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A NEW CURVE ALGEBRAICALLY BUT NOT RATIONALLY
UNIFORMIZED BY RADICALS∗

GIAN PIETRO PIROLA† , CECILIA RIZZI‡ , AND ENRICO SCHLESINGER‡

Abstract. We give a new example of a curve C algebraically, but not rationally, uniformized
by radicals. This means that C has no map onto P1 with solvable Galois group, while there exists a
curve C′ that maps onto C and has a finite morphism to P1 with solvable Galois group. We construct
such a curve C of genus 9 in the second symmetric product of a general curve of genus 2. It is also
an example of a genus 9 curve that does not satisfy condition S(4, 2, 9) of Abramovich and Harris.
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Introduction. Every smooth projective complex curve C arises as a branched
covering of the projective line P1, and its function field is a finite extension of the
rational field C(x). However, it is a difficult problem to find a method for classifying
all possible covering maps C → P1. As explained by M. Fried in [8], Zariski tackled
this problem for the general curve of genus g (here and in the rest of this paper
general means outside a countable union of closed subvarieties). In particular, in [21]
Zariski proves what he regarded as the analogue for curves of Abel’s theorem on the
nonsolvability by radicals of a general algebraic equation of degree ≥ 5: the general
curve C of genus g > 6 is not a covering of P1 with solvable Galois group. Zariski
then goes on and speculates that it would still be possible, though unlikely, that there
exist a finite covering C ′ → C with C ′ representable as a solvable covering of P1. This
problem has no analogue in the Galois theory of algebraic equations, because of the
many different ways a curve can be viewed as a covering of P1.

To fix the terminology, the Galois group of a branched covering C → C0 of
smooth curves is the Galois group of the Galois closure of the finite field extension
C(C)/C(C0); it coincides with the monodromy group of the unramified covering ob-
tained removing the branch divisor from C0. We say the covering is solvable if its
Galois group is solvable [13, 17]. A curve C is rationally uniformized by radicals if
there exists a solvable covering map C → P1, and is algebraically uniformized by radi-
cals is there exists a finite covering C ′ → C with C ′ rationally uniformized by radicals.
Zariski’s theorem then says that the general curve of genus g > 6 is not rationally
uniformized by radicals, and his question is whether C might still be algebraically
uniformized by radicals. It is not obvious that the two notions are really distinct:
the first example of a curve that is algebraically, but not rationally, uniformized by
radicals was given in [18] building on work of Debarre and Fahlaoui [6]. In this pa-
per we give a new example. We feel that it is of utmost importance to investigate
new examples to enhance our understanding of the difficult problem of describing the
possible representations of the general curve C of genus g as a covering of P1. Let us
recall that in recent years there has been a lot of research concerning Galois groups
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of coverings C → B when the genus of C is fixed: see for example [12] and its list of
references. In particular, it is now known that in the moduli space of genus g curves
the locus of curves that are rationally uniformized by radicals is contained in a proper
Zariski closed subset [16, Theorem 1.6] and [11, Theorem 2.4].

Debarre and Fahlaoui were motivated by a related problem posed by Abramovich
and Harris [1], who formulated the statement:

STATEMENT S(d, h, g): Suppose C ′ → C is a nonconstant map of smooth curves
with C of genus g. If C ′ admits a map of degree d or less to a curve of genus h or
less, then so does C.

Abramovich and Harris noted that S(d, 0, g) is true for elementary reasons, proved
S(2, 1, g), S(3, 1, g) and S(4, 1, g) for g ̸= 7, and showed that S(3, 2, 5) is false. Thus
they asked for which values of d, h and g the statement holds. In [6] it is shown
that S(4, 1, 7) is false, and in [18] we showed that the curve of genus 7 providing the
counterexample is algebraically, but not rationally, uniformized by radicals. Debarre
and Fahlaoui construct their example C on the second symmetric product Sym2(E)
of an elliptic curve. It is clear by their construction that C has a covering C ′ that
admits a map of degree 4 or less to E; in particular, C is algebraically uniformized
by radicals. The key step in disproving S(4, 1, 7) in [6] is to show that C has no 4 : 1
map to P1, and from this we were able to deduce in [18] that C is not rationally
uniformized by radicals.

In this paper we show the existence of curves of genus 9 that are algebraically, but
not rationally, uniformized by radicals, and that provide counterexamples to S(4, 2, 9).
We construct such curves in a linear system |C| on the second symmetric product
X = Sym2(Y ) of a curve of genus 2. The hard part of the proof again consists in
showing the general curve in |C| has no g14 . The technique we use is different from
that of [6] and comes from an idea of Tyurin [20]. Roughly, the idea is to consider in
the Hilbert scheme Hilb4(X) the set S of all divisors appearing in a g14 of a curve in
the family |C|, and to bound the dimension of this set in order to show the general
curve in |C| cannot contain such a divisor. To find such a bound, one blows down the
canonical divisor of X = Sym2(Y ) to obtain the Jacobian surface S of Y , and then
notes that the fibers of the Abel sum map Hilb4(S) → Alb(S) = S are symplectic
varieties [3]. The set S is contained in such a fiber and, being rationally connected,
must lie in a Lagrangian subvariety. This provides the desired bound for the dimension
of S.

The paper is structured as follows. In Section 1 we introduce the notation and
terminology, and state some well known results we will use in the paper. In Section
2 we construct the family of curves that will eventually provide the example we are
looking for, and show it has dimension ten. In Section 3, which is the technical heart
of the paper, we show that a general curve C in our family has no g14 . In Section 4
we show by a dimension count that a general curve C in a ten dimensional family of
genus nine curves cannot be a covering of P1 of degree d ≥ 5 with a primitive and
solvable Galois group. Putting together the results of these two sections in Section 5
we conclude that C is not rationally uniformized by radicals. On the other hand, by
construction every curve in the family is algebraically uniformized by radicals, and we
therefore obtain examples of genus 9 curves that are algebraically, but not rationally
uniformized by radicals.

1. Notation and preliminary results. In this section we collect some well
known facts that we will use in the sequel of the paper. We begin recalling the
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cohomology of divisors of small degree on a curve of genus 2.

Proposition 1.1. Let Y be a smooth irreducible projective complex curve of
genus 2, and let B be a divisor on Y . Denote by p 7→ p′ the hyperelliptic involution
on Y , so that q = p′ if and only if p+ q is a canonical divisor KY on Y . Then

i) if deg(B) = 2, then h0(Y,OY (B)) = 2 if B is a canonical divisor,
h0(Y,OY (B)) = 1 otherwise.

ii) if deg(B) = 3, then B is nonspecial, h0(Y,OY (B)) = 2, and
a) either B ∼ KY + p, in which case p is a base point of |B|;
b) or B − KY is not effective, in which case |B| has no base points, and

ϕB : Y → P1 is a morphism of degree 3.
iii) if deg(B) = 4, then B is nonspecial, the linear series |B| is base point free

and defines a morphism ϕB : Y → P2. Furthermore:
a) either B ∼ 2KY , in which case ϕB is the hyperelliptic involution Y → P1

followed by the 2-uple embedding P1 → P2; in particular, every effective
divisor in |2KY | is the sum p+ p′ + q + q′ of two canonical divisors;

b) or B ∼ KY +p+q where q ̸= p′, in which case ϕB : Y → P2 is birational
onto a plane quartic curve, which has a node if p ̸= q or a cusp if p = q;
ϕB separates any pair of points of Y except for the pair (p, q).

We will construct our example on the second symmetric product X = Sym2(Y )
of a curve of genus two Y . The surface X has irregularity q(X) = g(Y ) = 2 and

geometric genus pg(X) =
(
g(Y )
2

)
= 1, hence χ(OX) = 0.

We identify points of X with degree 2 effective divisors p+ q on Y . The quotient
map

π : Y × Y −→ X, π(p, q) = p+ q

exhibits X as the quotient of Y × Y by the involution σ(p, q) = (q, p). Let ∆̃ denote
the diagonal in Y ×Y , and let ∆ = π(∆̃) = {2p : p ∈ Y }. The map π is a double cover
ramified along ∆, so that π∗OY×Y = OX ⊕ L−1 where L is a line bundle satisfying
L⊗ 2 = OX(∆). In particular ∆

2 is an integral divisor class on X, and π∗(∆2 ) = ∆̃.
Given a point p ∈ Y , we denote by Hp the curve

Hp = {p+ q ∈ X | q ∈ Y } ⊂ X.

One knows that the canonical divisors of Y and X are related as follows: if p+ p′ is
a canonical divisor on Y , then the canonical divisor of X is KX ∼ Hp +Hp′ − ∆

2 .

Another way to look at X is via the natural map X = Div(2)(Y ) → Pic(2)(Y ),
which exhibits X as the blow up of the Jacobian variety Pic(2)(Y ) at the point cor-
responding to the canonical divisor KY . The exceptional divisor E ∼= P1 is therefore
the unique effective canonical divisor on X. In particular, E ∼ Hp +Hp′ − ∆

2 .

Any divisor B =
∑

p np p on Y gives rise to a divisor α(B) =
∑

p npHp on X.
The map Pic(Y ) → Pic(X) induced by α is injective, and in fact Pic(X) contains a
subgroup isomorphic to α(Pic(Y ))⊕Z[E]. Furthermore, a divisor on X is numerically
equivalent to zero if and only if it is linearly equivalent to a divisor of the form
α(B) =

∑
p npHp with

∑
np = 0.

When Y has general moduli, the endomorphism ring of the Jacobian variety
Jac(Y ) is Z generated by the identity [14], and from this it follows Pic(X) =
α(Pic(Y ))⊕ Z[E].
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One can easily compute the cohomology of the divisors OX(α(B)):

Proposition 1.2. Let B =
∑

p np p be a divisor on Y , and let α(B) =
∑

p npHp

be the corresponding divisor on X. Then α(B) is effective if and only if B is effective.
Furthermore

i) If deg(B) = 1 and B = p is effective, then

h0(X,OX(Hp)) = h1(X,OX(Hp)) = 1, h2(X,OX(Hp)) = 0

ii) if deg(B) = 2 and B ∼ KY , then

h0(X,OX(α(B))) = 3, h1(X,OX(α(B))) = 2, h2(X,OX(α(B))) = 0

iii) if deg(B) = 2 and B � KY , then

h0(X,OX(α(B))) = 1, h1(X,OX(α(B))) = h2(X,OX(α(B))) = 0

iv) if deg(B) = b ≥ 3, then

h0(X,OX(α(B))) =
1

2
b(b− 1), h1(X,OX(α(B))) = h2(X,OX(α(B))) = 0

Let N1(X) denote the Néron-Severi group ofX (divisors modulo numerical equiv-
alence for which we use the symbol ≡). We denote by H the class of Hp in N1(X),
while we keep using the symbols ∆ and E for the classes of ∆ and E in N1(X). From
the above description of Pic(X) we see that N1(X) contains the subgroup

Z[H]⊕ Z[E]

and N1(X) = Z[H]⊕ Z[E] when Y has general moduli. Note that

H2 = 1 H · E = 1 E2 = −1.

Proposition 1.3. In the Néron-Severi group of X
• some positive multiple of an integral class aH − bE is effective if and only if
a ≥ 0 and a ≥ 2b.

• an integral class aH − bE is ample (respectively nef) if and only if a > −b
and a > 3b (respectively a ≥ −b and a ≥ 3b).

Proof. The first statement follows from the fact that H is ample and the two
effective curves ∆ ≡ 4H − 2E and E have negative self-intersection.

To check the second statement, let R1 ≡ H + E and R2 ≡ 3H − E ≡ H + ∆
2 .

Then R1.E = R2.∆ = 0. Since H is ample, it follows that R1 and R2 are nef but not
ample.

2. A ten dimensional family of genus nine curves. In this section we con-
struct a 10 dimensional family of curves of genus 9 whose general member we will
eventually show to be algebraically but not rationally uniformized by radicals. We
keep the notation we introduced in the previous section for divisors on the surface
X = Sym2(Y ), where Y denotes a smooth projective curve of genus 2. We begin by
showing the existence of smooth genus 9 curves numerically equivalent to 3H +E on
X.
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Proposition 2.1. Let L be a divisor on X numerically equivalent to 3H + E.
Then

h0(OX(L)) = 6, h1(OX(L)) = h2(OX(L)) = 0.

Furthermore:
• the linear system |L| is base point free, and defines a morphism ϕL : X → P5

that maps X birationally onto its image.
• the general curve C ∈ |L| is smooth and irreducible; the genus of such a curve
C is g(C) = 9 and its self-intersection is C2 = 14.

Proof. Any divisor numerically equivalent to 3H is ample, hence h1(OX(L)) =
h2(OX(L)) = 0 by Kodaira vanishing theorem. Therefore

h0(OX(L)) = χ(OX(L)) =
1

2
(L−KX).L+ χOX = 6.

Since L ≡ KX + 3H and H is ample, it follows from Reider’s Theorem [19] that
|L| is base point free, hence the generic curve C ∈ |L| is smooth (the ground field is
C). Also L itself is ample, hence any curve in |L| is (numerically) connected (cf. [9]
Ex. 13 p. 24).

We need to check that ϕL is birational onto its image. The divisor L is linearly
equivalent to E + α(B0) where B0 is a divisor of degree 3 on Y , thus OX(L) ∼=
OX(E +Hp +Hq +Hr) where (p, q, r) are three points of Y .

By [19], Remark 1.2.2, if two points of X are not separated by |L|, then there is a
curve F numerically equivalent to H passing through the two points. By Proposition
1.2 F = Hx for some x ∈ Y . We will now show that for every x the linear system |L|
separates all but one pair of points of Hx, unless OY (p + q + r) ∼= OY (x + KY ) so
that x is the unique base point of OY (p + q + r). This shows that ϕL is one to one
on X except on an at most one dimensional locus, and concludes the proof.

From the exact sequence

0 → OX(L−Hx) → OX(L) → OHx(L) → 0

we see every section of OHx(L) arises from a section of OX(L) because H1(OX(L −
Hx)) = 0 by Kodaira vanishing. Thus it is enough to show that OHx(L) separates all
but a pair of points of Hx if x is not a base point of OY (p+ q + r).

Thus we assume x is not a base point of OY (p + q + r), and we can then take
p, q and r distinct from x. The restriction OHx(L) of L to the curve Hx

∼= Y is
OY (x

′ + p + q + r), where x′ is the conjugate point of x so that x+ x′ ∼ KY . If we
had x′+ p+ q+ r ∼ 2KY , then p+ q+ r ∼ x+KY contradicting the assumption that
x is not a base point of OY (p + q + r). Thus x′ + p + q + r ∼ 2KY , and so OHx(L)
separates all but one pair of points of Hx by Proposition 1.1.

We outline now the standard arguments that allow one to compute the dimension
of the family of genus 9 curves C arising as in the previous proposition.

Proposition 2.2. In the moduli space of curve of genus 9 there is a 10 dimen-
sional family of curves whose general member is a curve C numerically equivalent to
3H + E on a surface X = Sym2(Y ), where Y is a general curve of genus 2.

Proof. Let f : Y → B be a smooth family of genus two curves such that the
associated moduli map B → M2 is generically finite and dominant, and let

p : X = Y ×B Y/S2 → B
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be the corresponding family of symmetric products.
Consider the relative Hilbert scheme H = Hilb(X/B). We fix a closed point

b ∈ B, and let X = Xb and Y = Yb. Then the fiber Hb is the Hilbert scheme
Hilb(X).

Fix a smooth curve C ≡ 3H + E on X. Since H1(OX(C)) = 0, the Hilbert
schemes H and Hb are smooth at the point [C] corresponding to C, and there exists
an exact sequence of tangent spaces

0 → T[C]Hb → T[C]H → TbB → 0.

Claim. If α : Hb → M9 denotes the moduli map, its differential

dα : T[C]Hb
∼= H0(C,OC(C)) → T[C]Mb

∼= H1(C, TC)

is injective

Since the kernel of dα is (a quotient of) H0(TX |C), it is enough to show the latter
group vanishes. For this, we look at the blow up map ρ : X → S = Pic2(Y ) ∼= Jac(Y ).
Restricting the exact sequence

0 → TX → ρ∗TS ∼= OX ⊕OX → Nρ
∼= OE(−E) ∼= OP1(1) → 0

to the curve C one obtains a new exact sequence

0 → TX |C → (ρ∗TS)|C ∼= O⊕2
C → OZ → 0

where Z is the length 2 zero dimensional intersection of C and E. One checks

H0((ρ∗TS)|C) → H0(OZ)

is an isomorphism, hence its kernel H0(TX |C) vanishes, proving the claim.
Now let β : H → Mb denote the moduli map on the relative Hilbert scheme.

Then dβ induces a map TbB ∼= H1(TY ) → Coker(dα). Now observe that

Coker(dα) ∼= H1(TC)/Im(H0(OC(C)) ↪→ H1((TX)|C)

Thus we obtain a map

ϕ : TbB ∼= H1(TY ) → H1((TX)|C).

Assume for the moment that ϕ is injective. Then dβ : T[C]H → T[C]Mb is
injective, and this proves the proposition because

h0(OC(C)) + h1(TY ) = 7 + 3 = 10.

To show ϕ is injective, notice that it factors through the map ψ : H1(TY ) →
H1(TX) that associates to a in infinitesimal deformation of Y the corresponding de-
formation of X. The map ψ is injective: identifying Y with the diagonal ∆ ⊂ X,
we see the kernel of ψ is contained in the kernel of H1(T∆) → H1((TX)|∆), hence in
H0(O∆(∆)). The latter group vanishes, hence ψ is injective.

Finally, ϕ is obtained composing ψ with

H1(TX) → H1((TX)|C)

whose kernel is H1(TX(−C)). This cohomology group is contained in
H1(OX(−C)⊕2), which vanishes because OX(C) is ample. Thus ϕ : H1(TY ) →
H1((TX)|C) is injective, and this concludes the proof.
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3. The general curve in the family has no g14. This section contains the
main technical difficulty of the paper, which is to prove that the general curve in our
family of genus 9 curves has no g14 . To be more precise, recall that the Jacobian of a
general smooth projective curve is simple [14]. Therefore, if Y is a general curve of
genus 2, the Néron Severi group of X = Sym2(Y ) is generated by the classes of H
and E. If this is the case and L is a divisor on X numerically equivalent to 3H + E,
we will show that in the linear system |L| there is an open dense subset of smooth
curves that have no g14 . Before we can prove this, we need to establish the fact that
these curves have no map onto a non rational curve.

Proposition 3.1. Suppose Y is a smooth projective curve of genus 2 whose
Jacobian is simple, and let X = Sym2(Y ). Suppose L is a divisor on X numerically
equivalent to 3H + E, and C is a general curve in the linear system |L|. If D is a
smooth curve for which there is a finite morphism C → D of degree d ≥ 2, then D is
rational.

Proof. Suppose f : C → D is a finite morphism of smooth curves of degree d ≥ 2.
By [4, Theorem 1.1] the Jacobian of C satisfies

End(Jac(C)) = Z× End(Alb(X)) = Z× End(Jac(Y ))

Since End(Jac(Y )) = Z, the abelian subvarieties of Jac(C) have dimension 0, 2, 7
or 9. It follows that, if D is not rational and d ≥ 2, then g(D) = 2 and there is
an isogeny ϕ : Jac(Y ) → Jac(D) which factors through the map Jac(C) → Jac(D)
induced by f .

Let C0 be the inverse image of C in Jac(Y ) under the map Jac(Y ) → Jac(C).
Since ϕ : Jac(Y ) → Jac(D) is étale, so is its restriction ψ : C0 → D. But ψ factors
through f : C → D, thus f is étale.

The family of genus 9 curves that are étale covers of a genus two curve has
dimension 3 = dimM2. On the other hand, C varies in |L| ∼= P5, and |L| that by the
proof of (2.2) maps with zero dimensional fibers to the moduli space M9. Therefore
the general C ∈ |L| is not an étale cover of a genus two curve, finishing the proof of
the lemma.

Theorem 3.2. Suppose Y is a smooth projective curve of genus 2 whose Jacobian
is simple, and let X = Sym2(Y ). Suppose L is a divisor on X numerically equivalent
to 3H + E, and C is a general curve in the linear system |L|. Then C has no g14.

Proof. Suppose by way of contradiction that the general curve in |L| has gonality
d ≤ 4, and therefore has a base point free g1d with 2 ≤ d ≤ 4. We distinguish two
cases, according to whether the g1d is unique or not.

Case 1. Assume first the general curve C in the family has a unique g1d.
The natural map X = Sym2(Y ) → Pic2(Y ) identifies X with the blow up of the

abelian surface S = Jac(Y ) at the origin, and E is the exceptional divisor. By
a theorem of Fogarty’s [7] the Hilbert scheme H = Hilbd(S) parametrizing zero
dimensional subschemes of S of length d is a smooth and irreducible projective variety
of dimension 2d. We will identify a zero dimensional subscheme Z of S that does not
contain the origin 0S , with its preimage in X. Then it makes sense to look at the
incidence variety{

(C,Z) ∈ |L| × H : C is smooth, , 0S /∈ Z, Z ⊆ C, h0(C,OC(Z)) ≥ 2
}
.
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Let W be an irreducible component of this locus that maps dominantly to |L|,
and let π1 and π2 be the two projections of W on |L| and H respectively. Since the
general curve in |L| has a unique g1d, the map π1 is dominant and its general fiber is a
rational curve. Therefore W is a rationally connected variety of dimension 6 [10, 5].

Now look at the Abel sum map

α : H = Hilbd(S) → Alb(S) = S.

Since W is rationally connected, the image π2(W ) of W in H must be contained in a
fiber K of α. The fiber K is a symplectic variety of dimension 2(d− 1)- see [3] . The
pull back of the symplectic form to W vanishes because W is rationally connected,
hence π2(W ) is a Lagrangian subvariety of K. Therefore

dimπ2(W ) ≤ 1

2
dimK = d− 1,

and the generic fiber of π2 has dimension at least 7− d.
By Proposition 2.1 the linear system |L| defines a morphism ϕ : X → P5 that

maps X birationally onto its image. Note that P5 is the dual projective space of |L| ∼=
P(H0(X,L)). For a closed subscheme V ⊂ X, we let |L(−V )| ∼= P(H0(X,L ⊗ IV ))
denote the linear system of curves in |L| that contain V . Then the linear span of
ϕ(V ) in P5 is the subspace dual to |L(−V )|; the dimension of the linear span of ϕ(V )
is therefore 4− dim |L(−V )|.

Now let (C,Z) be a point of W . Then |L(−Z)| contains the fiber π−1
2 (Z), hence

dim |L(−Z)| ≥ dim(π−1
2 (Z)) ≥ 7− d.

It follows that the image ϕ(Z) of Z in P5 is contained in a linear space of dimension
d−3. Since d ≤ 4, this says that ϕ(Z) is contained in a line. Since ϕ is birational, for Z
general the linear span of ϕ(Z) will be a line, hence d = 4, and dim |L(−Z)| = 3. Since
dim(π−1

2 (Z)) ≥ 3, we conclude that dim(π−1
2 (Z)) = 3 for a general Z in π2(W ), and

therefore the general curve C in |L(−Z)| belongs to π−1
2 (Z), that is, h0(OC(Z)) ≥ 2.

By semicontinuity, h0(OC(Z)) ≥ 2 for every smooth C in |L(−Z)|.
For a point a ∈ X define

B0
a = {x ∈ X : there exists Z ∈ π2(W ) such that a, x ∈ Z

and h0OC(Z) ≥ 2 for every smooth C in |L(−Z)|
}

and let Ba denote the closure of B0
a in X. For a general choice of a, the dimension of

Ba is one. To see this, let Wa denote the set of pairs (C,Z) in W for which a ∈ Z.
Then Wa has dimension 4 because π1 maps Wa generically onto |L(−a)| ∼= P4, with
zero dimensional fibers as there is a unique divisor in the g14 of C that contains a.
Since the general fiber of π2 : Wa → H has dimension 3, the image of Wa in the
Hilbert scheme is a curve T . Therefore the restriction UT to T of the universal family
over H is also a curve, and so is Ba which is the closure of the projection in X of UT

with the point a removed.
We claim that, for a general C0 ∈ |L(−a)|,

Ba.C0 = ma+ x1 + x2 + x3

where Z0 = a+x1+x2+x3 is the unique element of the g14 of C0 that contains a, and
m ≥ 0. Indeed, since C0 is general in |L(−a)|, it is smooth and it does not contain any
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of the finitely many points of Ba−B0
a except perhaps a. So, if x ∈ Ba∩C0 \{a}, there

is Z ∈ π2(W ) such that a, x ∈ Z and h0OC(Z) ≥ 2 for every smooth C ∈ |L(−Z)|.
Now

3 ≤ dim |L(−Z)| = dim |L− (a+ x)|

hence |L(−Z)| = |L− (a+ x)| and C0 ∈ |L(−Z)|. Then h0OC0
(Z) ≥ 2, and Z = Z0

because there is a unique divisor in the g14 of C0 that contains a. In particular,
x ∈ {x1, x2, x3} proving our claim.

The claim implies that the intersection of ϕ(Ba) with a general hyperplane of P5

through ϕ(a) is contained in a line: the hyperplane corresponds to C0, and the line
is the linear span of ϕ(Z0). It follows that ϕ(Ba) is contained in a P2 through ϕ(a),
hence

dim |L(−Ba)| ≥ 2.

We conclude that Ba and C − Ba are effective, with h0OX(C − Ba) ≥ 3. Now
we use the fact that the Néron Severi group of X is generated by E and H. Since Ba

moves with a, we see Ba ̸= E, 2E. On the other hand, C − Ba can’t be numerically
equivalent to H + 2E, H +E or H because h0OX(C −Ba) ≥ 3. It then follows from
Proposition 1.3 that C−Ba is numerically equivalent to either 2H or 2H+E, so that
either Ba ≡ H or Ba ≡ H + E.

Suppose Ba ≡ H. Then Ba is one of the curves Hp (with p ∈ Y ). As Ba.C =
H.C = 4, the g14 on C is |HC |, where HC = Hp.C. Now look at the exact sequence

0 → OX(Hp − C) → OX(Hp) → OC(HC) → 0.

Now C −H ≡ 2H + E = 2H +KX is ample by 1.3, hence H1OX(Hp − C) = 0,
therefore h0(C,OC(HC)) = 1, so HC cannot be a pencil, and this case does not occur.

Suppose now Ba ≡ H + E, that is, Ba = Hp + E for some p ∈ Y . Then

Ba.C = (H + E).C = 4 + 2 = 6

contains the g14 , hence h
0((Hp + E)C) ≥ 2. But from the exact sequence

0 → OX(Hp + E − C) → OX(Hp + E) → OC((H + E)C) → 0

one obtains a contradiction as above (note that h0(OX(Hp + E)) = χ(OX(Hp + E))
because Hp + E = Hp +KX , and χ(OX(Hp + E)) = 1

2 (H + E).H = 1).

Case 2. Suppose now the general C ∈ |L| has more than one g1d. Then d = 4
because an hyperelliptic curve has a unique g12 , and a trigonal curve of genus g > 4
has a unique g13 . So suppose the general C ∈ |L| has gonality 4 and has two distinct
g14 . The two g14 define a morphism

ψ : C → Q = P1 × P1

of degree e onto a a divisor B of type (4/e, 4/e) on Q. We cannot have e = 4, as
otherwise B ∼= P1 and the two linear series coincide. If e = 2, then B cannot be
rational because C is not hyperelliptic. But B cannot be an elliptic curve because C
does not have morphism to curves of genus 1 by Proposition 3.1. Hence e = 1 and
ψ : C → B is birational.



136 G. P. PIROLA, C. RIZZI AND E. SCHLESINGER

Since B has arithmetic genus 9, the map ψ is an isomorphism. Thus B ∼= C is a
smooth curve of type (4, 4) on Q = P1 ×P1. We will show that this is not possible by
proving that: (a) the curve C has a base point free complete g28 that defines a map
ϕ : C → P2 that is not 4 : 1 onto its image; (b) the only base point free and complete
g28 on a divisor B of type (4, 4) on Q are |OB(2, 0)| and |OB(0, 2)|, and these define
4 : 1 maps.

We now show a general C in |L| has a complete and base point free g28 that defines
a morphism g : C → P2 that is not 4 : 1 onto its image. Recall X is the blow up
of the abelian surface S = Jac(Y ) ∼= Pic2(Y ) at the origin 0S ∼= OY (KY ). Given a
point p in Y we denote by θp the theta divisor

θp = {OY (p+ y) | y ∈ Y }.

If p+ p′ = KY , the divisor θp + θp′ is symmetric with respect to the involution of the
abelian surface, and defines a morphism S → P3 whose image is a quartic Kummer
surface T . The pull back of θp+θp′ to X is the divisor Hp+Hp′ +2E, which therefore
defines a 2 : 1 morphism X → P3 whose image is the Kummer surface T . This
morphism maps C birationally onto its image in T because C has no 2 : 1 morphism
to a curve, as it is not hyperelliptic and does not have any morphism of degree d ≥ 2
onto a nonrational curve.

Next we project the Kummer surface from the node that is the image of 0S ∼=
OY (KY ): this amounts to consider the morphism X → P2 defined by Hp +Hp′ (one
can check h0 (X,OX (Hp +Hp′)) = 3 using Proposition 1.2.ii). This projection is a
degree 2 morphism γ : T → P2. Since C maps birationally onto its image in T , the
restriction g : C → P2 of γ to C is either birational or 2 : 1 onto its image, in any
case is not 4 : 1.

To finish, observe that g∗(OP2(1)) is the line bundle corresponding to the divisor
(Hp +Hp′) |C . We claim (Hp +Hp′) |C moves in a complete g28 on C. To compute
OC (Hp +Hp′) |C , we recall h0 (X,OX (Hp +Hp′)) = 3 and look at the exact sequence

0 → OX (Hp +Hp′ − C) → OX (Hp +Hp′) → OC ((Hp +Hp′) |C) → 0.

Since C −Hp −Hp′ ≡ H +E is big and nef by 1.3, the H0 and H1 of Hp +Hp′ − C
vanish, hence

h0 (C,OC ((Hp +Hp′) |C)) = 3.

Summing up we have found a complete g28 on C that defines a morphism g : C →
P2 that is not 4 : 1 onto its image.

To complete the proof, we need to show that, if B is a smooth divisor of type
(4, 4) on the quadric surface Q ⊂ P3, then the only base point free and complete g28
on B are |OB(2, 0)| and |OB(0, 2)|. So let δ be an effective divisor of degree 8 on B
such that |δ| is a complete and base point free g28 . Then h0(B,OB(δ)) = 3 and we
may assume that δ consists of 8 distinct points.

By Riemann-Roch

h0(B,OB(KB − δ)) = 3 + deg(KB − δ) + 1− g(B) = 3.

Since B is a divisor of type (4, 4), by adjunction KB = 2H, where OB(H) = OB(1, 1).
Therefore OB(KB − δ) = Iδ,B(2H), and

h0(Q, Iδ,Q(2, 2)) = h0(B, Iδ,B(2H)) = 3
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because H0(Q, IB,Q) = H1(Q, IB,Q) = 0. Thus we see that the linear system

D = |OQ(2, 2)− δ|

cut out on Q by quadric surfaces containing δ has projective dimension 2.
If the linear system D had no fixed component, then two general elements in the

linear system would meet properly in a zero dimensional scheme of degree 8 containing
δ, hence equal to δ. Thus δ would be a complete intersection of three quadrics in P3,
contradicting h0(Q, Iδ,Q(2, 2)) = 3. Thus D has a fixed curve, say D. We write
δ = α+ β where α consists of those points of δ that are in the support of D.

Case a: D is a line, with respect to the embedding of Q in P3 by OQ(1, 1), say
of type (0, 1).

Then the linear system D is, up to removing D, the linear system

|OQ(2, 1)− β|.

Observe that β cannot contain 3 collinear points, otherwise the line through them
would be contained in the fixed component of D. Similarly, if β had 4 points in a
plane Π, then there would be a fixed component of D contained in Π and different
from D, which is absurd.

Since D is a line and α ⊂ D∩B, there are at most four points in α, so β contains
at least 4 points P1, P2 P3 and P4. As β has no 3 collinear points, and no 4 coplanar
points, the points Pi impose independent conditions on |OQ(2, 1)|: a divisor of type
(2, 1) containing only the first three points is given by a conic through P1, P2, and P3,
plus a line not containing P4. Then dimD ≤ dim |OQ(2, 1)| − 4 = 1, a contradiction.

Thus this case does not occur.

Case b: D is a plane section of Q, that is a divisor of type (1, 1).

Then the linear system D is, up to removing D, the linear system

|OQ(1, 1)− β|.

Since D has projective dimension 2, we see that β consists of at most one point.
If β = P had degree one, then α would have degree 7 besides being contained in the
plane of D. Thus

h0(B,O(α)) ≥ h0(B,OB(1, 1))− 1 = 3.

But α ≤ δ and h0(B,OB(δ)) = 3 by assumption, so the unique point of β is a base
point of δ, contradicting the fact that δ is base point free. Thus β is empty. But then
δ = α is a plane section, and this is also a contradiction because h0(B,OB(1, 1)) = 4.
Thus this case also does not occur.

Case c: D has degree 3 and arithmetic genus 0, that is, it is a divisor of type
(2, 1) or (1, 2).

Suppose that D has type (1, 2). Then the linear system D is, up to removing D,
the linear system

|OQ(1, 0)− β|.

Since |OQ(1, 0)| has projective dimension 1, this case does not occur.
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Case d: D has degree 2 and arithmetic genus −1, that is, it is a divisor of type
(2, 0) or (0, 2).

Suppose that D has type (0, 2). Note that D is either the disjoint union of two
lines of type (0, 1), or a double structure on a line of type (0, 1).

The the linear system D is, up to removing D, the linear system

|OQ(2, 0)− β|.

Since |OQ(2, 0)| has projective dimension 2 and no base points, β is the zero divisor.
Thus δ = α is contained in the fixed curve D. We know that at most four points of δ
are collinear, because δ lies on the curve B which has type (4, 4). Therefore the only
possibility is that D is the union of two lines L1 and L2 of type (0, 1), and δ = B.D.
Therefore OB(δ) ∼= OB(0, 2) (or OB(δ) ∼= OB(2, 0) if D has type (2, 0)).

There are no other possibilities for D, because it is contained properly in a divisor
of type (2, 2). Thus we have proven that the only complete and base point free g28 ’s
on B are OB(2, 0) and OB(0, 2).

4. Number of moduli of genus 9 primitive and solvable coverings of
the projective line. In this section we show that, if C is a general curve in a 10
dimensional family of smooth curves of genus 9, then a finite map f : C −→ P1 that
has a primitive and solvable Galois group has degree at most 4 (the Galois group is
primitive when f cannot be factored nontrivially). The proof is based on a counting
argument due to Zariski [21].

Given a finite morphism f : C −→ C0 of smooth curves, we denote by b(q) the
multiplicity of a branch point q of f in the branch divisor.

Theorem 4.1 (Zariski, see [18, Proposition 3.1]). Let f : C −→ C0 be a degree
d primitive solvable covering of curves. Then there exists a prime p such that d = pk,
and for every branch point q of f the multiplicity b(q) is bounded by the formula:

b(q) ≥ pk − pk−1

2
.

Moreover, if p = 2 and d− 1 is prime, then b(q) ≥ 2k−1 − 1.

We recall Zariski’s argument. Let Sd = Aut(Ω), where Ω is a set of d elements.
Fix x ∈ Ω and consider a primitive solvable subgroup G of Sd. It is well known that G
has only one minimal normal subgroup A, which is an elementary abelian p-group for
some prime p. Moreover, G is the semidirect product G = AoGx, where Gx denotes
the stabilizer of x in G. Since the action of A on Ω is regular, the cardinality of A
is equal to d = pk for some k ≥ 1. Furthermore, identifying Ω with the vector space
A, the group G acts as a subgroup of the group Aff(A) of affinities of A. Hence an
element g ∈ G, not equal to the identity 1G, has at most pk−1 fixed points. To each
branch point q the monodromy representation associates an element g ∈ G whose
action on Ω has d − b(q) orbits. Hence b(q) ≥ d−n

2 where n is the number of fixed
points of g.

Proposition 4.2. Let C be an irreducible family of curves of genus 9 whose
general curve is a degree d primitive and solvable covering of P1. Then the dimension
of C is at most 9 unless d ≤ 5.

Proof. Consider a family C of curves C of genus 9 such that the general curve
C admits a degree d primitive solvable covering of P1 with r distinct branch points,
each with multiplicity at least m.
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By the Riemann Hurwitz formula the degree of the branch divisor B of the cov-
ering f : C → P1 is 16 + 2d. If f has exactly r distinct branch points, each with
multiplicity at least m, then deg(B) ≥ rm, therefore

r ≤ 16 + 2d

m
.

The dimension of C is then at most

r − 3 ≤ 16 + 2d

m
− 3.

By (4.1) d = pk and

m ≥ pk − pk−1

2
.

Thus

dim C ≤ 4
8 + pk

pk − pk−1
− 3 =

32

pk−1(p− 1)
+

4

1− 1/p
− 3.

This shows dim C ≤ 9 unless d ≤ 5 or d = 8. But when d = 8 we can use the
better estimate m ≥ 2k−1 − 1 = 3 to conclude dim C < 8.

Proposition 4.3. If C is a general curve in a 10 dimensional family of smooth
genus 9 curves, then there is no degree 5 covering C → P1 with a primitive solvable
Galois group.

Proof. Let f : C → P1 be a degree 5 primitive and solvable covering. By
Riemann-Hurwitz the branch divisor Bf has degree 26. By (4.1) every branch point
q has multiplicity b(q) ≥ 2, hence the number r of distinct branch points has to be
≤ 13.
The Hurwitz scheme of coverings of P1 having r distinct branch points has dimension
r − 3. Thus, if C varies in a family of dimension ≥ 10, the only possibility is that
r = 13 and b(q) = 2 for every branch point q. Let G ⊂ S5 be the Galois group of f .
In the Galois group, for any branch point qi ∈ Bf , there is an associated cycle gi ∈ G
with 3 = d− b(qi) orbits. Furthermore by Zariski’s argument the cycle gi has at most
one fixed point, so it must be (12)(34) up to conjugation. Moreover, the product of
the cycles gi is the identity of the Galois group.

(1)
13∏
i=1

gi = 1G.

As explained after Theorem 4.1, the group G is contained in the group of affinities
of Z5, which is a semidirect product Z5 o Z4. Therefore there is an induced map
ϕ : G → Z4. Since gi has order 2, it can’t be contained in the kernel of ϕ, so ϕ(gi)

is the unique element h = [2] of order 2 in Z4. Then ϕ(
∏13

i=1 gi) is also equal to h,
contradicting (1).
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5. Proof of the main result. In this section we collect all the previous results
to show that the general curve of the family constructed in section 2 is algebraically,
but non rationally, uniformized by radicals.

Theorem 5.1. Let C be the family of smooth genus 9 curves C for which there
exists a genus 2 curve Y such that C ⊂ X = Sym2(Y ) and the class of C in the
Néron-Severi group of X is 3H + E. Then a general curve in C is algebraically, but
non rationally, uniformized by radicals, and provides a counterexample to Statement
S(4, 2, 9) of [1].

Proof. To see that a curve C in the family is algebraically uniformized by radicals
is easy. Since C ⊂ X = Sym2(Y ) and C ≡ 3H + E, for every point p ∈ Y the
curve C intersects the divisor Hp ⊂ X in a scheme of length 4. We define a map
ϕ : Y −→ Sym4(C) sending a point p ∈ Y to Hp ·C. Then as in [18, Proposition 5.1 ]
we deduce there is a smooth curve C ′ that covers C and admits a morphism C ′ → Y
of degree ≤ 4.

We now have to show that a general C in our family is not rationally uniformized
by radicals, that is, there does not exist a finite map C −→ P1 with solvable Galois
group. In particular, C, contrary to its covering C ′, does not admit a nonconstant map
of degree 4 or less to a curve of genus 2 or less, and thus provides a counterexample
to S(4, 2, 9).

Suppose by way of contradiction there is C −→ P1 with solvable Galois group.
Then we can factor it as

C
f−→ C0

↘ ↙ g
P1

where f is a covering of degree d ≥ 2 with a primitive and solvable Galois group (the
Galois group is primitive when f cannot be factored). Since C does not cover any
non rational curve by Proposition 3.1, the curve C0 is rational, and we are reduced to
show there does not exist a finite map C −→ P1 with primitive and solvable Galois
group. By the dimension count of Propositions 4.2 and 4.3 any such map would have
degree d ≤ 4. But by Theorem 3.2 there are no morphisms C → P1 of degree d ≤ 4.
Thus the proof is complete.
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