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THE CLASS OF A HURWITZ DIVISOR ON THE MODULI OF

CURVES OF EVEN GENUS∗

GERARD VAN DER GEER† AND ALEXIS KOUVIDAKIS‡

Abstract. We study the geometry of the natural map from the Hurwitz space H2k,k+1 to the

moduli space M2k. We calculate the cycle class of the Hurwitz divisor D2 on Mg for g = 2k given
by the degree k + 1 covers of P1 with simple ramification points, two of which lie in the same fibre.
This has applications to bounds on the slope of the moving cone of Mg , the calculation of other
divisor classes and motivated an algebraic proof for the formula of the Hodge bundle of the Hurwitz
space, cf. [12, 11].

Key words. Hurwitz space, Hurwitz divisor, moduli of curves.

AMS subject classifications. 14H10,14H51.

1. Introduction. In this paper we study the geometry of the natural map
Hg,d → Mg of a Hurwitz space to the moduli space of curves in the case of Brill-
Noether number zero. We will determine the class of a key divisor (Hurwitz cycle)
whose class was still unknown. It can be used to deduce results on the slope of the
moving cone of M̄g and via its connection with the Hodge bundle of the Hurwitz
space led to an algebraic proof for the formula of the Hodge bundle (cf. [11, 12]).

Hurwitz cycles are playing a significant role in the study of the geometry of the
moduli space Mg of curves of genus g. For example, they appeared prominently in
the work [16] of Harris and Mumford on the Kodaira dimension of Mg. Faber and
Pandharipande showed in [7] that the cycle classes of Hurwitz loci are tautological.
For some Hurwitz loci the cycles classes are known, but for many such loci the cycle
classes are still unknown; for work in this direction see [9].

We work over the complex numbers. The generic curve of even genus g = 2k is in
finitely many ways a degree k+1 cover of the projective line with 6k branch points. By
the Hurwitz-Zeuthen formula these are all simple branch points. Here simple branch
point means that the corresponding fiber has exactly one simple ramification point.
The condition that two of the resulting 6k ramification points lie in the same fibre
over the projective line defines a divisor D2 in Mg. More precisely, a smooth curve
C of genus g = 2k defines a point of D2 if it admits a degree k + 1 map to P1 with
simple ramification points and 6k − 1 branch points. Similarly, the condition that
two ramification points collide (and then define a triple ramification point) defines a
divisor D3 in Mg. Their closures give divisors in Mg, again denoted by D2 and D3.
These divisors are important and appeared already in the paper [14] of Harris.

Harris calculated the class of D3 in [14] in 1984, but the class of D2 escaped
determination so far. By using a recent result of Kokotov, Korotkin and Zograf [18]
on the shape of the Hodge bundle on Hurwitz spaces we are now able to calculate this
class. In fact, this connection inspired an algebraic proof for this formula, cf. [11].

In order to formulate the result we recall that the Picard group with rational
coefficients of the Deligne-Mumford stack Mg is generated by the class λ of the
Hodge bundle and the classes δj of the boundary divisors ∆j for j = 1, . . . , [g/2].
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Our result reads as follows.

Theorem 1.1. Let g = 2k be an even natural number. The class of D2 on Mg

can be written as cλλ+
∑k

j=0 cjδj with the coefficients cλ and cj given by

cλ = 6N
6k − 1

2k − 1
(k − 2)(k + 3),

and

c0 = −
2N

2k − 1
(k − 2)(3k2 + 4k − 1),

and for 1 ≤ j ≤ k

cj = −3N
j(2k − j)

2k − 1
(6k2 − 4k − 7) +

9

2
j(2k − j)α(k, j).

Here N =
(

2k
k+1

)

/k and α(k, j) is the combinatorial expression

α(k, j) =
j(2k − j) + k

k(k + 1)

(

j

[j/2]

)(

2k − j

k − [j/2]

)

for j even

and

α(k, j) =
(j + 1)(2k − j)

k(k + 1)

(

j + 1

1 + [j/2]

)(

2k − j − 1

k − 1− [j/2]

)

for j odd .

We determine which boundary divisors of Hg,d are mapped dominantly to a
boundary divisor of Mg and those that map dominantly to a divisor of Mg. We
also prove irreducibility results for the divisors involved and determine the degree of
the corresponding maps.

For applications of this to bounding the slope of the movable cone of Mg and the
calculation of other divisor classes, like the Eisenbud-Harris divisor on Mg, we refer
to [12]. For the determination of the class of the Hodge bundle on Hurwitz spaces we
refer to [11].

2. The Hurwitz scheme. We call a degree d cover C1 → C2 of Riemann
surfaces simple if every fibre has at least d − 1 distinct points. Let Hg,d be the
Hurwitz scheme of simple covers of the projective line P1 of degree d and genus g
with ordered branch points and Hg,d the compactification of the Hurwitz scheme by
the admissible covers with an ordering of the branch points, see [16], p. 57. This
is an irreducible projective scheme. Recall that two admissible covers fi : Ci → Pi

are considered equivalent if there exist isomorphisms h : C1 → C2 and γ : P1 → P2

(preserving the markings) with f2 ◦ h = γ ◦ f1.
In this paper we restrict to the case of even genus g = 2k and degree d = k + 1.

Then the Brill-Noether number of linear systems of projective dimension r = 1 and
degree d equals ρ = g − (r + 1)(g + r − d) = 0. By the Hurwitz-Zeuthen formula the
number of (simple) branch points is b = 6k and the dimension 3g − 3 of the Hurwitz
scheme equals that of Mg.

There is a natural map π : Hg,d → Mg with Mg the moduli space of stable curves
of genus g, defined by contracting the unstable rational components of an admissible
cover. Moreover, there is also a natural map q of Hg,d to the moduli space M0,b



THE CLASS OF A HURWITZ DIVISOR 789

of stable curves of genus 0 with b marked points. The Hurwitz space thus forms a
correspondence between M2k and M0,6k:

Hg,d

q

π

M0,6k

Mg

For a general curve C of genus g = 2k the number of g1d’s with d = k + 1 equals

N =
(

2k
k+1

)

/k, and the natural map π : Hg,d → Mg is generically finite of degree
(6k)!N .

The boundary Hg,d −Hg,d consists of a finite number of divisors. An irreducible
divisor in the boundary ofHg,d maps under q to an irreducible divisor in the boundary
of M0,b. The irreducible boundary divisors of M0,b correspond bijectively to the
decompositions {1, . . . , b} = Λ ⊔ Λc into two disjoint subsets Λ,Λc, each with at
least two elements. We shall write SΛ for such a boundary divisor with the rule
that SΛ = SΛc

. The generic member of SΛ is a stable rational curve with two
irreducible components, P1 and P2, meeting in a point s such that the marked points
corresponding to Λ all lie on one of P1 and P2.

Under the map π : Hg,d → Mg an irreducible boundary divisor of Hg,d either
maps to the boundary of Mg or has a non-empty intersection with Mg. We first
determine the boundary divisors that map dominantly to an irreducible divisor in the
boundary of Mg; in a later section we determine the irreducible components of these
divisors. Recall that the boundaryMg−Mg ofMg consists of the irreducible divisors
∆j with 0 ≤ j ≤ [g/2], where the generic element of ∆0 is an irreducible one-nodal
curve and the generic element of ∆j is a curve with two irreducible components of
genus j and g − j meeting in one point.

3. Boundary divisors mapping to the boundary of Mg. We determine
which divisors in the boundary of Hg,d with g = 2k and d = k + 1 map dominantly
to an irreducible boundary divisor of Mg. Please note that by ramification degree at
a point we do not mean the ramification index, but the degree of the local covering
map at this point.

Proposition 3.1. Let 0 ≤ j ≤ k. There are [j/2] + 1 boundary divisors Ej,c

with c = 0, . . . , [j/2] mapping dominantly to ∆j under π : Hg,d → Mg.

i) For j ≥ 1 the divisor Ej,c decomposes as
∑

Λ E
Λ
j,c with Λ running over the

subsets of {1, . . . , 6k} of cardinality 3j, where we identify Λ with Λc if j = k. The
general element ϕ : X → P of EΛ

j,c maps to a curve P = P1 ∪ P2 with P1 (resp. P2)
carrying the 6k − 3j (resp. 3j) marked points of Λc (resp. Λ). The inverse image
of P1 consists of a smooth curve C1 of genus 2k − j and c smooth rational curves
R1, . . . , Rc, while the inverse image of P2 consists of a smooth curve C2 of genus j
and k − j + c smooth rational curves S1, . . . , Sk−j+c. Each Rµ meets C2 in a single
point qµ and each Sν meets C1 in a single point pν . The curves C1 and C2 meet in a
single point p.

The map ϕ restricted to C1 (resp. C2) has degree k + 1− c (resp. j + 1− c) and
has degree 1 on the Rµ and Sν . The pν and qµ are not ramification points, but p has
ramification degree j + 1− 2c and the points qµ, pν , p all map to s.
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C1 C2

P1 P2

p

s

S1 · · · Sk−j+c
R1

· · · Rc

ii) For j = 0 the divisor E0 = E0,0 decomposes as
∑

Λ E
Λ
0 with Λ running through

the 2-element subsets of {1, . . . , 6k}. The general element ϕ : X → P of EΛ
0 has

P = P1∪P2 with P1 (resp. P2) carrying the 2 (resp. 6k− 2) marked points of Λ (resp.
Λc). The inverse image of P1 consists of a smooth rational curve C1 and k−1 smooth
rational curves R1, . . . , Rk−1 while the inverse image of P2 is a smooth curve C2 of
genus 2k − 1. The curves C1 and C2 meet in two points p and q and each Rµ meets
C2 in a single point pµ that is not a ramification point on C2.

The map ϕ restricted to C2 has degree k + 1, while restricted to C1 it has degree
2 and degree 1 on the Rµ.

C1 C2

P1 P2

p

q

s

. . .
R1

Rk−1

Remark 3.2. Later we shall prove that the EΛ
j,c and EΛ

0 are irreducible.

We also need to determine the degree of the restriction of π to the divisor Ej,c.

Proposition 3.3. i) For j > 0 the degree of the restriction πj,c : Ej,c → ∆j of
π to Ej,c is

(6k)! (j + 1− 2c)2

(j + 1)(2k − j + 1)

(

j + 1

c

)(

2k − j + 1

k + 1− c

)

.

ii) For j = 0 the degree of the restriction π0 : E0 → ∆0 of π to E0 is

(6k)!

2k

(

2k

k + 1

)

=
(6k)!

2
N .

Proof. We shall prove the two propositions 3.1 and 3.3 at the same time.
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i) Suppose j ≥ 1. We first show that the above loci Ej,c in Hg,d defined by
describing their general element are divisors in the boundary of Hg,d. We apply [16],
Theorem A, p. 71 [note that there is a misprint in the formulas (*) there: instead of
h0(L(−2d−g−1)p) ≥ 1 one should read: h0(L[−(2d−g−1)]p) ≥ 1] with g = j (resp.
g = 2k − j) and d = d2 = j + 1 − c (resp. d = d1 = k + 1− c). For g = j we have in
the notation of loc. cit. min d = j/2 + 1 and max d = j + 1. Similarly for g = 2k − j
we have min d = (2k− j)/2+ 1 and max d = k+1 ≤ 2k− j+1. Hence the range of d
satisfies the requirements of the theorem. Observe also that 2d− g − 1 = j + 1− 2c.
The theorem then implies that the generic pair (C2, p) with C2 of genus j and p a
point of C2 can be expressed in

a(j, d2) =
j + 1− 2c

j + 1

(

j + 1

c

)

ways as a ramified cover of P1 of degree d2 with all branch points simple except the
image of p over which p is the only ramification point with degree j+1−2c. Similarly,
the generic pair (C1, p) with C1 of genus 2k − j and p ∈ C1 can be expressed in

a(2k − j, d1) =
j + 1− 2c

2k − j + 1

(

2k − j + 1

k + 1− c

)

ways as a ramified cover of P1 of degree d1 with all branch points simple except the
image of p over which p is the only ramification point with degree j + 1 − 2c. By a
dimension count we have now that the locus Ej,c is pure of codimension 1 in Hg,d

and hence Ej,c defines a divisor.
The degree of the restricted map πj,c : Ej,c → ∆j is given by

(6k)! a(j, d2) a(2k − j, d1)

and this equals

(6k)!
j + 1− 2c

j + 1

(

j + 1

c

)

j + 1− 2c

2k − j + 1

(

2k − j + 1

k + 1− c

)

.

But by the identity

[j/2]
∑

c=0

(j + 1− 2c)2

(j + 1)(2k − j + 1)

(

j + 1

c

)(

2k − j + 1

k + 1− c

)

=
1

k

(

2k

k + 1

)

we have
∑[j/2]

c=0 deg πj,c = deg π = N and since Hg,d is projective and irreducible and
Mg is projective, irreducible and smooth in codimension 2, there is no room for other
divisors in the boundary mapping dominantly to ∆j .

ii) For j = 0 the analysis gives that the curve described in the Proposition 3.1
ii) is a general member of a divisor which maps to ∆0. Indeed, in this situation
ρ = 1 and hence the curve C2 possesses a g1k+1 passing through two generic points:

the pre-image of the space W 1
k+1 in Symk+1C2 is 2-dimensional and hence intersects

p + q + Symk−1C2 (which of class x2, where x is the ample class representing the
divisor p + SymkC2, see [1] Ch. VII, Prop. 2.2) for every choice of p, q. The maps
Ci → Pi are not ramified at the points p, q. Indeed, by the above mentioned Theorem
A in [16], a generic couple (C2, p), with g(C2) = 2k − 1, possesses a finite number
of pencils γ of degree k + 1 with γ ≥ 2p. Therefore, for a generic q there is no such
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pencil with γ ≥ 2p + q. By [13], Main Theorem 2c, p. 235, there are 1
k

(

2k
k+1

)

= N
distinct such linear systems.

Note that the symmetric group S6k does not act freely on E0, since we can com-
pose π with the automorphism of P = P1 ∪ P2 that is the identity on P2, fixes the
intersection point s and exchanges the two branch points on P1. This lifts to an auto-
morphism of C1 fixing p and q and interchanging the ramification points. Therefore

the degree of the restricted map π0 : E0 → ∆0 is (6k)!
2 N , which is half of the generic

degree of the map π : Hd,g → Mg. On the other hand, a local analysis shows, see
[16], bottom of p. 76, that the map π is simply ramified along the divisor E0. This
shows that E0 is a divisor in the boundary which maps dominantly to ∆0 and there
is no room for other divisors.

4. Boundary divisors not mapping to the boundary of Mg. We now
determine the divisors in the boundary Hg,d that map dominantly to a divisor in Mg

that hits Mg.

Proposition 4.1. There are two divisors E2 and E3 in the boundary of Hg,d

that under π map dominantly to a divisor in Mg that has non-zero intersection with

Mg. We have a decomposition E2 =
∑

ΛE
Λ
2 into

(

6k
2

)

divisors and Λ ⊂ {1, . . . , 6k}

and #Λ = 2. Similarly, we have a decomposition E3 =
∑

Λ E
Λ
3 in

(

6k
2

)

divisors. Their
description is as follows.

i) Each general member ϕ : X → P of EΛ
2 maps to a curve P = P1 ∪ P2 with P1

(resp. P2) carrying the 2 (resp. 6k − 2) marked points of Λ (resp. Λc). The inverse
image of P2 is a smooth curve C of genus g mapping with degree k+1 to P2, while the
inverse image of P1 consists of k − 3 smooth rational curves R1, . . . , Rk−3 mapping
with degree 1 to P1 and two smooth rational curves S1, S2 mapping with degree 2 to
P1. The intersection points qi of Si with C are ramification points of degree 2.

S1 S2 C

P1 P2

s

. . .R1

Rk−3

ii) Each general member ϕ : X → P of EΛ
3 maps to a curve P = P1 ∪ P2 with P1

(resp. P2) carrying the 2 (resp. 6k − 2) marked points of Λ (resp. Λc). The inverse
image of P2 is a smooth curve C of genus g mapping with degree k+1 to P2, while the
inverse image of P1 consists of k − 2 smooth rational curves R1, . . . , Rk−2 mapping
with degree 1 to P1 and one smooth rational curve S mapping with degree 3 to P1.
The intersection point q of S with C is a ramification point of degree 3.
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S C

P1 P2

q

s

. . .
R1

Rk−2

Proof. If we want the image of an admissible cover to be a smooth curve of
genus g we must have over (say) P2 a smooth curve of genus g = 2k and no rational
components. Indeed, otherwise the restriction of the covering map on C has degree
≤ k = d − 1. But then ρ ≤ −2 and hence the image cannot be a divisor, see [6],
Thm. 1.1. Over P1 we then have only rational curves. A naive dimension count
shows that the number of branch points on P2 outside the singular point should be
b − 2 and hence on P1 there should be 2. In fact, in this case the total number of
branch points on P2 is b − 1 and hence the number of parameters for the curve C is
b− 1− 3 = 6k− 4 = 3g− 4 as required (and this is the only case where this happens).
Then, over P1 only two cases are possible, namely the ones described in the statement
of the proposition, see also [15], p. 181-83 and Figures 3.146 on p. 177, and 3.154
on p. 183 (the first case corresponds to the situation where two branch points come
together but the two ramification points remain distinct points on the same fiber and
the second to the case where the two ramification points come together too). Note
that in the first case each of the Si contain one marked point not mapping to s.

Remark 4.2. For later use we notice that the Hurwitz number of degree 3 covers
of P1 of genus 0 with one triple ramification point and two simple branch points is 1.
The involution on P1 fixing the triple branch point and interchanging the other two
branch points lifts to the cover. Similarly, the Hurwitz number of degree 2 covers of
genus 0 with two branch points is 1 and the involution interchanging the two branch
points and fixing a third point lifts to the cover.

Lemma 4.3. The formal local ring that pro-represents the infinitesimal deforma-
tions of a general point of EΛ

3 is smooth, but for a general point of EΛ
2 it equals

C[[t11, t12, t2, . . . , tb−3]]/〈t
2
11 − t212〉 .

Proof. The result for EΛ
3 follows from [16], p. 62. For each general point of EΛ

2

the complete local ring pro-representing the infinitesimal deformations equals

C[[t1, . . . , tb−3, t11, t12]]/〈t
2
11 − t1, t

2
12 − t1〉 ∼= C[[t11, t12, t2, . . . , tb−3]]/〈t

2
11 − t212〉 .

5. The trace curve of a pencil. In this section we collect a few results about
trace curves that we need in the sequel. Let C be smooth curve of genus g together
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with a pencil (a linear system of projective dimension 1) of degree d, say γ. We define
the trace curve of γ by

Tγ = {(p, q) ∈ C × C : γ ≥ p+ q}.

Here by γ ≥ p + q we mean that there is an effective divisor in γ containing p and
q. The following lemma gives information on the singularities that Tγ might have. In
the following we shall assume that our pencils are base point free.

Lemma 5.1. If γ is base-point free then Tγ is smooth except for possible singu-
larities at points (p, q) with both p and q ramification points of γ. A point (p, p) with
p a ramification point of order m (of the map to P1) gives an ordinary singularity of
order m−1 on Tγ. Morover, if (p, q) ∈ Tγ with p 6= q and p and q simple ramification
points then the singularity of Tγ at (p, q) is a simple node.

Proof. Let {f, g} be a basis of the pencil γ and let (p, p) be a point of Tγ and let
z be a local coordinate at p. Then Tγ is locally at (p, p) given by h = 0 with

h(z1, z2) =
f(z1)g(z2)− f(z2)g(z1)

z1 − z2
.

We may assume that ordp(f) = m > 0 and ordp(g) = 0. Write f = zmf1 and find in
the local ring

h(z1, z2) =
zm1 − zm2
z1 − z2

f1(0)g(0),

so locally at (p, p) the curve Tγ consists ofm−1 branches passing transversally through
(p, p).

If (p, q) ∈ Tγ with p 6= q and z (resp. w) a local coordinate at p (resp. q) we
write f = f1(z) and f = f2(w) and similarly g = g1(z) and g = g2(w) in the local
rings of p and q. The equation of Tγ is then h(z, w) = f1(z)g2(w) − f2(w)g1(z) = 0.
Write f1 = a0 + a1z + . . . and g1 = b0 + b1z + . . .; furthermore f2 = c0 + c1w + . . .
and g2 = d0 + d1w + . . . and find that a singularity at (p, q) means that besides
a0d0 − b0c0 = 0 we have a1d0 − b1c0 = 0 and a0d1 − b0c1 = 0. We may assume that
a0 = 0 and b0 6= 0, hence c0 = 0 and d0 6= 0, so that a singularity means a1 = c1 = 0,
i.e. both p and q are ramification points. Then the next term in h is a2d0z

2 − c2b0w
2

and this shows that if a2 and c2 do not vanish we have a simple node.

Lemma 5.2. Let γ be a base point free g1d with all branch points simple except
one with arbitrary ramification. Then Tγ is irreducible.

Proof. Consider the map Tγ → P1 defined as the composition of the first projec-
tion Tγ → C composed with the map C → P

1 defined by γ. All singular points and all
the ramification points of Tγ → P1 lie over the branch points of C → P1. So for both
coverings we consider the same monodromy group (π1 of the punctured line). Since
Tγ ⊂ C×C the monodromy action for Tγ is induced by the monodromy action for C.
By showing that the latter is doubly transitive the result will follow. Since C → P1

is simply branched except possibly at one point the monodromy is generated by the
transpositions at the simple branch points (since the product of the permutations of
all branch points is 1). We thus see that this generates a transitive subgroup of Sd,
hence it is the whole symmetric group and therefore doubly transitive.

Corollary 5.3. The trace curves induced by the pencils on C1, C2 as in i) of
Proposition 3.1 and on C as in ii) of Proposition 4.1 have one singular point which
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is an ordinary singularity and lies on the diagonal. The trace curve induced by the
pencil on C2 as in ii) of Proposition 3.1 is smooth. The trace curve induced by the
pencil on C as in i) of Proposition 4.1 has two nodal singularities at two symmetric
points. Moreover all the above trace curves are irreducible.

6. An irreducibility result. In this section we shall prove that the boundary
divisors EΛ

j,c defined in Proposition 3.1 and the boundary divisors EΛ
3 defined in

Proposition 4.1 are irreducible and that EΛ
2 maps 2 : 1 to an irreducible space. We

start with the result for E2 and E3.
Let c be a conjugacy class of the symmetric group Sd on d objects. It is given

by a partition of d. We consider the Hurwitz space Hd,b,c parametrizing isomorphism
classes of (connected) Riemann surfaces that are degree d covers of P1 that are simply
branched at b (unordered) points of the projective line different from infinity and have
ramification type c over infinity. This has the structure of a smooth analytic space;
this may be proved as in [10].

We define Πb := (C1)×b−∆ with ∆ the big diagonal and Σb := Symb
C−D, with

D the discriminant locus and then have a natural map p : Πb → Σb.
There is a natural covering map µ : Hd,b,c → Σb by assigning to each point of

Hd,b,c the set of b points with simple branching. We get a projection map

pr2 : Hd,b,c ×Σb
Πb → Πb.

Let now Hd,b,c be the Hurwitz space parametrizing isomorphism classes of (con-
nected) Riemann surfaces that are degree d covers of P1 simply branched at b ordered
points of the projective line and have an extra point with ramification of type c, mod-
ulo the equivalence relation that two such covers fi : Ci → P1 are equivalent if there
exist isomorphisms h : C1 → C2 and γ : P1 → P1 with f2 ◦ h = γ ◦ f1.

There is a natural surjective map

(∗) m : Hd,b,c ×Σb
Πb → Hd,b,c,

given by associating to the cover f : C → P
1 and a set of ordered branch points

{a1, . . . , ab} the cover with its ordered branch points.

Theorem 6.1. With the notations as before and c the conjugacy class of ϕ =
(12)(34) or of ϕ = (123) the Hurwitz space Hd,b,c is irreducible.

Corollary 6.2. The divisor EΛ
3 is irreducible. The divisor EΛ

2 is a twofold
cover of an irreducible Hurwitz space.

We first deduce the corollary from the theorem. With c the type of a 3-cycle,
say (123), and with b = 6k − 2 we have a natural inclusion ν : Hd,b,c → EΛ

3 given as
follows. A point of Hd,b,c corresponds to a cover C2 → P2 of the projective line with
an ordering of the 6k − 2 branch points (which we assume to be indexed by the set
Λc). Then ν sends this point to the point of EΛ

3 corresponding to the admissible cover
X → P = P1 ∪ P2, with P1 containing the marked points pi with i ∈ Λ and X the
curve with C2 over P2, while over P1 we have a union of rational curves attached at the
ramification points of C2 over infinity with the appropriate ramification conditions.
Note that the positions of the two points pi, i ∈ Λ, on P1 do not matter because of
the automorphism group of P1, cf. also Remark 4.2. This is a dominant map since
its image contains the general member of EΛ

3 . Since Hd,b,c is irreducible we conclude
that EΛ

3 is irreducible. Similarly for EΛ
2 , but here we use a map to the Hurwitz space,
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by mapping a generic point of EΛ
2 to the corresponding point of Hd,b,c; but here we

have to take into account the marking of the two ramification points of degree 2 on
C2 lying over the same point. So the map is of degree 2.

Remark 6.3. The degree 2 rational map EΛ
2 → Mg factors through Hd,b,c. We

do not know whether the map EΛ
2 → Hd,b,c is split or not.

Proof. We prove the theorem by showing that the monodromy of pr2 acts transi-
tively on the fibres and this implies that the fibre product Hd,b,c ×Σb

Πb is connected
and by the smoothness it is then irreducible and therefore its imageHd,b,c is irreducible
too.

We choose a point A ∈ Σb and a point of Πb mapping to A under p. That
is, we order the points of A, say A = {a1, . . . , ab}. The points of the fiber µ−1(A)
correspond to the Sd-conjugacy classes of b-tuples [t1, . . . , tb] with ti a transposition
in the symmetric group Sd such that these generate Sd and such that the product
t1 · · · tb has type c.

By fixing a permutation ϕ from the conjugacy class c we can then describe the
fibre µ−1(A) as the quotient

Ξd,b
ϕ /Gϕ ,

where Gϕ ⊂ Sd is the stabilizer of ϕ under conjugation and Ξd,b
ϕ is the set

Ξd,b
ϕ = {[t1, . . . , tb], ti are transpositions generating Sd, t1 · · · tb = ϕ}

on which Gϕ acts by conjugation.
According to [17], Theorem 1, the braid group Bb = π1(Σb, A) acts transitively

on Ξd,b
ϕ . We consider now the two cases, ϕ = (123) and ϕ = (12)(34) and we prove

that in both cases the pure braid group Pb = π1(Πb, {a1, . . . , ab}) acts transitively on
Ξd,b
ϕ . Note that Bb/Pb

∼= Sb.
We work as in [4], proof of Lemma 3.2. We denote by Γi, i = 1, . . . , b − 1,

the standard generators of the braid group Bd. The action of Γi on Ξd,b
ϕ sends

[t1, . . . , ti, ti+1, . . . , tb] to [t1, . . . , ti+1, ti+1titi+1, . . . , tb]. Moreover, Γi interchanges
the points ai and ai+1. We examine now separately the two cases:

Case i: ϕ = (123). We start with the element [t1, . . . , tb] ∈ Ξd,b
ϕ . By the above

transitivity result we can find an element Γ of Bb which sends [t1, . . . , tb] to the
following element of Ξd,b

ϕ :

σ0 = [(13), (12), (14), (14), . . . , (1d− 1), (1d− 1), (1d), . . . , (1d)] ,

where the transpositions (14), . . . , (1d − 1) occur in pairs and the last transposition
(1d) appears b − 2(d − 3) times (which by the Hurwitz-Zeuthen formula is an even
number).

We now consider the elements Γ3
i , i = 1, . . . , b−1. The action by such an element

interchanges ai and ai+1 and so the above set of elements acts transitively on the
permutation group Sb of the indices. On the other hand we observe that it acts
trivially on σ0, because the supports of two consecutive transpositions in σ0 have
a common part: if [(mn), (kl)] denote the ith and (i + 1)th element in σ0, then if
(mn) = (kl) the action of Γi is trivial, and if n = k but n 6= m 6= l then the action of
Γ3
i is given by

[(mn), (nl)] → [(nl), (ml)] → [(ml), (mn)] → [(mn), (nl)] .
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Because of the transitivity of the action of the set Γ3
i , i = 1, . . . , b− 1, on Sb we may

compose Γ with an appropriate sequence of the elements Γ3
i so that the composition

belongs to the pure braid group Pb and the action still sends our b-tuple [t1, . . . , tb] to
the fixed element σ0. This proves that Pb acts transitively on Ξd,b

ϕ , with ϕ = (123).
Case ii): ϕ = (12)(34). We work as before with

σ0 = [(12), (13), (13), (34), (14), (14), . . . , (1d− 1), (1d− 1), (1d), . . . , (1d)] ,

where the last transposition (1d) appears b−2(d−2) times (which is an even number).
This proves that in the two cases the product Hd,b,c ×Σb

Πb is connected.

Proposition 6.4. Each divisor EΛ
j,c as in Proposition 3.1 is irreducible.

Proof. The irreducibility of the divisors EΛ
j,c is proved in a way similar to the

case E3. With d1 = k + 1 − c, b1 = 6k − 3j and ϕ = (1 2 . . . j + 1 − 2c) we define
σ0 = [t1, . . . , t6k−3j ] by taking tν = (1, j + 2 − 2c − ν) for ν = 1, . . . , j − 2c, and
tj−2c+2µ+1 = tj−2c+2µ+2 = (1, j + 2 − 2c + µ) for µ = 0, . . . , k − j + c − 1 and the
remaining tν are equal to (1 2), i.e. σ0 is equal to

[(1, j+1− 2c), . . . , (12), (1, j+2− 2c), (1, j+2− 2c), . . . , (1d1), (1d1), (12), . . . , (12)].

Note that σ0 contains all the transpositions (1k), k = 1, . . . d1 = k + 1 − c, hence it
generates the symmetric group Sd1

. The last transposition (12) appears [6k − 3j]−
[(j− 2c)+ 2(k− j+ c)] times which is the even number 4k− 2j. Hence the product of
the transpositions contained in σ0 is ϕ. With c the type of ϕ, an argument similar to
the case E3 shows that the corresponding Hurwitz space Hd1,b1,c with ordered branch
points is irreducible.

Similarly we show that the Hurwitz spaceHd2,b2,c is irreducible with d2 = j+1−c,
b2 = 3j, and c the type of ϕ = (12 . . . j + 1 − 2c), by defining σ0 = [t1, . . . , t3j ]
with t1, . . . , tj−2c as in the preceding paragraph and tj−2c+2µ+1 = tj−2c+2µ+2 =
(1, j + 2 − 2c + µ) for µ = 0, . . . , c − 1 and by setting tµ = (1 2) for the remaining
indices. The last transposition (12) appears an even number 3j − [(j − 2c) + 2c] = 2j
of times. Therefore the space Hd1,b1,c ×Hd2,b2,c is irreducible.

We now define the inclusion ν : Hd1,b1,c ×Hd2,b2,c → EΛ
j,c as follows: We assume

that the b1 = 6k − 3j marked points of Hd1,b1,c take values in the set Λc and the
b2 = 3j marked points of Hd2,b2,c take values in the set Λ. A point h1 ∈ Hd1,b1,c

(resp. h2 ∈ Hd2,b2,c) corresponds to a curve C1 (resp. C2) of genus 2k − j (resp. j)
with a g1d1

(resp. g1d2
) having simple branching except in one fiber which has a point

p1 (resp. p2) of ramification degree j + 1 − 2c and simple ramification everywhere
else. We then define ν(h1, h2) to be the admissible cover X constructed by the above
data as in Proposition 3.1 i) by joining the curves C1 and C2 at the points p1 and
p2 respectively and attaching rational tails appropriately. The map ν is a dominant
map since its image contains the general member of EΛ

j,c. Since Hd1,b1,c ×Hd2,b2,c is

irreducible we conclude that EΛ
j,c is irreducible.

For the divisor E0 we have a decomposition E0 =
∑

Λ E
Λ
0 with Λ running over

the subsets of {1, . . . , 6k} with 2 elements. We prove that EΛ
0 is irreducible.

Proposition 6.5. The divisor EΛ
0 as in Proposition 3.1 ii) is irreducible.

Proof. Consider the Hurwitz space Hk+1,6k−2 parametrizing isomorphism classes
of (connected) Riemann surfaces of genus 2k − 1 that are degree k + 1 covers of P1

simply branched at 6k−2 ordered points of the projective line. Let CH be the universal
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curve over Hk+1,6k−2. On CH ×Hk+1,6k−2
CH we consider the universal trace curve T ;

the fiber Th of T over a point h ∈ Hk+1,6k−2 is the trace curve {(x, y) ∈ C×C : x+y ≤
γ} corresponding to γ, the g1k+1 associated to h. The curve Th is an irreducible curve
because the g1k+1 has simple branching, see section 5. Therefore T is an irreducible

space. We now define a natural 2 : 1 map ν : T → EΛ
0 as follows. We let the 6k − 2

branch points of C take values in the set Λc. A point h of T corresponds to a curve
C with a g1k+1 as above, say γ, and a couple (p, q) of points of C with γ ≥ p+ q. We
then define ν(h) to be the admissible cover as in Proposition 3.1 ii), with C2 = C and
the points p, q as above. We attach to C2 the rational curves C1 and R1, . . . , Rk−1

as in Proposition 3.1. As in the case of E3 the position of the branch points on P1

does not matter. The map ν is a dominant map since its image contains the general
member of EΛ

0 . Since T is irreducible we conclude that EΛ
0 is irreducible.

7. The degree of π restricted to E3 and E2. We shall denote the image of
the divisor E3 (resp. E2) under the morphism π : H2k,k+1 → M2k by D3 (resp. D2).

We know that E3 decomposes as a union of
(

6k
2

)

irreducible divisors EΛ
3 , with #Λ = 2

and similarly E2 =
∑

ΛE
Λ
2 with

(

6k
2

)

components (cf. Remark 6.3). It follows from the
results of the preceding section that the degree of π : EΛ

3 → D3 (resp. π : EΛ
2 → D2)

is the same as (resp. is twice) the degree of a map Hk+1,6k−2,c → D3 with c the type
of a 3-cycle (resp. of a cycle of type (12)(34)). In fact, the Hurwitz space Hk+1,6k−2,c

can be identified with the Hurwitz space Hk+1,6k−2,3 (resp. Hk+1,6k−2,2+2), that
parametrizes k+1 coverings C → D with D a 6k− 1 pointed curve (D, p1, . . . , p6k−1)
of genus 0 and C a connected smooth curve of genus 2k which has over p1 one point
of triple ramification (resp. two simple ramification points) and is simply branched at
the points p2, . . . , p6k−1 and unramified everywhere else. We know that Hk+1,6k−2,3

(resp. Hk+1,6k−2,2+2) is irreducible and hence its compactification Hk+1,6k−2,3 (resp.
Hk+1,6k−2,2+2) by admissible covers (see [3], Section 5) is irreducible.

Theorem 7.1. The degree of π restricted to E3 is (6k)!/2. The degree of π
restricted to E2 is (6k)!.

In view of the discussion above it suffices to prove that the degree of the map
Hk+1,6k−2,3 → D3 (resp. Hk+1,6k−2,2 → D2) equals (6k− 2)!, in other words that the
degree is 1 modulo the action of S6k−2. Since Hk+1,6k−2,3 is irreducible it suffices to
find an appropriate smooth point of D3 and determine the degree of the fiber over
this point.

For this we consider linear systems g1k+1 on a generic curve of genus 2k − 1 with
6k − 4 simple branch points and one branch point over which there is one triple
ramification point (resp. two double ramification points). We call such a pencil of
degree k + 1 of type (3) (resp. of type (2, 2)).

Recall that according to Harris ([14], Thm 2.1) for a general curve C′ of genus
2k − 1 the number of pencils of degree k + 1 and of type (3) is finite and equals

b(k) = 12
k − 1

k

(

2k

k + 1

)

.

Similarly, by the same result (cf. loc. cit.) for a general C′ of genus 2k − 1 and a
general point p on C′ there are finitely many pencils γ of degree k+1 on C′ with the
property that γ ≥ 2p. Their number equals

a(k) =
1

k

(

2k

k + 1

)

.



THE CLASS OF A HURWITZ DIVISOR 799

Moreover, for a general C′ of genus 2k− 1 and a general point p the number of pairs
(γ, q) with γ a pencil of degree k + 1 and γ ≥ p+ 2q is finite and equals

c(k) = 5
k − 1

k

(

2k

k + 1

)

.

Lemma 7.2. Let C′ be a general curve of genus 2k − 1 and let p be a general
point of C′. Then there exists a point q on C′ such that

1. there exists a unique pencil γ on C′ of degree k+1 and type (3) with γ ≥ p+q;
2. there does not exist a pencil γ′ on C′ of degree k+1 with γ′ ≥ 2p+ q or with

γ′ ≥ p+ 2q.

Proof. Let γi with i = 1, . . . , b(k) be the type (3) pencils of degree k + 1 and

let T3 = ∪
b(k)
i=1 Tγi

be the union of the trace curves associated to the γi. Note that
by Lemma 5.2 each Tγi

is irreducible and contained in C′ × C′ and thus T3 has a
projection τ3 : T3 → C′ to the first factor. We now choose a pair (p, q) in T3 which is
sufficiently general; this means that p is not contained in the image under τ3 of any
multiple point of T3 and p is not contained in a fibre of a γi containing a ramification
point of γi; in other words #τ−1

3 (p) = k b(k).
We set Σp = τ−1

3 (p). The above p is a general point on C′. We consider the
pencils γ′1, . . . , γ

′
a(k) of degree k + 1 on C′ with γ′i ≥ 2p. Let

Σ′
p = {r′ ∈ C′ : γ′i ≥ 2p+ r′ for some 1 ≤ i ≤ a(k) }.

Then by the result of Harris ([14], p. 44) we have #Σ′
p = (k − 1)a(k) and moreover,

if we define

Σ′′
p = {r′′ ∈ C′ : γ′i ≥ p+ 2r′′ for some 1 ≤ i ≤ c(k) }

we have by the shape of a(k), b(k) and c(k) that #Σp > #Σ′
p + #Σ′′

p . Then we
can choose a point q in Σp − (Σ′

p ∪ Σ′′
p) and by taking for γ the unique γi such that

(p, q) ∈ Tγi
the pencil γ and the points p and q satisfy the conditions of our lemma.

Note the similarity of the argument with considerations of Harris in [14], p. 458.
We now work out the case of E3. After completing that case we give the modifi-

cations in the proof to make it work for E2 too.
We now take a generic curve C′ of genus 2k − 1 and a pencil of degree k + 1 of

type (3), say γ, on C′ and a couple of points p, q as in the lemma. Then the nodal
curve C = C′/(p ∼ q) determines a point [C] of Mg with g = 2k and this point lies
on the divisor ∆0.

Proposition 7.3. The set-theoretic fibre of the map π′ : Hk+1,6k−2,3/S6k−2 →
D3 over the point [C] consists of one point.

Proof. We first describe the admissible cover that represents the unique point of
the fibre. It is the admissible cover X → P1 ∪ P2 with P1 ∪ P2 the rational curve
consisting of two copies of P1 intersecting transversally in one point s. Over P2 the
curve X has a component C′ with a covering C′ → P2 determined by γ and the fibre
over s contains p and q. Over P1 the curve X is the union of a rational curve R which
is a double cover of P1 intersecting C′ at the points p and q with no ramification at
these points and having two simple marked branch points and k − 1 rational curves
Ri mapping isomorphically to P1 and intersecting C′ at the remaining k− 1 points of
the fibre over s different from p and q.
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We now analyze the uniqueness. The locus of [C] as constructed above has di-
mension 6k− 5: the curve C′ is generic of genus 2k− 1 so it contributes 6k− 6 to the
dimension and the pair (p, q) is a generic point of the trace curve Tγ in C′ × C′ so it
contributes 1. (Note that p was chosen general on C and that results in finitely many
choices for q.) Since the locus of the admissible covers in Hk+1,6k−2,3 mapping to a
rational curve with more than two components has dimension ≤ 6k − 6 we conclude
that an admissible cover in Hk+1,6k−2,3 mapping to [C] will correspond to a cover of
a rational curve with exactly two components.

Such an admissible cover has by definition a single triple ramification point over
a branch point p1 lying on P1 or on P2 and not on their intersection. In order to map
to [C], it should contain over P2 the curve C′ and over P1 a rational component R
intersecting C′ exactly at the points p, q and other rational components Rj , each of
which intersects C′ at a unique point qj . Since the gonality of the generic curve of
genus 2k − 1 is k + 1 (i.e., the minimum degree of a non-constant map of C′ to P2),
there is no room for other rational components over P2.

We distinguish two cases: (i) p1 ∈ P2; (ii) p1 ∈ P1. In the first case, if p1 ∈ P2

then the map C′ → P2 is of type (3) and by the choice of p and q it coincides with
our γ. Then we find that R → P1 is a 2 : 1 covering and the remaining components
Rj map isomorphically to P1. We thus retrieve the cover X described in the first
paragraph of our proof.

In the second case, if p1 ∈ P1 then C′ → P2 is described by a degree k + 1 pencil
γ′. Then either R or one of the Rj contains a ramification point of degree 3 lying
over p1. If this ramification point lies on R then γ′ has the property that γ′ ≥ 2p+ q
or γ′ ≥ p+ 2q which is excluded by lemma 7.2. If some Rj contains this ramification
point then qj has ramification degree ≥ 3 which contradicts the generality of (p, q).

We now do the E2 case which is similar. For this we need the fact that for a
general curve C′ of genus 2k− 1 the number of pencils on C′ of degree k+1 and type
(2, 2) equals

d(k) = 12
(k − 1)(k − 2)

k

(

2k

k + 1

)

.

This can be calculated as in Harris [14]. We also need an analogue of lemma 7.2.

Lemma 7.4. Let C′ be a general curve of genus 2k − 1 and p a general point of
C′. Then there exists a point q on C′ such that

1. there exists a unique pencil δ on C′ of degree k+1 and type (2, 2) with δ ≥ p+q;
2. there does not exist a pair (δ′, q′) with δ′ a pencil of degree k + 1 and a point

q′ on C′ with δ′ ≥ p+ q + 2q′.

Proof. Let δj with j = 1, . . . , d(k) be the type (2, 2) pencils of degree k+1 and let

T2 = ∪
d(k)
j=1Tδj be the union of the trace curves. We now choose a pair (p, q) ∈ T2 which

is sufficiently general, i.e., p is not contained in the image under the first projection
τ2 : T2 → C′ of any multiple point of T2 and T3 (as defined in lemma 7.2) and p is
not contained in any fibre of a γi (as in lemma 7.2) or a δj containing a ramification
point; this gives #τ−1

2 (p) = k d(k).
We now set Sp = τ−1

2 (p). We let (δ′j , q
′
j) for j = 1, . . . , c(k) be the pairs of pencils

δ′j of degree k + 1 and points q′j on C′ with δ′j ≥ p+ 2q′j . Now we define

S′
p = {q′ ∈ C′ : there exists a j such that δ′j ≥ p+ 2q′j + q′ }.



THE CLASS OF A HURWITZ DIVISOR 801

We have #S′
p = (k − 2)c(k) and we see using the shape of c(k) and d(k) that #Sp >

#S′
p. We can now choose a point q in Sp − S′

p and the unique δj with 1 ≤ j ≤ d(k)
such that (p, q) ∈ Tδj . This finishes the proof of the lemma.

We take a generic curve C′ of genus 2k − 1 with a pencil δ of degree k + 1
and type (2, 2) and a couple (p, q) of points as in lemma 7.4. We get a nodal curve
C = C′/(p ∼ q) and a point [C] on the boundary ∆0 of Mg.

Proposition 7.5. The set-theoretic fibre of the map π′ : Hk+1,6k−2,2/S6k−2 →
D2 over the point [C] consists of one point.

Proof. The decription of the admissible cover representing the unique point is
completely similar to the D3 case. We analyze again the uniqueness. As before
a point in the fibre corresponds to a cover of a rational curve with two irreducible
components P1 and P2. Over P2 we have a cover C′ → P2 and over P1 a cover R → P1

and a number of smooth rational curves Rj mapping with finite degree to P1.
Let p1 be the point over which the ramification of type (2, 2) occurs. If p1 ∈ P2

we find as above that the admissible cover is the one we want. If p1 ∈ P1 then let
r1, r2 be the ramification points of type (2, 2) over p1. We have the following cases:

1. r1, r2 ∈ R;
2. r1 ∈ R, r2 ∈ Rj for some j;
3. r1 ∈ Rj1 and r2 ∈ Rj2 for some j1 6= j2;
4. r1, r2 ∈ Rj for some j.

In case 1) we conclude that R → P1 has degree ≥ 4, hence the sum of the ramification
degrees at p and q is at least 4, contradicting the generality of p and q. In case 2) the
degree Rj → P1 is at least 2, hence the ramification degree at qj with qj = Rj ∩ C

′

is at least 2, contradicting lemma 7.4. The other cases are easy because in case
3) the ramification degrees of qj1 and qj2 are at least 2, contradicting the choice of
(p, q), while in case 4) the ramification degree at qj is at least 4 which contradicts the
generality of C′. Thus we are done in all cases.

In order to prove the Theorem we have to analyze the multiplicity.
Our local analysis of the map π : Hk+1,6k−2,3 → D3 ⊂ Mg over the point [C] is

similar to the one described in [16], pages 76-78 for the case of admissible covers with
simple branching only. For a similar description over Hurwitz schemes of other types,
see [2], Section 3 and [3] p. 46.

We take a point x in the fiber of the covering π : Hk+1,6k−2,3 → D3 over [C].
As we have seen, x corresponds to a covering of the form X defined above - modulo
renumbering of the marked simple branch points - and it is a smooth point of the space
Hk+1,6k−2,3. By the uniqueness we proved above, in a neighborhood of the point [C]
the varietyD3 is the image via the map π of a neighborhood of the point x. We choose
a marking of all branch points by marking points p2, p3 on P1. If σ is the permutation
of S2k−2 interchanging p2 and p3, then σx = x, cf. Remark 4.2. The fixed locus of the
permutation σ in the neighborhood of x is a divisor ∆. The complement of ∆ in the
neighborhood of x corresponds to coverings of smooth curves. Therefore, locally at
[C], the image of ∆ corresponds to the intersection of D3 with the boundary divisor
∆0 of Mg. The map τ : Hk+1,6k−2,3 → Hk+1,6k−2,3/〈σ〉 is locally around x′ = τ(x)
a degree 2 covering with ramification locus ∆, see [16], bottom of p. 76.

As is shown in [16], p. 77, the induced map λ : Hk+1,6k−2,3/〈σ〉 → D3 ⊂ Mg,
has the property that λ∗(∆0) = τ(∆) with multiplicity one. This implies that D3

and ∆0 meet transversally in the neighborhood of [C]. Since [C] is locally a generic
point of the intersection of D3 with ∆0, we conclude that it is a smooth point of D3.
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Moreover, since λ∗(∆0) = τ(∆) with multiplicity one, we find that the ramification
index of x′, which is a generic point, equals 1. Hence the ramification index at the
point x of the map π : Hk+1,6k−2,3 → D3 ⊂ Mg is 2 and this finishes the proof of the
Theorem for the case of E3. The analysis for the E2 case is similar.

8. The calculation of the class. We shall now carry out the calculation of the
class of D2. We use the calculation of the class of D3 due to Harris in [14], p. 466 and
the formula of Kokotov, Korotkin and Zograf in [18]. Harris gives the class of D3 (for
k ≥ 2) as

[D3] = 12
(2k − 3)!

(k + 1)!(k − 2)!



(12k2 + 46k − 8)λ− b0δ0 −

k
∑

j=1

bjδj



 ,

with b0 = 2k2 + 4k− 1 and for bj = 2j(2k− j)(3k+2) for j > 0. We can rewrite this
as

[D3] =
3

2k − 1
N



2(k + 4)(6k − 1)λ− b0δ0 −

k
∑

j=1

bjδj



 ,

where N =
(

2k
k+1

)

/k =
(

2k
k

)

/(k + 1).
In their paper [18] Kokotov, Korotkin and Zograf give a formula for the (first

Chern) class λH of the Hodge bundle on Hg,d (which is the pull back of the class λ
of the Hodge bundle on Mg). In our case their formula (Thm. 3, formula (3.13), see
also [11], where there is an unfortunate omission of a summation symbol for the index
µ) reads

λH =

3k
∑

b2

∑

µ

m(µ)

[

b2(6k − b2)

8(6k − 1)
−

1

12
(k + 1−

∑

i

1

mi
)

]

δ(b2)µ ,

where b2 is the number of marked point on P2, µ = (mi)’s are the ramifications over

s, δ
(b2)
µ the corresponding boundary divisor and m(µ) is the least common multiple

of the mi’s; cf. the proof of Thm. 3 of loc. cit. Here we work on the stack, cf. [11].
We apply the push forward π∗ to this formula and plug in the result of Harris.

For E0 we have k + 1 points over s of ramification degree mi = 1, hence m(µ) = 1.
For E2 we have k− 3 points of ramification degree 1 and two of ramification degree 2,
so m(µ) = 2. Similarly, for E3 we have k − 2 points of ramification degree 1 and one
of ramification degree 3, so m(µ) = 3. For Ej,c we have k − j + 2c points over s with
ramifications degree 1 and one of ramification degree j+1− 2c, so m(µ) = j+1− 2c.
This yields:

Proposition 8.1. π∗(λH) of the Hodge class λH is given by

(3k − 1)

2(6k − 1)
π∗[E0]−

1

2(6k − 1)
π∗[E2] +

3k − 5

6(6k − 1)
π∗[E3]+

k
∑

j=1

[j/2]
∑

c=0

(j + 1− 2c)

[

(6k − 3j)(3j)

8(6k − 1)
−

1

12
(j + 1− 2c−

1

j + 1− 2c
)

]

π∗[Ej , c].

Here we have to interpret the classes π∗[E0], . . . , π∗[Ej,c] in the right way since
we are working on the stack Mg. By applying π∗ with its degree deg(π) = (6k)!N
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and using Proposition 3.3 and Theorem 7.1 we find

π∗(λH) = deg(π)λM, π∗[E0] =
deg(π)

2
δ0.

Indeed, a generic admissible cover of E0 admits no non-trivial automorphisms fixing
the marked points. (That the degree of π restricted to E0 is deg(π)/2 is due to the
fact that such an admissible cover allows an involution that does not fix the marked
points.) Similarly, we find π∗[E3] =

(6k)!
2 [D3], with the class of D3 given above. Along

E2 an admissible cover has a Z/2Z×Z/2Z in its automorphism group preserving the
marked points with the two generators corresponding to the covering involutions on
S1 and S2 over P1 (see Prop. 3.1, i). But locally along E2 the infinitesimal defomation
space has a normal crossing singularity, cf. Lemma 4.3. We go to the normalization
and interpret the formula of [18] there in the stack sense (cf. the remarks at the end
of §(3.1) of [18] and the discussion in [11]). Over E2 this is a 2 : 1 cover. So taking
into account these factors 2/22 of 2 we find π∗[E2] = (6k)! [D2]/2.

From Proposition 3.3 we get for j > 0

π∗[Ej,c] =
(6k)! (j + 1− 2c)2

(j + 1)(2k − j + 1)

(

j + 1

c

)(

2k − j + 1

k + 1− c

)

δj.

We put for i ∈ Z≥1

Ai(j) =
1

(j + 1)(2k + 1− j)

[j/2]
∑

c=0

(j + 1− 2c)i
(

j + 1

c

)(

2k − j + 1

k + 1− c

)

.

Then with N =
(

2k
k+1

)

/k we have

A2(j) = N, A4(j) =

(

1 +
3j(2k − j)

2k − 1

)

N,

while for A3(j) we get if j is even

A3(j) =
j(2k − j) + k

k(k + 1)

(

j

[j/2]

)(

2k − j

k − [j/2]

)

and for j odd

A3(j) =
(j + 1)(2k − j)

k(k + 1)

(

j + 1

1 + [j/2]

)(

2k − j − 1

k − 1− [j/2]

)

.

By multiplying by 2(6k− 1) and bringing π∗[E2] to the other side in the equation
for π∗(λH) in Proposition 8.1 we get

π∗[E2] =− 2(6k − 1)π∗(λH) +
3k − 5

3
π∗[E3] + (3k − 1)π∗[E0]+

(6k)!

k
∑

j=1

[

(6k − 3j)(3j)

4
A3(j) +

6k − 1

6
(−A4(j) +A2(j))

]

δj .

Dividing by (6k)! we find

[D2]/2 =− 2(6k − 1)NλM +
3k − 5

6
[D3] +

3k − 1

2
Nδ0+

k
∑

j=1

[

(6k − 3j)(3j)

4
A3(j) +

6k − 1

6
(−A4(j) +A2(j))

]

δj .
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Only the first two terms on the right hand side contribute to the coefficient of λM
and the contribution is

−2(6k − 1)NλM +
3k − 5

6

3

2k − 1
N2(k + 4)(6k − 1)λM =

3N
6k − 1

2k − 1
(k − 2)(k + 3)λM .

The coefficient of δ0 comes from the second and third term on the right hand side. It
is

−
3k − 5

6

3

2k − 1
N(2k2 + 4k − 1) + (3k − 1)

N

2
= −

N

2k − 1
(k − 2)(3k2 + 4k − 1).

The coefficient of δj , j ≥ 1, comes from the second and fourth term on the right hand
side. We get

−
1

2
N

3k − 5

2k − 1
2j(2k − j)(3k + 2) +

9(2k − j)j

4
A3(j)−N

(6k − 1)j(2k − j)

2(2k − 1)
=

−
3Nj(2k − j)

2(2k − 1)
(6k2 − 4k − 7) +

9

4
j(2k − j)A3(j).

This concludes the proof of the theorem.

9. A final check. Our main result gives zero for k = 2, as it should. It also
satisfies the relation cλ + 12 c0 − c1 = 0 given in Lemma 3.1 of [14]. But these
checks using homogeneous linear relations leave the possibility of common factor in
the coefficients cλ, c0, . . . , ck. To rule this out we consider a test curve in Mg. Take a
general curve B of genus g − 1, a general point p ∈ B and identify in the blow-up of
B ×B at (p, p) the diagonal with the section {p}×B. This gives a family π : S → B
of one-nodal curves with

B · λ = 0, B · δ0 = 2− 2g, B · δ1 = 1, and B · δj = 0 for j ≥ 2.

Lemma 9.1. We have B ·D2 = (k − 1)(k − 2)(12 k + 10)N .

Proof. We have B ·D2 = Sp+2S′
p with Sp and S′

p defined in the proof of Lemma
7.4. The argument is similar to that of [14], Lemma 3.9. Set-theoretically we have
D2 ·B = Sp∪S

′
p. The argument for the multiplicity of Sp is similar to that of loc. cit.

As to the multiplicity of S′
p, an analysis shows that it equals 2 due to the involution

involved here. In the proof of Lemma 7.4 we gave the cardinalities: #Sp = k d(k) and
#S′

p = (k − 2) c(k). This proves the Lemma.

On the other hand using the intersection numbers of B with λ and the δi we get
by our Theorem

B ·D2 = −2(2k − 1)c0 + c1 = 2(k − 1)(k − 2)(6k + 5)N ,

in perfect agreement with the Lemma 9.1.

As a second type of check, one can use the calculations above to calculate the
class of the ramification divisor D on the universal curve.

Recall that the Picard group of the universal curve is generated by classes λ, ω,
δ′0, and δ

′
i for i = 1, . . . , g−1. With π : C̄g → Mg the natural map we have π∗(δ0) = δ′0
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and π∗(δi) = δ′i + δ′g−i fir i = 1, . . . , g − 1. Since the generic curve of genus g = 2k

carries finitely many g1k+1’s we can consider the divisor D on C̄g that is the closure of
the locus of all ramification points of the g1k+1’s on the general curve C. The generic
degree of the restriction of π to D is 6kN . The calculation of the class of D reduces
to a calculation of

π∗(Dω) =
1

(6k)!
p∗(

1

2
q∗ψ − 2E2 − 2E3) .

One finds the following class.

Proposition 9.2. The class of D in the Picard group of C̄g is

[D] = aω +
a

6k
(6(k + 2)λ− (k + 1)δ′0)− . . .

where a = 3k N
2k−1 and . . . refers to an expression

∑g−1
i=1 ciδ

′
i.

Note that the expression (a/6k)(6(k+2)λ−(k+1)δ0)−. . . is exactly the expression
for the class of the (k +1)-gonal locus in M2k+1. The class of D has been calculated
by Logan and by Farkas, [9], Thm. 4.9, and our result agrees with this.
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