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TAUTOLOGICAL MODULE AND INTERSECTION THEORY ON
HILBERT SCHEMES OF NODAL CURVES∗

ZIV RAN†

Abstract. This paper presents the rudiments of Hilbert-Mumford Intersection (HMI) theory:
intersection theory on the relative Hilbert scheme of a family of nodal (or smooth) curves, over a
base of arbitrary dimension. We introduce an additive group of geometric cycles, called ’tautological
module’, generated by diagonal loci, node scrolls, and twists thereof. We determine recursively the
intersection action on this group by the discriminant ( big diagonal) divisor and all its powers. We
show that this suffices to determine arbitrary polynomials in Chern classes, in particular Chern
numbers, for the tautological vector bundles on the Hilbert schemes, which are closely related to
enumerative geometry of families of nodal curves.
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0. Overview. This paper is a contribution to the study of Enumerative Geom-
etry of nodal curves via their subschemes. To illustrate informally, in part, what it
is about, we recall a formula from 19th century Algebraic Geometry (see for exam-
ple [24], p. 377): a nonsingular curve X in complex projective 3-space admits an
expected finite number n4 of 4-secant lines, and that a formula for n4 in terms of the
degree d and genus g of X can be given: specifically,

24n4 = 144− 204d+ 106d2 − 12d2g − 24d3 + 2d4 + 84dg − 156g + 12g2.

Standard dimension-counting suggests that given a nice enough b-dimensional family
of space curves, it will admit a finite number n4+b of (4 + b)-secant lines, and one
can ask for a method to compute n4+b in terms of basic projective characters of the
family. The results of this paper provide, inter alia, such a method, as we now proceed
to describe.

0.1. Setting. To fix ideas, consider a family of curves given by a flat projective
morphism

π : X → B

over an irreducible base, with fibres

Xb = π−1(b), b ∈ B

which are irreducible nonsingular for the generic b and at worst nodal for every b.
For example, X could be the universal family of automorphism-free curves over the
appropriate open subset of Mg, the moduli space of Deligne-Mumford stable curves.
Many questions in the classical projective and enumerative geometry of this family
can be naturally phrased, and in a formal sense solved (see for instance [22]), in the
context of the relative Hilbert scheme

X
[m]
B = Hilbm(X/B).
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This is a universal parameter space for length-m subschemes of X contained in fi-
bres of π, and carries natural tautological vector bundle Λm(E), associated to any
vector bundle E on X (e.g., the relative dualizing sheaf ωX/B). One specific exam-
ple of the enumerative questions which may be considered from this viewpoint is the
fundamental class in Mg of the closure of the hyperelliptic locus.

Typically, the geometric questions one wants to consider can be formulated in
terms of relative multiple points and multisecants in the family, which can be described
in terms of degeneracy loci of bundle maps involving tautological bundles, and the
formal solutions involve Chern numbers of those tautological bundles. Thus, turning
these formal solutions into meaningful ones requires computing the Chern numbers in
question. This problem was stated but, aside from some low-degree cases, left open
in [22]. Our main purpose here is to solve this problem in general. More than that,
we shall in fact provide a calculus to compute certain images of arbitrary polynomials
in the Chern classes of the tautological bundles. In the ’absolute’ case E = ωX/B ,
the computation ultimately reduces these polynomials to polynomials in Mumford’s
tautological classes [14] on various boundary strata of B. The latter are computed
via a conjecture of Witten, proved by Kontsevich [9]. It should be mentioned that
in the case of the symmetric product (= Hilbert scheme) of a single smooth curve, a
complete intersection theory was worked out by Macdonald [13]. On the other hand,
the intersection theory of Hilbert schemes of smooth surfaces was investigated deeply
by Nakajima, Lehn and others, see [15], [10], [11] and references therein.

0.2. Tautological module: Motivation. Now the framework for our solution
is a little different to what is commonly done in similar problems (e.g. Macdonald’s
set-up). Rather than compute a suitable intersection ring, we will focus primarily
on the (intersection) action of the discriminant or big diagonal Γ(m) and its powers.
The motivation for this approach comes from a result in [22] called the ’Splitting
principle’. This says that the total Chern class of pullback of a tautological bundle
Λm(E) to the full-flag Hilbert scheme Wm =Wm(X/B), which maps to the degree-i

Hilbert schemes X
[i]
B , i ≤ m, can be expressed as a simple decomposable polynomial in

the (pullbacks of) Γ(i), i ≤ m. The recursive analogue of this result, Cor. 3.7 below,

says that the pullback of c(Λm(E)) on the Hilbert scheme X
[m,m−1]
B , parametrizing

flags of schemes of lengths m,m− 1 (which we will call the ’flaglet’ Hilbert scheme),
is a product of c(Λm−1(E)) and a polynomial in in discriminants Γ(i), i ≤ m. It
follows that if we assume recursively that we have some reasonable way to express
polynomials in c(Λm−1(E)), say as elements of a ’Tautological module’ Tm−1

R (X/B)
and want to do the same for m, then we need to determine 2 things:

1. Tautological module in degree m, Tm
R (X/B), i.e. a group together with an

action of Γ(m).
2. Transfer calculus, going from Tm−1

R (X/B) to Tm
R (X/B) via the flaglet corre-

spondence X
[m,m−1]
B .

Given these, Tm
R (X/B) would recursively contain all polynomials in Γ(i), i ≤ m,

hence all polynomials in the Chern classes of Λm(E).

0.3. Tautological module: Elements. Given a family X/B of nodal (possibly
pointed) curves, the associated Tautological Module Tm

R (X/B) (Definition 2.42) is
constructed recursively in m, grosso modo, as follows (see the body of the paper for
details).

– For m = 1, it equals R, a Q-subalgebra of H•(X) containing the relative canon-
ical class ω as well as any distinguished sections. Here H• denotes any cohomology



HILBERT SCHEMES OF NODAL CURVES 195

ring coarser than (i.e. admitting a map from) the Chow ring over Q.
– The recursive step. First, decompose the tautological module according to

partitions or ’distributions’:

Tm
R (X/B) =

⊕

µ

T µ
R(X/B)

the sum being over all partitions µ of weight m; thus, it suffices to describe each µ
summand. Then, we parametrize the boundary by a union of families T (θ) associated
to the relative nodes θ ofX/B, and for each of those let Xθ/T (θ) be the corresponding
family blown up in θ, which is endowed with a pair of distinguished sections denoted
θx, θy, set R

θ = R[θx, θy], and define firstly the boundary tautological module of type
µ as

∂ T µ
R =

⊕

θ

T µ
Rθ (X

θ/T (θ))

(using recursion, we may assume this defined for µ of weight < m). Then define for
µ of weight m,

T µ
R(X/B) = (TSµ(R))⊕









⊕

ν∐{n}=µ
0<j<n

(

QFn
j ⊕QΓ(m)Fn

j

)

⊗ ∂ T ν
R(X/B)









(0.3.1)

in which
• TSµ(R), the interior part of the module, is of a purely topological charac-
ter and can be identified with a formal algebraic construct, an appropriate
summand of the ’tensor-symmetric’ algebra T (Sym(R)),

• Fn
j is a formal symbol (for now), called a ’node scroll’,

• Γ(m) is the discriminant or big diagonal on X
[m]
B , for the purpose of the

formula just a formal symbol as well,
• −Γ(m)Fn

j is called a node section.
• We call the two main summands of (0.3.1) the diagonal and node scroll sectors
of the tautological module T µ

R and denote them DT µ
R, NT

µ
R and similarly

DTm
R , NT

m
R . NT itself splits as NFT⊕NΓT , node scrolls plus node sections.

The above definition is doubly recursive in the sense that modulo the relatively ele-
mentary part DTm

R , the remaining part NTm
R involves tautological modules of lower

weight for (boundary) families of lower genus (albeit with more markings). The
recursive definition may be replaced by a non-recursive one by working with node
polyscrolls, associated to a boundary stratum defined by a collection of nodes rather
than a single one.

The tautological module maps to the homology (Chow or ordinary) of the Hilbert
scheme, where the diagonal sector maps to cycles living on various diagonal loci (lifted
from analogous loci on the symmetric product), and the node scroll sector maps to
cycles on certain P1-bundles which live over the boundary and are exceptional for the
cycle map. In particular, a zero-dimensional or ’top degree’ element α ∈ Tm

R (X/B)
has a well-defined cycle degree or ’integral’

∫

α ∈ Q.

0.4. Tautological module: Discriminant action. Now our first main result,
the Tautological module theorem 2.1, describes the action of Γ(m), i.e. the Q[Γ(m)]-
module structure, on the Q-vector space Tm

R = NTm
R ⊕ DTm

R . This structure is an



196 Z. RAN

extension

0 → NTm
R → Tm

R → DTm
R → 0(0.4.1)

where the module structure on the quotient DTm
R , unrelated to the singularities, is

via standard action of the big diagonal in the cohomology of a symmetric product
(which can be modelled by a second-order differential operator); the structure on the
submodule NTm

R is by the standard action (via Grothendieck’s formula) of a section
Γ(m) on the cohomology of a suitable P1-bundle (and it therefore anti-triangular with
respect to the NFT ⊕NΓT decomposition). It can be described in terms of discrim-
inant actions of lower weight and lower genus. Also, the ’mixing’ part of the action
takes DTm

R only into the NFT summand of NTm
R .

0.5. Tautological module: Transfer. As indicated above, the story is com-
pleted by the Transfer Theorem 3.4, which computes the transfer (pull-push) oper-

ation on Tm−1
R (X/B) via X

[m,m−1]
B , viewed as a correspondence between X

[m]
B and

X
[m−1]
B , showing in particular that it lands in Tm

R (X/B) .
The conjunction of the Splitting Principle, Module Theorem and Transfer Theo-

rem computes all polynomials in the Chern classes, in particular the Chern numbers,

of Λm(E) as Q-linear combinations of tautological classes on X
[m]
B .

0.6. Computation. The calculus of of the discriminant action and Chern poly-
nomials has been implemented (for arbitrary base dimension) on the computer by
Gwoho Liu, in the form of a Java program named Macnodal (in honor of MacDon-
ald [13]). See §4.3 and [12] for details. The results are consistent with Cotteril’s [3]
results for pencils.

0.7. Punctual transfer. Finally, we discuss an analogue of the tautological
module and the transfer for punctual schemes, i.e. those supported at a single point,
which are parametrized by the small diagonal Γ(m), which itself is a (singular) blowup
of X . This case is somewhat simpler in its formal aspects but still goes to the heart of
the complexities of the Hilbert scheme. It has applications to enumeration of various
ramification loci.

0.8. Applications . A number of applications, examples and computations are
scattered throughout the paper, especially in §§2.3, 2.4, 3.3 and 4. In particular,
multisecants in nodal families, as mentioned at the beginning, are fully enumerated.
In a less elementary vein, the machinery of this paper is projected to be the first step
of a project to compute the fundamental class in Mg of the locus of curves admitting
a grd for given r and d, e.g. a g12 (the hyperelliptics). A baby case (genus 3) can be
worked out here, thanks to the exceptional luxury that the excess degeneracy is not
excessive in dimension. To go further, the idea is to construct an appropriate boundary
modification of the Hodge bundle, together with its natural evaluation map to the
tautological bundle associated to the canonical bundle, such that the degeneracy locus
(in the Hilbert scheme) of this map would consist of the desired grd locus plus a ’good’
excess locus, whose contribution could be computed by Fulton-MacPherson theory.
The required modification is nontrivial, especially on the ∆0 boundary component,
and is at present known in detail only for d = 2 (see [16]). Higher-degree cases are
work in progress.

I am grateful to Gwoho Liu for many helpful discussions and for creating Mac-
nodal. I also thank Ethan Cotteril for helpful communications about his work, es-
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pecially [3], which provides an alternative method for deriving some of the same
enumerative applications in the case of pencils.

1. Preliminaries. This paper is a continuation of our earlier paper [19], whose
results, terminology and notations will be used throughout. Some additional termi-
nology and remarks will be given in this section.

1.1. Graph enumeration, generating functions. See the textbooks [1], [7]
or [25] for standard techniques and results. We will present some variants of known
formulas, which will prove useful in deriving some explicit closed formulas in our
Intersection Theory (see especially §2.4).

1.1.1. Simple graphs. We consider connected labelled graphs without loops
on a fixed vertex-set [n] = {1, ..., n}. Let νn,m be the number of these graphs with
m edges, none multiple. We also consider connected ’edge-weighted’ graphs on [n],
where each edge e is assigned a positive multiplicity m(e). Let wn,m be the weighted
number of connected graphs on [n] where the edge multiplicities add up to m, i.e.
∑

edges

m(e) = m, and where the weight of the graph is defined as 1∏
m(e)! . Consider the

generating functions

T (z, y) =

∞
∑

n=1

∞
∑

m=0

νn,m
n!

znym, Tb(u) =

∞
∑

n=1

νn,n−1+b

n!
un.

Here b represents the 1st Betti number of the graph. Because νn,m = 0 for m < n−1,
we can write

T (z, y) =
∞
∑

b=0

yb−1Tb(yz).

The classical (and elementary) Riddell-Uhlenbeck formula states that

exp(T (z, y)) = 1 +

∞
∑

n=1

1

n!
zn(1 + y)(

n
2) = 1 +

∞
∑

n=1

1

n!

(n2)
∑

m=0

(
(

n
2

)

m

)

znym.(1.1.1)

This follows from the fact that the number ofm-edge, not necessarily connected graphs

on [n] is
((n2)

m

)

. In particular for the tree case (b = 0) we have (Cayley’s result)

T0(z) =

∞
∑

n=1

nn−2

n!
zn.(1.1.2)

1.1.2. Edge weighting. We define similarly

W (z, y) =

∞
∑

b=0

yb−1Wb(yz) =

∞
∑

n=1

∞
∑

m=0

wn,m

n!
znym,Wb(u) =

∞
∑

n=1

wn,n−1+b

n!
un.

Now the total weight of all, not necessarily connected, edge-weighted graphs of total
multiplicity m on [n] is

∑

m1+...m
(n2)

=m

1

m1!...m(n2)
!
=

1

m!

(

n

2

)m

.
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It follows similarly that

exp(W (z, y)) = 1 +

∞
∑

n=1

∞
∑

m=0

(

n
2

)m

n!m!
znym.(1.1.3)

1.1.3. Vertex weighting. This formula admits a useful generalization to
vertex-weighted graphs. Suppose vertex i is assigned a fixed weight pi for i = 1, ...,
where we may set pi = 0 for i > n). The pi are regarded as indeterminates or elements

of some Q-algebra P . The entire graph is then weighted
∏

i<j

(pipj)
mi,j

mi,j !
∈ P , where mi,j

is the multiplicity of the (i, j)- edge. Let wS,p.,m be the total weight of all such graphs
which are connected and have vertex-set S and total edge multiplicity m =

∑

i<j

mi,j .

For a vertex-set S with weights p., set

WS,p.(z, y) =

∞
∑

m=1

wS,p.,m

|S|!
zSym.

where zS =
∏

i∈S

zi. The zi are formal variables whose squares are set to zero: z2i = 0;

thus zSzS
′

= zS∪S′

whenever S ∩ S′ = ∅ and otherwise zSzS
′

= 0. This generating
function can be evaluated as follows. Set f(S, p.) =

∑

i<j
i,j∈S

pipj and note that the total

weight of all such graphs with vertex-set S, without the connectedness hypothesis is

∑

∑
mi,j=m

∏

i<j
i,j∈S

(pipj)
mi,j

∏

mi,j !
=

1

m!
f(S, p.)m.

Then we conclude similarly

exp(
∑

S

WS,p.) = 1 +
∑

S,m

f(S, p.)m

m!|S|!
zSym mod (z2i ).(1.1.4)

Therefore,

∑

S

WS,p. =

∞
∑

n=1

(−1)n+1

n
(
∑

S,m

f(S, p.)m

m!|S|!
zSym)n mod (z2i ).(1.1.5)

Note that in this formula, each set S on the RHS will be a disjoint union of sets S on
the LHS.

1.1.4. Directed case. We now consider a directed analogue of the above. Con-
sider forward-directed edge-weighted graphs on [m]. Such a graph is specified by
nonnegative integers ej,i, ∀j < i (= number of edges from j to i), and is assigned
a total weight 1∏

ej,i!
. We will fix the number of edges into i at ki, i = 2, ...,m,

i.e. ki =
∑

j<i

ej,i. Let ~wm,k. denote the weighted number of these graphs that are

connected. On the other hand, the weighted number of all these graphs, possibly
disconnected, is, as above

m
∏

i=2

(
∑

∑
ej,i=ki

1
∏

ej,i!
) =

m
∏

i=2

(
∑

∑
ej,i=ki

(

ki

e1,i,...,ei−1,i

)

ki!
) =

m
∏

i=2

(i− 1)ki

ki!
.
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Therefore is we define a generating function in z, y2, ...

~W (z, y2, ...) =

∞
∑

m=2

∑

k1,...km

~wm,k.

m!
zmyk2

2 ...ykm
m

then it follows that

exp( ~W (z, y2, ...)) = 1 +
∑

m,k.

1

m!

m
∏

i=2

(i − 1)ki

ki!
zmyk2

2 ...ykm
m .(1.1.6)

Thus we may consider the ~wm,l. as known.

1.2. Products, diagonals, partitions. The intersection calculus we aim to
develop is couched in terms certain diagonal-like loci on products, defined in the gen-
eral case in terms of partitions. To facilitate working with these loci systematically,
we now establish some conventions, notations and simple remarks related to parti-
tions. Our viewpoint on partitions is influenced by the fact that we will mainly use
them to define ’diagonal’ conditions, so in particular singleton blocks are essentially
insignificant.

1.2.1. b-partitions. By a block partition or b-partition (aka labelled partition)
(I.) of weight m and length r we mean an expression

{1, ...,m} = I1
∐

...
∐

Ir, ∀Ij 6= ∅.

If a b-partition (I.) is such that all its blocks except for one of them, say I, are
singletons, we will denote (I.) as (I) or (I,m]. Given a set X (or an object in a
category with products– the modifications for this case are left to the reader), a b-
partition (I.) of weight m defines an ordered ’polydiagonal’ subset of the (Cartesian)
product Xm, which will be denoted by X(I.) or OD(I.) or, if the dependence on X
must be explicated, OD(I.),X : in the case where X is a set, we identify Xm with

the set of functions {1, ...,m} → X , and then X(I.) = OD(I.) ⊂ Xm consists of the
functions constant on each block. It is the image of an injection Xr → Xm and will
sometimes also be identified with that injection.

1.2.2. Partitions. A b-partition (I.) determines an ordinary partition of the
same weight, viz. (|I.|), which we prefer to view via the corresponding ’length distri-
bution’. Thus the length distribution associated to a b-partition (I.) is the function
µ : N → Z≥0 defined by

n 7→ |{j : |Ij | = n}|.

We call a function µ : N → Z≥0 either a distribution or partition. This is the same
thing as ’partition’ in the usual sense: in the usual partition notation, the partition
corresponding to µ is (..., nµ(n), ..., 2µ(2), 1µ(1)). A distribution has weight |µ| = w(µ) =
∑

nµ(n) = m degree d(µ) =
∑

n>0
(n − 1)µ(n) and length ℓ(µ) = |{n : µ(n) > 0}|.

The length distribution of a b-partition of weight m has weight m and conversely,
any distibution of weight m is the length distribution of some b-partition of weight
m. Two b-partitions are said to be equivalent if their distributions are the same
or equivalently, if they differ by a permutation of 1, ...,m. A distribution is viewed
essentially as a collection of block sizes, and will often be specified by specifying
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the non-singleton block sizes: e.g. (n) for n > 1 refers to a distribution (of some
weight m ≥ n) with unique nonsingleton block of size n. A distribution µ defines a
polydiagonal or polyblock diagonal

Dµ = Dµ,X =
∏

n

X(µ(n)) →֒ X(w(µ))
(1.2.7)

where X(k) is the kth symmetric product. The embedding is defined by repeating an
element in the nth factor, i.e. X(µ(n)), n times, i.e.

(

µ(n)
∑

i=1

xi,n : n = 1, 2, ...) 7→
∑

n

µ(n)
∑

i=1

nxi,n.

When X has a well-defined dimension dim(X), the codimension of Dµ in X(w(µ))

is d(µ) dim(X). As above, Dµ may be viewed either as a locus or a map. We will
write D(n),m for Dµ where µ is the unique distribution of weight m with unique
nonsingleton block of size n. Also, we will denote by 1m the unique distribution of
weight m supported on {1}, whose associated polyblock diagonal if X(m) itself.

The following is an easy remark.

Lemma 1.1. For a b-partition (I.) with corresponding distribution µ, the degree
of the map OD(I.) → Dµ is

a(µ) :=
∏

n

µ(n)!.

1.2.3. Union operation. Now, we will need some operations on b-partitions
and associated distributions. Let ur,s(I.) be the b-partition obtained from (I.) by
deleting the rth and sth blocks, r 6= s and inserting their union. We let ua,b(µ) be the
corresponding operation on distributions, which corresponds to deleting blocks of size
a, b and inserting a block of size a + b; by definition, ua,b(I.) = ∅ unless I. contains
blocks of sizes a, b (two blocks of size a, if a = b); in other words,

ua,b(µ) =

{

µ− 1a − 1b + 1a+b, µ ≥ 1a + 1b

∅, otherwise
(1.2.8)

Here 1a is the indicator (characteristic) function of a.

In the geometric setting, ua,b correspond to intersecting with a suitable diagonal,
i.e.

Dur,s(I.) = DI. ∩Di,j

where i ∈ Ir , j ∈ Is are arbitrary and Di,j is the pullback of the diagonal from the
i, j factors.

1.3. Diagonal operators on tensors. Given a topological space X , the poly-
diagonals of its symmetric products are reflected algebraically in the (co)homology of
these symmetric products. The algebraic structures that result can be defined purely
algebraically, which is the purpose of this section.
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1.3.1. Tensymmetric algebra. Let R be a commutative unitary graded Q-
algebra. An example to keep in mid thoughout is a subalgebra of the cohomology of
a topological space (e.g. manifold). Consider the so-called ’tensymmetric’ algebra

TS(R) =

1
⊗

n=∞

Sym•(R).(1.3.1)

Here and elsewhere, unless otherwise specified Sym means SymQ. Let α. be a simple
(decomposable) element in this algebra. Then α can be written as

α. =
⊗

n

µ(n)
∏

i=1

αn,i.

Here the second product is the formal one in Sym•(R) (rather than the one in R,
which will be denoted .R or

∏

R); when in doubt, the product in Sym will be denoted
.S . In the geometric situation, the products in Sym and

⊗

both correspond to
external cup products, and then will often be denoted by ⋆. The function µ is a
length distribution, i.e. a finitely-supported function from the positive integers to
the nonnegative integers and we call µ the distribution associated to (α.). Thus α.
is a tensor product of symmetric tensors, with the one in position n having (tensor)
degree µ(n). This yields a ’grading by distribution’:

TS(R) =
⊕

µ

TSµ(R),

TSµ(R) =
⊗

n

Symµ(n)(R).

We define the weight of an element α.TSµ(R) as that of the associated distribution,
i.e. w(α.) =

∑

nµ(n). Of course, in any simple α., all but finitely many tensor fac-
tors (or ’n-block factors’, we we shall call them) equal 1. Via the natural inclusion

Symµ(n)(R) → R⊗µ(n), α may be viewed as an element of

TI(I1,...,Ik)(R) := R⊗k

for any b-partition (I.) so that (|I.|) = µ. Thus, we may define the ’inflated tensor
algebra’ as

TI(R) =
⊕

(I.)

TI(I.)(R),TI(I1,...,Ik)(R) = R⊗k.(1.3.2)

Then we have a natural inclusion

TS(R) → TI(R)

which takes TSµ(R) to
⊕

|I.|=µ

TI(I.)(R). In the other direction, there is also a natural

symmetrization map

TI(R) → TS(R),

which takes TI(I.)(R) to TS|I.|(R).
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1.3.2. Norm operator. For an element θ ∈ R, we denote by

[m]∗(θ) ∈ Symm(R) = TS1m(R)

the element (symmetric tensor)

θ.1m−1,

and more generally by

[m]s∗(θ)TS1m(R)

the element

θs.1m−s.

This called the m-th topological norm of θ. See §1.6 for a geometric interpretation.

1.3.3. Diagonal operators. We now define a weight-preserving ’projection’

D†
• : Sym•(R) → TS(R).(1.3.3)

This is a vector with components D†
µ, µ ranging over all distributions. Each D†

µ is
defined as follows. Let m = w(µ) =

∑

nµ(n) for a distribution µ and consider a
decomposable element β ∈ Symm(R). Then β comes from many elements of the form

β... =
⊗

n

µ(n)
∏

i=1

n
∏

k=1

βn,i,k

(the two internal products are in Sym•). We call such β... a lift of β. Then let D†
µ(β)

as the following sum over all possible lifts β... of the given β:

D†
µ(β) =

∑

β... 7→β

(
⊗

n

µ(n)
∏

i=1

(

n
∏

k=1

R βn,i,k))

where
∏

R means product in R and the middle product is again product in Sym•.
Each D†

µ is a projection in the sense that it admits a right inverse. This right inverse
is the natural ’forgetful’ map

Dµ : TSµ(R) → Symm(R),m = w(µ),

⊗

n

µ(n)
∏

i=1

αn,i 7→
∏

n

µ(n)
∏

i=1

1n−1αn,i

(1.3.4)

(internal product is the product in Sym). Assembling these together, we get a map

D•[] =
⊕

µ

Dµ[] : TS(R) → Sym•(R).

Often R will be a graded ring, which naturally induces a gradation on TS(R), said
to be by degree (not to be confused with weight). If R has top piece Rd endowed
with a linear map

∫

: Rd → Q, extended by zero to R, then
∫

extends to TS(R) by
multiplicativity, i.e. for α decomposable,

∫

(α.) =
∏

n,i

(∫

αn,i

)

which of course depends only on the degree-d component of each αn,i and vanishes if
one of these components does.
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1.3.4. Duality. If R is Q-self-dual, D†
µ also admits a more useful (weight- pre-

serving) ’Gysin adjoint’

Dµ† : TSµ(R) → Sym•(R),

defined as follows. Let Symn(R) → R be the multiplication map, which by duality
corresponds to a map

Jn : R → Symn(R).

Then define

Dµ†(
⊗

n

µ(n)
∏

i=1

αn,i) =
∏

n

µ(n)
∏

i=1

Jn(αn,i).

Elements in the image of Dµ† are called polyblock diagonal classes of type µ.

1.3.5. Ordered analogue. All of the above admit an ordered analogue, where
both Sym(R) and TS(R) are replaced by the tensor algebra

⊗

R, and partitions µ
are replaced by b-partitions (I.) The analogue of the map Dµ is the map

D(I1,...,Ik) :

m
⊗

R →
k
⊗

R,m = |I.|,

α1 · · ·αm 7→
k
∏

j=1

(
∏

i∈Ij

R αi)

that replaces each tensor product inside a block by the corresponding R-product.

1.3.6. Interpretation. Given a space X , a partition µ of weight m corresponds
to a polyblock diagonal subspace dµ, a cartesian product of symmetric products of
the symmetric product X(m). These assemble together to a finite-to-one map

d•m =
∐

w(µ)=m

dµ → X(m).

If R represents some kind of cohomology ring, e.g. the Chow ring on a variety, then
the Gysin map associated to dµ is Dµ†. In particular, ∗1 is the class of a point, Jn
is the Gysin map for the embedding of the small diagonal in a symmetric product.

Each αn,i is considered as living on a small diagonal X ⊂ Symn(X) and
µ(n)
∏

i=1

αn,i lives

on X(µ(n)) ⊂ X(nµ(n)). The map D†
µ is the pullback map induced by the inclusions

dµ → Sym•(X), while Dµ is a natural right inverse for it.

1.4. Discriminant operator. Our aim now to define a ’discriminant’ operation
on TS(R) that corresponds to intersecting with the big diagonal for X smooth. As
part of our intersection calculus for Hilbert schemes, we will later derive a formula for
intersecting with the discriminant polarization of which this operation will form the
’classical’ part.

To this end we first define an operation un1,n2 on TS(R) (not preserving indi-
vidual TSµ(R)) that corresponds to uniting two blocks of sizes n1, n2, similar to the
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corresponding definition for polyblocks. The definition is:

∀α =
⊗

n

µ(n)
∏

i=1

αn,i ∈ TSµ(R), ∀n1 6= n2 :

un1,n2:µ(α.) =

µ(n1)
∑

i=1

µ(n2)
∑

j=1

...⊗ αn1+n1,1...αn1+n2,µ(n1+n2)(αn1,i.Rαn2,j)⊗ ...α̂n1,i...α̂n2,j...

un,n:µ(α.) =
∑

1≤i<j≤µ(n)

...⊗ α2n,1...α2n,µ(2n)(αn,i.Rαn,j)⊗ ...α̂n,i...α̂n,j ...

(1.4.5)

(here .̂ means ‘omit’, as usual). In other words, for the case n1 6= n2: omit in all
possible ways one alpha factor from each of the n1 and n2 block subproducts and
insert their R-product in the n1 + n2-block subproduct. This defines a map

un1,n2:µ : TSµ(R) → TSun1.n2(µ)
(R)

where un1.n2(µ) is as in (1.2.8).
In particular, for the ’trivial’ partition µ = (1m), we get

u1,1,(1m)(α1...αm) =
∑

i<j

(αi.Rαj)⊗ (α1...α̂i...α̂j ...αm) ∈ R⊗ Symm−2(R).

Example. For µ = (2, 12) = (2 7→ 1, 1 7→ 2), we have

u2,1,µ(α2α1,1α1,2) = (α2.Rα1,1)α1,2 + (α2.Rα1,2)α1,1

The unspecified product is that of Sym, of course. In particular,

u2,1,µ(α21
2
R) = 2α21R

u1,1,µ(α2α1,1α1,2) = α2(α1,1.Rα1,2).

In a rather more general vein, we can associate a similar operation to partition
ν ≤ µ:

uν:µ : TSµ → TSµ−ν′ , ν′(n) := min(ν(n)− 1, 0),
⊗

n

∏

αn,j 7→
⊗

n

(
∑

|An|=ν(n)

(
∏

j∈An

Rαn,j)(
∏

j /∈An

αn,j))(1.4.6)

This corresponds to uniting a set of blocks corresponding to νi, for i = 1, ..., r, to a
single block of size |νi|, and R-multiplying the corresponding α factors.

Similarly, if ν1, ..., νr are partitions with
∑

νi ≤ µ, we can define inductively

uν1;...;νr:µ : TSµ(R) → TSµ(r)(R),

uν1;...;νr:µ = uν1;...;νr−1:µ′ ◦ uνr :µ, µ
′ = µ− ν′r.

(1.4.7)

There is a (simpler) ordered analogue of this, which takes the form

oui,j :

k
⊗

R →
k−1
⊗

R, i < j

α1...αi...αj ...αk 7→ α1...(αi.Rαj)...α̂j ...αk
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Next, define an operation corresponding to multiplication by a fixed ring element
within a block of size n: for an element ω ∈ R, define

un,ω,µ(α.) =

µ(n)
∑

i=1

...⊗ ...α̂n,i ·S (αn,i.Rω)...(1.4.8)

In other words, replace in all possible ways an element in the n-block by its R-product
with ω (this might be called R-multiplication by ω, extended to TS(R) as a ’derivation
inside the n-block’). We can similarly define for any Q-linear map g : R → R,

un,g,µ(α.) =

µ(n)
∑

i=1

...⊗ ...α̂n,i ·S g(αn,i)...,(1.4.9)

(i.e. g extended as a derivation or ’interior multiplication by g in the n- block). Again,
there is a simple ordered analogue, given by

oui,g(α1...αi...αk) = α1...g(αi)...αk.(1.4.10)

When there is no confusion, we will denote oui,g by ouIi,g.
Finally, in terms of these, define the ’discriminant’ operator on TSµ(R) by

Dscµ : TSµ(R) → TS(R),

Dscµ =
∑

n1≥n2

n1n2un1,n2,µ
(1.4.11)

In particular, set

Dsc(m) = Dsc(1m) .

Also set

Uω,µ(α.) =
∑

n

(

n

2

)

un,ω,µ(α.), α. ∈ TSµ(R)(1.4.12)

These assemble together to maps

Dsc, Uω : TS(R) → TS(R)

and similarly, an ordered version on the inflated tensor product TI(R):

ODsc =
∑

i<j

ui,j , OUω =
∑

i

oui,ω.

For future reference, it is important to note that we can write

ODsc−OUω =
∑

i<j

Di,j(1.4.13)

where Di,j acts on TI(I.)(R) as ui,j if i, j are in different blocks of (I.), and as ouk,ω
if i, j are both in the k-th block Ik.

The motivation for this definition is the following elementary result, which could
be deduced from Macdonald’s work [13]. Recall first (see §1.5 below) that if X is
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a smooth curve over C, there is a ’half discriminant’ class, which we abusively call
discriminant, Dsc(m) on the symmetric product X(m), which is half the class of the
big diagonal D(m) (locus of nonreduced cycles), and whose pullback to the cartesian
product coincides with the big diagonal there (with multiplicity 1). Similarly, there
is a discriminant class on a cartesian product of symmetric products

∏

X(mi).

Lemma 1.2. Let X be a smooth curve with canonical class ω,R = H .(X). Then
i. The cup-product action of the discriminant on H .(

∏

X(µ(n))) = TSµ(R) is
given by Dscµ −Uω,µ.

ii. The cup product action of the discriminant on polyblock diagonal classes is
given by

[Dsc(m)] ∪ [Dµ†(α.)] = [D•†(Dscµ(α.) − Uω,µ(α.))], α. ∈ TSµ(R)(1.4.14)

Proof. The second part is just an elaboration of the first, so it suffices to prove
(1.4.14). Since we are working over Q, it suffices to prove both sides are equal after

pullback to the Cartesian product where the pullback of Dsc(m) is the big diagonal
(multiplicity 1 (!)), and splits as a sum of the diagonals pulled back from X × X ,
namely

∑

a<b

Da,b, and α. is replaced by a class α(I.) on an ordered polyblock diagonal.

Then clearly those a, b in different blocks of sizes n1, n2 (the sizes may be different or
not) give rise to un1,n2 , while those in the same block of size n give rise to un,ω.

This result remains true, in fact, when X is nodal (as follows, e.g. from the
discussion in §2.2, or by an elementary dimension-counting argument). However, it is
of little interest in that case because of the lack of geometric meaning of the symmetric
products. On the other hand, one of the main ingredients of our intersection calculus,
to be developed starting in the next section, is an analogue of the Lemma for Hilbert
schemes of families of nodal curves (see Proposition 2.20), where the two sides of
(1.4.14) are not equal but differ by an ’exceptional’ class called a node scroll class.
The device of pulling back to an ordered version will be used there too.

1.5. (Half-) discriminant. LetX/B be a family of smooth curves andD(m) the

big diagonal (or discriminant) in the relative symmetric productX
(m)
B , i.e. Dµ ∩X

(m)
B

for µ = (2 7→ 1, 1 7→ m−2) = (2, 1m−2) (also written simply as (2)). This is a reduced
Cartier divisor, defined locally by the discriminant function which is a polynomial in
the elementary symmetric functions of a local parameter of X/B. The associated line
bundle O(D(m)) is always canonically divisible by 2 as line bundle. Its half is denoted

h = Dsc(m). One way to see this is to note that D(m), which is the branch locus of

̟ : Xm
B → X

(m)
B , is also the branch locus of a flat (albeit singular) double cover

ǫ : X⊙m
B → X

(m)
B

(1.5.15)

where X⊙m
B = Xm

B /Am is the ’orientation product’, quotient of the cartesian product
by the alternating group, which generically parametrizes an m- cycle together with
an orientation. Then h is defined by

ǫ∗OX⊙m
B

= O
X

(m)
B

⊕ h−1.(1.5.16)

(i.e. h−1 is canonically the kernel of the trace map ǫ∗OX⊙m
B

→ O
X

(m)
B

). Indeed ǫ∗h is

precisely the (reduced) ramification divisor of ǫ, which is half of ǫ∗D(m). In particular,
note that ǫ∗h is effective.
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An explicit formula for the discriminant- which extends to Hilbert schemes as
well- is the following (see [11], p.8): let Z ⊂ X(m) ×X be the tautological subscheme
and A = p1∗OZ . The analogous object on the Hilbert scheme is what we call the
tautological sheaf associated to the trivial bundle and denote by Λm(OX) (see §3.2).
Then A is endowed with a trace pairing, whence a map A → A∗ which drops rank
precisely on D(m), hence [D(m)] = −2c1(A). Therefore a half-discriminant can be
defined by

Dsc(m) = −c1(A) = −c1(Λm(OX)).(1.5.17)

The same formula applies to define the discriminant Γ(m) on the Hilbert scheme X
[m]
B

(at least for any family X/B of nodal curves).
Though not important for our purposes it amusing to note that the two definitions

of discriminant agree. This follows from the fact that on the orientation product
X⊙m

B , the pullback ǫ∗(det(Λm(OX))) is an ideal sheaf (hence, it is the ideal sheaf of
ǫ∗(D(m))red): the map ǫ∗(det(Λm(OX))) → OX⊙m is given by first mapping over Xm

B :

f1 ∧ ... ∧ fm 7→
∑

σ∈Sm

sgn(σ)σ∗f1 · · ·σ
∗fm

then noting that this is Am-invariant on Xm
B , hence descends to X⊙m

B .

1.6. Norm. For a line bundle L on a family of smooth curves X/B, we denote
by [m]∗(L) its norm on the symmetric product X(m), defined by

[m]∗(L) = c1(p1∗(p
∗
2L⊗OZ)) + Dsc(m) = c1(Λm(L)) + Dsc(m)(1.6.18)

(notations as above). For an effective Cartier divisor D on X , the norm of O(D) is

[m]∗(D) = p1∗(p
∗
2(D).Z)(1.6.19)

(direct image as cycle). To see this fact (just the Riemann-Roch for the finite map

Z → X
[m]
B ), use the exact sequence

0 → Λm(O(−D)) → OX → OD → 0.

Thus, [m]∗(D) is a divisor supported on the locus of cycles meeting D. Note again
that the same formula (1.6.18) defines the norm in the Hilbert scheme setting.

In terms of cohomology, the class [m]∗(D) for D effective is just the class corre-
sponding to [D]1m−1 under the identification of H .(Symm(X)) with Symm(H .(X)).

Similarly, we set, for s ≤ m,

[m]s∗(D) = ̟∗(p
∗
1(D)...p∗s(D)).(1.6.20)

This corresponds to [D]s1m−s.
These constructions are compatible with that of §1.3.2, in the sense that the

cohomology class of [m]s∗(D) is [m]s∗([D]). This is clear from the above description.

Remark 1.3. Another formula for Dsc(m) (see [21], Corollary 2.1) is

Dsc(m) = [m]∗(ωX/B)⊗ ω−1

X
(m)
B

/B
.(1.6.21)
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To prove this up to numerical equivalence it suffices to show that the pullback both
sides on the relative Cartesian product Xm

B are isomorphic. This is proved by applying

the Riemann-Hurwitz formula for smooth varieties to ̟ : Xm
B → X

(m)
B .

Remark 1.4. In Macdonald’s development [13] of intersection theory on sym-
metric products of a single smooth curve X/C, as expounded in [2], Ch. 8, is based on
the classes [m]∗[pt] =: θm and [Θm] which is the pullback of the theta-divisor Θ(m)
on the Jacobian J(m) via the Abel-Jacobi map (his notation is different). Θ(g − 1)
may be realized as the locus of effective line-bundles of degree g − 1 in J(g − 1). In

fact, [Θm] and Γ(m) := Dsc(m) are related by:

[Θm] = (g +m− 1)θm − Γ(m).(1.6.22)

This may be seen as follows. For m ≥ g, let L be any line bundle of degree m+ g− 1,
hence with m sections. Then the map

X(m) → J(g − 1),

z 7→ L(−z)

is surjective and pulls back Θ(g − 1) to Θm. Therefore, [Θm] is the degeneracy class
of the natural evaluation map

H0(L)⊗O → Λm(L).

This yields (1.6.22).

For m < g, Θm is induced by Θg via X(m) → X(m) + (g −m)[pt] ⊂ X(g), and
Γ(g).X(m) = Γ(m) + (g −m)θm, hence (1.6.22) follows again.

In any event, passing between Θ and Γ-based theories is a matter of simple change
of variable.

1.7. Boundary data. Let π : X → B now denote an arbitrary flat family of
nodal curves of arithmetic genus g over an irreducible base, with smooth generic fibre.
In order to specify the additional information required to define a node scroll, we make
the following definition.

Definition 1.5. A boundary datum for X/B consists of

i. an irreducible variety T with a map δ : T → B unramified to its image, where
the image is a component of the boundary, i.e. the locus in B parametrizing
singular curves;

ii. a ’relative node’ over T , i.e. a lifting θ : T → X of δ such that each θ(t) is a
node of Xδ(t);

iii. a labelling, continuous in t, of the two branches of Xδ(t) along θ(t) as x-axis
and y-axis.

Given such a datum, the associated boundary family Xθ
T is the normalization (=

blowup) of the base-changed family X ×B T along the section θ, i.e.

Xθ
T = Bℓθ(X ×B T ),
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viewed as a family of curves of genus g− 1 with two, everywhere distinct, individually
defined marked points θx, θy. We denote by φ the natural map fitting in the diagram

Xθ
T

↓
φ

ց
X ×B T → X

↓ ↓

T
δ
→ B.

Note that a boundary datum indeed lives over the boundary of B; in the other
direction, we can associate to any component T0 of the boundary of B a finite number
boundary data in this sense: first consider a component T1 of the normalization of
T0 ×B sing(X/B), which already admits a node-valued lifting θ1 to X , then further
base-change by the normal cone of θ1(T1) in X (which is 2:1 unramified, possibly
disconnected, over T1), to obtain a boundary datum as above. ’Typically’, the curve
corresponding to a general point in T0 will have a single node θ and then the degree
of δ will be 1 or 2 depending on whether the branches along θ are distinguishable in
X or not (they always are distinguishable if θ is a separating node and the separated
subcurves have different genera). Proceeding in this way and taking all components
which arise, we obtain finitely many boundary data which ’cover’, in an obvious
sense, the entire boundary of B. Such a collection, weighted so that each boundary
component T0 has total weight = 1 is called a covering system of boundary data.

2. The tautological module. This section will provide a recursive procedure
to compute arbitrary powers of the discriminant polarization Γ(m) on the Hilbert

scheme X
[m]
B (see §1.5, especially (1.5.17)). The computation will be a by-product

of a stronger result determining the (additive) tautological module on X
[m]
B , to be

described informally in this introduction, and defined formally in the body of the
chapter (see Definition 2.42).

The tautological module, with its associated cycle map

Tm = Tm
R (X/B) → A•(X

[m]
B )Q

is to be defined as the A•
Q(B)-vector space generated by certain basic formal symbols

called tautological classes (as described below). On the other hand, let

Q[Γ(m)] → A•(X
[m]
B )Q

be the polynomial ring generated by the discriminant polarization. Then the main
result of this chapter is

Theorem 2.1 (Module Theorem). Compatibly with intersection product, Tm is
a Q[Γ(m)]-module; moreover, the multiplication by Γ(m) can be described explicitly.

Because 1 ∈ Tm by definition, this statement includes the nonobvious assertion
that

Q[Γ(m)] ⊂ Tm;

in other words, any polynomial in Γ(m) is (explicitly) tautological. In this sense, the
Theorem includes an ’explicit’ (in the recursive sense, at least) computation of all the
powers of Γ(m).
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Now the aforementioned basic tautological classes come in two main flavors (plus
some subflavors).

i. The (classes of) (relative) diagonal loci Γ
(m)
(n1,n2,...)

: this locus is the closure

of the set of schemes of the form n1p1 + n2p2 + ... where p1, p2... are distinct
smooth points of the same (arbitrary) fibre.
More generally, we will consider certain ’twists’ of these, denoted
Γ(n1,n2,...)[α1, α2...], where the α. are ’base classes’, i.e. cohomology classes
on X .

ii. The node classes. First, the node scrolls Fn
j (θ): these are, essentially, P1-

bundles over an analogous diagonal locus Γ
(m−n)
(n.) associated to a boundary

family Xθ
T of XB, whose general fibre can be naturally identified with the

punctual Hilbert scheme component Cn
j along the node θ.

Additionally, there are the node sections : these are simply the classes
−Γ(m).F where F is a node scroll as above (the terminology comes from
the fact that Γ(m) restricts to O(1) on each fibre of a node scroll).
Finally, node scrolls and node sections define correspondence operators,
pulling back (tautological) classes from a Hilbert scheme (Xθ)[m−n].

Effectively, the task of proving Theorem 2.1 has two parts.
i. Express a product Γ(m).Γ(n.) in terms of other diagonal loci and node scrolls,

see Proporsition 2.20.
ii. For each node θ and associated (θ-normalized) boundary family Xθ

T , deter-
mine a series of explicit line bundles En

j (θ), j = 1, ..., n on the relative Hilbert

scheme (Xθ
T )

[m−n]
T together with an identification

Fn
j (θ) ≃ P(enj (θ)⊕ enj+1(θ)),

such that the restriction of the discriminant polarization −Γ(m) on Fn
j (θ)

becomes the standard O(1) polarization on the projectivized vector bundle.
This is just the Node Scroll Theorem of [19]. In fact, it transpires that enj (θ)

is just the sum of the polarization Γ[m−n] and a suitable base divisor, that
is itself a tautological class in the sense of Mumford. It then follows easily
that the restriction of an arbitrary power (Γ(m))k on F can be explicitly
expressed in terms of tautological classes on Hilbert schemes of lower degree
on boundary (hence smaller-dimensional) families (which in the stable case
also have lower genus): see Theorem 2.24.

2.1. The small diagonal. We begin our study of diagonal-type loci and their
intersection product with the discriminant polarization with the smallest such locus,
i.e. the small diagonal. In a sense this is actually the heart of the matter, which is
hardly surprising, considering as the small diagonal is in the ’most special’ position
vis-a-vis the discriminant. The key result is Proposition 2.5 below, which is the main
ingredient in determining intersection multiplicities.

The next result is in essence a corollary to the Blowup Theorem of [19].

Let Γ(m) ⊂ X
[m]
B be the small diagonal, which parametrizes schemes with 1-point

support, and which is the pullback of the small diagonal

D(m) ≃ X ⊂ X
(m)
B .

This corresponds to the distribution µ with the unique nonzero value µ(m) = 1. The
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restriction of the cycle map yields a birational morphism

cm : Γ(m) → X

which is an isomorphism except over the nodes of X/B. For the remainder of the
paper, we fix a covering system of boundary data {(T., δ., θ.)} as in [19]. and focus
on its typical node θ. Thus, θ is a relative node of X/B, δ : T → B is a generically
finite surjective map onto a boundary component, and Xθ

T is the blowup of X ×B T
in θ ×B T . Now define a ’local model’ ldeal

Jm < C[[x, y]],

Jm = (x(
m
2 ), ..., x(

m−i+1
2 )y(

i
2), ..., y(

m
2 )).

(2.1.1)

Because a formal neighborhood of θ in X is locally a pullback of a family of the form
xy = t, there is an analogous ideal defined in a formal neighborhood of θ, and because
this ideal is cosupported on θ and independent of the choice of ’local coordinates’ x, y,
it extends to an ideal

Jθ
m < OX .

Then let

Jθ.
m =

⋂

i

Jθi
m ⊂ OX(2.1.2)

be the ideal sheaf whose stalk at each fibre node θi is locally of type Jm. Note that
Jθ.
m is well-defined independent of the choice of local parameters and independent as

well of the ordering of the branches at each node and invariant under permutation of
the set of nodes, hence makes sense and is globally defined on X .

Proposition 2.2. Via cm, Γ(m) is equivalent to the blow-up of Jθ.
m. If OΓ(m)

(1)J
denotes the canonical blowup polarization, we have

(2.1.3) OΓ(m)
(−Γ(m)) = ω

⊗(m2 )
X/B ⊗OΓ(m)

(1)J .

Furthermore, if X is smooth at a node θ, then Γ(m) has multiplicity min(i,m − i)
along the corresponding divisor Cm

i − {Qm
i , Q

m
i+1} for i = 1, ...,m− 1. In particular,

Γ(m) is smooth along (Cm
1 −Qm

2 ) ∪ (Cm
m−1 −Qm

m−1).

Proof. We may work with the ordered versions of these objects, defined on the

ordered Hilbert scheme X
⌈m⌉
B , then pass to Gm-invariants. We first work locally over

a neighborhood of a point on θm ∈ Xm
B where θ is a fibre node. As shown in [19],

§6, X
⌈m⌉
B is obtained from the relative Cartesian product Xm

B by a suitable blowup,
namely that of the big diagonal ODm. Because blowing up and the Hilbert scheme
are both compatible with base-change, we may then assume X is a smooth surface
and X/B is given by xy = t. Then the ideal of ODm is generated by G1, ..., Gm and
G1 has the Van der Monde form vmx , while the other Gi are given by [19], §6. We try
to restrict the ideal of ODm on the small diagonal OD(m) ≃ X. To this end, note to
begin with the natural map

IODm → ω(
m
2 ), ω := ωX/B.
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Indeed this map is clearly defined off the singular locus of Xm
B , hence by reflexivity

of IODm extends everywhere, hence moreover factors through a map

IODm .OD(m) = IODm ⊗OOD(m)
/(torsion) → ω(

m
2 ).

To identify the image, note that

(xi − xj)|OD(m)
= dx = x

dx

x

and η = dx
x = − dy

y is a local generator of ω along θ. Therefore

G1|OD(m)
= x(

m

2 )η(
m

2 ).

From [19], loc. cit.. we then deduce

(2.1.4) Gi|Γ(m)
= x(

m−i+1
2 )y(

i
2)η(

m
2 ), i = 1, ...,m.

Since G1, ..., Gm generate the ideal IODm along θ, it follows that over a neighborhood
of θ, we have

IODm .OD(m) ≃ Jθ
m ⊗ ω(

m
2 ).

This being true for each node, it is also true globally. Consequently, passing to the
Sm-quotient, we also have

IDm .D(m) ≃ Jθ
m ⊗ ω(

m

2 ).

Then pulling back to X
[m]
B we get (2.1.3).

Finally, it follows from the above, plus the explicit description of the model Hm,
that, along the ’finite’ part Cm

i −Qm
i+1, Γ(m) has equation x

m−i − uyi where u is an
affine coordinate on Cm

i −Qm
i+1, from which our last assertion follows easily.

Let us now fix the node θ and analyze locally the blowup of the ideal Jm = Jθ
m =

(..., x(
m−i+1

2 )y(
i
2), ...).

Lemma 2.3.

Jm =

m−1
∏

i=1

(xm−i, yi).

Proof. Consider for i = 1, ...,m− 1 the cone Ki in the 1st quadrant R2
+ generated

by (m− i, 0) and (0, i), i.e.

Ki = (R2
+ + (m− i, 0)) ∪ (R2

+ + (0, i)).

This cone corresponds to the ideal Jm,i = (xm−i, yi) in the sense that Jm,i is generated
by the monomials xayb with (a, b) ∈ Ki. In a similar way, the ideal

∏

i

Jm,i corresponds

to the cone
∑

i

Ki. Now it is easy to see, e,g, by working with the partial sum
n
∑

i=1

Ki

and using induction on n, that the latter cone is just equal to

m
⋃

i=0

((

(

m− i+ 1

2

)

,

(

i

2

)

) + R2
+)
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which proves our claim.

Now let Xi be the blowup of X in Jm,i = (xm−i, yi), which is the subscheme of
X × Cm

i = X × P1 defined by

xm−iui = yivi

and contains the special points Qm
i = [1, 0], Qm

i+1 = [0, 1]. The pullback of Jm,i on Xi

is an invertible ideal, generated by xm−i near Cm
i \ Qm

i+1 and by yi near Cm
i \ Qm

i .
The following is an immediate consequence of Lemma 2.3:

Lemma 2.4. The blowup of Jm is isomorphic to the unique component dominating

X of the fibre product (over X):
m−1
∏

i=1

(Xi/X) := X1 ×X ...×X Xm−1.

As was analyzed in [19], the special fibre of Γ(m), i.e. the blowup of Jm, is a chain

Cm
1 ∪ ...∪Cm

m−1 and the point Qm
i ∈ Cm

i is coupled in the cartesian product
m−1
∏

i=1

Cm
i

with Qm
j+1 ∈ Cm

j for j < i and with Qm
j ∈ Cm

j for j > i. It follows that if we set

gi := x(
m−i

2 )y(
i
2).xm−i = x(

m−i+1
2 )y(

i
2)

then in Γ(m), Jm is locally generated by by gi near Q
m
i and by gi+1 near Qm

i+1.
Now note that the function x has along Cm

i multiplicity equal to the length of
C[x, y]/(xm−i − yi, x), i.e. i; similarly, y has multiplicity equal to m − i. Therefore,
the multiplicity of the invertible ideal Jm itself along Cm

i is equal to

i(m− i) + i

(

m− i

2

)

+ (m− i)

(

i

2

)

= i

(

m− i+ 1

2

)

+ (m− i)

(

i

2

)

=
i(m− i)m

2
.

Also, note that at Qm
i+1, we have affine coordinates ui/vi, vi+1/ui+1 on Cm

i , C
m
i+1

respectively. These have respective zero- sets Cm
i+1, C

m
i and because

(ui/vi)(vi+1/ui+1) = xy(2.1.5)

which has multiplicity m along either Cm
i or Cm

i+1, it follows that ui/vi (resp.
ui+1/vi+1) has multiplicity m along Cm

i+1 (resp. Cm
i ).

We summarize this discussion as follows:

Proposition 2.5. (i) The pullback ideal of Jθ
m on Γ(m) defines a Cartier divisor

of the form

eθm =

m−1
∑

i=1

νm,iC
m
i (θ),

νm,i :=
i(m− i)m

2
.

(2.1.6)

Moreover x and y have along Cm
i (θ) multiplicity equal to m− i, i respectively.

(ii) Each Cm
i is a Q- Cartier divisor on Γ(m); mC

m
i is Cartier.

Corollary 2.6. Notations as above, we have
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(i) Cm
i (θ)Cm

i+1(θ) =
1

m
Qm

i+1(θ);

(ii) (Cm
i (θ)2 = −

1

m
Qm

i (θ)−
1

m
Qm

i+1(θ).

Proof. We will fix and suppress θ.
(i)Locally at Qm

i+1, mC
m
i and mCm

i+1 have respective equations ui+1/vi+1, vi/ui,
and these locally generate an ideal of the form (xm−i, yi+1, xy) (note (2.1.5)), which
has colength m.

(ii) With the above notations, the principal divisor associated to x has the form
∑

j

jCm
j , therefore

Cm
i

∑

j

jCm
j = 0.

Using similarly the divisor of y yields

Cm
i

∑

j

(m− j)Cm
j = 0,

hence numerically,

Cm
i

∑

j

Cm
j ∼ 0.

Because Cm
i meets Cm

j only for |j − i| ≤ 1, (i) yields the result.

Corollary 2.7. With the above notations, we have

(2.1.7) Γ(m).Γ(m) =
∑

θ,i

νm,iC
m
i (θ)−

(

m

2

)

[ωX/B ].

Moreover, if dim(B) = 1, we have:

(2.1.8) e2m = −σνm, νm :=
m2(m− 1)(m+ 1)

12
,

where σ is the number of nodes of X/B;

(2.1.9)

∫

Γ(m)

(Γ(m))2 = −σνm +

(

m

2

)2

ω2
X/B .

Remark 2.8. The components Cm
i (θ), i = 1, ...,m − 1 of em are P1-bundles

over the normalization B(θ) of the boundary component corresponding to the node
θ. These are special cases of the node scrolls, encountered in the previous section,
which will be further discussed in §2.4 below. See §3.3 for further discussion of the
small diagonal and its intersection theory.

For the remainder of the paper, we set

ω = ωX/B .

We will view this interchangeably as line bundle or divisor class.



HILBERT SCHEMES OF NODAL CURVES 215

2.2. Monoblock and polyblock digaonals: Ordered case. Returning to
our family X/B of nodal curves, we now begin extending the results of §2.1 to the
more general diagonal loci as defined above, first for those that live over all of B, and
subsequently for loci associated to the boundary. In this section, We will work with
ordered objects, chiefly as a tool for understanding their unordered analogues, to be
considered in the next section.

We will work here with the ordered relative Hilbert scheme of the nodal family
X/B, defined as

X
⌈m⌉
B = X

[m]
B ×

X
(m)
B

Xm
B

where X
[m]
B → X

(m)
B is of course the cycle map cm studied at length in [19]. As

discussed in 1.5, X
[m]
B is endowed with the (half) discriminant Γ(m). We denote by

Γ⌈m⌉ the pullback of the latter on X
⌈m⌉
B , which is effective, reduced and Cartier and

admits a splitting as Weil divisor

Γ⌈m⌉ =
∑

1≤a<b≤m

Da,b

where the summands are pullbacks of diagonals in the 2-fold product and are not
Cartier.

We recall the ordered polyblock diagonal loci OD(I.) = OD(I.),X/B discussed in
§1.2. Here we will use this notation to refer to the appropriate loci in the relative
Cartesian product Xm

B . In particular, we have the ordered monoblock diagonal

(2.2.1) ODm
I,X/B = ODI =⊂ Xm

B ,

and the big diagonal

(2.2.2) ODm =
∑

1≤a<b≤m

ODm
a,b.

Similar loci exist in the ordered Hilbert scheme:

(2.2.3) ΓI = Γ
⌈m⌉
I := oc−1(ODI) ⊂ X

⌈m⌉
B .

Note that ODI , hence ΓI , are defined locally near a node by equations

(2.2.4) xi − xj = 0 = yi − yj , ∀i, j ∈ I.

Generally, for any b-partition

(I.) = (I1, ..., Ir) ⊂ [1,m],

we have an analogous locus (ordered polyblock diagonal)

(2.2.5) ΓI1|...|Ir = Γ
⌈m⌉
I1|...|Ir

⊂ X
⌈m⌉
B

and note that

(2.2.6) ΓI1|...|Ir = ΓI1 ∩ ... ∩ ΓIr
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(transverse intersection). Recall that r is called the length of the b-partition (I.) and
denoted ℓ(I.). Also

(2.2.7) Γ(I.) = oc−1(OD(I.))

where OD(I.) ⊂ Xm
B is the analogous polyblock diagonal. We may view Γ(I.) as an

operator

Γ(I.)[] :

r
⊗

R → H•(X
⌈m⌉
B ), r = ℓ(I.)

(α.) 7→ Γ(I.) ∩ oc
∗(α.)

where as usual H• denotes a homology theory coarser than Chow. Thus, the val-
ues of Γ(I.)[] are homology rather than cohomology classes. However, their Sm-

symmetrized versions will descend to the (unordered) Hilbert scheme X
[m]
B , which

is typically smooth, so the distinction between homology and cohomology will not
matter.

Now our first goal is to determine the intersection action of discriminant operator
on a monoblock diagonal cycle, i.e. to determine the intersection cycle Γ⌈m⌉.ΓI .
In this computation, a key technical question is to determine the part of ODI and
ΓI over the boundary of B, or at least its irreducible components. Thus for each
boundary datum (θ, T, δ), with the associated map φ : Xθ

T → X and cartesian power

φm : (Xθ)mT → Xm
B ,

we need to determine (φm)∗(ODI) and its inverse image in (Xθ
T )

⌈m⌉ which we call the
(θ, T, δ) boundary of ΓI . A priori, it is clear that any difference between the answers
in Sym and Hilb will have to do with node-supported loci, i.,e. node scrolls.

To state the answer, we recall from [19] the ordered node scroll OF I
j , which is

the portion of ̟−1(Fn
j (θ), n = |I|, where the n points coalesced in θ lie in the I-

indexed coordinates. This maps to (Xθ
T )

⌈[1,m]\I⌉ (i.e. a copy of (Xθ
T )

⌈m−n⌉ indexed
by {1, ...,m} \ I,rather than {1, ...,m−n}). Locally near θx∪ θy , (Xθ

T )
⌈[1,m]\I⌉ breaks

up into branches corresponding to decompositions {1, ...,m} \ I = Kx

∐

Ky , where
Kx,Ky are the indices of the points which lie in the x or y-branches, denoted X ′, X”

respectively. We denote the corresponding branches of OF I
j by OF

I:Kx|Ky

j (θ).
For index-sets I ⊂ K, we will use the notation K/I to denote the quotient set

identifying I to a singleton, i.e. (K \ I)
∐

{I}. Correspondingly, XK/I will denote
the subset of XK consisting of points whose components indexed by I are mutually
equal.

We begin with a key technical Lemma analyzing the boundary of the monoblock
diagonal ΓI .

Lemma 2.9. Set-theoretically, the (θ, T, δ) boundary of ΓI is the union of the
following loci, each one itself a union of irreducible components of the boundary:

i. for each index-set K, [1,m] ⊃ K ⊃ I, a locus Θ̃K/I , mapping birationally to

its image ΘK/I ⊂ ODI = (X ′)K/I × (X”)K
c

;

ii. for each K ⊂ Ic = [1,m] \ I, a locus Θ̃K/I , mapping birationally to its image

ΘK/I ⊂ ODI = (X ′)K × (X”)K
c/I ;
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iii. for each K straddling I and Ic (i.e. meeting both), and each j = 1, ..., |I|−1, a

component OF
I:K−I|Kc−I
j (θ) ⊂ OF I

j (θ) projecting as P1-bundle to its image

in (Xθ
T )

⌈m−|I|⌉, which lies over (X ′)K−I ×T (X”)K
c−I =: (Xθ

T )
K−I|Kc−I ⊂

(Xθ
T )

m−|I|.

Proof. The loci of type (i), (ii) are clearly there and any other component must
occur at the boundary. Hence, we may fix a node θ and work locally over a neighbor-
hood of θ in X . The main point is first to determine the boundary of ODI (in the
symmetric product). But this is easily determined as in the Θ decomposition of [19]
§4: the boundary is given locally by

⋃

K⊂[1,m]

ODI ∩ΘK .

Set ΘK/I = ODI ∩ΘK . To describe these, there are 3 cases depending on K:
i. if I ⊂ K, then

ΘK/I = (X ′)K/I × (X”)K
c

;

ii. if I ⊂ Kc, then

ΘK/I = (X ′)K × (X”)K
c/I ;

iii. otherwise, i.e. if I meets both K and Kc, then

ΘK/I = {yi = 0, ∀i ∈ K ∪ I, xi = 0, ∀i ∈ Kc ∪ I}

= (X ′)K−I × (X”)K
c−I × 0I =: XK−I|Kc−I .

Now is an elementary check that the loci of type (i) and (ii) are precisely the
irreducible components of the special fibre of ODI , while the union of the loci ΘK/I of
type (iii) coincides with the intersection of ODI with the fundamental locus (=image
of exceptional locus) of the ordered cycle map ocm, i.e. the locus of cycles containing
the node with multiplicity > 1. Also, each ΘK/I of type (iii) is of codimension 2 in

ODI . On the other hand, each such ΘK/I = XK−I|Kc−I is just a component of the

inverse image in Xm
B of the locus denoted X(a,b) in [19], §5, where a = |K − I|, b =

|Kc − I|, and therefore by that Lemma, the ordered cycle map over it is a union of
P1 bundles, viz

(2.2.8) oc−1
m (XK−I|Kc−I) =

|I|−1
⋃

j=1

OF
I:K−I|Kc−I
j

where OF
I:K−I|Kc−I
j is the pullback of F

(m−a−b:a|b)
j over XK−I|Kc−I , which is a P1

bundle with fibre C
|I|
j . This concludes the proof.

Notice that, given disjoint index-sets K1,K2 with K1

∐

K2 = Ic, the number
of straddler sets K such that K − I = K1,K

c − I = K2 is precisely 2n − 2 (i.e.

the number of proper nonempty subsets of I). Thus, a given OF
I:K1|K2

j will lie on

this many components of Θ̃. This however is a completely separate issue from the
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multiplicity of OF
I:K1|K2

j in the intersection cycle Γ[m].ΓI , which has to do with the
blowup structure and will be determined below.

From the foregoing analysis, we can easily compute the intersection of a
monoblock diagonal cycle with the discriminant polarization, as follows. We will fix
a covering system of boundary data (Ts, δs, θs),and recall that each datum must be
weighted by 1

deg(δs)
(cf. §1.7.

Proposition 2.10. We have an equality of divisor classes on ΓI :

Γ⌈m⌉.ΓI =
∑

i<j /∈I

ΓI|{i,j} + |I|
∑

i/∈I

ΓI∪{i} −

(

|I|

2

)

p∗min(I)ω(2.2.9)

+
∑

s

1

deg(δs)

|I|−1
∑

j=1

ν|I|,jδ
I
s,j∗OF

I
j (θs),

where I|{i, j} and I∪{i} denote the evident diblock partition and uniblock, respectively,
the 4th term denotes the class of the image of the node scroll on ΓI , OF

I
j (θ) =

∑

K1

∐
K2=Ic

OF
I:K1|K2

j (θ), δIs,j is the natural map of the latter to ΓI ⊂ X
[m]
B and the

multiplicities νn,j are given by (2.1.6) ; precisely put, the line bundle on ΓI given by
OΓI

(Γ⌈m⌉)⊗p∗min(I)(ω
|I|) is represented by an effective divisor comprising the 1st, 2nd

and 4th terms of the RHS of (2.2.9).

Proof. To begin with, the asserted equality trivially holds away from the excep-
tional locus of ocm, where the 1st, second and third summands come from components
Γi,j of Γ⌈m⌉ having |I ∩ {i, j}| = 0, 1, 2, respectively.

Next, both sides being divisors on ΓI , it will suffice to check equality away from
codimension 2, e.g. over a generic point of each (boundary) locus (Xθ

T )
K−I|Kc−I . But

there, our cycle map ocm is locally just ocr × iso, r = |I|, with

Γ⌈m⌉ ∼ Γ⌈r⌉ +
∑

{i,j}6⊂I

Γi,j .

We are then reduced to the case of the small diagonal, discussed in §2.1, especially
Proposition 2.5.

Now this result immediately implies an analogous one for the operator

ΓI [] :

m−|I|+1
⊗

R → A•(X
⌈m⌉
B ),

whose arguments, as products of (co)homology classes, can be represented by cycles
in generic position. Recall that by convention, the first R factor is associated with
the I block. Also, as Γ⌈m⌉ is Cartier, it defines an endomorphism

Γ⌈m⌉ = . ∪ [Γ⌈m⌉] : A•(X
⌈m⌉
B ) 	 .

The result can be written compactly using the ’formal discriminant’ operator’ of §1.4,
as follows.

Corollary 2.11. Notations as above,

Γ⌈m⌉.ΓI [α.] =ΓI [ODsc(α.) −OUω(α.)]

+
∑

s

1

deg(δs)

|I|−1
∑

j=1

ν|I|,jδ
I
s,j∗OF

I
j (θs)[ouI,g(α.)], α. ∈ TSI(R)

(2.2.10)
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where ouI,g is as in (1.4.10) with g(α) = θ∗s (α), where θs is viewed as a (partial)
section Ts → X .

We note that in the node scroll operator above, we are viewing H .(B) ⊂ H .(Xθs)
via pullback through Xθs → Ts → B .

Our next goal is to extend the foregoing result from the monoblock to the poly-
block case- still in the ordered setting. While the extension in question is in principle
straightforward, it is a bit complicated to describe. Again, a key issue is to describe
the boundary of a polyblock diagonal locus OD(I.) in terms of the Θ decomposition
of [19], §4.. Fix a boundary datum (T, δ, θ). To simplify notations, we will assume,
losing no generality, that the partition I. is full, i.e.

⋃

Ij = [1,m]. Now consider
an index-set K ⊂ [1,m]. As before, K is said to be a straddler with respect to a
block Iℓ of (I.), and Iℓ is a straddler block for K, if Iℓ meets both K and Kc. The
straddler number strad(I.)(K) of K w.r.t. (I.) is the number of straddler blocks Iℓ.
The straddler portion of (I.) relative to K is by definition the union of all straddler
blocks, i.e.

(2.2.11) sK(I.) =
⋃

Iℓ∩K 6=∅6=Iℓ∩Kc

Iℓ.

The x- (resp. y-)-portion of (I.) (relative to K, of course) are by definition the
partitions

(2.2.12) xK(I.) = {Iℓ : Iℓ ⊂ K}, yK(I.) = {Iℓ : Iℓ ⊂ Kc}.

Finally the multipartition data associated to (I.) w.r.t. K are

(2.2.13) ΦK(I.) = (sK(I.) : xK(I.)|yK(I.)).

In reality, this is a partition broken up into 3 parts: the nodebound part sK(I.), a
single block, plus 2 at large parts, an x part and a y part. As before, we set

(2.2.14) XΦK(I.) = (X ′)xK(I.) × (X”)yK(I.)

and equip it as before with the map to Xm
s obtained by inserting the node θ at the

sK(I.) positions.Now the analogue of Lemma 2.9 is the following

Lemma 2.12. For any partition (I.) and boundary datum (T, δ, θ),, the corre-
sponding boundary portion of Γ(I.) is

(2.2.15)
⋃

strad(I.)(K)=0

Θ̃K,(I.) ∪
⋃

ℓ

⋃

I′.
∐

I”.=I.\Iℓ

|Iℓ|−1
⋃

j=1

OF
(Iℓ:I

′.|I”.)
j (θ).

Proof. First, one easily verifies:

(2.2.16) OD(I.) ∩ ΦK = XΦK(I.) =: ΘK,(I.)

so that

(2.2.17) OD(I.) ∩ (Xθ)mT =
⋃

K⊂[1,m]

ΘK,(I.).
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Now, an elementary observation is in order. Clearly, the codimension of OD(I.) in

Xm
B is

∑

ℓ

(|Iℓ|− 1), and this also equals the codimension of OD(I.) ∩ (Xθ)mT in (Xθ)mT .

On the other hand, we have

dim(ΘK,(I.)) = m−

(

∑

Iℓ nonstraddler relK

(|Iℓ| − 1) +
∑

Iℓ straddler relK

|Iℓ|

)

(2.2.18)

= m−
∑

ℓ

(|Iℓ| − 1)− strad(I.)(K).

It follows that
• the index-sets K such that ΘK,(I.) is a component of the boundary OD(I.) ∩

(Xθ
T )

m are precisely the nonstraddlers;
• those K such that ΘK,(I.) is of codimension 1 in the special fibre are precisely
those of straddle number 1 (unistraddlers).

Next, what are the preimages of these loci upstairs in the ordered Hilbert scheme

X
⌈m⌉
B ? They can be analyzed as in the monoblock case:

• if K is a nonstraddler, a general cycle parametrized by ΘK,(I.) is disjoint

from the node, so there will be a unique component Θ̃K,(I.) ⊂ oc−1
m (ΘK,(I.)

dominating ΘK,(I.);
• if K is a unistraddler (straddle number = 1), the dominant components of

oc−1
m (ΘK,(I.)) will be the P1-bundles F

ΦK(I.)
j , j = 1, , , sK(I.)− 1; note that if

Iℓ the unique block makingK a straddler, then ΦK(I.) = (Iℓ : xK(I.)|yK(I.));
moreover as K runs through all unistraddlers, ΦK(I.) runs through the date
consisting of a choice of block Iℓ plus a partition of the set of remaining blocks
in two (’x- and y-blocks’);

• because all fibres of ocm are at most 1-dimensional, while every component
of the boundary is of codimension 1 in Γ(I.), no index-set K with straddle
number strad(I.)(K) > 1 (i.e. multistraddler) can contribute a component to
that special fibre.

This completes the proof.

The import of the Lemma is that the analysis leading to Proposition 2.10 extends
with no essential changes to the polyblock case, and therefore the natural analogue of
that Proposition holds. This is the subject of the next Corollary which for convenience
will be stated in operator form. The statement is nearly identical to the monoblock
case, except that the node scrolls appearing will themselves contain a polydiagonal
conditions on the variable points on Xθ. We will write Γ(I.),Y to indicate the appro-

priate polydiagonal locus associated to a given family Y (e.g. Y = X/B,Xθ
T/T etc.)

then define

OF
Iℓ/I.
j (θ) = OF Iℓ

j .Γ(I.)\Iℓ,Xθ
T /T ⊂ (Xθ

T )
⌈[1,m]\Iℓ⌉.(2.2.19)

In words, this is the pullback of the appropriate polyblock diagonal from the base
of the (ordered) node scroll. As above, the pullback via Xθ

T → X gives an inclusion
H .(X) → H .(Xθ

T ) so for any subring R ⊂ H .(X) containing ω the operator

OF
Iℓ/I.
j (θ)[] :

m−|Iℓ|+1
⊗

R → H.(X
⌈m⌉
B )

is defined.
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Corollary 2.13. For any block partition I. = I1|...|Ir on [1,m], we have an
equality of operators

Γ⌈m⌉ ◦ Γ(I.)[] =Γ(I.)[] ◦ (ODsc−OUω)

+
∑

s

1

deg(δs)

r
∑

ℓ=1

|Iℓ|−1
∑

j=1

ν|Iℓ|,jδ
Iℓ
s,j∗OF

Iℓ/I.
j (θs)[] ◦ ouℓ,θ∗

s

(2.2.20)

where uℓ,θ∗
s
is interior multiplication by θ∗s : R → H•(B) as in (1.4.10).

What the Corollary means is that the discriminant action on the ordered Hilbert
scheme is the ’classical’ action on the Cartesian product (cf. Lemma 1.2), plus a
boundary term as above. In the next section we will derive (easily) and explore the
corresponding result for the (unordered) Hilbert scheme.

2.3. Monoblock and polyblock diagonals: Unordered case. Here we will
transport the formulae of the last section to the (unordered) Hilbert scheme. This is
essentially straightforward, and is generally accomplished by applying to the appro-
priate ordered formulae push-forward by the symmetrization map

̟m : X
⌈m⌉
B → X

[m]
B .

We begin with the monoblock case. Recall first the the monoblock (unordered) diag-
onal operator Γ(n)[] which may be defined for n > 1 as

Γ(n)[α.] =
1

(m− n)!
̟m∗(Γ(I))[α.], α. = α1 ⊗ (α2...αm−n) ∈ R ⊗ Symm−n

Q (R).

Thus α1 is associated to a block of size n while each of α2, ..., αm−n is associated to a
singleton block. Generally for a distribution µ the polyblock diagonal operators Γµ[]
can be defined similarly by

Γµ[] =
1

a(µ)
̟∗Γ(I.)[] :

⊗

n

Symµ(n)(R) = TSµ(R) → A•(X
[m]
B )

where (I.) is any b-partition with distribution µ and a(µ) =
∏

n
µ(n)! is the degree of

the restricted symmetrization map Γ(I.) → Γµ and Symµ(n)(R) is viewed as subring

of the tensor product
µ(n)
⊗

R . We will often specify a distribution by specifying only
its non-singleton blocks. Thus Γ(n),m or Γ(n) for n > 1 is short for Γµ with µ of
weight m with µ(n) = 1, µ(1) = m − n; similarly for Γ(n|n′...). Note that in the case
of the trivial partition (1m), the corresponding operator

Γ(1m)[] : Sym
m(R) → A•(X

[m])

is just pullback by the cycle map cm. This map admits ’transpose’ (trace map)

cm∗ : A•(X
[m]) → Symm(R).

Also, corresponding to the Cartier divisor Γ(m), we have the endomorphism

Γ(m) = . ∪ [Γ(m)] : A•(X
[m]
B ) 	 .
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Note that

Γ(m)Γ(1m)[] =
1

2
Γ(21m−2) =

1

2
Γ(2)[].

We will use Γµ ∈ A•(X
[m]
B ) to denote Γµ[1µ] where 1µ ∈ TSµ(R) is the uniquely

determined product of 1R factors. We will also use Γµ[(α.)] to denote the operator

TSµ(R) → A•(X
[m]
B ),

(β.) 7→ Γµ[(α. ·R β.)]

where the product refers to the product in TSµ(R) induced by the product in R.
Taken together, the various Γµ[] operators can be assembled to a single operator

Γ•m : TS(R) → A•(X
[m]
B ).(2.3.1)

The main result of this section, Theorem 2.23 expresses the action of the discriminant
on Γ•m.

Remark 2.14. Using the Nakajima-inspired notation introduced in [21], we can
write

Γ(n)[α] = qn[α],

Γµ[α.] =
∏

n

⋆ (qn[αn,1] ⋆ ... ⋆ qn[αn,µ(n)]).
(2.3.2)

Here all products are the ’external’ or star products (see 1.3) and qn[α] = Γ(n)[α] is
the Nakajima-like ’creation’ operator (evaluated on 1).

Note the following elementary facts:
i.

(2.3.3) ̟m∗(Γ
⌈m⌉.ΓI) = Γ(m).̟m∗ΓI

(projection formula, because ̟∗
m(Γ(m)) = Γ⌈m⌉; NB ̟ is ramified over the

support of Γ(m), still no factor of 2 in ̟∗
m(Γ(m)), by our definition of Γ(m) as

1/2 times its support);
ii.

(2.3.4) ̟m∗(ΓI [α]) = (m− n)!Γ(n)[α] , n = |I| > 1;

iii.

(2.3.5) ̟m∗(ΓI|{i,j}) =











(m− n− 2)!Γ(n|2), n 6= 2;

2(m− n− 2)!Γ(2|2), n = 2,

(1 + δ2,n)(m− n− 2)!Γ(n|2), ∀n

(δ= Kronecker delta) here Γ(n|2) is the diagonal locus corresponding to the
distribution (of weight m) with blocks of sizes n, 2 plus singletons;

iv.

(2.3.6) ̟m∗(ΓI
∐

{i}) = (m− n− 1)!Γ(n+1);
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v.

̟m∗(OF
I:K−I|Kc−I
j (θ)) = a!b!F

(n:a|b)
j (θ),

a = |K − I|, b = |Kc − I| = m− n− a
(2.3.7)

where we recall that F
(n:a|b)
j (θ) is the unordered analogue of the node scroll

F
(I:K′|K”)
j ; moreover the number of distinct subsetsK−I with a = |K−I|, for

fixed I and a, is
(

m−n
a

)

which easily implies that the push-forward, properly
weighted, of the total of the ordered node scrolls by symmetrization equals
the total of the unordered node scrolls.

Putting these together with Proposition 2.10, we conclude

Γ(m).Γ(n) ∼
1 + δ2,n

2
Γ(n|2) + nΓ(n+1) −

(

n

2

)

Γ(n)[ω]

+
∑

s

1

deg(δs)

m−n
∑

a=0

n−1
∑

j=1

νn,jδ
n
s,j∗F

(n:a|m−n−a)
j (θs).

(2.3.8)

Here and elsewhere, Γ(n)[ω] is short for Γ(n)[ω⊗ 1m−n], ω⊗ 1m−n ∈ R⊗Symm−n
Q (R),

either as cycle or operator.
Set

m−n
∑

a=0

F
(n:a|m−n−a)
j = Fn,m

j

(when m is understood, we will denote this by Fn
j ). We note that in this sum, the first

3 terms in (2.3.8) match up exactly with (1.4.11), where the first term corresponds
to uniting two singleton blocks and the second to uniting a singleton block with the
n-block. Therefore the formula may be extended to the twisted case and written more
compactly as follows

Proposition 2.15. For any monoblock diagonal Γ(n), n > 1, we have

Γ(m).Γ(n)[] ∼ Γ(n) ◦ (Dsc(m) −Uω) +
∑

s

1

deg(δs)

n−1
∑

j=1

νn,jδ
n
s,j∗F

n,m
j (θs)[] ◦ un,θ∗

s ,(n)
.

(2.3.9)

where un,θ∗
s ,(n)

is as in (1.4.9) and νn,j =
1
2j(n− j)n.

For simplicity of notation, we will denote un,g,(n) by un,g (e.g. un,θ∗).

When n = 2, Γ(n) is just 2Γ
(m)Γ(1m), hence (cf. (1.4.7))

Corollary 2.16.

(Γ(m))2Γ(1m)[] =
1

2
Γ(2→2)[] ◦ u((12);(12):(1m)) + Γ(3)[] ◦ u((13):(1m)) − Γ(m)[ω]

+
∑

s

1

deg(δs)

1

2
δ2s,j∗F

2,m
1 (θs).[] ◦ u2,θ∗

s
◦ u((12:1m)).

(2.3.10)
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Here and elsewhere, we denote by (n → k) or, more traditionally (nk), the dis-
tribution µ with µ(n) = k and zeros elsewhere; when n = 1 it will be omitted. Also
(µ1|µ2|...|µr) denotes the sum as functions µ1+µ2+...+µr; the corresponding diagonal
locus is the external or star product Γµ1 ⋆ ... ⋆ Γµr

.

Corollary 2.17. We have

Γ(m).Γ(2)[] ◦ u2,ω = Γ(2→2)[] ◦ u2,ω + 2Γ(3)[] ◦ u3,ω − Γ(2)[] ◦ u2,ω2(2.3.11)

Γ(m).Γ(3) =
1

2
Γ(3|2) + 3Γ(4) − 3Γ(3)[ω]

+
∑

s

3

deg(δs)

m−3
∑

a=0

δ3s,1∗(F
3,m
1 (θs) + δ3s,2∗F

3,m
2 (θs)).

(2.3.12)

Proof. The first formula follows from the fact that the boundary term involves
θ∗, so drops out after multiplying by ω because θ∗(ω) is trivial. The second formula
is straight substitution. NB this formula, and similar ones below in cycle form, imply
analogous ones in operator from that we will leave to the reader to explicate.

Corollary 2.18. We have for m = 2:

(Γ(2))kΓ(12) =
1

2
Γ(2)[(−ω)

k−1] +
∑

s

1

deg(δs)

1

2
δ2s,1∗(Γ

(2))k−2.F 2,2
1 (θs)), k ≥ 3;

(2.3.13)

if m = 2, dim(B) = 1,

∫

X
[2]
B

[Γ(2)]3 =
1

2
ω2 −

1

2
σ, σ = |{singular fibres}|;

(2.3.14)

for m = 3

(Γ(3))3Γ(13) = −4Γ(3)[ω] + Γ(3)[ω2]

+
∑

s

1

deg(δs)
(3(δ3s,1∗F

3,3
1 (θs) + δ3s,2∗F

3:3
2 (θs)) +

1

2
δ2s,1∗Γ

(3)(F 2,3
1 (θs)))

(2.3.15)

[We have used the elementary fact that ω.θs = 0, hence ωi.F 2:∗
1 (θs) = 0, ∀i > 0,

because this node scroll maps to θs, more precisely to 2[θs] ⊂ X
(2)
B .] Note that the

last term in the last equation is minus half a node section over Xθs , therefore its
support maps birationally to Xθ

s . Despite the 1/2 factor, the cycles in question are
all integral because Γ(m) is integral and Cartier (albeit non-effective). In particular,
(2.3.14) implies that ω2 − σ is even.

To simplify notation we shall henceforth denote 1
deg(δs)

∑

s
F •
• (θs) simply as F •

• .

Example 2.19. This is presented here mainly as a check on some of the co-
efficients in the formulas above. For X = P1, X(m) = P(H0(OX(m))) = Pm,

and the degree of Γ
(m)
(n) is n(m − n + 1). Indeed this degree may be computed

as the degree of the degeneracy locus of a generic map nOX → Pn−1
X (OX(m))
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where P k
X denotes the k-th principal parts or jet sheaf. It is not hard to show that

Pn−1
X (OX(m)) ≃ nOX(m− n+ 1).

For example, Γ
(3)
(2) is a quartic scroll equal to the tangent developable of its cuspidal

edge, i.e. the twisted cubic Γ
(3)
(3). The rulings are the lines Lp = {2p + q : q ∈ X},

tangent to the Γ
(3)
(3), each of which has class − 1

2Γ
(3)[ω]. Therefore by Corollary 2.16,

the self-intersection of Γ(3) in P3 (or half the intersection of Γ(3) with Γ
(3)
2 , as a class

on Γ
(3)
2 ) is represented by Γ

(3)
(3) plus one ruling Lp.

If m = 4 then Γ(4) is formally a cubic (half a sextic hypersurface) in P4, whose
self-intersection, as given by Corollary 2.16, is half the Veronese Γ(2|2) plus the (sex-
tic) tangent developable Γ(3), plus one osculating plane to the twisted quartic Γ(4),

representing −Γ(4)[ω] .

Next we extend Proposition 2.15 to the polyblock case, in other words work out
the unordered analogue of Corollary 2.13. Consider a distribution µ of weight m and
associated polyblock diagonal loci and operators Dµ,Γµ,Γµ[] where, e.g.

Γµ[] : TSµ(R) → A•(X
[m]
B )

A• could be replaced by for any suitable homology theory H• such as singular (over

Q). The group becomes a ring whenever X is smooth, hence so is X
[m]
B . Now the

node scroll Fn
j (θ) (see the next section for more detail) is a P1-bundle over (Xθ

T )
[m−n],

whence operators, for any distribution ν of weight m− n:

Fn
j,ν(θ)[] : TSν(R) → A•(X

[m]
B )

α. 7→ [Fn
j (θ)] ∩ p

∗
[m−n] ◦ Γν,Xθ

T
◦ φ∗(α.)

(2.3.16)

where φ : Xθ
T → X is the natural map. Clearly, given a distribution µ of weight m,

the ν-s corresponding to it via the unordered analogue of Corollary 2.13 will have the
form ν = µ− 1n with µ(n) ≥ 1.

A convenient way to represent the classes Γµ[α] and Fn
j,ν(θ)[α], adopted in the

macnodal program (see §4.3) is as matrices where the first row represent the parti-
tion µ and each column has header n and beneath it a vector representation of the
corresponding class.

Now the following result, which is the proper Hilbert scheme analogue of Lemma
1.2, follows directly from Corollary 2.13 by adjusting for the degrees of the various
symmetrization maps. [NB The factor of 1

µ(n) in the boundary term on the RHS is

due to the fact that In the boundary term, the relevant ordered node scrolls map to
their unordered versions with degree

∏

p6=n

µ(p)!(µ(n) − 1)!, whereas Γ(I.) maps to its

unordered version Γµ with degree
∏

p6=n

µ(p)!(µ(n))!. This introduces a factor of 1/µ(n),

which gets canceled as there are µ(n) terms of this type.]

Proposition 2.20. For a distribution µ of weight m, we have an equality of

operators TSµ(R) → A•(X
[m]
B ):

Γ(m).Γµ[] = Γµ ◦ (Dsc(m) −Uω) +
∑

s

∑

µ(n)>0

n−1
∑

j=1

1

2
j(n− j)nFn,m

j,µ−1n
(θs)[] ◦ un,θ∗

s ,µ

(2.3.17)
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Example 2.21.

Γ(m).Γ(2→2)[] =
3

2
Γ(2→3)[] ◦ u1,1 + 2Γ(4)[] ◦ u2,2 + 2Γ(3|2)[] ◦ u2,1

− Γ(2→2)[] ◦ u2,ω +
∑

s

F 2,m
1 [] ◦ u2,θ∗

s
.

(2.3.18)

Example 2.22.

(Γ(m))3Γ(1m)[] =
3

4
Γ(2→3) + 4Γ(4) +

3

2
Γ(3|2) − Γ(2→2) ◦ u2,ω − 4Γ(3) ◦ u3,ω

+
1

2
Γ(2) ◦ u2,ω2 +

1

4
F 2,m
1,(2) + 3(F 3,m

1 + F 3,m
2 ) +

1

2
Γ(m).F 2,m

1 .

(2.3.19)

Now assembling the various Γµ together, we obtain our definitive result on mul-
tiplying generalized (twisted) diagonal cycles by the discriminant polarization:

Theorem 2.23. We have an equality of operators TS(R) → A•(X
[m]
B ):

Γ(m).Γ•m[] =Γ•m ◦ (Dsc(m)−Uω)

+
∑

µ

∑

s

∑

µ(n)>0

n−1
∑

j=1

1

2
j(n− j)nFn,m

j,µ−1n
(θs)[] ◦ un,θ∗

s ,µ

(2.3.20)

Recall from Lemma 1.2 that Dsc(m)−Uω represents the action of the discriminant
on the the various diagonals put together. Therefore the Theorem can be viewed as
a ’commutation relation’ for this action: the failure of commutativity is measured by
the node scrolls. The nontrivial part is determining the multiplicities with which they
occur.

Because we want the Tautological Module Tm (yet to be defined) to include the
Γµ[], it must also include multiples of these by powers of the polarization Γ(m). There-
fore by the above, Tm must also include the (twisted) node scrolls F = Fn

j,ν(θ)[] and

their multiples by powers of Γ(m). Fortunately, it turns out that including the twisted
scrolls F and their first-degree multiples Γ(m)F already leads to closure; moreover,
products of all these by arbitrary powers of Γ(m) can be computed. In essence, this
is accomplished by the Node Scroll Theorem of [19]. The details are taken up in the
next section.

2.4. Polarized node scrolls. Before taking up the node scrolls, we mention
an elementary analogue. Suppose the family X/B admits a relative Carter divisor ρ,
which is flat over B of degree k. Then there is an induced ’incrementation’ map

ρ+ : X
[m]
B → X

[m+k]
B

(2.4.1)

which send an ideal z to z.O(−ρ). In particular, if X/B admits a section θ- necessarily
supported in smooth points- we get maps (kθ)+. The node scrolls are analogues of
this construction where kθ is replaced by a subscheme supported on a relative node
of X/B.

We recall from [19] that the node scroll Fn,m
j (θ) (fixing m) are correspondences

Fn,m
j (θ)

p[m]
→ X

[m]
B

p[m−n] ↓
(Xθ

T )
[m−n]

(2.4.2)
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where p[m] is generically finite onto a component the locus of schemes having length
at least n at θ, while p[m−n] is a P1-bundle projection. Note that Fn,m

j (θ) defines an
operator

A•((X
θ)

[m−n]
T ) → A•(X

[m]
B ),

β 7→ p[m]∗p
∗
[m−n](β).

(2.4.3)

We will however view Fn,m
j (θ) as acting just on the tautological module Tm−n(Xθ

T ),
which we may assume defined by induction on Hilb degree (more on this shortly), and
as such its image will be in Tm(X/B). We will call Fn,m

j (θ)[β] for β ∈ Tm−n(Xθ
T )

a twisted node scroll class (of Hilb degree m on X/B). The polarized structure of
the node scroll Fn,m

j (θ), refers to its description as projectivization of a particular
rank-2 vector bundle (in fact, a direct sum of two explicit line bundles) on the degree-
(m−n) Hilbert scheme (Xθ

T )
[m−n], with the property that the associatedO(1) relative

polarization coincides with −p∗[m](Γ
(m)). This was worked out in [19] and can be

described as follows.
Fix a boundary family Xθ

T and let θx, θy be the sections of Xθ
T mapping to the

node θ, and let

ψx = θ∗x(ωXθ/T ),

considered as a line bundle on T (and by pullback, on any space mapping to T ). As
in §1.6, let [k]∗L be the k-th norm associated to a line bundle L on X (which is a

divisor class on X
[k]
B ). Then set

Dn,m
j (θ) =

(

n− j + 1

2

)

ψx +

(

j

2

)

ψy − (n− j + 1)[m− n]∗θx − j[m− n]∗θy(2.4.4)

(confusing divisors and line bundles on (Xθ)
[m−n]
T ). The Node Scroll theorem of [19]

yields an isomorphism

Fn,m
j (θ) ≃ P(O(Dn,m

j (θ))⊕O(Dn,m
j+1 (θ)))

under which

−p∗[m](Γ
(m)) + p∗[m−n](Γ

(m−n)) ↔ O(1).

To make use of this, set

en,mj (θ) = [Dn,m
j (θ)]− Γ(m−n) ∈ A1((Xθ)

[m−n]
T ).(2.4.5)

Of course, Γ(m−n) = 0 if m−n ≤ 1. Thus, the Γ(m−n) term begins to appear only for
m ≥ 4. We will identify this class with its pullback on Fn,m

j (θ). Then the en,mj (θ),

and polynomials in them, also define operators on classes on Xθ
T . Also, set formally

sk(a, b) = ak + ak−1b+ ...+ bk (′=′ a
k+1 − bk+1

a− b
).(2.4.6)

Thus,

sk(e
n,m
j , en,mj+1) =

(en,mj+1)
k+1 − (en,mj )k+1

−(n− j)ψx + jψy + θx − θy
.(2.4.7)
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Then the Node Scroll Theorem plus the usual relation of Chern and Segre classes
yield immediately

Theorem 2.24. For any twisted node scroll class Fn,m
j (θ)[β], we have

(−Γ(m).)ℓ.Fn,m
j (θ)[β] =(−Γ(m))Fn,m

j (θ)[sℓ−1(e
n,m
j , en,mj+1)β]

− Fn,m
j (θ)[en,mj en,mj+1sℓ−2(e

n,m
j , en,mj+1 )β]

(2.4.8)

[The first term is just the definition of Segre class; to get the second term, work
inductively and use the (ℓ−1) case and the Grotendieck formula (i.e. the ℓ = 2 case).]

The class−Γ(m).Fn
j (θ), called a node section, projects with degree 1 to (Xθ)

[m−n]
T .

Evaluating the rest of the RHS of 2.4.8 involves, essentially, the tautological module in
lower degree and, in case X/B is a family of stable curves, lower genus as well, albeit
for a family of pointed curves Xθ

T , with distinguished sections θx, θy. To evaluate the
terms involving these, we may note the following elementary formulas, in which θ
denotes any section and ψ = π∗(ω|θ):

(θ)r = (−ψ)r−1θ, r ≥ 1; θxθy = 0;(2.4.9)

([k]∗θ)
t =

min(k,t)
∑

s=1

(st − (s− 1)t)(−ψ)t−s[k]s∗(θ)(2.4.10)

where we recall, cf. (1.6.20), that [k]s∗(θ) denotes the symmetrization of θ×s and its
pullback on the Hilbert scheme.

Proof of (2.4.10). Clearly,

([k]∗θ)
t =

∑

s

∑

r1+...+rs=t
ri≥1∀i

(

t

r1, ..., rs

)

(−ψ)t−s[k]s∗(θ).

To evaluate the numerical coefficient, say as, note that

a1 + ...+ as =
∑

(

t

r1, ..., rs

)

= st,

hence as = st − (s− 1)t.

The pullback of (2.4.10) on a polyblock diagonal Γν is given by the D†
ν operator

defined in §1.3, viz.

Γν .([k]∗θ)
t =

min(k,t)
∑

s=1

(st − (s− 1)t)(−ψ)t−sΓν [D
†
ν([k]

s
∗(θ))](2.4.11)

Similarly, on the operator level,

Γν .([k]∗θ)
t[β] =

min(k,t)
∑

s=1

(st − (s− 1)t)(−ψ)t−sΓν [D
†
ν([k]

s
∗(θ).β)](2.4.12)
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for β ∈ TSν(H
.(Xθ

T )) (where the .β means formal symmetric multiplication). In
particular, using the inductive case of Theorem 2.1, it follows that the bracketed
expressions appearing in Theorem 2.24 are all tautological classes, therefore

Corollary 2.25. Notations as above, (−Γ(m).)ℓ.Fn
j (θ)[β] is a twisted node scroll

class.

Remark 2.26. Given the canonical, mutually disjoint sections

Qn,m
i = P(O(en,mi )), Qn,m

i+1 ⊂ Fn,m
i

we can write the node section in the form

−Γ(m)Fn,m
i = Qn,m

i + π∗(en,mi+1 ).

Consequently,

−Γ(m)Fn,m
i =Qn,m

1 +
∑

1≤j<i

Fn,m
j [[m− n]∗(θx − θy)− (n− j)ψx + jψy]

+ Fn,m
i [en,mi ].

(2.4.13)

Consequently, rather than work with the n−1 node sections −Γ(m)Fn,m
i , i = 1, ..., n−

1, one could instead work with a single canonical section like Qn,m
1 , together with

various twisted node scrolls.

Example 2.27. Note that when dim(B) = 1, so T is a point, we have θx ∼
θy ∼ θ0, a point on Xθ. Therefore Dn,m

j (θ) is independent of j up to numerical
equivalence, hence Fn,m

j (θ) is also, for all j, deformation-equivalent, hence has the

same intersection theory, as the trivial P1-bundle (Xθ)(m−n) × P1, so that Γ(m) ∼
Γ(Xθ)(m−n) + (n+ 1)[m− n]∗(θ0)− hP1 . Therefore

(Γ(m))k.Fn,m
j ∼ (Γ(Xθ)(m−n) + (n+ 1)[m− n]∗(θ0))

k

−k(Γ(Xθ)(m−n) + (n+ 1)[m− n]∗(θ0))
k−1.hP1 .

See Example 2.34 for an evaluation of these cycles.

Example 2.28. We have

(2.4.14) F
(2,3)
1 (θ) = PXθ (O(−2θx − θy)⊕O(−θx − 2θy))

Consequently, if the boundary is finite,

(2.4.15) (−Γ(3))2.F
(2,3)
1 = −6.

Note that in the ’extreme’ case m = n, the enj (θ) and the node scroll Fn
j (θ) live

on the base itself T of the boundary datum and we have

enj (θ) =

(

m− j + 1

2

)

ψx +

(

j

2

)

ψy := ψm
j .(2.4.16)
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Example 2.29. For m = n = 2, F = F 2
1 (θ) = P(ψx ⊕ ψy), we have

(−Γ(2))k|F =(ψk−1
x + ψk−2

x ψy + ...+ ψk−1
y )(−Γ(2))

− ψxψy(ψ
k−2
x + ψk−3

x ψy + ...+ ψk−2
y ).

(2.4.17)

In particular, for k = dim(B) = dim(F ) = 1 + dim(T ), which is when the class
becomes 0-dimensional, we have for its degree

(−Γ(2))k.F =

∫

T

(ψk−1
x + ψk−2

x ψy + ...+ ψk−1
y ).(2.4.18)

Note that if B = Mg and T = Mi,1 ×Mg−i,1, 1 ≤ i ≤ g/2 (the usual i-th boundary
component), only one summand contributes to the latter integral, which reduces to

∫

Mi

ψ3i−2
x

∫

Mg−i

ψ3(g−i)−2
y .

Note that (2.4.17) and (2.3.13) together imply

Corollary 2.30. (i) The powers of the polarization on X
[2]
B are

(−Γ(2))k =− Γ[ωk−1] +
1

2

∑

s

δs∗((ψ
k−3
x + ψk−4

x ψy + ...+ ψk−3
y )(−Γ(2))

− ψxψy(ψ
k−4
x + ψk−5

x ψy + ...+ ψk−4
y )|F 2,2

1 (θs)
)

(2.4.19)

(ii) The image of the latter class on the symmetric product X
(2)
B equals

−Γ[ωk−1] +
1

2

∑

s

δs∗((ψ
k−3
x + ψk−4

x ψy + ...+ ψk−3
y )(2.4.20)

(iii) The image of the latter class on B equals −κk−2 +
1
2

∑

s
δs∗((ψ

k−3
x + ψk−4

x ψy +

...+ ψk−3
y ).

Proof. (i) has been proved above; (ii) follows because in the last summation in
(2.4.19), the terms without Γ(2), i.e. the twisted node scroll, collapses under the cycle

map to X
(2)
B ; (iii) follows similarly.

Remark 2.31. It is interesting to compare the above boundary term with the
boundary term in Mumford’s formula [14] for the Chern character of the Hodge bun-
dle; our ψx, ψy are his K1,K2, and ψx ⊕ ψy is the conormal bundle to θ in X ; so our
term is essentially the Segre class of θ in X , while Mumford’s term is a Todd class of
the same.

Example 2.32. m = 3, n = 2, dim(B) = 1:

(2.4.21) (−Γ(3))2.F
(2:3)
1 (θ) = −6

(see Example 2.28). Consequently, in view of Corollary 2.18, we conclude that if X/B
is a ’good pencil’: i.e. smooth total space and base, all singular fibres 1-nodal, then,
where σ denotes the number of singular fibres, we have

∫

X
[3]
B

(Γ(3))4 = 13ω2 − 9σ
(2.4.22)
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(recall that each F
(3,3)
i , i = 1, 2 is a line with respect to the discriminant polarization

−Γ(3)).

Example 2.33. In general, each Fm,m(θ) is a cycle of P1-bundles over the
appropriate boundary component, whose total degree (with respect to −Γ(m)) is given

by νm = m2(m2−1)
12 (cf. Corollary 2.7). In particular, for a good pencil, we get

(−Γ(m))Fm,m = σ
m2(m2 − 1)

12
.(2.4.23)

In the ensuing examples, we will explore a non-recursive approach to some ques-
tions in tautological enumerative geometry based on graph enumeration. Some closely
related arguments were discovered independently and earlier by Cotteril [3].

Example 2.34. Let X/B be a single smooth curve of genus g over a point, and
set

fm,g =

∫

X
(m)
B

(Γ(m))m =
1

m!

∫

Xm
B

(Γ(m))m.

Because for genus 0 the discriminant is a hypersurface of degreem−1 in (P1)(m) = Pm,
we have

fm,0 = (m− 1)m.

Consider the generating function

fg(z) = 1 +

∞
∑

m=2

fm,gz
m.

In particular,

f0(z) = 1 +
∞
∑

m=2

(m− 1)m

m!
zm.

Let Wb(z) be as in §1.1. Then by viewing fm,g as 1
m!

∫

Xm
B

(
∑

i<j

Di,j)
m, we will show

that

fg(z) = exp(2(1− g)W1(z)).(2.4.24)

In particular,

fg(z) = (f0(z))
1−g = (1 +

∞
∑

m=2

(m− 1)m

m!
zm)1−g.(2.4.25)

Also,

W1(z) =
1

2
log(f0(z)).
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To prove (2.4.24), expand (
∑

Di,j)
m multinomially, and attach to each monomial M

an edge-weighted graph with vertex-set the set of indices occurring in M and with
an edge for each Di,j occurring in M (i.e. the multiplicity mi,j of the edge (i, j)
equals the exponent of Di,j in M). This graph is assigned a weight of 1∏

mi,j !
due to

the multinomial coefficient m!∏
mi,j !

. A ’connected’ monomial, i.e. one with connected

graph, with n vertices and n edges, will contribute 2(1 − g)wn,n to the degree, and
a general monomial will contribute the product of the contributions of its connected
components. Then standard generating function techniques yield the above formula.

More generally, consider the divisor class θ = θm = [p + X(m−1)] = [m]∗(pt) ⊂
X(m) and let

hm(u, g) =

∫

X(m)

(Γ(m) + uθ)m.

Now because Γ(m).X(m−1) = Γ(m−1) + θm−1, we have

hm(u, g) = fm,g + ufm−1,g(u+ 1).

Therefore

hm(u, g) =

m−1
∑

i=0

fm−i,gu...(u+ i− 1).

In particular, when u is an integer we get

hm(u, g) =

∫

X(m)

(Γ(m) + uθm)m =

∞
∑

i=0

i!

(

u+ i− 1

i

)

fm−i,g.(2.4.26)

Such formulas could persumably also be obtained by Macdonald’s intersection theory
(see Remark 1.4); however his methods don’t seem adaptable to the singular case .

Referring back to Example 2.27, it follows that in the good pencil case, the degree
of the node scroll Fn,m

j (θ) is computed by

∫

Fn,m
j (θ)

(−Γ(m))m−n+1 = (−1)m−n(m− n+ 1)hm−n(n+ 1, g − 1).
(2.4.27)

See Example 2.39 for a generalization.

Example 2.35. In the good pencil case, Theorem 2.23 shows that the degree of
the discriminant polarization has the form

∫

X
[m]
B

(Γ(m))m+1 = f1
m,gω

2 + bm,gσ

with coefficients universal rational numbers. The coefficient f1
m,g, which comes from

the first, ’classical’ summand in (2.3.20), can be determined via the expression (1.4.13)
(or by working with any particular smooth pencil with ω2 6= 0). Writing formally

f1
m,g =

1

m!

∫

Xm
B

(
∑

i<j

Di,j)
m+1
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with the Di,j as in (1.4.13) (where in operator terms the integral signifies ’apply on
1⊗m), we can again relate these to graph numbers. Consider the generating function

f1
g (z) = 1 +

∞
∑

m=2

f1
m,gz

m.

Then as in Example 2.34, we have

W2(z) exp(2(1− g)W1(z)) = f1
g (z)

i.e.

f1
g (z) =W2(z)(f0(z))

1−g(2.4.28)

(againW2(z) is as in §1.1). This is because the monomials computing f1
m,g correspond

to graphs with one connected component of Betti number 2 and all others of Betti
number 1.

Example 2.36. More generally we can compute, for arbitrary base dimension,
the polyblock diagonal Λm,k (modulo node classes ) portion of 1

k! (Γ
(m))k.To state the

result, we need the notion of pair-partition or ppartition. By definition, a ppartition ρ
is an unordered collection of ordered pairs (n, b), n > 0, b ≥ 0. Formally, a ppartition
is a function ρ : N × Z≥0 → Z≥0 where ρ(n, b) counts the frequency of a block pair
of sizes n, n + b. The underlying partition of ρ is by definition the partitiion µ = ρ†
defined by

µ(n) =
∑

b

ρ(n, b).

Heuristically, we think of a ppartition ρ as consisting of a partition ρ†, together with
a choice of nonnegative ’exponent’ b for each block, so that ρ(n, b) counts the size-n
block with exponent b. The ’upper partition’ µ′ = ρ† of ρ is defined as

µ′(b) =
∑

n

ρ(n, b).

we define the degree of ρ as

deg(ρ) =
∑

(n+ b− 1)ρ(n, b).

An ordinary partition is naturally viewed as a pppartition with all exponents b = 0.
Our motivation for this definition is as follows. Given a family X/B, we can associate

to ρ a polyblock diagonal class on X
[m]
B ,m = |ρ†|:

Γρ[(−ω)] =
∏

n,b

⋆Γ(n)[(−ω)
b]⋆ρ(n,b)

where ⋆ is star multiplication, where Γµ[α] ⋆ Γν [β] = Γµ+ν [αβ] (see §1.3). Note that
a connected monomial in the Di,j yields Γ(n)[(−ω)

b] where n + b is the degree of
the monomial (aka number of edges) and n is the number of distinct indices (aka
number of vertices). Thus a possibly disconnected monomial yields Γρ[(−ω)] for some
ppartition ρ.
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Let s = dim(B). Set formally, and analogously as in §1.1,

W̃b =
∑

n

wn,n−1+b

n!
Γ(n)[(−ω)

b],

Λ =
∑

m,k

Λm,k =
∑

ρ

L(ρ)Γρ[(−ω)] :=
∑

m,k

1

k!
(Γ(m))kΓ(1m) =

∑

m,k

1

m!k!
(
∑

1≤i<j≤m

Di,j)
k

(equality modulo node classes). We will also use the notation Λ(X/B) etc. when the
family needs specification. Note that (−ω)b = W̃b = 0 for b > s+ 1.Then

Λ = exp⋆(

s+1
∑

b=0

W̃b),(2.4.29)

This formula results from the fact that a connected monomial of n vertices and
n− 1 + b edges yields Γ(n)[(−ω)

b].
This approach to deriving explicit formulas for powers of Γ, and hence also for

Chern polynomials in tautological bundles, can be carried substantially further. We
will return to this elsewhere (see [17]).

Example 2.37. We extend the above example to compute the action of (Γ(m))k

on a twisted polyblock diagonal Γ(n.)[a.], for any partition (n.) = (n1 ≥ ... ≥ nr) of
weight m and corresponding collection of classes ai ∈ R ⊂ H .(X) (the ai can also be
taken to be indeterminates). Thus we will compute

(Γ(m))k.Γ(n.)[a.] =: Λm,k,(n.,a.) +
∑

Fn,m
j (θ)[Bθ

m,k,(n.,a.),n,j ] +
∑

Qn,m
j (θ)[Cθ

m,k,(n.,a.),n,j ].

Set pi = niai. The computation is based on the weighted counts wn,p.,m as in (1.1.4).
For an index-set S ⊂ [r], set

nS =
∑

i∈S

ni, z
S =

∏

i∈S

zi

where zi are indeterminates with z2i = 0.

W̃(n.,a.),k =
∑

S

w|S|,(p.),k

|S|!
Γ(nS)[(−ω)

k+1−|S|]zS .

Then we have, with a similar proof as above,

exp(Γ(m))Γ(n.)[a.] =
∑

k

1

k!
Λm,k,(n.c.)z1...zr = exp⋆(

∑

k)

W̃(n.,a.),k)(2.4.30)

Example 2.38. Consider again a single smooth curveX/B of genus g. Extending
Example 2.34, we now determine the degree

fm,µ,g =

∫

Γµ

(Γ(m))m−ℓ.
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Here µ is a partition of weight m and length ℓ =
∑

µ(n). Indeed in the case g = 0 it
is easy to see that Γµ, which is a subset of (P1)(m) = Pm, has normalization

∏

n
Pµ(n)

and the pullback of OPm(1) is ⊠OPµ(n)(n). It follows that

fm,µ,0 = (m− 1)ℓℓ!
∏ nµ(n)

µ(n)!
.(2.4.31)

Then again if we form the generating function

fµ,g(z) = 1 +

∞
∑

m=2

fm,µ,g

m!
zm

then we have

fµ,g(z) = (fµ,0(z))
1−g = (1 +

∞
∑

m=2

(m− 1)ℓℓ!

m!

∏

n

nµ(n)

µ(n)!
)1−g.(2.4.32)

As in Example 2.34, we now extend this to compute

hµ,g(u) :=

∫

Γµ

(Γ(m) + uθ)m−ℓ,m := |µ|.

Indeed note that

θ.Γµ =
∑

n

nΓµ−1n ,Γµ−1n ⊂ X(m−n)

where µ − 1n is the partition obtained by eliminating a block of size n from µ if it
has one, and otherwise Γµ−1n = 0; equivalently, θ acts as a derivation for ⋆ product
and equals n on Γ(n). This formula is easy to verify, e.g. by working on the cartesian
product and using the projection formula. Then using that fµ,g = hµ,g(0), it follows
that

hµ,g(u) = fµ,g + u
∑

n

nhµ−1n(u+ n, g).(2.4.33)

Because fµ,g has been computed above and h∅ = 1, this recursion computes all the
hµ,g(u). Explicitly,

hµ,g(u) =
∑

ν≤µ





∏

{n|ν(n)>0}

nν(n)(u+ (ν(n) − 1)n)



 fµ−ν,g(2.4.34)

(sum over all partitions ν dominated by µ, product over all block sizes n occurring in
ν).

Example 2.39. Assume B is 1-dimensional and the boundary locus correspond-
ing to θ is a point, so the associated boundary family is a single smooth curve Xθ of
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genus g − 1. Then using (2.4.8), we get

∫

X
[m]
B

(−Γ(m))m−n+1Fn,m
j (θ)

=

∫

Fn,m
j (θ)

(−Γ(m))m−n+1

=(−1)m−n
m−n
∑

a=0

∫

(Xθ)m−n

(Γ(m−n) + (n− j + 1)θx + jθy)
a

× (Γ(m−n) + (n− j)θx + (j + 1)θy)
m−n−a

=(−1)m−n(m− n+ 1)

∫

(Xθ)m−n

(Γ(m−n) + (n+ 1)θm−n)
m−n

=(−1)m−n(m− n+ 1)hm−n(n+ 1, g − 1)

(see Example 2.34). Note that this number is independent of j for 1 ≤ j ≤ n−1. This
formula extends easily to the case of a node scroll Fn,m

j,µ constrained by a partition µ
of weight m − n and degree d = d(µ) =

∑

(n − 1)µ(n), i.e. Fn,m
j (θ) restricted over

Γµ(X
θ): we have

∫

X
[m]
B

(−Γ(m))m−n+1−dFn,m
j,µ (θ)

= (−1)m−d−n(m− d− n+ 1)

∫

Γµ(Xθ)

(Γ(m−n) + (n+ 1)θ)m−n−d

= (−1)m−d−n(m− d− n+ 1)hµ(n+ 1, g − 1).

(2.4.35)

These results are readily combined with Proposition 2.20. To state the result, define,
for a partion µ,

N(µ) = (−1)m−d(µ)+1(m− d(µ))
∑

µ(n)>0

νn
µ(n)

hµ−1n(n+ 1, g − 1)(2.4.36)

where

νn =
n2(n− 1)(n+ 1)

12
=
∑ j(n− j)n

2

and h is as above. Then we obtain, for a good pencil with σ singular fibres:

∫

Γµ

(−Γ(m))m−d(µ) =

∫

Γµ[Dsc(m) −Uω ]

(−Γ(m))m−d(µ)−1 + σN(µ).
(2.4.37)

Thus, the degree of a diagonal locus decomposes as a sum of a singular contribu-
tion plus the degree of a smaller-dimensional (twisted) diagonal locus; of course, the
latter terms itself decomposes in a like manner, etc.
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Combining the above examples, we obtain a closed-form formula for the degree
of the discriminant polarization in the pencil case:

Proposition 2.40. For a pencil X/B with σ singular fibres and canonical degree
ω2, the degree of the m-th discriminant polarization is

∫

X
[m]
B

(−Γ(m))m+1 = (−1)m+1f1
g,mω

2 + σ
∑

|µ|=m

(−1)d(µ)L(µ)N(µ)(2.4.38)

where f1
g,m is given by (2.4.28), L(µ) is given by (2.4.29) with µ viewed as a ppartition

with zero exponents, and N(µ) is given by (2.4.36).

Remark 2.41. In general, for a pencil X/B (respectively, a single smooth curve
over a point) and line bundle L on X , the value of

∫

X
[m]
B

(−Γ(m))a[m]∗(L)
b, ∀a, b, a+ b = m+ 1, b ≥ 0,

for fixed m, is a polynomial in ω2, L.ω, L2, fibre degree d, fibre genus g, and the
number σ of singular points, linear in σ. For a single smooth curve, the analogous
number is a polynomial in d, g only. Indeed the latter assertion is clear. For the
former, the case b = 0 has been discussed above. For b > 0 we use induction on m
and the flaglet Hilbert scheme discussed in §3.1. We can write

∫

X
[m]
B

(−Γ(m))a[m]∗(L)
b =

1

m

∫

X
[m,m−1]
B

p∗m−1((−Γ(m))a[m]∗(L)
b−1)a∗(L)

+p∗m−1((−Γ(m))a[m]∗(L)
b−2)a∗(L2).

The first summand is just d (=fibre degree) times an analogous number for m − 1,
while the second summand, which does not occur for b = 1, is just L2 times an
analogous summand for m− 1 on a general fiber.

Note that the remark implies that the values in question are independent of the
distribution of genus or L-degrees in reducible fibres. This had been pointed out by
Gwoho Liu.

2.5. Tautological module. We are now in position to give the formal (recur-
sive) definition of the tautological module Tm(X/B) and the proof of Theorem 2.1.

Definition 2.42. Let X/B be a family of (possibly pointed) nodal curves.
Given a (co)homology theory H•, H

• admitting a natural map from A•, A
• and

a Q-subalgebra R ⊂ H•(X)Q containing the canonical class ω and the classes
of all marked points, the tautological module Tm

R (X/B) is the R-submodule of

Hom(TS(R), H•(X
[m]
B )) generated by

i. the twisted polyblock diagonal classes Γµ[], w(µ) = m;

ii. the direct images on X
[m]
B the twisted node scroll classes Fn

j (θ)[β] and the

twisted node scroll sections −Γ(m).Fn
j (θ)[β] as (T, δ, θ) ranges over a fixed

covering system of boundary data for the family X/B, β ∈ Tm−n
R (Xθ

T ) and
2 ≤ n ≤ m.
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For the default choice R = Q[ω, p1, ..., pk], where p1, ..., pk are the markings, H• =
A•, H• = A•, we denote Tm

R by Tm.

Proof of Theorem 2.1. We wish to compute the product of a tautological class c
by Γ(m). If c is a (twisted) diagonal class Γµ[α.], this is clear from Proposition 2.20.
If c is a twisted node scroll class Fn

j [α.], it is obvious. Finally if c is a node scroll

section −Γ(m).Fn
j (θ)[α.], it is clear from the case ℓ = 2 of Theorem 2.24.

Remark 2.43. It is perhaps advantageous to view Tm
R (X/B) as a functor on the

category of B-schemes, associating to a map T → B the module Tm
R (X̃T /T ), where

X̃T is a desingularization of X ×B T. We will not pursue this formally though.

Remark 2.44. In the important special case of computing a power (Γ(m))k it
is probably more efficient not to proceed by simple recursion, but rather to apply
just Proposition 2.20 repeatedly to express (Γ(m))k in terms of twisted diagonals plus
classes (Γ(m))t.F for various t’s and various F ’s; then each of the latter classes can
be computed at once using Theorem 2.24.

3. Tautological transfer and Chern numbers. In this chapter we will com-
plete the development of our intersection calculus. First we study the transfer opera-

tion τm, taking cycles on X
[m−1]
B to cycles (of dimension larger by 1) on X

[m]
B , via the

flag Hilbert scheme X
[m,m−1]
B . Our main aim is to show that transfer can be effected

within the Tautological modules. In the Transfer Theorem 3.4 we will show in fact

that for any basic tautological class u on X
[m−1]
B , the image τm(u) is a simple linear

combination of basic tautological classes on X
[m]
B . We then review a splitting princi-

ple established in [22], which expresses the Chern classes of the tautological bundle

Λm(E), pulled back on X
[m,m−1]
B , in terms of those of Λm−1(E), the discriminant

polarization Γ(m), and base classes. Putting this result together with the Module
Theorem and the Transfer Theorem yields the calculus for arbitrary polynomials in
the Chern classes of Λm(E).

3.1. Flaglet geometry and the transfer theorem. In this section we study
the (m,m − 1) flag (or ’flaglet’) Hilbert scheme, which we view as a correspondence
between the Hilbert schemes for lengths m and m−1 providing a way of transporting
cycles, especially tautological ones, between these Hilbert schemes. We will make
strong, chapter-verse use of the results of [23].

Thus let

X
[m,m−1]
B ⊂ X [m] ×B X [m−1]

denote the flag Hilbert scheme, parametrizing pairs of schemes (z1, z2) satisfying z1 ⊃
z2. This comes equipped with a (flag) cycle map

cm,m−1 : X
[m,m−1]
B → X

(m,m−1)
B ,

where X
(m,m−1)
B ⊂ X

(m)
B ×BX

(m−1)
B is the subvariety parametrizing cycle pairs (cm ≥

cm−1). Note that the normalization of X
(m,m−1)
B may be identified with X

(m−1)
B ×BX ;

however the normalization map, though bijective, is not an isomorphism. Note also

that we also have an ordered version X
⌈m,m−1⌉
B , with its own cycle map

ocm,m−1 : X
⌈m,m−1⌉
B → Xm

B .
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In addition to the obvious projections

(3.1.1)
X

[m,m−1]
B

pm ւ ց pm−1

X
[m]
B X

[m−1]
B

with respective generic fibres m distinct points (corresponding to removing a point
from a given m-tuple) and a generic fibre of X/B (corresponding to adding a point

to a given m− 1-tuple), X
[m,m−1]
B admits a natural map

(3.1.2) a : X
[m,m−1]
B → X,

(z1 ⊃ z2) 7→ ann(z1/z2)

(identifying X with the Hilbert scheme of colength-1 ideals). Therefore X
[m,m−1]
B

admits a ’refined cycle map’ (factoring the flag cycle map)

(3.1.3) c : X
[m,m−1]
B → X ×B X

(m−1)
B

c = a× (cm−1 ◦ pm−1).

Now in [23] (Theorem 5 et seq., especially Construction 5.4 p.442) we worked out

a complete model for X
[m,m−1]
B , locally over X

(m,m−1)
B . Let

Hm ⊂ X
(m)
B × C̃m

[u.,v.] ⊂ X
(m)
B × Pm−1

Z. ,(3.1.4)

Hm−1 ⊂ X
(m−1)
B × C̃m−1

[u′.,v′.] ⊂ X
(m−1)
B × Pm−2

Z′.(3.1.5)

be respective local models for X
[m]
B , X

[m−1]
B as constructed in §1 above, with coordi-

nates as indicated. Consider the subscheme

(3.1.6) Hm,m−1 ⊂ Hm ×B Hm−1 ×X
(m)
B

×X
(m−1)
B

X
(m,m−1)
B

defined by the equations

(3.1.7) u′ivi = (σx
1 − σ

′x
1 )uiv

′
i, v′iui+1 = (σy

1 − σ
′y
1 )vi+1u

′
i, 1 ≤ i ≤ m− 2

or alternatively, in terms of the Z coordinates,

ZiZ
′
j = (σx

1 − σ
′x
1 )Zi+1Z

′
j−1, i+ 1 ≤ j ≤ m− 1(3.1.8)

= (σy
1 − σ

′y
1 )Zi−1Z

′
j+1, l 1 ≤ j ≤ i − 2.

To ’explain’ these relations in part, note that in the ordered model over Xm
B , we have

σx
1 − σ

′x
1 = xm, σ

y
1 − σ

′y
1 = ym

and then the analogue of (3.1.8) for the G functions is immediate from the definition
of these in [19], §4. Then the result of [23], Thm. 5, is that Hm,m−1, with its map to

X
(m,m−1)
B is isomorphic to a neighborhood of the special fibre over (mp, (m− 1)p) of
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the flag Hilbert scheme X
[m,m−1]
B . In fact the result of [23] is even more precise and

identifies Hm,m−1 with a subscheme of Hm×BHm−1 and even of Hm−1×B C̃
m×BX ,

where the map to X is the annihilator map a above.
As noted in [23], Thm 5, the special fibre of the flag cycle map on Hm,m−1, aka

the punctual flag Hilbert scheme, is a normal-crossing chain of P1’s:

(3.1.9) Cm,m−1 = C̃m
1 ∪ C̃m−1

1 ∪ C̃m
2 ∪ ... ∪ C̃m−1

m−2 ∪ C̃m
m−1 ⊂ Cm × Cm−1,

where the embedding is via

C̃m
i → Cm

i × {Qm−1
i }, C̃m−1

i → {Qm
i+1} × Cm−1

i

and in particular,

(3.1.10) C̃m
i ∩ C̃m−1

i = {(Qm
i+1, Q

m−1
i )}, C̃m−1

i ∩ C̃m
i+1 = {(Qm

i+1, Q
m−1
i+1 )}

where Qm
i = (xm−i+1, yi) as usual.

Theorem 3.1. The cycle map cm,m−1 exhibits the flag Hilbert scheme X
[m,m−1]
B

as the blow-up of the sheaf of ideals IDm,m−1 := IDm−1 .IDm on X
(m,m−1)
B .

We shall not really need this result, just the explicit constructions above, so we
just sketch the proof, which is analogous to that of the Blowup Theorem of [19]. To
begin with, it is again sufficient to prove the ordered analogue of this result, for the
’ordered flag cycle map’

X
⌈m,m−1⌉
B → Xm

B .

Here X
⌈m,m−1⌉
B is embedded as a subscheme of X

⌈m⌉
B ×Xm

B
(X

⌈m−1⌉
B ×B X), and we

have already observed that as such, it satisfies the equations (3.1.8).
Now we will use the following construction. Let I1, I2 be ideals on a scheme Y .

Then the surjection of graded algebras

(
⊕

n

In
1 )⊗ (

⊕

n

In
2 ) →

⊕

n

(I1I2)
n

yields a closed immersion

(3.1.11) BℓI1I2 Y →֒ BℓI1 Y ×Y BℓI2 Y ;

the latter is in turn a subscheme of the Segre subscheme

(3.1.12) P(I1)×Y P(I2) ⊂ P(I1 ⊗ I2).

In our case, the Blowup Theorem of [19] allows us to identify

OHm ≃ BℓIODm Xm
B , OHm−1 ×B X ≃ BℓI

ODm−1.Xm
B

Xm
B

(where OHm = Hm ×
X

(m)
B

Xm
B etc.), whence an embedding

(3.1.13) BℓI
ODm,m−1 X

m
B → OHm ×Xm

B
(OHm−1 ×B X).

As observed above, the generatorsGi ·G′
j satisfy the analogues of the relations (3.1.8),

so the image is actually contained in OHm,m−1, so we have an embedding

(3.1.14) BℓI
ODm,m−1 X

m
B → OHm,m−1.
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We are claiming that this is an isomorphism. This can be verified locally, as in the
proof of the Blowup Theorem in [19].

One consequence of the explicit local model for X
[m,m−1]
B is the following

Corollary 3.2.
i. The projection qm−1 is flat, with 1-dimensional fibres;

ii. Let z ∈ X
[m−1]
B be a subscheme of a fibre Xs, and let z0 be the part of z

supported on nodes of Xs, if any. Then if z0 is principal (i.e. Cartier) on
Xs, the fibre q−1

m−1(z) is birational to Xs and its general members are equal
to z0 locally at the nodes.

Proof. (i) is proven in [22], and also follows easily from our explicit modelHm,m−1.
As for (ii), we may suppose, in the notation of [23], that z0 is of type Ini (a). Now if
z′ ∈ q−1

m−1(z), then the part z′0 of z′ supported on nodes must have length n or n+1.

In the former case z′0 = z0, while in the latter case z′0 must equal Qn+1
i+1 by [23], Thm.

5 p. 438, in which case z′ is unique, hence not general.

Another consequence of the Theorem is a description of the ’flaglet’ small diago-
nal. Denote by

Γ̃(m) ⊂ X [m,m−1]

the inverse image of the small diagonal Γ(m) ⊂ X
[m]
B . In Proposition 2.2 we described

the usual small diagonal as an explicit blowup. Thanks to the Theorem, we obtain
an analogous description for the flaglet small diagonal:

Corollary 3.3. The cycle map Γ̃(m) → X, is the blowing up of the ideal

Jθ.
mJ

θ.
m−1 (cf. (2.1.2)).

See §3.3 for further discussion of the flaglet small diagonal and the associated
’punctual’ transfer operation.

Next we define the fundamental transfer operation. Essentially, this takes cycles

from X
[m−1]
B to X

[m]
B , but we also allow the additional flexibility of twisting by base

classes via the m-th factor. Thus the twisted transfer map τm is defined by

(3.1.15) τm = τm,X/B : A.(X
[m−1]
B )⊗A.(X) → A.(X

[m]
B )Q,

τm = qm∗(q
∗
m−1 ⊗ a∗).

Note that this operation raises dimension by 1 and preserves codimension. Sugges-
tively, and a little abusively, we will write a typical decomposable element of the

source of τm as γβ(m) where γ ∈ A.(X
[m−1]
B ), β ∈ A.(X). Note also that when B is a

point (and X is smooth), τm is just the ’identity’ in the above notation.
The following Transfer Theorem, which computes the transfer τm on the Tauto-

logical Module, is a key to our inductive computation of Chern numbers. The formula
involves, in the case of node classes, the analogous transfer operation in lower degree
on boundary families Xθ

T , and may be viewed as a commutation relation between
the transfer operator and the node scroll and node section operators. The relation
involves the operators en,mj of (2.4.5).

Theorem 3.4. (Tautological transfer) τm takes tautological classes on X
[m−1]
B

to tautological classes on X
[m]
B . More specifically we have, for any class β ∈ A.(X):
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i. for any twisted polyblock diagonal class Γµ[α.], α ∈ TSµ(H
.(X)), w(µ) = m−

1,

(3.1.16) τm(Γµ[α.]β(m)) = Γµ+11 [α.β]

where 11 is the distribution of weight 1 and support {1} and α.β is the formal
symmetric multiplication;

ii. for any twisted node scroll class Fn,m−1
j (θ)[α], α ∈ Tm−n−1(Xθ

T ),

τm(Fn,m−1
j (θ)[α]β(m)) = Fn,m

j (θ)[τm−n,Xθ
T
/T (α⊗ (β|Xθ

T
)](3.1.17)

iii. for any twisted node section −Γ(m−1).Fn,m−1
j (θ)[α],

τm(−Γ(m−1)Fn,m−1
j (θ)[α]β(m))

=θ∗(β)Fn+1,m
j (θ)[α] + (−Γ(m))Fn,m

j (θ)[τm−n,Xθ
T
/T (α.β|Xθ

T
)

− Fn,m
j (θ)[en,mj+1 (θ)(τm−n,Xθ

T
/T (α.β|Xθ

T
))]

+ Fn,m
j (θ)[τm−n,Xθ

T
/T (e

n,m−1
j+1 (θ)(α).β|Xθ

T
)].

(3.1.18)

Proof. Part (i) is obvious. As for Part (ii), the flatness of qm−1 allows us to work
over a general z ∈ F and then Corollary 3.2, (ii) allows us to assume that the added
point is a general point on the fibre Xs, which leads to (3.1.17).

As for (iii), we recall Corollary 8.4 of [19], which states (using our current notation,
not consistent with notation there) that on Fn,m−1

j (θ), if we denote by Qn,m−1
j the

canonical cross-section P(Dn,m−1
j ), and by Γ(m−n−1) the pullback of the discriminant

from (Xθ)
[m−n−1]
T , then we have

−Γ(m−1) +Γ(m−n−1) ∼ Qn,m−1
j + p∗[m−n−1](D

n,m−1
j+1 ) ∼ Qn,m−1

j+1 + p∗[m−n−1](D
n,m−1
j ).

Hence,,

−Γ(m−1) ∼ Qn,m−1
j + en,m−1

j+1 .

Similarly, on Fn,m
j (θ), we have

−Γ(m) + Γ(m−n) ∼ Qn,m
j + p∗[m−n](D

n,m
j+1 ) ∼ Qn,m

j+1 + p∗[m−n](D
n,m
j ),

hence

−Γ(m) ∼ Qn,m
j + en,mj+1 ∼ Qn,m

j+1 + en,mj .

Therefore, it will suffice to prove that

τm(Qn,m−1
j+1 [α]β(m)) = θ∗(β)Fn+1,m

j+1 [α] +Qn,m
j+1 [αβ](3.1.19)

and similarly for j, which case is similar (see below). It will suffice to prove this
without the α, β twisting.

To this end, note that, with Q = Qn,m−1
j+1 , q∗m−1Q splits in two parts, depending

on whether the point w added to a scheme z ∈ Q is in the off-node or nodebound
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portion of z. It is easy to see that the first part gives rise to the 2nd term in the RHS
of (3.1.19).

The analysis of the other part, which leads to the first summand in the RHS of
(3.1.19) is a bit more involved. In substance, what has to be proved in the case at
hand is that Fn+1,m

j+1 appears with coefficient equal to 1. To begin with, it is easy

to see that we may assume m = n + 1, in which case F is just a P1, namely Cm−1
j .

Now referring to (3.1.9), the nodebound portion of q−1
m−1(C

m−1
j ), as a set, is given by

C̃m
j ∪ C̃m−1

j ∪ C̃m
j+1 and that of q−1

m−1(Q) is C̃m
j+1. It will now suffice to show that the

1-dimensional cycle q−1
m−1(Q) contains C̃m

j+1 with multiplicity 1.
The latter assertion will be an elementary consequence of the equations on p.

440, l. 9-14 of [23], describing the local model Hm,m−1, as well as those on p. 433,
describing the analogous local model Hm, to which equations we will be referring
constantly in the remainder of the present proof. Note that cm−i (resp. b

′
i−1) plays

the role of the affine coordinate ui/vi (resp. v
′
i−1/u

′
i−1). Also our j +1 is the i there.

We work on q−1
m−1(C

m−1
j ). Now to complete the proof, it will suffice to prove

Claim : In a neighborhood of the point

(Q,Qm
j+1) = (Qm−1

j+1 , Q
m
j+1) ∈ C̃m−1

j ∩ C̃m
j+1 ⊂ X

[m,m−1]
B ,

q−1
m−1(Q) contains C̃m

j+1 with multiplicity 1.

To see this note that the defining equations of Cm−1
j on X

[m−1]
B are given by

setting all a′k and d′k, as well as c′m−i−1 to zero . By loc. cit. p.433 l.9, this implies

that we have b′1 = ... = b′i−2 = 0 on q−1
m−1(C

m−1
j ) as well. At a general point of Cm

j+1,
cm−i is nonzero. Therefore we may consider cm−i as a unit. By loc. cit. p.440, eq.
(15), we conclude am−i = 0. From this we see easily that all ak = dk = 0 except di−1,
which is a local equation for C̃m

j+1, while b
′
i−1 is a coordinate along C

m−1
j havingQm−1

j+1

as its unique zero. Now by p.440 l. 14, b′i−1 and di−1 differ by the multiplicative unit

−cm−i, therefore b
′
i−1 cuts out C̃m

j+1 with multiplicity 1, which proves our Claim.
For many purposes, it is possible and even more convenient to use (3.1.19) directly,

rather than through Theorem3.4, to compute the transfer on node sections. In partic-
ular, this form works better with iterated node scroll/Q-sections. To state the result,
it is convenient to introduce the following notation for the iterated scroll/Q-sections:

(FQ)
n1,...,nr;n

′
1,...,n

′
s;m

j1,...,jr;j′1,...,j
′
s

(θ1, ..., θr; θ
′
1, ..., θ

′
s)[α]

:= Fn1,m
j1

(θ1)[...[Q
n′
1,m−n1−...−nr

j′1
(θ′1)...[α]...]

(3.1.20)

where θ1, ..., θ
′
s is a collection of distinct nodes. Then we have

Corollary 3.5.

τm((FQ)
n1,...,nr;n

′
1,...,n

′
s;m−1

j1,...,jr;j′1,...,j
′
s

(θ1, ..., θr; θ
′
1, ..., θ

′
s)[α]βm)

=(FQ)
n1,...,nr;n

′
1,...,n

′
s;m

j1,...,jr;j′1,...,j
′
s

(θ1, ..., θr; θ
′
1, ..., θ

′
s)[τm−|n.|−|n′.|(α)βm]

+

s
∑

i=1

(θ′i)
∗(β)(FQ)

n1,...,nr,n
′
i+1;n′

1,...,n̂
′
i,...,n

′
s;m

j1,...,jr,j′i;j
′
1,...,ĵ

′
i,...,j

′
s

× (θ1, ..., θr, θ
′
i; θ

′
1, ..., θ̂

′
i, ..., θ

′
s)[τm−|n.|−|n′.|(α)βm].

(3.1.21)
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3.2. Transfer and Chern numbers. We are now ready to tackle the com-
putation of Chern numbers, and in fact all polynomials in the Chern classes of the

tautological bundle on the relative Hilbert scheme X
[m]
B . The computation is based on

passing fromX
[m]
B to the corresponding full-flag Hilbert schemeW =Wm(X/B) stud-

ied in [22] and a diagonalization theorem for the total Chern class of (the pullback of)
a tautological bundle on W , expressing it either as a simple (factorable) polynomial

in diagonal classes induced from the various X
[n]
B , n ≤ m, plus base classes, or, more

conveniently, as the product of the Chern class of a smaller tautological bundle and a
diagonal class. Given this, we can compute Chern numbers essentially by repeatedly
applying the transfer calculus of the last section.

We start by reviewing some results from [22]. Let

Wm =Wm(X/B)
π(m)

−→ B

denote the relative flag-Hilbert scheme of X/B, parametrizing flags of subschemes

z. = (z1 < ... < zm)

where zi has length i and zm is contained in some fibre of X/B. Let

wm : Wm → X
[m]
B , wm,i. :Wm → X

[i]
B

be the canonical (forgetful) maps. Let

ai :W
m → X

be the canonical map sending a flag z. to the 1-point support of zi/zi−1 and

am =
∏

ai :W
m → Xm

B

their (fibred) product, which might be called the ’ordered cycle map’. Let

Im < O
X

[m]
B ×BX

be the universal ideal of colength m. For any coherent sheaf on X , set

Λm(E) = p
X

[m]
B

∗
(p∗X(E)⊗ (O

X
[m]
B

×BX
/Im)).

These are called the tautological sheaves associated to E; they are locally free if E
is. Abusing notation, we will also denote by Λm(E) the pullback of the tautological

sheaf to appropriate flag Hilbert schemes mapping naturally to X
[m]
B , such as Wm or

X
[m,m−1]
B . With a similar convention, set

(3.2.1) ∆(m) = Γ(m) − Γ(m−1)

(recall that Γ(m) is half the ’physical’ discriminant and becomes effective and reduced
on Wm; thus ∆(m) is an effective (integral) divisor). The various tautological sheaves
form a flag of quotients on Wm:

(3.2.2) ...Λm.i(E) ։ Λm,i−1(E) ։ ...
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This flag makes possible a simple formula for the total Chern class of the tautological
bundles, namely the following diagonalization theorem ( [22], Cor. 3.2):

Theorem 3.6. The total Chern class of the tautological bundle Λm(E) pulled
back to W 3(X/B) is given by

(3.2.3) c(Λm(E)) =

m
∏

i=1

c(a∗i (E)(−∆(i))).

An analogue of this, more useful for our purposed, holds already on the flaglet
Hilbert scheme. It can be proved in the same way, or as an easy consequence of Thm
3.6

Corollary 3.7. We have an identity in A.(X
[m,m−1]
B )Q:

(3.2.4) c(Λm(E)) = c(Λm−1(E))c(a∗m(E)(−∆(m))).

Proof. By Theorem 3.6, the RHS and LHS pull back to the same class in Wm.

As the projection Wm → X
[m,m−1]
B is generically finite, they agree mod torsion.

Remark 3.8. If E is a line bundle, then it is easy to see from Theorem 3.6 that

c1(Λm(E)) = [m]∗c1(E) − Γ(m) = Γ1[c1(E)] − Γ(m).

Example 3.9. On W 3:

c(Λ3(L)) = 1 + L1 + L2 + L3 − Γ(3)

+ L1L2 + L1L3 + L2L3 − (Γ(2))2 + Γ(2)Γ(3) + Γ(2)L2 − Γ(2)L3 − Γ(3)L1 − Γ(3)L2

+ L1L2L3 − Γ(2)L1L3 − Γ(3)L1L2 + Γ(2)L1L2 + Γ(2)Γ(3)L1 − (Γ(2))2L1.

More generally, again as a consequence of Theorem 3.6, we obtain an explicit

formula for the Chern classes of Λm(L) on X
[m]
B , for a line bundle L. First some

notation. For a distribution µ, set

χ(µ) =
∏

n

((n− 1)!)µ(n).

Corollary 3.10. For a line bundle L, we have

c(Λm(L)) =
∑

|µ|≤m

(−1)|µ|−ℓ(µ)| a(µ)χ(µ)

|µ|!(m− |µ|)!
Γµ[(1 + [L])(µ)].

Proof. Straightforward from Theorem 3.6, see [21], Theorem 4.2 (though the
formula there is slightly misstated).

Remark 3.11. In the classical situation of a single smooth curve over a point,
multiplying diagonal classes is elementary. For example, in the case of single-block
classes, we have

Γ(n).Γ(ℓ) = 2

(

n

2

)(

ℓ

2

)

Γ(n+l−2)[−ω] + nℓΓ(n+ℓ−1) + (1 + δn,ℓ)Γ(n|ℓ).(3.2.5)



246 Z. RAN

Moreover in the notation of Remark 1.4, we have

Γ(n+l−2)[−ω] = (2− 2g)θn+ℓ−2.

This allows computation, modulo the combinatorics, of all Chern polynomials of
Λm(L). However, Macdonald’s formulation, which expresses everything as polyno-
mials of Γ and θ, is probably more efficient in this case (no singularities).

Example 3.12. In the case of a good pencil, we can give an explicit formula for

the polyblock (singularity-free) portion of (∆(m))kΓµ in X
[m,m−1]
B , as follows. Define

for a partition µ = (n1, n2, ...),

fk(µ) = (
∑

ni)
k −

∑

j

(
∑

i6=j

ni)
k +

∑

j<j′

(
∑

i6=j,j′

ni)
k ± ...

and note that this can be identified with the sum of all terms k!
α1!...αℓ!

nα1
1 ...nαℓ

ℓ where
each αi is > 0. Then

(∆(m))k.Γµ ≡
∑

µ=µ1+µ2

fk(µ2)Γµ1 ⋆ Γ|µ2|+1[(−ω)
m−ℓ(µ2)+1] mod node classes

(3.2.6)

To see this expand (∆(m))k as a multinomial in the Di,m and for each monomial M
break up µ as µ1 + µ2 where no block (resp. every block) of µ1 (resp. µ2) has an
element occurring in M . The product of Γµ2 with M yields Γ|µ2|+1[(−ω)

m−ℓ(µ2)+1],
whence the result.

Motivated by the Corollary we make the following definition.

Definition 3.13. Let R be a Q-subalgebra of A(X) containing 1, the canonical

class ω and the classes of all the marked points. The Chern tautological ring on X
[m]
B ,

denoted

TCm
R = TCm

R (X/B),

is the R-subalgebra of A(X
[m]
B )Q generated by the Chern classes of Λm(E) and the

discriminant class Γ(m).

The following is the main result of this paper.

Theorem 3.14. There is a computable inclusion

(3.2.7) TCm
R → Tm

R .

More explicitly, any polynomial in the Chern classes of Λm(E), in particular the Chern
numbers, can be computably expressed as a linear combination of standard tautological
classes: twisted diagonal classes, twisted node scrolls, and twisted node sections.

Proof. For m = 1 the statement is essentially vacuous. For m = 2 it is a
consequence of the Module Theorem 2.1. For general m, we assume inductively the
result is true for m − 1. Given any polynomial P in the Chern classes of Λm(E),

Corollary 3.7 implies that we can write its pullback on X
[m,m−1]
B as a sum of terms of

the form p∗
X

[m−1]
B

(Q).(Γ(m))k.S where Q ∈ TCm−1
R . By induction, Q ∈ Tm−1

R , so by

the Transfer Theorem 3.4, τm(Q) ∈ Tm
R . By the projection formula and the Module

Theorem 2.1, it follows that P ∈ Tm
R .

Remark 3.15. This result suggests the natural question: is Tm
R a ring? more

ambitiously, is the inclusion TCm
R → Tm

R an equality?
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3.3. Punctual transfer and Plücker formulas. There is a useful variant of
the transfer operation for punctual schemes, i.e. those supported at a single point,

which are parametrized by the small diagonal Γ(m) ⊂ X
[m]
B . This yields a quicker

way to compute Chern classes and Chern numbers of tautological bundles over the
small diagonal (compared with computing the analogous objects over the full Hilbert
scheme and restricting). Working with the smaller-dimensional Γ(m) allows us to ob-
tain geometrically meaningful numbers from the Chern and Segre classes themselves
without considering higher-degree polynomials, resulting in some Pluc̈ker-type formu-
las which, unlike in the case of the full Hilbert scheme, we are able to give in closed

form. Note that unlike the Hilbert scheme X
[m]
B , the small diagonal Γ(m) is generally

singular.
This transfer is based on the correspondence

Γ̃(m)

ւ ց
Γ(m) Γ(m−1)

(3.3.1)

where the punctual flaglet Hilbert scheme Γ̃(m) is defined by the Cartesian diagram

Γ̃(m) → X
[m,m−1]
B

↓ ↓

Γ(m) → X
[m]
B

.(3.3.2)

As in §2.1 and Corollary 3.3, Γ̃(m) can be identified locally over each node with the
unique dominant component of the fibre product over X

m−1
∏

i=1

(Xm,i/X)×X

m−2
∏

i=1

(Xm−1,i/X)

where each Xn,i is the blowup of the ideal (xn−i, yi). We denote by

τ0m : A.(Γ(m−1)) → A.(Γ(m))

the induced map, i.e. p[m]∗p
∗
[m−1] from Chow cohomology. Also, let Cm

i (θ), Cm−1
i (θ)

denote the proper transforms of the appropriate node scrolls (P1-bundles over θ)
from Γ(m),Γ(m−1), respectively (for simplicity of notation, we will drop the tilde over

the C•
• used in earlier sections), and Cm

i =
∑

θ

Cm
i (θ), Cm−1

i =
∑

θ

Cm−1
i (θ). Cm

i

contains the distinguished sections Qm
i , Q

m
i+1. The following result is proved similarly

to Proposition 2.5:

Lemma 3.16. We have

Γ(m).Γ̃(m) = −

(

m

2

)

ω +

m−1
∑

i=1

νm,iC
m
i +

m−2
∑

i=1

ν−m,iC
m−1
i(3.3.3)

Γ(m−1).Γ̃(m) = −

(

m− 1

2

)

ω +

m−2
∑

i=1

νm−1,iC
m−1
i +

m−1
∑

i=1

ν+m−1,iC
m
i(3.3.4)
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where

νm,i =
i(m− i)m

2
, 1 ≤ i ≤ m− 1,

ν−m,i =
i(m− i− 1)(m+ 1)

2
, 1 ≤ i ≤ m− 2

ν+m−1,i =
i(m− i)(m− 2)

2
, 1 ≤ i ≤ m− 1.

(3.3.5)

Proof. The coefficient of Cm
i in Γ(m).Γ̃(m) is already computed in Propoosition 2.5.

As for the coefficient of Cm−1
i in Γ(m).Γ̃(m), it suffices to note that Cm−1

i contracts

to Qm
i+1 in Γ(m), where Γ(m) is defined by x(

m−i
2 )y(

i+1
2 ), and x, y have respective

multiplicities equal to i, (m− 1− i) on Cm−1
i , so the coefficient of Cm−1

i equals

(

m− i

2

)

i+

(

i + 1

2

)

(m− i− 1) =
i(m− i− 1)(m+ 1)

2
.

The other formula is proved similarly.

Corollary 3.17.

(Γ(m) − Γ(m−1)).Γ(m) = −(m− 1)ω +

m−1
∑

i=1

i(m− 1)Cm
i +

m−2
∑

i=1

i(m− 1− i)Cm−1
i .

Now set

νm =

m−1
∑

i=1

νm,i =
m2(m2 − 1)

12
(3.3.6)

ν−m :=

m−2
∑

i=1

ν−m,i =

m−1
∑

i=1

ν+m−1,i := ν+m−1

=
m(m− 2)(m2 − 1)

12
.

(3.3.7)

We begin with a couple of simple examples that don’t require the full force of the
transfer process.

Example 3.18. Consider a family X/B of arbitrary base dimension, with a map
f : X → Pm. We wish to enumerate the locus of m-contact Pm−2’s in the family (e.g.
cusps (m = 2), inflexional tangent lines (m = 3) etc.). More precisely, this is the locus
of punctual length-m subschemes of fibres whose image under f is contained in some
Pm−2; when (and only when) the subscheme is supported at a point x smooth on its
fibre, the subscheme is determined by x and denoted mx. This locus, of expected
codimension 2, is given by a degeneracy locus of a map over Γ(m):

(m+ 1)O → Λm(L).

By Porteous, the locus of these is given by

s2,m = (c21 − c2)(Λm(L)) ∩ [Γ(m)].
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On Γ̃(m), we can write

c(Λm(L)) = c(Λm−1(L))(1 + [L] + Γ(m−1) − Γ(m)).

Therefore,

s2,m − τ0m(s2,m−1)

=c1(Λm−1(L))(L + Γ(m−1) − Γ(m)) + (L+ Γ(m−1) − Γ(m))2

=(L+ Γ(m−1) − Γ(m))(mL − Γ(m))

=mL2 − (m+ 1)LΓ(m) +mLτm(Γ(m−1))− Γ(m)τm(Γ(m−1)) + (Γ(m))2

=mL2 + (m+ 1)

(

m

2

)

Lω − (m+ 1)
∑

i,θ

νm,iC
m
i (θ)[θ∗L]−m

(

m− 1

2

)

Lω

+m
∑

i,θ

ν+m−1,iC
m
i (θ)[θ∗L]−

(

m

2

)(

m− 1

2

)

ω2 − Γ(m)
∑

i,θ

ν+m−1,iC
m
i (θ)

+

(

m

2

)2

ω2 + Γ(m)
∑

i,θ

νm,iC
m
i (θ).

Therefore

s2,m − τ0m(s2,m−1)

=mL2 +m(m− 1)Lω + (m− 1)

(

m

2

)

ω2

−
∑

i,θ

3i(m− i)m

2
Cm

i (θ)[θ∗L] + Γ(m)
∑

i,θ

i(m− i)Cm
i (θ).

(3.3.8)

If dim(B) = 1, then s2,m can be viewed as a number, and (3.3.8) gives a recursion
for it, one which can be easily solved explicitly, as follows. Note that in this case we
have θ∗L = 0 and Γ(m)Cm

i (θ) = −1, so (3.3.8) simplifies to

s2,m − s2,m−1 = mL2 +m(m− 1)Lω + (m− 1)

(

m

2

)

ω2 − σ
∑

i,θ

i(m− i)

= mL2 +m(m− 1)Lω + (m− 1)

(

m

2

)

ω2 − σ
m(m2 − 1)

6
.

This recursion is easily integrated, yielding the following Plücker-type formula in
closed form:

s2,m =

(

m+ 1

2

)

L2 +
m(m2

− 1)

2
Lω +

m(m2
− 1)(3m− 2)

24
ω2

−

m(m2
− 1)(m+ 2)

24
σ

(3.3.9)

e.g.

s2,1 = L2, s2,2 = 2L2 + 3Lω + ω2 − σ, s2,3 = 6L2 + 12Lω + 7ω2 − 5σ, ...

In case dim(B) > 1, (3.3.8) must be combined with the punctual transfer calculus
(Proposition 3.19 below) to yield the recursion.
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Now we take up the punctual transfer proper. To be precise, let T 0,m
R (X/B)

denote the group generated byR ⊂ A.(X), the twisted node scrollsCm
i (θ)[β], β ∈ R on

Γ(m), and their sections (−Γ(m))Cm
i (θ)[β]. Then we will define a ’pointwise transfer’

map

τ0m : Tm−1,0
R (X/B) → Tm,0

R (X/B)

that fits in the diagram

Tm−1,0
R (X/B) → Tm,0

R (X/B)
↓ ↓

A•(Γ(m−1)) → A•(Γ(m)).
(3.3.10)

Recall that we are assuming R contains Q; this is essential here as τ0m is only defined
over Q. Set

ψm
i := ψ

⊗(m−i+1
2 )

x ⊗ ψ
⊗(i2)
y .(3.3.11)

These obviously depend on θ and will be denoted ψm
i (θ) when necessary.

The following result gives the main rules of the punctual transfer calculus.

Proposition 3.19. Notations as above, we have, for each node θ,

τ0m(Cm−1
i (θ)) =

m− i

m− 1
Cm

i (θ) +
i+ 1

m− 1
Cm

i+1(θ).(3.3.12)

τ0m(−Γ(m−1).Cm−1
i (θ)) =

m− i− 1

m
Qm

i+1(θ) +
i+ 1

m
Qm

i+2(θ)

+
m− i

m− 1
Cm

i (θ)[ψm−1
i ] +

i+ 1

m− 1
Cm

i+1(θ)[ψ
m−1
i ]

=− Γ(m).Cm
i+1(θ) − Cm

i+1(θ)[
m− i− 1

m
ψm
i+2 +

i+ 1

m
ψm
i+1]

+
m− i

m− 1
Cm

i (θ)[ψm−1
i ] +

i+ 1

m− 1
Cm

i+1(θ)[ψ
m−1
i ].

(3.3.13)

Remark 3.20. Because Qm
i = P(ψm

i ) and Qm
i+1 are disjoint sections on the

P1-bundle Cm
i = P(ψm

i ⊕ ψm
i+1), we have

Qm
i+1 ∼ Qm

i + Cm
i [ψm

i+1 − ψm
i ] = Qm

i + Cm
i [−(m− i)ψx + iψy],(3.3.14)

−Γ(m).Cm
i ∼Qm

i + Cm
i [ψm

i+1]

∼Qm
i+1 + Cm

i [ψm
i ].

(3.3.15)

Remark 3.21. If the base B is 1-dimensional, both −Γ(m−1)Cm−1
i (θ) and

−Γ(m)Cm
i (θ) are points over the finite set B(θ) and in particular

τ0m(−Γ(m−1)Cm−1
i (θ)) = −Γ(m)Cm

i (θ).
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Proof. Fixing (and suppressing) θ, we analyze Γ(m) locally over B and near the

point mθ in the small diagonal X ⊂ X
(m)
B , as in §2.1. As we have seen, Γ(m) is given

by the blowup of

Jm = (gi := x(
m−i+1

2 )y(
i
2) : i = 1, ...,m) =

m−1
∏

i=1

(xm−i, yi)

and embeds in

X ×
m−1
∏

i=1

P1
(ui,vi)

where the ith factor can be identified with Cm
i . The image map Γ(m) → X ×Cm

i can
be identified with the blowup Xi of X in the ideal

(gi, gi+1) = x(
m−i

2 )y(
i

2)(xm−i, yi)

or what is the same, the blowup of (xm−i, yi). The pullback of the exceptional divisor
in the blowup of (xm−i, yi), locally defined by xm−i or yi, yields a structure of Cartier
divisor of multiplicity (=generic length) i(m− i) on Cm

i (θ) ⊂ Γ(m). Along C
m
i , Γ(m)

is defined by the equation

xm−iui = yivi.

Also, Cm
i is endowed with the special sections Qm

i = (xm−i+1, yi), corresponding to
ui = 0, and Qm

i+1 = (xm−i, yi+1), corresponding to vi = 0.
Globally over B, Cm

i is a P1 bundle of the form

Cm
i = P(ψm

i ⊕ ψm
i+1),

(using multiplicative notation for line bundles) with Qm
i = P(ψm

i ), Qm
i+1 = P(ψm

i+1)

and −Γ(m) corresponding to O(1). This implies

O(1).Qm
j = −Γ(m).Qm

j = ψm
j , j = i, i+ 1.(3.3.16)

Now on Γ̃(m) ⊂ X ×
m−1
∏

i=1

Cm
i ×

m−2
∏

i=1

Cm−1
i , the exceptional locus is a connected

chain of the form

C̃m
1 ∪ C̃m−1

1 ∪ ... ∪ C̃m
i ∪ C̃m−1

i ∪ C̃m
i+1 ∪ ... ∪ C̃

m
m−1,

with each C̃n
i projecting isomorphically to Cn

i , and where the intersection C̃m
i ∩

C̃m−1
i (resp. C̃m−1

i ∩ C̃m
i+1) is set-theoretically the section (Qm−1

i , Qm
i+1) (resp.

(Qm−1
i+1 , Q

m
i+1)) (the multiplicities will be determined below). From this it follows

already that τ0m(Cm−1
i−1 ) = a(i− 1)Cm

i−1 + b(i− 1)Cm
i , and it remains to identify a

and b. This is a consequence of the following Lemma, which completes the proof of
(3.3.12).

Lemma 3.22. We have:

p∗[m−1]((m− 1)Cm−1
i ) = (m− i)C̃m

i + (m− 1)C̃m−1
i + (i + 1)C̃m

i+1,(3.3.17)
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p∗[m](mC
m
i ) = (i− 1)C̃m−1

i−1 +mC̃m
i + (m− 1− i)C̃m−1

i .(3.3.18)

Proof of Lemma. We will prove (3.3.17) as the case of (3.3.18) is similar. We will
analyze this near the flag (Qm−1

i ⊂ Qm
i+1), which is the intersection C̃m

i ∩ C̃m−1
i , i ≤

m − 2. There, using homogeneous coordinates [u′i, v
′
i] on Cm−1

i = P1, Γ̃(m) has the
local equations

xm−iui = yivi,

xm−1−iu′i = yiv′i
(3.3.19)

which imply

(vi/ui)(u
′
i/v

′
i) = x.(3.3.20)

This means that x cuts out a divisor locally equal to the union of the zero sets of vi
( i.e. Cm−1

i ), and of u′i (i.e. C
m
i ). Moreover the multiplicity, i.e. local length, of vi,

along Cm−1
i is equal to that of x, which is the length of C[x, y]/(xm−i − yi, x), i.e. i.

Likewise, the multiplicity of u′i along C
m
i is also equal to i. As we have seen in the

proof of Proposition 2.5, u′i, i.e. u
′
i/v

′
i, is a local defining equation on Γ(m−1) for the

Cartier divisor (m− 1)Cm−1
i−1 . It follows, under the assumption i ≤ m− 2, that in the

pullback of (m − 1)Cm−1
i−1 to Γ̃(m), C

m
i appears with multiplicity i. In the extreme

case of Cm−1
m−2 , both it and Cm

m−1 clearly have multiplicity 1 on Γ̃(m), so C
m
m−1 appears

with multiplicity m− 1 in the pullback of (m− 1)Cm−1
m−2 .

Similarly using the relation

(ui+1/vi+1)(v
′
i/u

′
i) = y,(3.3.21)

the pullback of (m−1)Cm−1
i+1 , contains Cm

i+1with multiplicitym−i−1 for all i < m−2.
Thus proves (3.3.17) by shifting the index i.
For (3.3.18) briefly, the same relations (3.3.20) and (3.3.21) show that the respec-

tive multiplicities of the pullback of mCm
i+1 (resp. mCm

i ) along Cm−1
i are equal to i

(resp. m− 1− i).

To obtain (3.3.13), we continue to develop intersection theory on the punctual
flaglet Hilbert scheme, using the same notations.

Lemma 3.23. We have

C̃m−1
i C̃m

i =
1

i
(Qm−1

i , Qm
i+1),(3.3.22)

C̃m−1
i C̃m

i+1 =
1

m− i− 1
(Qm−1

i+1 , Q
m
i+1), i < m− 1.(3.3.23)

Proof of Lemma. For the first relation, the identity (3.3.20) shows that the Cartier
divisors iC̃m−1

i , iC̃m
i meet with multiplicity i along (Qm−1

i , Qm
i ). For the second

relation, use similarly the identity (3.3.21).

Lemma 3.24. We have:

(C̃m
i )2 = −

m− 1

m
(

1

m− i
(Qm−1

i , Qm
i ) +

1

i
(Qm−1

i , Qm
i+1)).(3.3.24)
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Proof of Lemma. The projection formula, together with Lemma 3.22 shows that

p[m]∗((C̃
m
i )2) = (Cm

i )2 − p[m]∗(C̃
m
i .((i − 1)C̃m−1

i−1 + (m− 1− i)C̃m−1
i )).

Combining this with Corollary 2.6, (ii) and Lemma 3.23, we get the result by simple
arithmetic.

Similarly, we can show:

Lemma 3.25.

(C̃m−1
i )2 = −

m

m− 1
(
1

i
(Qm−1

i , Qm
i+1) +

1

m− i− 1
(Qm−1

i+1 , Q
m
i+1)).(3.3.25)

Now we are in position to compute the punctual transfer of a section. We have

−Γ(m−1).Cm−1
i = Qm−1

i+1 + Cm−1
i [ψm−1

i ] = (m− 1)Cm−1
i .Cm−1

i+1 + Cm−1
i [ψm−1

i ].

The transfer of the second summand above is computed directly by (3.3.12) and yields
the last two terms in the first equality in (3.3.13). As for the first summand above,
its pullback on Γ̃(m) is given by

(m− 1)(C̃m−1
i +

m− i

m− 1
C̃m

i +
i+ 1

m− 1
C̃m

i+1)(C̃
m−1
i+1 +

m− i− 1

m− 1
C̃m

i+1 +
i+ 2

m− 1
C̃m

i+2).

The only terms not clearly trivial come from C̃m−1
i .C̃m

i+1, C̃
m−1
i+1 .C̃m

i+1 and (C̃m
i+1)

2,
and those be computed using the above Lemmas, yielding

m− i− 1

m
(Qm−1

i+1 , Q
m
i+1) +

i+ 1

m
(Qm−1

i+1 , Q
m
i+2).(3.3.26)

By projection, we obtain the first equality in (3.3.13). The second equality is imme-
diate from Remark 3.20.

This completes the proof of Proposition 3.19.

Remark 3.26. Using (3.3.26) and Remark 3.20 again, one can formulate the
punctual transfer entirely in terms of node scrolls Cm

i and the canonical sections Qm
i ,

via

τ0m(Qm−1
i ) = Qm

i + Cm
i [

−i(m− i)

m
ψx +

i2

m
ψy]

=
m− i

m
Qm

i +
i

m
Qm

i+1.

(3.3.27)

Remark 3.27. By simple numerology, Proposition 3.19 can be used to reprove
Lemma 3.16. We omit the details.

Proposition 3.19 leads, in a completely straightforward way, to a recursive formula
for the total Chern class of the tautological bundles Λm(L)|Γ(m)

for a line bundles L.
Write recursively

cm := c(Λm(L)|Γ(m)
) = αm +

∑

θ

(

m−1
∑

i=1

Cm
i (θ)[βi

m(θ)] +

m−1
∑

i=1

γim(θ)Qm
i (θ)),

α ∈ R, β(θ), γ(θ) ∈ A.(B(θ)), α1 = 1 + L, β.
1 = γ.1 = 0.

(3.3.28)



254 Z. RAN

where B(θ) ⊂ B is the normalization of the boundary divisor corresponding to θ and
a cycle on B(θ) is viewed as a cycle on B via the Gysin map. In view of Remark 3.20,
such expressions are not unique, but this does not matter. In the ensuing computation
we will suppress the θ summation, which will be understood.

We have:

cm = τ0m(cm−1(1 + L+ Γ(m−1))) + (−Γ(m))τ0m(cm−1).

The first summand yields

(1 + L−

(

m− 1

2

)

ω +
1

m− 1

m−2
∑

i=1

νm−1,i((m− i)Cm
i + (i + 1)Cm

i+1))αm−1

+
1

m− 1

∑

Cm
i [βi

m−1(m− i)(1 + L)] + Cm
i+1[β

i
m−1(i + 1)(1 + L)]

−
1

m− 1

∑

βi
m−1ψ

m−1
i+1 ((m− i)Cm

i + (i + 1)Cm
i+1

+
1

m

m−1
∑

i=1

((1 + L)γim−1 − βi
m−1)((m− i)Qm

i + iQm
i+1)

(where θ∗ means pullback by the node-section θ : B(θ) → X and products involving
classes on B(θ) are performed on B(θ)).

Thus in all

αm =(1 + L+ (m− 1)ω)αm−1 =

m
∏

i=1

(1 + L+ (i− 1)ω);

βi
m =

1

m− 1
(((m − i)(1 + L− ψm−1

i+1 ) + ψm
i+1)β

i
m−1

+ (i(1 + L− ψm−1
i ) + ψm

i+1)β
i−1
m−1)− νm,iαm−1;

γim =
1

m
((m− i)(1 + L+ ψm

i )γim−1) + (i− 1)(1 + L+ ψm
i )γi−1

m−1)

+
1

m(m− 1)
((m− i)βi

m−1 + (m+ i− 1)βi−1
m−1).

(3.3.29)

We have used the fact that θ∗(αm−1) = θ∗((1+L)m−1), which follows from the above
formula for the αm, plus the fact that θ∗(ω) = 0. We have proven

Corollary 3.28. The Chern classes of the tautological bundle on the punctual
Hilbert scheme Γ(m)(X/B) are given by (3.3.28), where the coefficients satisfy the
recursion (3.3.29).

Example 3.29. Given a family X/B (of any base dimension), and a map

f : X → Pn, n < m,

cm−n(Λm(f∗(O(1)))|Γ(m)
]) represents the locus, finite if dim(B) = m−n−1, of points

in X where the fibre admits an m-contact hyperplane. If n = 1, this is the locus of
(m−1)st order ramification points. If n = 2, it is the locus of m-th order hyperflexes,
etc.
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The case n = m− 2 can be worked out more explicitly, as in Example 3.18. Let
L = f∗(O(1))), c2,m = c2(Λm(L)|Γ(m)

).

c2,m − τ0m(c2,m−1) = ((m− 1)L− Γ(m−1))(L − Γ(m) + Γ(m−1))

= (m− 1)L2 + (m− 1)

(

m− 1

2

)

ω2 + (

(

m− 1

2

)

+ (m− 1)2)Lω

−
∑

ν+m−1,iC
m
i [θ∗L] + (m− 1)

∑

(ν+m−1,i − νm,i)C
m
i [θ∗L]

+ Γ(m)
∑

ν+m−1,iC
m
i −

∑

νm−1,iτm(Γ(m−1)Cm−1
i ).

Then simple computations and Remark 3.21 yield in the pencil case

c2,m − τ0m(c2,m−1) =

(m− 1)L2 + (m− 1)

(

m− 1

2

)

ω2 +
(m− 1)(3m− 4)

2
Lω

−
∑

θ

m−1
∑

i=1

i(m− i)

2
((3m− 4)Cm

i (θ)[θ∗L])−

(

m

3

)

σ.

(3.3.30)

Again in the pencil case dim(B) = 1 these classes can be viewed as numbers, θ∗L and
ψm−1
i are all zero and the above simplifies to

c2,m − c2,m−1 =

(m− 1)L2 + (m− 1)

(

m− 1

2

)

ω2 +
(m− 1)(3m− 4)

2
Lω −

(

m

3

)

σ.

This recursion can be integrated easily using the elementary formula
m
∑

n=k

(

n
k

)

=
(

m+1
k+1

)

,

yielding the following closed-form Plücker-type formula:

c2,m =

(

m

2

)

L2 + (3

(

m+ 1

4

)

−

(

m

3

)

)ω2 + (3

(

m+ 1

3

)

− 2

(

m

2

)

)Lω −

(

m+ 1

4

)

σ.

(3.3.31)

Added in proof: Francesco Cavazzani (student of Joe Harris at Harvard) commu-
nicated in Dec 2012 that he had checked (3.3.31) by another method.

4. Low-degree examples.

4.1. Trisecants to one space curve curve. If X is a smooth curve of degree
d and genus g in P3, the virtual degree of its trisecant scroll, i.e. the virtual number

of trisecant lines to X meeting a generic line, is given by c3(
2
∧

(Λ3(OX(1))), which can
be easily computed to be

1

6
(2d3 − 12d2 + 16d− 3d(2g − 2) + 6(2g − 2)).(4.1.1)

4.2. Multisecants in a pencil . Let X/B be a family of nodal curves over a
smooth curve, and suppose

f : X → P2m−1



256 Z. RAN

is a morphism. One, quite special, class of examples of this situation arises as what
we call a generic rational pencil; that is, generally, the normalization of the family of
rational curves of fixed degree d in Pr (so r = 2m − 1 here) that are incident to a
generic collection A1, ...Ak of linear spaces, with

(r + 1)d+ r − 4 =
∑

(codim(Ai)− 1);

see [20] and references therein, or [18]. Our result applies to curves of arbitrary genus.
Returning to the general situation, one expects a finite number Nm of

curves f(Xb) to admit an m-secant (m − 2)-plane. Let L = f∗O(1), V =
H0(P2m−1), c(m, i) = ci(Λm(L)). Then Nm is the degree of the locus where the natu-
ral map V ⊗O

X
[m]
B

→ Λm(L) drops rank. By Porteous’ formula [6], this number can

be evaluated as
∫

X
[m]
B

∆
(m+1)
1 (c(m, .)).

For convenience, we will denote m! times this number simply by ∆
(m+1)
1 . These

numbers have been evaluated by completely different means (namely, ’test pencils’
as in the Harris-Mumford paper) by Ethan Cotteril [5], [4], [3]. For m = 3, our
intersection theory yields the same number after prolonged manual calculations:

1/6((3d2 − 27d+ 60)L2 + (−12d + 72)L.ω + (−3d+ 28)ω2
− 3b(2g − 2) + (3d− 20)σ)

(4.2.1)

where d is the degree of a fibre in P2m−1 and σ is the number of singular fibres.
More generally, for any 1-parameter family as above, natural numbers r, s with

rs = m+ 1 and a map

f : X → P(r+1)(s−1)−1,

we have a ’Porteous number’

∆(s)
r = m!

∫

X
[m]
B

∆(s)
r (c(m, .)) =

∫

Wm(X/B)

∆(s)
r (c(m, .))

which counts m! times the virtual number of m-secant Pm−r−1-planes in the family.
Beyondm = 3, manual calculation via our intersection calculus seems impractical;

fortunately, we have macnodal, discussed next.

4.3. Gwoho Liu’s Macnodal program. Gwoho Liu has written a Java pro-
gram [12] which implements the above intersection theory , both on a fixed Hilbert

scheme X
[m]
B and, together with the transfer calculus of §3, on a flag scheme

Wm(X/B). This is sufficient to evaluate all Chern numbers of tautologocal bundles
and in particular all the aforementiond multisecant numbers. We proceed with some
examples of Macnodal computations. Details about Macnodal, and further examples,
will be given elsewhere.

Example 4.1 (pencils). As above, let c(m, i) = ci(Λm(L)), L = f∗(O(1), f :
X → P2m−1, for a good pencil X/B. When m = 3, r = 1, Macnodal yields the
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formula above. When m = 4, r = 1, it computes the number of m-secant (m − 2)-
planes in the family (times m!) as

∆
(5)
1 = c(4, 1)5 − 4c(4, 2)c(4, 1)3 + 3c(4, 3)c(4, 1)2 + 3c(4, 2)2c(4, 1)

− 2c(4, 1)c(4, 4)− 2c(4, 3)c(4, 2)

= (−1008 + 452d− 72d2 + 4d3 − 24dg + 168g)L2 + (432− 98d+ 6d2 − 12g)σ

+ (−1440 + 360d− 24d2 + 48g)ω.L+ (−720 + 130d− 6d2 + 12g)ω2.

Similarly, we have

c(5, 1)6 =(1483200− 1022400d+ 280800d2 − 10800d2g − 36000d3

+ 1800d4 + 122400dg − 363600g+ 5400g2)L.L

+ (−400800 + 162000d− 23400d2 + 1200d3 − 3600dg + 25800g)σ

+ (1843200− 820800d+ 129600d2 − 7200d3 + 21600dg − 144000g)w.L

+ (775200− 262800d+ 30600d2 − 1200d3 + 3600dg − 33000g)w.w.

(4.3.2)

This is one of 10 terms in ∆
(6)
1 (5-secant planes of a pencil in P9):

∆
(6)
1 =(19560− 9270d+ 1735d2 − 60d2g − 150d3 + 5d4 + 1020dg − 4500g + 60g2)L.L

+ (−10720 + 2960d− 290d2 + 10d3 − 60dg + 640g)σ

+ (33600− 10160d+ 1080d2 − 40d3 + 240dg − 2400g)w.L

+ (20000− 4640d+ 370d2 − 10d3 + 60dg − 800g)w.w.

(4.3.3)

For 5-secant planes of a pencil in P5:

∆
(3)
2 =(17400− 11070d+ 2805d2 − 120d2g − 330d3

+ 15d4 + 1500dg − 4860g + 60g2)L.L

+ (−4640 + 1630d− 210d2 + 10d3 − 60dg + 440g)σ

+ (21600− 8520d+ 1200d2 − 60d3 + 300dg − 2160g)w.L

+ (9280− 2670d+ 270d2 − 10d3 + 60dg − 520g)w.w.

(4.3.4)

5-secant lines for a pencil in P3:

∆2
3 =(5160− 4020d+ 1250d2 − 60d2g − 180d3 + 10d4 + 600dg − 1620g + 60g2)L.L

+ (−640 + 210d− 20d2 + 40g)σ

+ (4800− 2200d+ 360d2 − 20d3 + 60dg − 480g)w.L

+ (1520− 450d+ 40d2 − 80g)w.w.

(4.3.5)
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7-secant P4-s for a pencil in P9:

∆
(4)
2 =(23420880− 15283296d+ 4337172d2 − 592200d2g + 5040d2g2 − 679140d3

+ 44100d3g + 61425d4 − 1260d4g − 3024d5 + 63d6

+ 3633840dg− 95760dg2 − 8646120g+ 468720g2 − 2520g3)L.L

+ (−10425240+ 4489296d− 819630d2 + 39060d2g + 78960d3 − 1260d3g

− 3990d4 + 84d5 − 418740dg+ 2520dg2 + 1563240g− 28560g2)σ

+ (40007520− 18793404d+ 3700620d2 − 187740d2g − 379575d3 + 6300d3g

+ 20160d4 − 441d5 + 1922760dg− 12600dg2 − 6804000g+ 136080g2)w.L

+ (23373000− 8857296d+ 1396710d2 − 46620d2g − 114240d3 + 1260d3g

+ 4830d4 − 84d5 + 586740dg− 2520dg2 − 2536800g+ 34440g2)w.w.

(4.3.6)

7-secant planes for a pencil in P4:

∆
(2)
4 =(2242800− 1966440d+ 750680d2 − 109200d2g + 1260d2g2 − 157920d3

+ 10920d3g + 19145d4 − 420d4g − 1260d5 + 35d6 + 500640dg− 17640dg2

− 896280g+ 65520g2 − 840g3)L.L

+ (−400680 + 200340d− 40180d2 + 840d2g + 3780d3 − 140d4

− 12180dg + 48720g − 840g2)σ

+ (2646000− 1619100d+ 415800d2 − 20160d2g − 55335d3 + 840d3g + 3780d4

− 105d5 + 164220dg− 1260dg2 − 466200g+ 12600g2)ω.L

+ (1040760− 483420d+ 90440d2 − 1680d2g − 7980d3 + 280d4

+ 25620dg − 110040g+ 1680g2)ω2.

(4.3.7)

8-secant P4-s of a pencil in P7:

∆
(3)
3 =(−524966400 + 399120960d − 135158352d2 + 25242000d2g − 564480d2g2

+ 26227992d3 − 2807280d3g + 20160d3g2 − 3129840d4 + 159600d4g + 228480d5

− 3696d5g − 9408d6 + 168d7 − 116556384dg + 5382720dg2 − 20160dg3 + 222243840g

− 17539200g2 + 201600g3)L.L

+ (193334400 − 98974848d + 22152760d2 − 1627080d2g + 10080d2g2 − 2761220d3

+ 102480d3g + 201180d4 − 2520d4g − 8092d5 + 140d6 + 11973360dg − 215040dg2

− 34487040g + 1186080g2 − 3360g3)σ

+ (−853493760 + 482291712d − 118440672d2 + 9760800d2g − 60480d2g2

+ 16089360d3 − 651840d3g − 1268400d4 + 16800d4g + 54768d5 − 1008d6

− 67085760dg + 1249920dg2 + 179141760g − 6632640g2 + 20160g3)ω.L

+ (−469929600 + 216819456d − 43094520d2 + 2299080d2g − 10080d2g2 + 4692100d3

− 122640d3g − 293020d4 + 2520d4g + 9884d5 − 140d6 − 19634160dg + 248640dg2

+ 64431360g − 1575840g2 + 3360g3)ω2.

(4.3.8)
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In all the cases where r = 1 (i.e. computing ∆
(s)
r ) or the pencil is in Pr, these

formulas match those previously obtained by Cotteril [3] by different methods (which
don’t seem to generalize readily to the case of higher base dimension).

Example 4.2 (beyond pencils). Macnodal is applicable in any base dimension,
though in the case dim(B) > 1, there are apparently no examples in the literature to
compare to. Here is a 2-dimensional example. Let X/B let a 2-parameter family, E
a rank-6 bundle over B with Chern classes di, and φ : E → Λ5(L) a map. The locus
where φ has rank at most 3, is enumerated by

Macnodal> cc(Delta(dim_b=2,2,2,2))

(144 − 204d + 106d2 − 12d2g − 24d3 + 2d4 + 84dg − 156g + 12g2)

∫

B0

d21

+(1152 − 708d + 156d2 − 12d3 + 48dg − 252g)

∫

B0

d1π∗(L
2)

+(1152 − 384d + 36d2 − 60g)

∫

B0

d1π∗(Lω) +(402 − 90d+ 6d2 − 12g)

∫

B0

d1π∗(ω
2)

+(216 − 258d + 107d2 − 12d2g − 18d3 + d4 + 108dg − 216g)

∫

B0

d2

+(387 − 132d + 12d2 − 12g)

∫

B0

π∗(L
2)2 +(378 − 60d)

∫

B0

π∗(L
2)π∗(Lω)

+(92− 12d)

∫

B0

π∗(L
2)π∗(ω

2) +(−2778 + 582d − 30d2 + 48g)

∫

B0

π∗(L
2ω)

+(−1668 + 624d − 84d2 + 4d3 − 24dg + 168g)

∫

B0

π∗(L
3) +51

∫

B0

π∗(Lω)
2 +24

∫

B0

π∗(Lω)π∗(ω
2)

+(−1962 + 266d − 6d2 + 12g)

∫

B0

π∗(Lω
2) +3

∫

B0

π∗(ω
2)2 +(−540 + 48d)

∫

B0

π∗(ω
3)

+(−222 + 66d − 6d2 + 12g)

∫

B1

d1 +(−76 + 12d)

∫

B1

π∗(L
2) −24

∫

B1

π∗(Lω) −6

∫

B1

π∗(ω
2)

+(207 − 24d)

∫

B1

ψ
(1)
1 +(1014 − 178d + 6d2 − 12g)

∫

B1

θ∗1(L) +3

∫

B2

1

Here Bi → B is the normalization of the locus of i-nodal curves, θ1 → XB1 is the node

of the restricted family, and ψ
(1)
1 is the sum of the cotangent classes at the branches of

X at θ1. Also, in integrals over Bi, ω refers to the dualizing sheaf of the normalization
of XBi

.

More examples and details about using Macnodal will be given elsewhere.
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4.4. Double points. Let X/B be an arbitrary nodal family and f : X → Pn a
morphism. Consider the relative double points of f , i.e. double points on fibres. This

locus on X
[2]
B is the degeneracy locus of a bundle map

φ : (n+ 1)O → Λ2(L), L := f∗O(1).

By Porteous, the virtual fundamental class of this locus is given by the Segre class

sn(Λ2(L)
∗), whose pullback on the ordered (= flag) Hilbert scheme X

⌈2⌉
B equals

n
∑

i=0

(L1)
n−i(L2 − Γ)i,Γ = Γ⌈2⌉.(4.4.1)

The powers of Γ can be evaluated using Corollary 2.30. Pushing the result down to
X2

B for simplicity yields

n
∑

i=0

Ln−i
1 Li

2 −
n
∑

i=0

Ln−i
1 (

i
∑

j=1

(Γ[ωj−1] +
∑

s,k

δs∗(ψ
j−2−k
x ψk

y ))L
i−j).

To describe the direct image of this on B, we need some notation. Recall that κj =
π∗(ω

j+1). Extending this, we may set

κj(L) = π∗(L
j+1), κi,j(L,M) = π∗(L

i+1M j+1).(4.4.2)

Note that in our case κj(L) may be interpreted as the class of the locus of curves
meeting a generic Pn−j. Also, for each boundary datum (Ts, δs, θs), Ts admits a map
to Pn via either the x or y-section (the two maps are the same), via which we can
pull back Lj, which corresponds to the locus of boundary curves whose node θs meets
Pn−j . Then pushing the above down to B yields the following

Proposition 4.3. Notations as above, the virtual class of the locus of fibres not
embedded by f is

m2,B =
1

2
(−1)n(

n−1
∑

i=1

κi−1(L)κn−i−1(L)− κn−j−1,j−2(L, ω) +
∑

s,k

δs∗(L
n−jψj−2−k

x ψk
y )).

More generally, for any smooth variety Y of dimension n and map f : X → Y ,
one can use the double-point formula of [22], Th. 3.3ter, p. 1208, to evaluate the
class of the double-point locus in X2

B in terms of the diagonal class ∆Y on Y × Y as

2m(f)X2
B
= (f2)∗(∆Y )−

∑

i≥1

(−Γi)cn−i(TY )

= (f2)∗(∆Y )−
∑

i≥1

(−Γ[ωi−1] +
1

2

∑

s,j

δs∗(ψ
i−j−3
x ψj

y))cn−i(TY )
(4.4.3)

(here each boundary term corresponding to a node θ is embedded in the diagonal in
X2

B via θ). Applying this set-up to the case L = ω, Y = P(E), E being the Hodge
bundle, and replacing TY and ∆Y be their relative analogues over B, we note that

[∆Y/B] = {
c(E∗)

(1− [L1])(1 − [L2])
}g−1, Li = p∗iO(1),

ci(TY/B) =
∑

(−1)k
(

g − k

i− k

)

λkL
i−k, λk = ck(E).

(4.4.4)
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Applying this to (4.4.3), we note that L pulls back to ω, which meets each θ trivially,
so we obtain

2mX2
B
(f) =

∑

(−1)kλk[ω
i, ωg−1−i−k] +

∑

i≥max(1,k)

(−1)k
(

g − k

n− i− k

)

λkΓ[ω
g−2−k]

−

1

2

∑

i≥1,s,j

(−1)g−i−1δs∗(ψ
i−j−3
x ψj

y))λg−i−1

=
∑

(−1)kλk[ω
i, ωg−1−i−k] + (2g−1

− 1)Γ[ωg−2]−

g−1
∑

k=1

(−1)k2g−1−kλkΓ[ω
g−2−k]

−

1

2

∑

i≥1,s,j

(−1)g−i−1δs∗(ψ
i−j−3
x ψj

y))λg−i−1

(4.4.5)

Multiplying by ω1 and projecting to B we obtain (compare [14, §7]):

2(2g − 2)m2 =
∑

(−1)kλkκi−1κg−2−i−k + (2g−1
− 1)κg−2 +

g−1
∑

k=1

(−1)k2g−1−kλkκg−2−k

(4.4.6)

where we set κ0 = 2g−2 for simplicity. This formula is correct over the locus Mg∪∆0
0

of curves with at most 1 nonseparating node, but breaks down over the curves with a
separating node or a separating pair of nodes, because the naive notion of canonical
curve in Pg−1 is ill-behaved and requires substantial modification. See [16] for some
work in this direction.

4.5. Hyperelliptic locus in genus 3. Our purpose here is to compute the
fundamental class of the closureHE of the locus of smooth hyperelliptic curves of genus
3 in the stable moduli M3. Consider a big family X/B parametrized by the locally
closed subscheme of a suitable Hilbert scheme of curves in some PN corresponding to
stable curves. B has the two boundary divisors δ0, δ1, and we have

Xδ1 = X1

⋃

p1↔p2

X2

with each Xi of genus i. Let L = ωX/B(−X1) where X1/δ1 is the obvious divisor
on X (of relative genus 1), and let E1 = π∗(L). The fibre of E1 over a curve in
δ1 corresponds to the complete linear system that is the hyperelliptic system on the
genus 2 part and the pencil |2p1| on the genus-1 part. Then we have an exact sequence

0 → E1 → E → π∗(ωX1/δ1 ⊗Op1) → 0,

hence c(E1) = c(E)(1 − δ1) and in particular

c1(E1) = λ1 − δ1.

Also, it is easy to see that

π∗(L
2) = π∗(ω

2)− 3δ1 = κ1 − 3δ1, π∗(L.ω) = κ1 − δ1.

Now consider the rank-1 locus of the natural map over W 2(X/B):

E1 → Λ2(L).
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By Porteous, the fundamental class of this locus in W 2(X/B) is computed by

∆ = {
c(E1)

c(Λ2(L))
}2

= −(λ1 − δ1)(L1 + L2 − Γ(2)) + L2
1 + (L2 − Γ(2))2 + L1(L2 − Γ(2)).

Because this locus maps to B with 1-dimensional fibres, we multiply this by L1 and
then project to B. Using Mumford’s relation κ = 12λ1 − δ, we compute easily that

π∗(L1∆) = 36λ1 − 4δ0 − 6δ1.

Now the locus L1∆ clearly covers the hyperelliptic locus 4 times. Additionally, there
are three loci over δ1:

(A) the hyperelliptic pencil on X2;
(B) the pencil |2p1| on X1;
(C) X1 × p′2 where p′2 is the image of p2 under the hyperelliptic involution.
Each of these, intersected with L1, maps to δ1 with degree 2, for a total of 6.

Therefore

[HE ] =
1

4
(36λ1 − 4δ0 − 12δ1) = 9λ1 − δ0 − 3δ1,

a formula first obtained by Harris and Mumford [8]. In higher genus, extra components
of excessive dimension appear, requiring substantial modifications (see [16]).
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