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HOMOTOPY MINIMAL PERIOD SELF-MAPS ON FLAT

MANIFOLDS WITH CYCLIC HOLONOMIES∗

ZHIBIN LIANG† AND XUEZHI ZHAO‡

Abstract. This paper studies the homotopical minimal period of self-maps on flat manifolds
with cyclic holonomies. We give some necessary conditions on the self-maps on flat manifolds to
guarantee that their homotopical minimal periods are infinite. Furthermore, a kind of density of
homotopical minimal periods in the natural number set is considered.
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1. Introduction. Let X be a flat manifold of finite dimension, f a self-map on
X . The homotopical minimal period of f is defined to be

Hper(f) :=
⋂

g≃f

{n ∈ N | Fix(gn)− ∪k<nFix(gk) 6= ∅},

where g : X → X runs over all self-maps homotopic to f . The homotopy invariant
Hper(f) reflects very rigid part of the self-map f in dynamical system theory. L.
Block, J. Guckenheimer, M. Misiurewicz, L. Young in [2] firstly studied Hper(f) for
self-maps on circles. L. Alsedà, S. Baldwin, J. Llibre, R. Swanson and W. Szlenk in
[1] listed completely the homotopical minimal period sets for all self-maps on T 2, and
described some properties of the homotopical minimal period sets for self-maps on tori
of arbitrary dimensions. A systematic introduction to this topic can be found in the
book [7]. It is suggested by B. Jiang and J. Llibre in [6] that a fundamental question
is to determine if the homotopical minimal period of a given self-map is empty, finite
or infinite. R. Tauraso in [11] showed that homotopical minimal period of expanding
maps on flat manifolds must be co-finite, that is its complement in the set of natural
numbers is finite. Later, J. B. Lee, K. B. Lee and Zhao ([9, 10]) showed that the
homotopical minimal period of any expanding map is still co-finite.

Let X be an m-dimensional flat manifold. By definition, X can be considered as
an orbit space Rm/Γ of the free action of Γ on X , where Γ fits into following exact
sequence

1 → Zm → Γ → G → 1,

in which G is a finite group, and is said to be the holonomy group of the flat manifold
X . The group Γ is actually a subgroup of isometry group O(m) ⋊ Rm of Rm, lying
in a bigger group M(m,Z) ⋊ Rm. Thus, the action an element (B, β) ∈ Γ on Rm is
given by

(B, β)ν = Bν + β.
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Clearly, we have that Γ is a semi-product Zm ⋊ G. Since Γ acts freely on Rm, the
space Rm is the universal covering space of the flat manifold X .

By [8, Corollary 1.2] (cf. [5, Lemma 2.4]), any self-map f on X is homotopic
to a map whose lifting on the universal covering space Rm is an affine map of the
form (U, µ) ∈ M(m,Z) ⋊ Rm. Such a map is said to be a map induced by (U, µ) in
M(m,Z)⋊Rm.

Very recently the authors find some sufficient conditions for the infiniteness of
homotopical minimal period of self-map on flat manifold with cyclic holonomy, and
obtain more self-maps with infinite homotopical minimal period which are not ex-
panding. The main result is as follows (through out the paper we use I to denote the
identity matrix).

Theorem 1.1 (Main Theorem). Let X be an m-dimensional flat manifold with
holonomy group G ∼= Z/pZ, where p is a prime number with p ≡ 3 mod 4. Let f be
a self-map on X induced by (U, µ) ∈ M(m,Z) ⋊ Rm and (C,α) is a generator of G.
Assume that

(1) UC = CrU for some integer r with 1 6 r 6 p− 1,
(2)

det(I − Up−1) 6= 0 if r2 6≡ 1 (modp),

det(I − U2p) 6= 0 if r2 ≡ 1 (modp),

(3) xp−2 ∤ |xI − U |.
Then the homotopical minimal period Hper(f2) of f2 is infinite. Moreover, we have

(1.1) lim inf
n→∞

#{k | k ≤ n, k ∈ Hper(f2)}
n

logn

>
1

ϕ(p(p− 1)/2)
,

where ϕ is Euler ϕ-function.

The last inequality gives an asymptotic estimation of the density of Hper(f2) in
the set of natural numbers.

Finally we would like to thank Professor Chunlai Zhao for his help on writing this
paper.

2. Two lemmas on matrices. In this section we give two lemmas concerning
with matrices.

Lemma 2.1. Let C and U be two square matrices such that UC = CrU for some
positive integer r. Then for any integers i, j and k,

(1) U iCj = CjriU i.

(2) (CU i)j = C
∑j−1

k=0 rikU ij.

(3) (CsU i)j = C
∑j−1

k=0(rs)
ik

U ij.

Proof. All can be proved by induction.

Lemma 2.2. Let C,U ∈ M(m,Z) be two matrices such that Cp = I, C 6= I, UC =
CrU , where p is a prime, r is a positive integer with r 6≡ 0, 1 (modp). Assume that

det(I − Up−1) 6= 0 if r2 6≡ 1 (modp),

det(I − U2p) 6= 0 if r2 ≡ 1 (modp).
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If q is a prime with q 6≡ 1 (modp), (q − 1, (p − 1)/2) = 1 and q > Max{m + 1, p},
then

(2.2) det(I − CU2q) 6= 0.

If moreover xp−2 ∤ |xI − U |, then

(2.3) CU2q 6= (CsU2)q for all integer s.

Proof. First assume that (2.2) is not true. We are going to prove that m > q− 1,
which contradicts to the condition q > m+ 1.

In the case of r2 ≡ 1 (modp), From Lemma 2.1 and the condition Cp = I we get

(CU2q)p = C
∑p−1

k=0 r2qkU2pq = C
∑p−1

k=0 1U2pq = CpU2pq = U2pq.

So by the assumption det(I − CU2q) = 0 we have

det(I−U2pq) = det(I−CU2q)p) = det(I−CU2q) det(I+CU2q+· · ·+(CU2q)p−1) = 0.

This means that U has an eigenvalue λ with λ2pq = 1. Let r′ be the smallest positive
integer such that λr′ = 1. Then r′|2pq. Since det(I − U2p) 6= 0, we see that λ2p 6= 1,
and hence q|r′ (otherwise (r′, q) = 1 and therefore r′|2p, contradict to λ2p 6= 1).
Let f(x) := det(xI − U) be the characteristic polynomial of U , then f(λ) = 0. So
m = deg f(x) > [Q(λ) : Q] = ϕ(r′) > q − 1, as desired.

In the case of r2 6≡ 1 (modp), we have

(CU2q)
p−1
2 = C

∑ p−1
2

−1

k=0 r2qkU q(p−1) = C
r(p−1)q

−1

r2q−1 U (p−1)q.

Since (Z/pZ)× is a cyclic group of order p−1 and q is a prime with q > p > p−1, we see

that r2q = (r2)q 6≡ 1 (modp). But r(p−1)q = (rq)p−1 ≡ 1 (modp), so C
r(p−1)q

−1

r2q−1 =

C
1−1

r2q−1 = I, hence (CU2q)
p−1
2 = U (p−1)q. Our assumption det(I −CU2q) = 0 implies

that det(I − U (p−1)q) = 0. Similar to the case above, U has an eigenvalue λ with
λ(p−1)q = 1. Assume that r′ is the smallest positive integer such that λr′ = 1. Then
r′|(p − 1)q. From det(I − Up−1) 6= 0 we deduce that q|r′ and m > ϕ(r′) > q − 1, as
desired.

Now we prove. Assume (2.3) is not true, that is CU2q = (CsU2)q. By Lemma
2.1 we have

(CsU2)q = C
∑q−1

k=0(rs)
2k

U2q.

Comparing with the assumption CU2q = (CsU2)q, we get

(2.4) (C
∑q−1

k=0(rs)
2k−1 − I)U2q = 0.

We claim that

(2.5)

q−1
∑

k=0

(rs)2k ≡ 1 (modp).

In fact, from C 6= I and Cp = I we know that among the eigenvalues of C there
is a p-th primitive root of unity ζp. Since all entries of C are rational numbers, we
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see that all σ(ζp)’s (σ ∈ Gal(Q̄/Q)) are eigenvalues of C. If (2.5) is not true, then

C
∑q−1

k=0(rs)
2k−1 − I has different eigenvalues ζip − 1 (i = 1, 2, . . . , p − 1), and its rank

is at least p − 1. On the other hand, the condition xp−2 ∤ |xI − U | says that as an
eigenvalue of U , 0 is of multiplicity less than p− 2, and the same happens to U2q. So
the rank of U2q is at least 2. This contradicts to (2.4), and (2.5) is valid.

If (rs)2 − 1 ≡ 0 (modp), then

q−1
∑

k=0

(rs)2k ≡ q (modp).

Combining with (2.5), we get q ≡ 1 (modp), which contradicts to the original condi-
tion q 6≡ 1 (modp).

If (rs)2 − 1 6≡ 0 (modp), by (2.5) we get

(rs)2q − 1 ≡ (rs)2 − 1 (modp),

hence (rs)2(q−1) ≡ 1 (mod p). Assume that l is the smallest positive integer such that

((rs)2)l ≡ 1 (modp). Then l|q − 1. Moreover, from ((rs)2)
p−1
2 ≡ 1 (modp) we get

l|p−1
2 . Hence l|((q − 1), (p− 1)/2) = 1, a contradiction.

3. Proof of Main Theorem. We first prove a part of the Theorem 1.1 as
follows.

Theorem 3.1. Let X be an m-dimensional flat manifold with holonomy group
G ∼= Z/pZ, where p is a prime number. Let f be a self-map on X induced by (U, µ) ∈
M(m,Z)⋊Rm and (C,α) is a generator of G. Assume that

(1) UC = CrU for some 1 6 r 6 p− 1,
(2)

det(I − Up−1) 6= 0 if r2 6≡ 1 (modp),

det(I − U2p) 6= 0 if r2 ≡ 1 (modp),

(3) xp−2 ∤ |xI − U |.
Then the set

{q | q is prime, q > m+ 1, q 6≡ 1 (modp), (q − 1, (p− 1)/2) = 1}

is contained in Hper(f2).

Proof. Since the self-map f is induced by (U, µ), its iteration f2 is induced by
(U2, µ+ Uµ). From [5, Theorem 3.1], we obtain that

(3.6)
Hper(f2) = {k | there is a (C, γ) ∈ Γ such that det(I − C(U2)q) 6= 0,

(C, γ)(U2, µ+ Uµ)k 6= ((B, β)(U2, µ+ Uµ)l)k/l

for all l|k, l 6= k, (B, β) ∈ Γ}.

where Γ = Zm ⋊ Z/pZ is the fundamental group of the flat manifold X .
To prove q ∈ Hper(f2) it suffices to show that

det(I − CU2q) 6= 0 and CU2q 6= (CsU2)q (∀s ∈ Z).

(the second inequality ensures that (C, γ)(U2, µ + Uµ)q 6= ((B, β)(U2, µ + Uµ)l)q/l

for all l|q, l 6= q, (B, β) ∈ Γ since any B is equal to Cs for some integer s.) Note
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that all conditions of Lemma 2.2 are satisfied except C 6= I. However, if C = I, then

(C,α)p = (I, pα). Since (C,α) is of order p, we have (C,α)p = (I,
−→
0 ). Hence pα =

−→
0

and α =
−→
0 . So (C,α) = (I,

−→
0 ) is the identity of G, a contradiction. The conclusion

of Theorem 3.1 now follows from Lemma 2.2.

To prove the remaining part of Theorem 1.1 (i.e. formula (1.1)) we need the
following Dirichlet Prime Theorem (see [4, p. 13-14]).

Theorem 3.2. For any two positive coprime integers a and d, there are infinitely
many primes of the form a+nd, where n > 0. Furthermore define πa,d(x) := #{p|p =
a+ nd for some n > 0, p 6 x, and p is a prime}, then

lim
x→∞

πa,d(x)
x

log x

=
1

ϕ(d)
.

Proof of (1.1). Since p ≡ 3 mod 4, (p− 1)/2 is an odd integer. It follows that

{q | q is prime, q > m+ 1, q ≡ 2 (mod p(p− 1)/2)}

⊂ {q | q is prime, q > m+ 1, q 6≡ 1 (mod p), (q − 1, (p− 1)/2) = 1}.

By Dirichlet Prime Theorem we have that

#{q | q is prime, n > q, q ≡ 2 (mod p(p− 1)/2)} = O(
n

ϕ(p(p − 1)/2) logn
).

As m+ 1 is independent of q, we also have

#{q | q is prime, n > q > m+1, q ≡ 2 (mod p(p− 1)/2)} = O(
n

ϕ(p(p − 1)/2) logn
).

Therefore

lim inf
n→∞

#{k | k ≤ n, k ∈ Hper(f2)}
n

lnn

>
1

ϕ(p(p− 1)/2)
.

Thus the proof of Main Theorem is completed.

4. An example. In this section we give an example to illustrate the method to
determine the homotopical minimal periods applying our Main Theorem (Theorem
1.1).

We consider a Bieberbach group (see [3]) of a 3-dimensional flat manifold

(4.7) Γ = {t1, t2, t3, α | α3 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t−1

3 , titj = tjti, i 6= j}.

Its generators can be written in terms of matrices as follows:

(4.8) t2 = (I,





0
1
2



), t3 = (I,





0
−2
−1



), α = (





1 0 0
0 0 −1
0 1 −1



 ,





1
3
0
0



).

Proposition 4.1. ([10, Proposition 3]) Any endomorphism φ on Γ has the form

(4.9) φ(α) = αrtu2 t
v
3 , φ(t2) = αr2tu2

2 tv23 , φ(t3) = αr3tu3
2 tv33 ,
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and is in one of following three types:
Type (1): r = 3k1, u = k2, v = k3, r2 = r3 = u2 = v2 = u3 = v3 = 0;
Type (2): r = 3k1 + 1, u = k2, v = k3, r2 = r3 = 0, u2 = k4, v2 = k5, u3 = −k5,

v3 = k4 − k5;
Type (3): r = 3k1 − 1, u = k2, v = k3, r2 = r3 = 0, u2 = k4, v2 = k5,

u3 = −k4 + k5, v3 = −k4.
The elements in M(3,Z) ⋊ R3 inducing self-maps with endomorphisms of above

three types are:

(





3k1 0 0
3k2 − 6k3 0 0
6k2 − 3k3 0 0



 ,





0
0
0



), (





3k1 + 1 0 0
0 k4 −k5
0 k5 k4 − k5



 ,





0
k3 − k2
−k2



)

and

(





3k1 − 1 0 0
0 −k4 k4 − k5
0 −k5 k4



 ,





0
k3

k3 − k2



),

where kj , j = 1, 2, 3, 4, 5, are integers.

Let us consider type (3).

Lemma 4.2. Let kj ∈ Z, j = 1, 4, 5 and

C =





1 0 0
0 0 −1
0 1 −1



 , U =





3k1 − 1 0 0
0 −k4 k4 − k5
0 −k5 k4



 .

Assume that k1 6= 0 and (k4, k5) 6= (0,±1), (1, 0), (1, 1), (−1, 0), (−1,−1), then UC =
C2U , det(I − U6) 6= 0.

Proof. An elementary calculation shows that

UC = C2U =





3k1 − 1 0 0
0 k4 − k5 k5
0 k4 k5 − k4



 ,

To prove det(I −U6) 6= 0 it suffices to show that all eigenvalues of U are different
from 6-th root of unity. The three eigenvalues of U are 3k1 − 1, ±

√

k24 − k4k5 + k25 .
If (3k1 − 1)6 = 1, then 3k1 − 1 = ±1, and k1 = 0.
If (±

√

k24 − k4k5 + k25)
6 = 1, then k24 − k4k5 + k25 = 1. The discriminant of

k24 −k4k5+k25 − 1 in variable k5 is −3k24 +4, and it is a square if and only if k4 = 0 or
±1. If k4 = 0, we have that k5 = ±1. If k4 = 1, we have that k5 = 0, 1. If k4 = −1,
we have that k5 = 0,−1.

Therefore if k1 6= 0 and (k4, k5) 6= (0,±1), (1, 0), (1, 1), (−1, 0), (−1,−1), we have
det(I − U6) 6= 0.

Proposition 4.3. Let U be the matrix given in Lemma 4.2 with k1 6= 0, (k4, k5) 6=
(0,±1), (±1, 0), (1, 1), (−1,−1), and fU be the homomorphism induced by U . then

{q | q is a prime , q ≡ 2(mod3) and q > 4} ⊂ Hper(f2
U ).

Proof. Use the notations in Theorem 3.1. Then m = 3, p = 3. From Lemma 4.2
we have r = 2 and det(I−U2p) = det(I−U6) 6= 0. Obviously xp−2 = x ∤ |xI−U |. So
all conditions of Main Theorem are satisfied. By Theorem 3.1 we get the conclusion
of Proposition 4.3.
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