5), ||∂̄∗
b vν ||0 >

∼
||vν ||0 ≥ ||vν ||−1 = 1. Thus any subsequential L2-weak

limit of ∂̄∗
b vν must be 0 and 6= 0. We use the notation lc and sc for a large and small

constant respectively. We have for any function u

||u||2 = (u, ∂̄∗
b v)

= (∂̄bu, v)

≤ ||∂̄bu||||v||

≤
(2.4) for v

||∂̄bu||(ǫ||∂̄
∗
b v||+ cǫ||v||−1)

<
∼

(2.6)

||∂̄bu||(ǫ||u||+ cǫ||u||−1)

≤ lc1 ǫ
2||∂̄bu||

2 + sc1||u||
2 + lc2 c

2
ǫ ||u||

2
−1 + sc2||∂̄bu||

2

≤ ǫ′||∂̄bu||
2 + cǫ′ ||u||

2
−1 + sc1||u||

2,

(2.7)

for ǫ′ = lc1 ǫ
2 + sc2 and cǫ′ = lc2 c

2
ǫ . By choosing sc1 so that sc1||u||

2 is absorbed in
the left, (2.7) yields (2.4) for u in degree 0.

We decompose a k-form into the tangential and normal components u = uτ + uν

and further decompose microlocally uτ = uτ+ + uτ− + uτ 0 (cf. [17]). By elliptic
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estimate for Q over terms which vanish at bΩ, we have, in particular, that (1.5)
is fulfilled by uν . The same is true for uτ0 and uτ− (cf. [17] Lemma 8.5). So
we only need to prove (1.5) for uτ+ that we write as u from now on. We further
decompose u = u(H) + u(0) where u(H) is the “holomorphic” component in the sense
of [11] and u(0) is the complement; note that u(0)|bΩ ≡ 0. Along with ζ ≺ ζ′ with
support in U , we consider an additional tangential cut-off σ with σ ≺ ζ and denote

by Rs the pseudodifferential tangential operator with symbol (1 + |ξ|2)
sσ(a)

2 . Here
(a, r) ∈ R

2n−1×R is a local system of coordinates and ξ are dual to the a’s. We choose
all our cut-off as functions of product type ζ = ζ1(z

′)ζ2(yn), ζ
′ = ζ′1(z

′)ζ′2(yn) and
σ = σ1(z

′)σ2(yn). We denote by Qτ the tangential component of Q; thus Q(u, u) =
Qτ (u, u)+||L̄nu||

2 if L1, ..., Ln is a system of (1, 0) vector fields dual to an orthonormal
system of forms ω1, ..., ωn in which ωn = ∂r. We point out the crucial property of the
component u(H), that is, L̄nu

(H) ∼ rΛu(H).

Proposition 2.3. In the hypotheses (i) and (ii) of Theorem 1.1, we have for
any ǫ for suitable cǫ and for ζ′ ≻ ζ

||(ζRsζ)u(H)||2 ≤ ǫQτ
ζRsζ(u

(H), u(H)) + cǫ||ζ
′u(H)||20,

for u ∈ Dk
∂̄∗ , k ≥ 1 and u ∈ ker ∂̄⊥, k = 0,

(2.8)

where Qτ
(ζRsζ)(u

(H), u(H)) = ||(ζRsζ)∂̄τu(H)||2 + ||(ζRsζ)∂̄τ∗u(H)||2.

Remark. In our discussion all estimates are obtained from basic estimates and
thus they only hold, in principle, for smooth forms u. However, bΩ being rigid,
they are readily converted into genuine estimates. For this, we use an approximation
χν(yn) of the identity in the variable yn, and define u+

ν := u+ ∗χν ; we have u
+
ν ∈ C∞.

By the rigidity of the boundary we have ∂̄
(∗)
b (u+

ν ) = (∂̄
(∗)
b u)+ν + ũ0 and ∂̄(∗)(u+

ν ) =

(∂̄(∗)u)+ν + ũ0 where ũ0 denotes a microlocal component supported by the elliptic
region. Then the a-priori estimate applied to u+

ν , in addition to the elliptic estimates

for ũ0 imply the following. If ∂̄bu, ∂̄
∗
bu ∈ Hs in a neighborhood of supp (ζ), then

||(ζRsζ)u|| < +∞ (in particular u ∈ Hs({z : ζo(z) ≡ 1}) for ζo ≺ σ).

Proof. Proposition 2.1 shows how to transfer (2.8) from forms to functions u ∈
ker ∂̄⊥

b ; so we only prove the result for forms. We start by applying the compactness
estimate (2.4) for u replaced by (ζRsζ)u(H)

||(ζRsζ)u(H)||2

≤ ǫ
(
Qτ ((ζRsζ)u(H), (ζRsζ)u(H))) + ||L̄n(ζR

sζ)u(H)||2
)
+ cǫ||ζ

′u(H)||20.
(2.9)

We wish to estimate the terms with a factor of ǫ on the right. First,

||L̄n(ζR
sζ)u(H)|| = ||L̄n((ζR

sζ)u)(H)||

= ||rΛ((ζRsζ)u)(H)||

<
∼
lc||(ζRsζ)u(H)||+ sc||∂rΛ

−1(ζRsζ)u(H)||

<
∼
lc||(ζRsζ)u(H)||+ sc||L̄n(ζR

sζ)u(H)||Λ−1︸ ︷︷ ︸
absorbable

,

(2.10)

where lc and sc denote a large and small constant respectively and where in the last
inequality we have used that ζRsζ commutes with the operation of taking holomorphic
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extension (H). Next, we claim that

Qτ ((ζRsζ)u(H), (ζRsζ)u(H))

≤ Qτ
ζRsζ(u

(H), u(H)) + c||(ζRsζ)u(H)||2 + c||(ζ′Rsζ)u(H)||2Λ−1 .
(2.11)

To see it, we observe that

{
[∂̄(∗) τ , ζRsζ] = ζ̇Rsζ + ζ[∂̄(∗) τ , Rs]ζ + ζRsζ̇,

[∂̄(∗) τ , Rs] ≤
∑n−1

j=1 s
∣∣∣σ1 zj (z)σ2(yn) + σ1(z

′)rzj σ̇2(yn)
∣∣∣ log(Λ)Rs.

It follows

Qτ ((ζRsζ)u(H), (ζRsζ)u(H))

<
∼
Qτ

ζRsζ(u
(H), u(H)) + ||sζα log(Λ)Rsζu(H)||2 + ||ζ′u(H)||20,

(2.12)

where

α =

n−1∑

j=1

|σ1 zj (z
′)σ2(yn)|+ |σ1(z

′)rzj σ̇2(yn)|.

We recall the hypotheses (i) and (ii) of Theorem 1.1: there is a superlogarithmic esti-
mate for z′ 6= 0, in particular on supp(σzj (z

′)) for any j and rzj are superlogarithmic
multipliers. It follows

||sζα log(Λ)Rsζu(H)||2 ≤ scQτ ((ζRsζ)u(H), (ζRsζ)u(H))

+ lc||(ζRsζ)u(H)||20 + c||(ζ′Rsζ)u(H)||2Λ−1 ,
(2.13)

where sc and lc denote again a small and large constant respectively. Combination
of (2.13) with (2.12) yields the claim (2.11). If one plugs (2.11) and (2.10) into (2.9)
and uses induction to reduce ||(ζ′Rsζ)u(H)||2Λ−1 to ||ζ′u(H)||20 (for a new ζ′), one gets

||(ζRsζ)u(H)||2 <
∼
ǫ
(
Qτ

(ζRsζ)(u
(H), u(H)) + ||(ζRsζ)u(H)||2︸ ︷︷ ︸

absorbable

)
+ cǫ||ζ

′u(H)||20,

which concludes the proof of the proposition.

To carry on our proof we introduce our main technical result

Proposition 2.4. In the hypotheses (i) and (ii), we have

||(ζRsζ)u||2 <
∼
QζRsζ(u, u) +Q∂rΛ−1ζRsζ(u, u) + ||u||2 +QΛ−1ζ′(u, u)

for u ∈ Dk
∂̄∗ ∩ C∞(Ω̄), k ≥ 1 or u ∈ ker ∂̄⊥, k = 0.

(2.14)

Proof. Again, u can be a form or a function in ker ∂̄⊥. We first focus our attention
to (2.8) and wish to remove (H) from the right. We notice that

Qτ
(ζRsζ)(u

(H), u(H)) ≤ Qτ b

Λ−
1
2 (ζRsζ)

(ub, ub) + ||(ζRsζ)ub||
2
− 1

2

≤ Qτ
(ζRsζ)(u, u) +Qτ

∂rΛ−1(ζRsζ)(u, u)

+ ||(ζRsζ)u||20 + ||∂rΛ
−1(ζRsζ)u||20.

(2.15)
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Owing to ∂r = L̄n +Tan, we have the estimate for the last term above

||∂rΛ
−1(ζRsζ)u||2

≤ QΛ−1(ζRsζ)(u, u) + ||(ζRsζ)u||2 + ||[∂̄(∗),Λ−1((ζRsζ))]u||2︸ ︷︷ ︸
lower order term

.(2.16)

It follows,

||(ζRsζ)u(H)||2 <
∼

(2.8)

ǫQτ
ζRsζ(u

(H), u(H)) + cǫ||ζ
′u(H)||20

<
∼

(2.15)

Qτ
ζRsζ(u, u) +Qτ

∂rΛ−1(ζRsζ)(u, u)

ǫ
(
||(ζRsζ)u||20 + ||∂rΛ

−1(ζRsζ)u||20

)
+ cǫ||ζ

′u(H)||20

<
∼

(2.16)

Qτ
ζRsζ(u, u) +Qτ

∂rΛ−1(ζRsζ)(u, u)

+ ǫ||(ζRsζ)u||20︸ ︷︷ ︸
absorbable

+
(
||ζ′u||20 + ||ζ′∂rΛ

−1u||20

)
+ cǫ||ζ

′u(H)||20,

(2.17)

where in the last inequality the lower order term which occurs in (2.16) has been
reduced to (||ζ′u||20 + ||ζ′∂rΛ

−1u||20) by iteration. Next we turn our attention to the
term (0) and remark that

||(ζRs
ζ)u(0)||2 ≤

Garding
QΛ−1(ζRsζ)(u

(0)
, u

(0)) + ||(ζRs
ζ)u(0)||2Λ−1 log(Λ) + ||ζ′u(0)||20

<
∼

QΛ−1(ζRsζ)(u, u) +QΛ−1(ζRsζ)(u
(H)

, u
(H))

+ ||(ζRs
ζ)u(0)||2Λ−1 log(Λ) + ||ζ′u(0)||20

<
∼

(2.10)

QΛ−1(ζRsζ)(u, u) +Q
τ
Λ−1(ζRsζ)(u

(H)
, u

(H))

+ ||(ζRs
ζ)u(H)||2Λ−1 + ||(ζRs

ζ)u(0)||2Λ−1 log(Λ) + ||ζ′u(0)||20

≤
Qτ≤Λ

QΛ−1(ζRsζ)(u, u) + ||(ζRs
ζ)u(H)||2

+ ||(ζRs
ζ)u(H)||2Λ−1

︸ ︷︷ ︸

neglectable

+ ||(ζRs
ζ)u(0)||2Λ−1 log(Λ) + ||ζ′u(0)||20,

(2.18)

where in the third inequality above we have decomposed Q(u, u) = Qτ (u, u)+ ||L̄nu||
2

(over a tangential form u) and used (2.10) to estimate the term with L̄n. The second
term in the right of the last inequality is estimated by (2.17). Finally, combination of
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(2.17) and (2.18) yields

||(ζRsζ)u||2 ≤ ||(ζRsζ)u(H)||2 + ||(ζRsζ)u(0)||2

<
∼
QζRsζ(u, u) +Q∂rΛ−1(ζRsζ)(u, u)︸ ︷︷ ︸

(I)

+ ǫ||(ζRsζ)u(H)||20︸ ︷︷ ︸
absorbable

+ ||(ζRsζ)u(H)||2Λ−1︸ ︷︷ ︸
absorbable

+ ||(ζRsζ)u(0)||2Λ−1 log(Λ)

+
(
||ζ′u||20 + ||ζ′Λ−1∂ru||

2
0

)
+ ||ζ′u(0)||20 + cǫ||ζ

′u(H)||20
︸ ︷︷ ︸

(II)

≤ (I) + (II),

(2.19)

where in the last inequality we have estimated ||(ζRsζ)u(0)||2Λ−1 log(Λ) <
∼

(I) + (II)

because of

Λ−1(ζRsζ) ≤ R−1(ζRsζ)

= ζRs−1ζ +Order 0,

and from induction. Finally (II) is estimated as follows. As for u(H):

||ζ′u(H)||20 <
∼
||ζ′ub||

2
− 1

2

<
∼
||ζ′u||20 + ||Λ−1∂rζ

′u||2

≤ ||ζ′u||20 + ||Λ−1L̄nζ
′u||2 + ||Λ−1Tan ζ′u||2

<
∼
||u||20 +QΛ−1ζ′(u, u).

The same inequality holds for u(H) replaced by u(0) on account of the identity u(0) =
u + u(H). Thus (II) <

∼
cǫ||u||

2
0 +QΛ−1ζ′(u, u) and if we plug this into (2.19), we get

(2.14).

We are ready for

Proof of Theorem 1.1. We recall that we are writing u for uτ + (or u+ in case of
a function). We begin by noticing that, for ζo ≺ σ ≺ ζ

||Λsζou|| <
∼
||Rsζou||+ ||u||

= ||Rsζoζ
2u||+ ||u||

≤ ||Rsζ2u||+ ||[Rs, ζo]ζ
2u||+ ||u||

<
∼
||Rsζ2u||+ ||u||

<
∼
||ζRsζu||+ ||[Rs, ζ]ζu||+ ||u||

<
∼
||ζRsζu||+ ||u||.

Using (2.14) of Proposition 2.4 we get (1.5) in tangential version, that is,

||Λsζou||
2 <

∼
QΛsζ(u, u) +Q∂rΛs−1ζ(u, u) +QΛ−1ζ′(u, u) + ||u||20

<
∼
||ζ′∂̄u||2s + ||ζ′∂̄∗u||2s + ||u||20.

(2.20)
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Finally, by non-characteristicity (cf. eg the end of Section 8 of [17]), we can replace
||Λsζou||

2 by ||ζou||
2
s in the left of (2.20); we also replace the notation ζ′ by ζ on

the right and get (1.5). From (1.5) the local regularity of ∂̄(∗)N redily follows which
implies the regularity of B and N by the argument before the statement of Theorem
1.3. This concludes the proof of Theorem 1.1.
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