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SPACELIKE FOLIATIONS BY (n− 1)-UMBILICAL

HYPERSURFACES IN SPACETIMES∗

A. GERVASIO COLARES† AND OSCAR PALMAS ‡

Abstract. We consider the problem of whether a given spacetime admits a foliation by (n− 1)-
umbilical spacelike hypersurfaces. We introduce the notion of a timelike closed partially conformal
vector field in a spacetime and show that the existence of a vector field of this kind guarantees in turn
the existence of that foliation. We then construct explicit examples of families of (n − 1)-umbilical
spacelike hypersurfaces in the de Sitter space. Imposing the further condition of having constant
r-th mean curvature, we give the complete description of any leaf of a foliation of the de Sitter space
by these hypersurfaces. Finally, in a spacetime foliated by (n− 1)-umbilical spacelike hypersurfaces
we characterize the immersed spacelike hypersurfaces which are (n− 1)-umbilical.
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1. Introduction. The study of the geometric behavior of Lorentzian manifolds
and their hypersurfaces has important consequences in many instances; in particular,
for their use as spacetimes models in general relativity. Research in this area was
marked in 1977 by the appearance of Goddard’s paper [15], in which he posed his
now well-known conjecture: The only complete constant mean curvature spacelike
hypersurfaces in the de Sitter space Sn+1

1 are the totally umbilical ones.
As it is now known, Goddard’s conjecture was proved false in general. In fact, the

first counterexample was given by Dajzcer and Nomizu [12] in 1981, with an example
of a non-totally umbilical complete constant mean curvature spacelike surface in the
3-dimensional de Sitter space S31 (see also other examples in [1]).

It is worth mentioning that in 1988 Montiel proved that Goddard’s conjecture
is true for the compact case; that is, he showed that the only compact constant
mean curvature spacelike hypersurfaces in Sn+1

1 are the totally umbilical ones and he
described all of them (see [23]). Since then, interest has been growing in constructing
examples of non-totally umbilical spacelike hypersurfaces in Sn+1

1 , study initiated by
Dajczer and Nomizu and followed by Akutagawa [1], Ramanathan [31] and Ki, Kim
and Nakagawa [21].

Later on, in [24] and [26], Montiel studied and characterized a family of non-
totally umbilical complete constant mean curvature spacelike hypersurfaces in Sn+1

1 ,
the so called hyperbolic cylinders (see also [21]).

We note that all these non-totally umbilical examples are in fact (n−1)-umbilical,
notion defined in [5] and [11] for the Riemannian case and directly extended in [9]
to the Lorentzian case: given a Lorentzian manifold M̄n+1

1 , a spacelike hypersurface
Mn ⊂ M̄n+1

1 is (n− 1)–umbilical if there exists a (n− 1)-dimensional distribution D
on M̄n+1 and a positive function µ such that

(1) D = { X ∈ X(M) | α(X,Y ) = µ〈X,Y 〉N, for all Y ∈ X(M) },
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where N is a smooth unit vector field everywhere normal to M and α is the second
fundamental form of M . From the definition it is easy to see that a hypersurface is
(n− 1)-umbilical if and only if has (n− 1) equal principal curvatures at each point.

We must mention that in the Riemannian setting there are many papers studying
(n − 1)-umbilical hypersurfaces; see for example [18], [20], [22], [29], [30] and more
recently, [10].

On the other hand, in 1995 Aĺıas, Romero and Sánchez formulated in [3] the
following question: when is a complete spacelike hypersurface in a Generalized
Robertson-Walker spacetime totally umbilical or a slice? In [3] and the subsequent
paper [4] they answered the question under some hypotheses such as the manifold
being Einstein or the timelike convergence condition (i.e., the Ricci curvature is non-
negative on timelike directions). They used integral formulas obtained by derivating
the natural timelike closed conformal vector field of the ambient. An account of their
contribution can be found in [6].

Since then increased the interest for the Goddard-type question:

Under what conditions a spacelike hypersurface with constant mean curvature is
totally umbilical?

Montiel answered this question imposing two conditions on the ambient spacetime
(see [26]). The first one is that the spacetime must admit a closed conformal timelike
vector field. This condition is associated to the fact of the spacetime being expressed,
locally, as a warped product as well as to the existence of a foliation whose leaves are
totally umbilical.

The second condition on the spacetime is the null convergence condition (that
is, the Ricci curvature is non-negative on null directions). Under both conditions,
he proved that constant mean curvature compact spacelike hypersurfaces in such a
spacetime must be totally umbilical.

Following these research lines, it is natural to study (n−1)-umbilical hypersurfaces
in spacetimes and try to relate them to constant mean curvature hypersurfaces or,
even more generally, to constant r-th mean curvature spacelike hypersurfaces. Recall
that the r-th mean curvature Hr of a n-dimensional hypersurface is given in terms of
its principal curvatures as

(2)

(
n

r

)
Hr =

∑

1≤i1<i2<···<ir≤n

κi1κi2 · · ·κir .

Of course, for this theory to be meaningful the ambient space must have plenty
of (n− 1)-umbilical hypersurfaces. As an important example, we will define rotation
spacelike hypersurfaces in Sn+1

1 (see Section 5) and we use them to prove the existence
of a 1-parameter family of (n − 1)-umbilical complete spacelike hypersurfaces with
constant r-th mean curvature in Sn+1

1 (see Section 6).

In this context, it is then natural to pose the following questions:

Under what conditions a spacetime possesses a foliation whose leaves are (n− 1)-
umbilical?

In a spacetime admitting such a foliation, under what conditions an immersed
spacelike hypersurface is (n− 1)-umbilical?

Here we answer both questions. After some preliminaries, in Section 3 we in-
troduce the notion of a timelike closed partially conformal vector field in a space-
time M̄n+1

1 (see Definition 3.1): A timelike vector field K ∈ X(M̄n+1
1 ) is closed
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partially conformal if there is a unit vector field W orthogonal to K and functions
φ, ψ : M̄n+1

1 → R such that

∇̄XK = φX + (ψ − φ)〈X,W 〉W

for every X ∈ X(M̄). In particular, closed conformal vector fields satisfy φ = ψ
everywhere.

Remark 1.1. We note that the transformations associated to the flow of a closed
partially conformal vector field are in fact partially conformal transformations in the
sense of Tanno (see [32] and [33]). Also, our notion is closely related with that of a
biconformal vector field (see, for example [16, 17]). A vector field K defined on M̄ is
said to be biconformal if there are complementary and mutually orthogonal projections
π1, π2 on TM̄ and differentiable functions φ, ψ on M̄ such that

LKπ
∗
1〈 , 〉 = 2φπ∗

1〈 , 〉, LKπ
∗
2〈 , 〉 = 2ψπ∗

2〈 , 〉,

where LK is the Lie derivative relative to K. In fact, if K is a closed partially confor-
mal vector field, and π1 (resp. π2) is the projection onto the orthogonal complement
to W (resp. onto the space spanned by W ), it is straightforward to show that K is
biconformal; for example,

LKπ
∗
1〈X,Y 〉 = K〈π1X, π1Y 〉 − 〈[K,π1X ], π1Y 〉 − 〈[K,π1Y ], π1X〉

= 〈∇̄π1XK,π1Y 〉+ 〈∇̄π1YK,π1X〉
= 2φ〈π1X, π1Y 〉 = 2φπ∗

1〈X,Y 〉.

The presence of a timelike closed partially conformal vector field guarantees the
existence of the foliation we are interested in. In fact, the answer to the first of our
questions is given by the following result, proved by the authors in the previous work
[9]:

(Theorem 3.2 in [9]) Let M̄n+1
1 be a Lorentzian manifold possessing a timelike

closed partially conformal vector field K. Then the distribution K⊥ defined by taking
the orthogonal complement of K at every point is involutive and each connected leaf of
the foliation determined by this distribution is a (n− 1)-umbilical hypersurface having
(n− 1) equal and constant principal curvatures.

In Section 4 we will present explicit examples of timelike closed partially conformal
vector fields in Lorentzian space forms of non-negative curvature. In the particular
case of the de Sitter space Sn+1

1 , we obtain in Example 4.2 a foliation of the open
subset of Sn+1

1

Ω =
{
(x1, . . . , xn+2) ∈ Sn+1

1 ⊂ Rn+2
1 | − x21 + x22 < 0

}
,

by the hyperbolic cylinders given by

{
(x1, . . . , xn+2) ∈ Sn+1

1

∣∣∣∣ −x
2
1 + x22 =

1

c1
, x23 + · · ·+ x2n+2 =

1

c2

}
,

where c1 < 0, c2 > 0 and (1/c1) + (1/c2) = 1.
In the same Section 4 we note that Ω may be expressed as a doubly warped

product of the form −I×fR×gS
n−1 for some smooth positive functions f, g : I → R+.
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It is worth emphasizing that the inner Schwarzschild spacetime also can be ex-
pressed as a doubly warped product (see Section 5.5 of [19] and also [14]).

The close relation between spacetimes possessing timelike closed partially confor-
mal vector fields and doubly warped products will be given by Proposition 4.3:

Every Lorentzian doubly warped product of the form

M̄n+1
1 = −I ×f F

n−1 ×g J, where I, J ⊂ R, f, g : I → R+, and f 6= g,

admits a timelike closed partially conformal vector field.

In consequence, the inner Schwarzschild spacetime admits a natural closed par-
tially conformal vector field.

We have also a partial converse to Proposition 4.3 (see Proposition 4.5):

Let M̄n+1
1 be a spacetime which admits a timelike closed partially conformal vector

field K with an associated vector field W orthogonal to K. Suppose W is parallel.
Then M̄n+1

1 can be expressed locally as a doubly warped product of the form −I ×f

F × J .

In Section 5 we give explicit examples of (n− 1)-umbilical hypersurfaces in Sn+1
1

by defining the spacelike rotation hypersurfaces. In section 6 we impose on these
submanifolds the further condition of having constant r-th mean curvature to build 1-
parameter families of hypersurfaces which, as far as we know, were not yet considered
in the literature (see Theorem 6.1):

For every real number Hr there are three 1-parameter families of spacelike rotation
hypersurfaces in Sn+1

1 with constant r-th mean curvature Hr, corresponding to the kind
of rotation (spherical, parabolic or hyperbolic) considered. The family of parabolic
rotation hypersurfaces contains the totally umbilical hypersurfaces of Sn+1

1 . Moreover,
1. The family of spherical rotation hypersurfaces contains two cylinders if r = 1

and 2
√
n− 1/n ≤ H1 < 1, while it contains one cylinder if r = 1 and H1 > 1.

2. The family of spherical rotation hypersurfaces contains one cylinder if 2 ≤
r ≤ n and 0 < Hr < 1.

3. The family of hyperbolic rotation hypersurfaces contains one cylinder if 1 ≤
r ≤ n and Hr > 1.

In the above statement, we call a hypersurface a cylinder if it is (n− 1)-umbilical
with two distinct and constant principal curvatures.

We use the above result to characterize any non-umbilical leaf of a foliation asso-
ciated to a timelike closed partially conformal vector field defined on Sn+1

1 and having
constant r-th mean curvature as a cylinder (see Corollary 6.2):

Let K be a timelike closed partially conformal vector field defined on an open
subset of Sn+1

1 . If a connected leaf of K⊥ has constant mean curvature, then the leaf
is totally umbilical or a cylinder.

Moreover, let φ, ψ be the functions associated with K via equation (4). Suppose
that φ 6= 0 and that a connected leaf of K⊥ has constant r-th mean curvature for some
r > 1. Then the leaf is totally umbilical or a cylinder.

In Theorem 6.3 we refine Theorem 6.1 to prove the existence of a subfamily of
complete rotational hypersurfaces as follows:
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For each of the following values of r and Hr there is a 1-parameter family of
complete spherical rotation spacelike hypersurfaces with constant r-th mean curvature
Hr in Sn+1

1 :
1. r = 1 and 2

√
n− 1/n < H1 < 1;

2. r ≥ 2 and 0 < Hr < 1.

Finally, in section 7 we answer our second question, namely, under what conditions
a hypersurface is (n−1)-umbilical, establishing restrictions on the class of the ambient
spacetimes foliated by (n − 1)-umbilical hypersurfaces. Then we give necessary and
sufficient conditions for a immersed spacelike hypersurface to be (n−1)-umbilical (see
Theorem 7.1):

Let M̄n+1
1 = −I ×f F ×g J be a doubly warped product with F compact. Let Σ be

an immersed spacelike hypersurface everywhere transverse to K. For a given s ∈ J ,
let M̄s = −I×f F ×g {s} and Σs = Σ∩M̄s. Suppose either of the following conditions
true:

1. M̄ satisfies the null convergence condition

RicF ≥ sup(ff ′′ − f ′2),

where Ric is the Ricci curvature of F and in addition, assume that Σs is a
compact (n−1)-dimensional manifold immersed with constant mean curvature
in M̄s for every s ∈ J ;

2. M̄ satisfies the strong null convergence condition

KF ≥ sup(ff ′′ − f ′2),

where KF stands for the sectional curvature of F ; also assume that for each
s ∈ J , Σs is a compact (n− 1)-dimensional manifold immersed with constant
r-th mean curvature Hr in M̄s for some 2 ≤ r ≤ n and that Σs is contained
in a slab (t1, t2)×f F ×g {s} where f ′ does not vanish.

Then Σ is (n − 1)-umbilical in M̄ if and only if the angle between Σ and M̄s is
constant for every s ∈ J .

2. Preliminaries. Let n, ν be integers such that n ≥ 2 and 0 ≤ ν ≤ n. We will
denote by M̄n

ν a n-dimensional semi-Riemannian manifold, endowed with a metric
tensor of index ν denoted by 〈 , 〉.

For example, let Rn
ν be the n-dimensional semi-Euclidean space of index ν, i.e.,

the n-dimensional vector space with metric tensor

〈x, y〉 = −
ν∑

i=1

xiyi +

n∑

j=ν+1

xjyj ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
For n ≥ 2 and c > 0 we define

Snν (c) =

{
x ∈ Rn+1

ν

∣∣∣∣ 〈x, x〉 =
1

c

}
.

It is well known that Snν (c) has constant (positive) curvature c. We call Rn+1
ν the

ambient space of Snν (c). If c = 1, we simply denote this space as Sn+1
ν .
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Similarly, for c < 0 we define

Hn
ν (c) =

{
x ∈ Rn+1

ν+1

∣∣∣∣ 〈x, x〉 =
1

c

}
,

which is a space with constant (negative) curvature c. We call Rn+1
ν+1 the ambient space

of Hn
ν (c). Note the index ν + 1 in this case. Again, if c = −1 we denote this space as

Hn+1
ν .

To standardize our notation, we set Rn+1
ν as the ambient space of Rn

ν , that is,

Rn
ν = { x ∈ Rn+1

ν | xn+1 = 0 }.

If the index ν is equal to 1, we say that M̄n
1 is a Lorentzian manifold or a spacetime.

We will denote by Qn+1
1 (c) the standard Lorentzian space forms; that is, the (n+ 1)-

dimensional simply connected spacetimes of constant curvature c. Then for c = 0 we
have the Lorentz-Minkowski space Rn+1

1 ; for c > 0 the de Sitter space Sn+1
1 (c), and

for c < 0 the anti-de Sitter space Hn+1
1 (c).

In this paper we will also use the notion and basic properties of doubly warped
products, which we include here for completeness.

Definition 2.1. Let (B, gB), (F1, g1) and (F2, g2) be semi-Riemannian manifolds
and f1, f2 > 0 differentiable functions on B. The doubly warped product B×f1F1×f2

F2 is the product manifold B × F1 × F2 endowed with the metric

(3) g = π∗(gB) + (f1 ◦ π)2σ∗
1(g1) + (f2 ◦ π)2σ∗

2(g2),

where π, σ1, σ2 are the projections from B ×F1 × F2 onto B, F1 and F2, respectively.

Remark 2.2. In Sections 4 and 7 we will use a doubly warped product of the
form −I ×f F ×g J , where −I is an open interval with negative definite metric, F is
a Riemannian manifold, J is an open interval with positive definite metric and f, g
are smooth, positive functions defined on I.

As in any product manifold (see [28], p. 24ff), we may lift to a given doubly
warped product B ×f1 F1 ×f2 F2 functions, individual tangent vectors or even vector
fields defined on any of the factors using the corresponding projection. We denote
by L(B) the space of lifts of vector fields in X(B); L(F1) and L(F2) have analogous
meanings. Unless otherwise stated, we will use the same notation for vector fields
defined on any of the factors and their lifts.

It is easy to see that the Lie bracket of lifts from different factors is always zero;
for example, if X ∈ L(B) and W ∈ L(F2), then [X,W ] = 0. (See [28], Corollary 44,
p. 25.)

In the following proposition we include the formulae for covariant derivatives of
vector fields in a doubly warped product (see also [34]). We denote by ∇B , ∇1, ∇2

and ∇̄ the semi-Riemannian connection on B, F1, F2 and B×f1F1×f2F2, respectively.

Proposition 2.3. Given a doubly warped product B ×f1 F1 ×f2 F2 and vector
fields X,Y ∈ L(B), V ∈ L(Fi), W ∈ L(Fj), then

1. ∇̄XY = ∇B
XY .

2. ∇̄XW = ∇̄WX =
X(fj)

fj
W .
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3. ∇̄VW =





0, i 6= j,

∇i
VW − g(V,W )

fi
gradB(fi), i = j.

The proof of Proposition 2.3 is completely analogous to that of Proposition 35 in
([28], p. 206) and will be omitted.

3. Timelike closed partially conformal vector fields. Here we define the
class of vector fields we are interested in. It will be seen that the definition below is a
natural extension of the concept of closed conformal vector field analyzed by Montiel
in [25] and [26].

Definition 3.1. Let M̄n+1
1 be a spacetime with connection ∇̄ and K be a smooth

timelike vector field (thus everywhere different from zero). We say that K is closed
partially conformal in M̄n+1

1 if there is a unit vector field W orthogonal to K and
functions φ, ψ : M̄n+1

1 → R such that

(4) ∇̄XK = φX + (ψ − φ)〈X,W 〉W

for every X ∈ X(M̄).

In [9] and [10], the authors defined and analyzed the basic properties of closed
partially conformal vector field both in the Riemannian and Lorentzian settings. In
the following theorem we summarize these results and refer the reader to the cited
papers.

Theorem 3.2 (Theorem 3.2 in [9]). Let M̄n+1
1 be a Lorentzian manifold pos-

sessing a timelike closed partially conformal vector field K. Then the distribution K⊥

defined by taking the orthogonal complement of K at every point is involutive and each
connected leaf of the foliation determined by this distribution is a (n − 1)-umbilical
hypersurface having (n− 1) equal and constant principal curvatures.

For future reference, we give here the explicit expression for the principal cur-
vatures of a leaf of the foliation determined by K⊥. We denote K̂ = K/|K|, where
|K| =

√
−〈K,K〉. It is easily proved that the principal curvatures of the leaf with

respect to K̂ are given by

(5) κi = − φ

|K| , i = 1, . . . , n− 1; and κn = − ψ

|K| .

The authors proved in [9] that φ and |K| are constant along each connected leaf
of the foliation determined by K⊥, which implies in turn that the principal curvatures
κi, i = 1, . . . , n − 1 are also constant along such a leaf. One may also ask whether
the function ψ is constant along the leaf. We give an answer to this question in the
following proposition.

Proposition 3.3. If either div K, the function ψ or the mean curvature H is
constant along a leaf of the foliation determined by K⊥, then the same happens with
the other two quantities.

Each of the above conditions imply that every r-th mean curvature Hr, r > 1, is
constant along a leaf of the foliation determined by K⊥. Conversely, if there exists
r > 1 such that Hr is constant along a leaf of the foliation determined by K⊥ and
φ 6= 0, then each of the above quantities is constant along that leaf.
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Proof. Let E1, . . . , En−1, En = W be an orthonormal frame on the leaf. Then
from (4) we have that ∇̄Ei

K = φEi for i = 1, . . . , n − 1 and ∇̄En
K = ψEn. Let us

calculate the divergence of K using this frame and the timelike unit vector field K̂:

div K =

n−1∑

i=1

〈∇̄Ei
K,Ei〉+ 〈∇̄En

K,En〉 − 〈∇̄K̂K, K̂〉

=

n−1∑

i=1

φ〈Ei, Ei〉+ ψ〈En, En〉 − φ〈K̂, K̂〉 = nφ+ ψ.

Using (2) and (5), we obtain that the r-th mean curvature of the leaf is given by

(
n
r

)
Hr =

(
n− 1
r − 1

)(
− φ

|K|

)r−1(
− ψ

|K|

)
+

(
n− 1
r

)(
− φ

|K|

)r

,

so that

n|K|rHr = (−1)r(rφr−1ψ + (n− r)φr).

As φ and |K| are constant along the leaf, these formulas prove our claim.

For further use, we give the following useful definition.

Definition 3.4. Let M̄n+1
1 be a Lorentzian manifold and M a hypersurface of

M̄n+1
1 . M is a cylinder if it is a (n− 1)-umbilical hypersurface with two distinct and

constant principal curvatures.

4. Examples and properties of spacetimes with a timelike closed par-

tially conformal vector field. The spacetimes we are interested in are those which
admit (at least in an open subset) a timelike closed partially conformal vector field.
We will give some examples for the Lorentzian space forms Qn+1

1 (c), c ≥ 0.

Example 4.1. If c = 0, i.e., if our manifold is the Lorentz-Minkowski space Rn+1
1

with standard coordinates x1, . . . , xn+1, we may work in the following open subset:

Ω = { x ∈ Rn+1
1 | − x21 + x22 + · · ·+ x2n < 0 }

and define the following vector field

K =

n∑

i=1

xi∂i, where ∂i =
∂

∂xi
.

It is easy to see that

∇̄∂j
K = ∂j , for j = 1, . . . , n and ∇̄∂n+1

K = 0,

which means that K is a closed partially conformal vector field. Note that K is
timelike in Ω. The foliation of Ω associated to K is given by the 1-parameter family
of spacelike cylinders defined for c < 0 as

Hn−1(c)× R =

{
(x, y) ∈ Rn+1

1

∣∣∣∣ −x
2
1 + x22 + · · ·+ x2n =

1

c

}

which are already present in the literature; see [21], for example.
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Example 4.2. We now define a timelike closed partially conformal vector field
in the open subset of Sn+1

1 given by

Ω =
{
(x1, . . . , xn+2) ∈ Sn+1

1 ⊂ Rn+2
1 | − x21 + x22 < 0, x1 > 0

}
.

The open set Ω may be parametrized by

P (t, u1, . . . , un−1, s) = (sinh t cosh s, sinh t sinh s, cosh t · Φ(u1, . . . , un−1)) ,

where t > 0, s ∈ R and Φ is an orthogonal parametrization of the unit sphere Sn−1 ⊂
Rn.

We denote by ∇̄ the connection on Rn+2
1 and ∇ the induced connection on Sn+1

1 .
Recall that the position vector P as given above is precisely the unit vector field ev-
erywhere normal to Sn+1

1 and that the de Sitter space is totally umbilical in Rn+2
1 ; in

fact we have

∇̄XY = ∇XY − 〈X,Y 〉P

for every X,Y ∈ X(Sn+1
1 ). Using this expression we obtain

∇∂t
∂t = 0, ∇∂i

∂t = (tanh t)∂i and ∇∂s
∂t = (coth t)∂s,

where ∂i = ∂P/∂ui, i = 1, . . . , n − 1. Now we define the (timelike) vector field
K = (cosh t)∂t which satisfies

∇∂t
K = (sinh t)∂t; ∇∂i

∂t = (sinh t)∂i and ∇∂s
K = (cosh t coth t)∂s.

where again i = 1, . . . , n − 1. These expressions show that K is a timelike closed
partially conformal vector field defined in Ω. The foliation associated to K is that of
the hyperbolic cylinders H1(c1)× Sn−1(c2) ⊂ Sn+1

1 given by

{
(x1, . . . , xn+2) ∈ Sn+1

1

∣∣∣∣ −x
2
1 + x22 =

1

c1
, x23 + · · ·+ x2n+2 =

1

c2

}
,

where c1 < 0, c2 > 0 and (1/c1) + (1/c2) = 1.

We remark that a similar approach may be followed to define a timelike closed
partially conformal vector field in an open subset of the anti-de Sitter space, which
will be included elsewhere.

In each case we can express the domain of K as a doubly warped product (see
Definition 2.1). Explicitly, for the Example 4.1 in Rn+1

1 , the domain Ω may be
parametrized as

(t · Φ(u1, . . . , un−1), s), t > 0,

where Φ is an orthogonal parametrization of the unit hyperbolic space Hn−1. Using
this parametrization and the notation dσ2 for the metric on Hn−1, we express the
metric on Ω as

−dt2 + t2dσ2 + ds2,

which shows that Ω is the doubly warped product

−I ×f Hn−1 ×g R, I = (0,∞),
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with f, g : I → R+ given by f(t) = t and g(t) ≡ 1.

On the other hand, for the Example 4.2 in Sn+1
1 we use the parametrization there

given for the domain Ω to write the metric as

−dt2 + (cosh2 t) dσ2 + (sinh2 t) ds2,

where dσ2 is the standard metric on the unit sphere Sn−1. In this case, Ω is the
doubly warped product

−I ×f Sn−1 ×g R,

where I = (0,∞), f(t) = cosh t and g(t) = sinh t.

These examples suggest a strong relation between the existence of a timelike
closed partially conformal vector field on a given spacetime and a certain doubly
warped product structure on the spacetime. In fact, we have the following result.

Proposition 4.3. Every Lorentzian doubly warped product of the form

M̄n+1
1 = −I ×f F

n−1 ×g J, where I, J ⊂ R, f, g : I → R+, and f 6= g,

admits a timelike closed partially conformal vector field.

Proof. Take t, s standard coordinates on I, J respectively, and u1, . . . , un−1 coor-
dinates on F , with corresponding vector fields ∂t, ∂s, ∂1 . . . , ∂n−1. Using the formulae
of Proposition 2.3 we have that

∇̄∂t
∂t = 0, ∇̄∂i

∂t =
f ′

f
∂i and ∇̄∂s

∂t =
g′

g
∂s,

where i = 1, . . . , n− 1. We define K = f ∂t and obtain that

∇̄∂t
K = f ′∂t, ∇̄∂i

K = f ′∂i and ∇̄∂s
K = f

g′

g
∂s,

where again i = 1, . . . , n−1. Since f 6= g, we have that K is a timelike closed partially
conformal vector field.

Remark 4.4. The unit vector field W associated to K = f ∂t is given by

W =
1

g
∂s.

We may use again Proposition 2.3 to conclude easily that it satisfies

(6) ∇̄∂t
W =

g′

g
W and ∇̄VW = 0

for ∂t ∈ L(I) and each V ∈ L(F ). Also, if we fix s ∈ J and denote M̄s = −I ×f F ×
{s}, we observe that M̄s is totally geodesic in M̄ . In fact, let αs denote the second
fundamental form of M̄s in M̄ . We use the fact that W is everywhere normal to M̄s

to have for every X,Y ∈ X(M̄s)

〈αs(X,Y ),W 〉 = 〈∇̄XY,W 〉 = −〈Y, ∇̄XW 〉.
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Now write X as a∂t+V , where a is a smooth function and V ∈ L(F ). By equation
(6),

〈αs(X,Y ),W 〉 = −ag
′

g
〈Y,W 〉 = 0,

which implies our assertion that M̄s is totally geodesic in M̄ .

The following proposition is a partial converse of the above facts.

Proposition 4.5. Let M̄n+1
1 be a spacetime which admits a timelike closed

partially conformal vector field K with an associated vector field W orthogonal to K.
Suppose W is parallel. Then M̄n+1

1 can be expressed locally as a doubly warped product
of the form −I ×f F × J .

Proof. Let us prove first that the distribution W⊥ everywhere orthogonal to W
is involutive. If X,Y ∈W⊥, then

〈[X,Y ],W 〉 = 〈∇̄XY − ∇̄YX,W 〉
= X〈Y,W 〉 − 〈Y, ∇̄XW 〉 − (Y 〈X,W 〉 − 〈X, ∇̄YW 〉) = 0.

Now note that K is a timelike closed conformal field when restricted to each integral
manifold of W⊥, so by Proposition 2 in [26] this integral manifold may be expressed
as a warped product −I ×f F . As W is parallel, it is also Killing, and its flow is by
isometries. Following this flow we may write locally M̄n+1

1 as −I ×f F × J .

5. Rotation hypersurfaces. The examples in the previous section were quite
particular. As we shall see, the hypersurfaces involved are nothing but rotation hy-
persurfaces. A general definition of this kind of hypersurfaces was given in the Rie-
mannian case by do Carmo and Dajczer in [13], which was extended later to some
spacetimes (see for example [27]). For the sake of completeness, we give the definition
of these rotation hypersufaces in Qn+1

1 (c).
Recall from the introduction that each Qn+1

1 (c) has an ambient space of the form
Rn+2

ν , ν = 1, 2. We say that an orthogonal transformation of Rn+2
ν is a linear map

that preserves the metric. By restriction, these orthogonal transformations induce all
isometries of Qn+1

1 (c).
Let P k be a k-dimensional vector subspace of Rn+2

ν . O(P k) will denote the set of
orthogonal transformations of Rn+2

ν with positive determinant that leave P k pointwise
fixed.

Choose P 2 and P 2 ⊂ P 3, and let C be a regular, spacelike curve in Qn+1
1 (c) ∩

(P 3 − P 2), parametrized by arc length. The orbit of C under O(P 2) is called the
rotation spacelike hypersurface M in Qn+1

1 (c) generated by C. M is spherical (hy-
perbolic, parabolic, resp.) whenever the restriction of the metric to P 2 is Lorentzian
(Riemannian, degenerate, resp.).

We are interested in rotation hypersurfaces in Qn+1
1 (c) with Hr constant. Spher-

ical rotation hypersurfaces with H1 and H2 constant in the de Sitter space Sn+1
1 were

described in previous works (see [7] and [8]). Thus, we will describe here in detail the
hyperbolic rotation hypersurfaces in Sn+1

1 and will make some comments about the
spherical and parabolic cases.

Let {e1, e2, . . . , en+2} be the canonical orthonormal basis of Rn+2
1 , so that

〈e1, e1〉 = −1 and 〈ei, ei〉 = 1 for i > 1.
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Also, let P 2 = span(en+1, en+2) and P 3 = span(e1, en+1, en+2). The profile curve
generating the rotation hypersurface is given by

(y1(s), 0, . . . , 0, yn+1(s), yn+2(s)),

where

−y21 + y2n+1 + y2n+2 = 1 and − ẏ21 + ẏ2n+1 + ẏ2n+2 = 1.

Here the dots denote derivative with respect to s.
Following [13], we may describe O(P 2) as follows. The matrix of an element of

O(P 2) with respect to the canonical basis has the form




B
A1

. . .

A(n−2)/2

I




for n even, or the form



B
A1

. . .

A(n−3)/2

1
I




for n odd. Here I denotes the identity matrix 2× 2, the matrix B is given by

B =

(
cosh θ − sinh θ
sinh θ cosh θ

)
.

and, for each i, the matrix Ai is given by

Ai =

(
cos θi − sin θi
sin θi cos θi

)
.

Now take Φ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) as an orthogonal parametrization of the
unit hyperbolic space Hn−1 ⊂ Rn

1 , so that

−ϕ2
1 + ϕ2

2 + · · ·+ ϕ2
n = −1.

Thus,

(7) f(t1, . . . , tn−1, s) = (y1(s)Φ(t1, . . . , tn−1), yn+1(s), yn+2(s))

is the desired parametrization of the spacelike hyperbolic rotation hypersurface gen-
erated by the curve (y1(s), 0, . . . , 0, yn+1(s), yn+2(s)).

We will calculate the principal curvatures of the rotation hypersurfaces
parametrized by (7). Differentiating this equation, we have

∂f

∂s
= (ẏ1Φ, ẏn+1, ẏn+2) and

∂f

∂tj
=

(
y1
∂Φ

∂tj
, 0, 0

)
,
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so that
〈
∂f

∂s
,
∂f

∂s

〉
= 1,

〈
∂f

∂s
,
∂f

∂tj

〉
= 0 and

〈
∂f

∂ti
,
∂f

∂tj

〉
= y21

〈
∂Φ

∂ti
,
∂Φ

∂tj

〉
.

Differentiating again, we obtain

∂2f

∂s2
= (ÿ1Φ, ÿn+1, ÿn+2),

∂2f

∂s∂tj
=

(
ẏ1
∂Φ

∂tj
, 0, 0

)
,

∂2f

∂ti∂tj
=

(
y1

∂2Φ

∂ti∂tj
, 0, 0

)
.

We choose the unit normal vector N as

(−(ẏn+1yn+2 − yn+1ẏn+2)Φ, (y1ẏn+2 − ẏ1yn+2), (ẏ1yn+1 − y1ẏn+2)).

We proceed to calculate the principal curvatures in terms of the coordinates of the
generating curve. The coordinate curves are lines of curvature and the principal
curvatures along the ti–curves are

(8) κi =
〈N, ∂2f/∂t2i 〉

〈∂f/∂ti, ∂f/∂ti〉
= − ẏn+1yn+2 − yn+1ẏn+2

y1
.

We use −y21 + y2n+1 + y2n+2 = 1 to write these principal curvatures in terms of y3
alone. Let

(9) yn+1 =
√
1 + y21 cos θ and yn+2 =

√
1 + y21 sin θ,

for an unknown function θ, which may be obtained deriving the above expressions
and using −ẏ21 + ẏ2n+1 + ẏ2n+2 = 1. We have

θ̇2 =
y21 + ẏ21 + 1

y21 + 1
.

We differentiate yn+1 and yn+2 in (9), use the above expression for θ̇ and (8) to
express the principal curvatures κi of M in terms of y1 as

κi =

√
y21 + ẏ21 + 1

y1
.

The expression for κn is obtained in a similar but longer way, differentiating ẏn+1

and ẏn+2, using (8), (9) and the expression for θ̇. In the following proposition we
summarize this analysis, including the spherical and parabolic cases which may be
treated similarly (see for example [27] for the case n = 2).

Theorem 5.1. The principal curvatures of a rotation hypersurface in Sn+1
1 are

given by

(10) κi =

√
y2 + ẏ2 − δ

y
and κn =

ÿ + y√
y2 + ẏ2 − δ

,
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where i = 1, . . . , n − 1, y2 ≥ δ and δ = −1,−1, 0 depending on whether the rotation
hypersurface is spherical, hyperbolic or parabolic, respectively.

Using (2) and (10) we obtain the following formula for the r-th mean curvature
Hr:

(
n
r

)
Hr =

(
n− 1
r

)(√
y2 + ẏ2 − δ

y

)r

+

+

(
n− 1
r − 1

)(√
y2 + ẏ2 − δ

y

)r−1
ÿ + y√

y2 + ẏ2 − δ
,

which simplifies to

(11) nHry
r = (n− r)

(
y2 + ẏ2 − δ

)r/2
+ r

(
y2 + ẏ2 − δ

)(r−2)/2
(ÿ + y)y.

We will study this equation in detail in Section 6. To close this section, we give
a useful characterization of rotation hypersurfaces. The proof of this Theorem is the
same as in [13] and we shall omit it.

Proposition 5.2. Let Mn, n ≥ 3, be an arbitrary connected, spacelike hy-
persurface in Qn+1

1 (c). Assume that the principal curvatures κ1, . . . , κn satisfy
κ1 = · · · = κn−1 = −λ 6= 0 and κn = −µ = −µ(λ), where λ 6= µ. Then Mn is
contained in a rotation hypersurface.

6. Rotation hypersurfaces with Hr constant in Sn+1
1 . Let us suppose that

Hr is constant in Equation (11). Then a first integral is given by

(12) Gr(y, ẏ) = yn−r
((
y2 + ẏ2 − δ

)r/2 −Hry
r
)
.

The analysis of the level curves of Gr will give us a full classification of the
spacelike rotation hypersurfaces with Hr constant in Sn+1

1 . In particular, we will
prove the existence of 1-parameter families of such hypersurfaces, which will include
a cylinder (Definition 3.4) depending on the value of Hr. For r = 1, we re-obtain the
well-known constant mean curvature cylinders already cited in this paper.

First we study very briefly the parabolic case δ = 0 in (12), namely,

Gr(y, ẏ) = yn−r
((
y2 + ẏ2

)r/2 −Hry
r
)
.

The critical points ofGr have special relevance. Solving the equations ∂Gr/∂y = 0
and ∂Gr/∂ẏ = 0 we obtain easily that

• Gr has no critical points other than (0, 0) for Hr 6= 1, and
• Every point of the form (y, 0) with y ≥ 0 is a critical point of Gr for Hr = 1.

To each critical point (y, 0) with y > 0 we associate a parabolic rotation hyper-
surface. By (10), the principal curvatures of such a hypersurface are all equal, so we
obtain a totally umbilical hypersurface, which of course is also (n− 1)-umbilical.

From now on we suppose that δ = ±1. Additionally, we will analyze later the case
Hr = 0, so that we will suppose Hr 6= 0 and separate our analysis in the following
cases according to the value of r: r = 1 (the constant mean curvature case), r = 2,
2 < r < n odd, 2 < r < n even, and r = n.
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1. Case of r = 1. Equation (12) takes the form

G1(y, ẏ) = yn−1
(√

y2 + ẏ2 − δ −Hy
)
, H = H1.

We will describe the level curves of G1. As in the analysis of the parabolic
rotation case, the critical points of G1 have particular importance. Solving
∂G1/∂y = 0 and ∂G1/∂ẏ = 0 we obtain a critical point of the form (y, 0),
where

y2 − nHy
√
y2 − δ + (n− 1)(y2 − δ) = 0.

To solve it, we divide by (y2 − δ) to get

y

y2 − δ
− nH

y√
y2 − δ

+ (n− 1) = 0,

which we may write as

x2 − nHx+ (n− 1) = 0, x =
y√
y2 − δ

,

with solutions

(13) x± =
nH ±

√
n2H2 − 4(n− 1)

2
.

From this expression we have the restriction n2H2 − 4(n− 1) ≥ 0, or |H | ≥
2
√
n− 1/n. We may choose the vector normal to the hypersurface such that

the mean curvature is positive, hence H ≥ 2
√
n− 1/n. In this case,

x+ =
nH +

√
n2H2 − 4(n− 1)

2
≥ nH

2
≥

√
n− 1 > 1,

and then there exists y+ > 1 such that

(14) x+ =
y+√
y2+ − 1

> 1.

In short, if H ≥ 2
√
n− 1/n and δ = 1, the function G1 has one critical point

of the form (y+, 0).
It is also easy to see that 2

√
n− 1/n ≤ H < 1 implies x− > 1, so we may

write it analogously to (14) for some y− > 1, obtaining another critical point
for G1 in the case δ = 1.
On the other hand, if H = 1, then x− = 1, which can not be expressed as
y/
√
y2 − δ for δ = ±1.

Lastly, if H > 1 we have that x− < 1. In this case, we use δ = −1 and write

(15) x− =
y−√
y2− + 1

for some y− > 0.

2. Case of r = 2. The first integral equation (12) reads

G2(y, ẏ) = yn−2
(
y2 + ẏ2 − δ −H2y

2
)
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The critical points of the form (y, 0) are given by

yn−3
(
n(1−H2)y

2 − (n− 2)δ
)
= 0.

If y 6= 0, we obtain a critical point satisfying

(16) y2+ =
(n− 2)δ

n(1−H2)
.

In consequence, the function G2 has one critical point (y+, 0) with y+ > 0
either if δ = 1 and H2 < 1, or if δ = −1 and H2 > 1. In the case H2 = 1 we
do not obtain critical points of this form.

3. Case of 2 < r < n and r odd. We may suppose that Hr > 0. Here the critical
points of Gr of the form (y, 0) must satisfy

(n− r)
(
y2 − δ

)r/2
+ ry2

(
y2 − δ

)(r−2)/2 − nHry
r = 0.

We divide by
(
y2 − δ

)r/2
to obtain

(17) h(x) = (n− r) + rx2 − nHrx
r = 0, where x =

y√
y2 − δ

> 1.

An elementary analysis of this function shows that h is increasing in [0, a]
and decreasing in [a,∞), where

ar−2 =
2

nHr
.

Since h(0) = (n − r) > 0 and h(x) → −∞ when x → ∞, h has a unique
positive real root x+. If 0 < Hr < 1, h(1) > 0 and x+ must lie to the right
of 1. This fact implies the existence of y+ > 1 such that

x+ =
y+√
y2+ − 1

.

Similarly, if Hr > 1, h(1) < 0, which means that x+ lies to the left of 1 and
we write instead

x+ =
y+√
y2+ + 1

.

Once again, if Hr = 1, x+ = 1, which can not be written as y/
√
y2 − δ for

δ = ±1.
4. Case of 2 < r < n and r even. We obtain again the function h(x) in (17).

The difference is that we must consider separately the case Hr < 0. In this
case h increases to +∞ when x → ∞ and we do not get any critical points
of Gr. The case Hr > 0 is entirely analogous to that of the previous case.

5. Case of r = n. Equation (12) reads

Gn(y, ẏ) = (y2 + ẏ2 − δ)n/2 −Hny
n.

The critical points of the form (y, 0), y > 0, must satisfy

(y2 − δ)(n−2)/2y −Hny
n−1 = 0,
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which does not have real roots if Hn < 0. On the other hand, if Hn > 0,

y2 =
δ

1−H
2/(n−2)
n

.

If δ = 1 (δ = −1) we must impose the additional condition Hn < 1 (Hn > 1)
to obtain critical points of Gn, similarly to the previous cases.

To complete the above analysis we must see what happens whenHr = 0. Equation
(17) reads

h(x) = (n− r) + rx2,

which never vanishes. This fact means in turn that Gr does not have critical points
for Hr = 0.

Tracing our way back, each critical point (y, 0) of Gr, y > 0, gives rise to a
rotation hypersurface with constant principal curvatures given by equation (10), i.e.,
by

(18) κi =

√
y2 − δ

y
and κn =

y√
y2 − δ

.

If δ = ±1 each critical point of Gr gives rise to a (n − 1)-umbilical hypersur-
face with two distinct and constant principal curvatures; that is, a cylinder in the
sense of our Definition 3.4. In general, we obtain a 1-parameter family of rotation
hypersurfaces varying the values of the first integral Gr appearing in (12).

We summarize this relationship between the level curves of Gr and rotation hy-
persurfaces in the following result.

Theorem 6.1. For every real number Hr there are three 1-parameter families
of spacelike rotation hypersurfaces Sn+1

1 with constant r-th mean curvature Hr, cor-
responding to the kind of rotation (spherical, parabolic or hyperbolic) considered. The
family of parabolic rotation hypersurfaces contains the totally umbilical hypersurfaces
of Sn+1

1 . Moreover,
1. For r = 1, the family of spherical rotation hypersurfaces contains two cylin-

ders if 2
√
n− 1/n < H1 < 1, while it contains one cylinder if H =

2
√
n− 1/n.

2. For 2 ≤ r ≤ n, the family of spherical rotation hypersurfaces contains one
cylinder if 0 < Hr < 1.

3. For 1 ≤ r ≤ n, the family of hyperbolic rotation hypersurfaces contains one
cylinder if Hr > 1.

We digress for a moment, taking advantage of the previous discussion to char-
acterize any non-umbilical leaf of a foliation associated to a timelike closed partially
conformal vector field defined on Sn+1

1 and having constant r-th mean curvature as a
cylinder.

Corollary 6.2. Let K be a timelike closed partially conformal vector field
defined on an open subset of Sn+1

1 . If a connected leaf of K⊥ has constant mean
curvature, then the leaf is totally umbilical or a cylinder.

Moreover, let φ, ψ be the functions associated with K via equation (4). Suppose
that φ 6= 0 and that a connected leaf of K⊥ has constant r-th mean curvature for some
r > 1. Then the leaf is totally umbilical or a cylinder.
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Proof. Suppose that a connected leaf of K⊥ has constant mean curvature. If
φ, ψ are the functions associated with K, we know that φ and |K| are constant along
this leaf. Moreover, since the mean curvature of the leaf is constant, Proposition 3.3
implies that ψ is also constant along the leaf. If φ = ψ, from equation (5) we have
that all principal curvatures are equal and the leaf is totally umbilical.

On the other hand, if φ 6= ψ, then ψ may be considered as a (constant) function of
φ. Proposition 5.2 implies that the leaf is a rotation hypersurface. From our previous
discussion, the only rotation hypersurfaces with constant principal curvatures are the
cylinders, so the claim follows.

The argument is completely analogous for the case of constant r-th mean curva-
ture.

To close this section we will refine Theorem 6.1 by proving that some families of
spherical rotation hypersurfaces contain a subfamily of complete hypersurfaces.

Theorem 6.3. For each of the following values of r and Hr there is a 1-parameter
family of complete spherical rotation spacelike hypersurfaces with constant r-th mean
curvature Hr in Sn+1

1 :
1. r = 1 and 2

√
n− 1/n < H < 1;

2. r ≥ 2 and 0 < Hr < 1.

Proof. Suppose r = 1 and 2
√
n− 1/n < H < 1. As proved before, we obtain two

critical points (y±, 0) of G1 given by equations (14) and (15), whereas x± satisfies (13).
We will prove that G1(y, ẏ) attains a minimum at (y+, 0). By an easy calculation we
have

∂2G1

∂ẏ2
(y+, 0) > 0 and

∂2G1

∂y∂ẏ
(y+, 0) = 0,

so that it remains to analyze the function

g1(y) = G1(y, 0) = yn−1
(√

y2 − 1−Hy
)
.

We will prove that the coordinates y± belong to the closed interval [1, y0], where y0
is the positive root of g1 satisfying

y20 − 1 = H2y20 .

Since 1 < y− < y+, we just have to prove that y+ < y0. Recalling that
2
√
n− 1/n < H < 1, we have

2
√
n− 1 < nH < nH +

√
n2H2 − 4(n− 1)

and then

√
n− 1 < x+ =

y+√
y2+ − 1

.

On the other hand,

y0√
y20 − 1

=
1

H
<

n

2
√
n− 1

,
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but

n

2
√
n− 1

≤
√
n− 1 for n ≥ 2;

then

y0√
y20 − 1

<
y+√
y2+ − 1

,

which implies y+ < y0, as desired.
We obtain easily the following properties of g1:

g1(1) < 0, g1(y0) = 0, lim
y→1+

g′1(y) = +∞ and g′1(y0) > 0.

From these properties and the fact that both critical points y± belong to [1, y0] it is
easy to conclude that g1 attains a local minimum at y+.

Hence, G1 attains a minimum at (y+, 0), which implies that all level curves of G1

near to this critical point are closed. Figure 1 shows some level curves for a typical
function G1.

1

Fig. 1. Several level curves for a typical function G1. Note the two critical points (y±, 0) on

the horizontal axis; one is a saddle point, while G1 attains a minimum at the other.

Now, each closed level curve is associated to a solution of the original equation
(11) defined for all values of the parameter. In turn, this solution gives rise to a
complete rotation hypersurface.

For the case r = 2 we analyze the function

g2(y) = G2(y, 0) = yn−2((1−H2)y
2 − 1).

which has a critical point y+ given in (16). Let y0 > 0 be the point such that
g2(y0) = 0, i.e., (1−H2)y

2
0 = 1. Then it is easy to show that y+ < y0. Also, from the
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facts that g2(0) = g2(y0) = 0 and g′2(y0) > 0 we have that g2 attains a minimum at
y+. The rest of the argument is similar to that of the case r = 1.

The analysis of the case 2 < r ≤ n follows the same line of argumentation as the
previous cases and will be omitted.

7. Conditions for a hypersurface to be (n − 1)-umbilical. Let M̄n+1
1 be

a spacetime given as the doubly warped product −I ×f F
n−1 ×g J with f 6= g. By

Proposition 4.3, K = f∂t is a timelike closed partially conformal timelike vector field
on M̄ with associated vector field W = ∂s/g.

Theorem 7.1. Let M̄n+1
1 = −I ×f F ×g J be a doubly warped product with F

compact. Let Σ be a immersed spacelike hypersurface everywhere transverse to K.
For a given s ∈ J , let M̄s = −I ×f F ×g {s} and Σs = Σ∩ M̄s. Suppose either of the
following conditions true:

1. M̄ satisfies the null convergence condition

RicF ≥ sup(ff ′′ − f ′2),

where Ric is the Ricci curvature of F and in addition, assume that Σs is a
compact (n−1)-dimensional manifold immersed with constant mean curvature
in M̄s for every s ∈ J ;

2. M̄ satisfies the strong null convergence condition

KF ≥ sup(ff ′′ − f ′2),

where KF stands for the sectional curvature of F ; also assume that for each
s ∈ J , Σs is a compact (n− 1)-dimensional manifold immersed with constant
r-th mean curvature Hr in M̄s for some 2 ≤ r ≤ n and that Σs is contained
in a slab (t1, t2)×f F ×g {s} where f ′ does not vanish.

Then Σ is (n − 1)-umbilical in M̄ if and only if the angle between Σ and M̄s is
constant for every s ∈ J .

Proof. Since K is timelike closed partially conformal, we have in particular that
∇̄XK = φX for every vector field tangent to M̄s. Denoting by ∇ the induced con-
nection on M̄s, we have also ∇XK = φX , which means that K is a closed conformal
timelike vector field when restricted to each M̄s.

Suppose the hypotheses of item 1 hold and fix s ∈ J . Then M̄s is a spatially closed
generalized Robertson-Walker spacetime satisfying the null convergence condition and
Σs is a compact (n−1)-dimensional manifold immersed with constant mean curvature
in M̄s. By Theorem 6 in [26], either Σs is a slice of the foliation of M̄s determined
by K or M̄s is isometric to the de Sitter space Sn1 in a neighborhood of Σs and Σs

is a round umbilical hypersphere. Each of these two alternatives implies that Σs is
totally umbilical in M̄s.

Now suppose the hypotheses of item 2 hold and fix s ∈ J . Then M̄s is a spatially
closed generalized Robertson-Walker spacetime satisfying the strong null covergence
condition and Σs is a compact (n− 1)-dimensional manifold immersed with constant
r-th mean curvature Hr in M̄s. Moreover, by the third hypothesis in item 2, Σs is
contained in a slab where f ′ does not vanish. Then by Theorem 9.2 in [2], Σs is totally
umbilical in M̄s.

Hence, under the hypoyheses of either item, we obtain that Σs is totally umbilical
in M̄s; that is, if Z ∈ X(M̄s) is a unit vector field everywhere normal to Σs, there
exists a function λ such that

(19) ∇XZ = λX, for each X ∈ X(Σs).



FOLIATIONS BY (n− 1)-UMBILICAL HYPERSURFACES 641

Also, by Remark 4.4, M̄s is totally geodesic in M̄ and in consequence equation (19)
remains true if we substitute ∇ by the connection ∇̄ in M̄ .

Note that at each point of Σs we have that the 2-dimensional space generated by
Z andW is orthogonal to the tangent space of Σs which has dimension (n−1). Hence.
if N is a unit timelike vector field everywhere normal to Σ, there is a hyperbolic angle
θ such that

N = (cosh θ)Z + (sinh θ)W,

Let α denote the second fundamental form of Σ in M̄ . Take X ∈ X(Σs), hence
orthogonal to both K and W , and Y ∈ X(Σ). Then

〈α(X,Y ), N〉 = 〈∇̄XY,N〉 = −〈Y, ∇̄XN〉
= −〈Y, ∇̄X((cosh θ)Z + (sinh θ)W )〉
= −〈Y,X(cosh θ)Z + (cosh θ)∇̄XZ +X(sinh θ)W 〉;

here ∇̄XW = 0 by Proposition 2.3. By (19), we may write

(20) 〈α(X,Y ), N〉 = −λ cosh θ〈X,Y 〉 −X(θ)〈Y,N⊥〉,

where

N⊥ = (sinh θ)Z + (cosh θ)W ∈ X(Σ).

Suppose that θ is constant along Σs, i.e., X(θ) = 0 for each X ∈ X(Σs). By (20)
this fact implies that

(21) α(X,Y ) = −λ cosh θ〈X,Y 〉N,

for each X ∈ X(Σs) and every Y ∈ X(Σ). Since (21) holds for each Σs, we have that
Σ is (n− 1)-umbilical in M̄ .

Conversely, if Σ is (n−1)-umbilical in M̄ , there exists a function µ such that (20)
can be written as

−µ〈X,Y 〉 = −λ cosh θ〈X,Y 〉 −X(θ)〈Y,N⊥〉,

for any X ∈ X(Σs) and Y ∈ X(Σ). Taking Y = N⊥, we obtain X(θ) = 0 and θ is
constant along Σs, as desired.
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