FANO THREEFOLDS OF GENUS 6*

DMITRY LOGACHEV ${ }^{\dagger}$

Abstract

Ideas and methods of Clemens C. H., Griffiths Ph. The intermediate Jacobian of a cubic threefold are applied to a Fano threefold X of genus $6-$ intersection of $G(2,5) \subset P^{9}$ with P^{7} and a quadric. Main results: 1. The Fano surface $F(X)$ of X is smooth and irreducible. Hodge numbers and some other invariants of $F(X)$ are calculated. 2. Tangent bundle theorem for X is proved, and its geometric interpretation is given. It is shown that $F(X)$ defines X uniquely. 3. The Abel-Jacobi map $\Phi: \operatorname{Alb} F(X) \rightarrow J^{3}(X)$ is an isogeny. 4. As a necessary step of calculation of $h^{1,0}(F(X))$ we describe a special intersection of 3 quadrics in P^{6} (having 1 double point) whose Hesse curve is a smooth plane curve of degree 6 . 5. im $\Phi(F(X)) \subset J^{3}(X)$ is algebraically equivalent to $\frac{2 \Theta^{8}}{8!}$ where $\Theta \subset J^{3}(X)$ is a Poincaré divisor (a sketch of the proof).

Key words. Fano threefolds, Fano surfaces, middle Jacobian, tangent bundle theorem, global Torelli theorem.

AMS subject classifications. Primary 14J30, 14J45; Secondary 14J25, 14C30.
0. Introduction - statement of results. The main object of the present paper is a Fano threefold X of genus 6 of the principal series which is an intersection of the Grassmannian variety $G(2,5) \subset P^{9}$ with P^{7} and a quadric. The surface that parametrizes conics on X is called its Fano surface and is denoted by $F(X)$. The middle Jacobian of X is denoted by $J^{3}(X)$. We investigate the Abel - Jacobi map $\Phi: F(X) \rightarrow J^{3}(X)$. This investigation is the main component of solution of problems of rationality and of global Torelly theorem for X.

Sections 1 and 2 are a part of introduction. Section 1 contains a definition and the main properties of intermediate Jacobian of a variety, and of an Abel - Jacobi map. Section 2 contains a definition of Fano threefolds, and the main steps of proofs of non-rationality of a cubic threefold and of a two-sheeted covering of P^{3} ramified at a quartic. This justifies the subject of the present paper.

Other sections contain new results. In Sections 3 and 4 we find some simple properties of $F(X)$, calculate some of its invariants and prove the tangent bundle theorem. Namely, let V be a vector space of dimension $5, G=G(2, V)$ a Grassmann variety, it is included into $P\left(\lambda^{2}(V)\right)$ via Plücker embedding. Let H_{1}, H_{2} be hyperplanes in $P\left(\lambda^{2}(V)\right)$ and Ω a quadric in $P\left(\lambda^{2}(V)\right)$ such that $X=G \cap H_{1} \cap H_{2} \cap \Omega$ is a smooth threefold. X is a Fano threefold of the principal series that will be studied in the present paper. We consider only those X that satisfy some conditions (3.6), (3.7) (which are fulfilled for a generic X), although most likely all results of the paper are true for all X. Fano surface $F_{c}=F_{c}(X)$ is a set of conics on X.

Main results of Section 3 are the following:

[^0]Proposition 0.1. F_{c} is a smooth surface containing a distinguished point c_{Ω} and a distinguished straight line $\left.l_{2}\left(c_{\Omega} \notin l_{2}\right)\right)$. Let $r_{F}: F \rightarrow F_{c}$ be the blowing up of F_{c} at c_{Ω} and $l_{1}=r_{F}^{-1}\left(c_{\Omega}\right)$. There exists an involution i_{F} on F without stable points such that $\left.i_{F}\right|_{l_{1}}: l_{1} \rightarrow l_{2}$ is an isomorphism. We denote a two-sheeted covering that corresponds to i_{F} by $p_{F}: F \rightarrow F_{0}$, and we denote $l=p_{F}\left(l_{1}\right) . l_{1}$ and l_{2} are exceptional lines on F, i.e. there are blowings down maps $r: F \rightarrow F_{m}$ (resp. $r_{0}: F_{0} \rightarrow F_{0 m}$) that send lines $l_{1} \cup l_{2}$ (resp. l) to points $c_{\Omega} \cup c_{\Omega}^{\prime}$ (resp. $c_{0 \Omega}$), as well as an involution map $i_{F_{m}}: F_{m} \rightarrow F_{m}$ and the corresponding two-sheeted covering $p_{F_{m}}: F_{m} \rightarrow F_{0 m}$, so we have a commutative diagram:

We denote $Z=P_{P\left(V^{*}\right)}(O \oplus O(1))$, there are projections $\eta: Z \rightarrow P\left(V^{*}\right)$ and $r_{Z}: Z \rightarrow P^{5}$ where r_{Z} is the blowing up map of a point $t \in P^{5}$.

Proposition 0.2. There are canonical inclusions $\bar{\phi}: F_{0} \hookrightarrow Z, \bar{\phi}_{m}: F_{0 m} \hookrightarrow P^{5}$ making the following diagram commutative (the vertical maps are r_{0}, r_{Z}):

such that $\bar{\phi}_{m}\left(c_{0 \Omega}\right)=t$. Further, P^{5} can be identified with a space which is dual to the space of quadrics in P^{7} which contain X. The point $t \in P^{5}$ corresponds to a hyperplane of quadrics which contain $G \cap H_{1} \cap H_{2}$.

Proposition 0.3. There exists a locally free sheaf M of rank 4 on $P\left(V^{*}\right)$ and a bundle of quadrics $O_{\eta}(-1) \rightarrow S^{2}\left(\eta^{*}\left(M^{*}\right)\right)$ on Z such that $F_{0} \hookrightarrow Z$ is its rank 2 determinantal variety.

Proposition 0.4. Let $\sigma_{m} \in \operatorname{Pic} F_{0 m}$ and $\sigma=r^{*}\left(\sigma_{m}\right) \in \operatorname{Pic} F_{0}$ are sheaves of order 2 that correspond to two-sheeted coverings $p_{F_{m}}, p_{F}$ respectively. There is an explicit formula on F_{0} for σ (see (3.8)). The canonical sheaf of $F_{0 m}$ (resp. F_{m}) is $\omega_{F_{0} m}=\bar{\phi}_{m}^{*}\left(O_{P^{5}}(3)\right) \otimes \sigma_{m}\left(\right.$ resp. $\left.\omega_{F_{m}}=p_{F_{m}}^{*}\left(\bar{\phi}_{m}^{*}\left(O_{P^{5}}(3)\right)\right)\right)$.

Proposition 0.5. $\operatorname{deg} \bar{\phi}_{m}\left(F_{0 m}\right)=40, c_{1}\left(\Omega_{F_{m}}\right)^{2}=720, c_{2}\left(\Omega_{F_{m}}\right)=384$. Taking into consideration that $h^{0,0}(F)=h^{0,0}\left(F_{0}\right)=1$ and that $h^{1,0}(F)=10, h^{1,0}\left(F_{0}\right)=0$ (see Theorem 0.13) we get the following table of Hodge numbers $h^{i, j}\left(F_{m}\right)$:

1	10	101
10	220	10
101	10	1

and their decomposition on $i_{F_{m}}$-invariant part $h^{i, j}\left(F_{m}\right)^{+}=h^{i, j}\left(F_{0 m}\right)$:

1	0	45
0	100	0
45	0	1

and on $i_{F_{m}}$-antiinvariant part $h^{i, j}\left(F_{m}\right)^{-}=h^{i}\left(F_{0 m}, \lambda^{j} \Omega_{F_{0 m}} \otimes \sigma_{m}\right)$:

0	10	56
10	120	10
56	10	0

Proposition 0.9. A conic c on X and a conic $i_{F}(c)$ which is involutory to c, meet at 2 (possibly coinciding) points $\gamma_{1}(c), \gamma_{2}(c)$. We define a surface $W=$ $\cup_{c \in F}\left(\gamma_{1}(c) \cup \gamma_{2}(c)\right)$. Then for a generic point $x \in W$ there exists only one (up to i_{F}) conic c such that $x \in\left\{\gamma_{1}(c), \gamma_{2}(c)\right\}$.

Proposition 0.10. $O_{X}(W)=\left.O_{P^{7}}(21)\right|_{X}$. There are 39 conics passing through a fixed generic point on X.

Remark 0.11. 0.4 - 0.8 remain true for a Fano surface $F\left(X^{\prime}\right)$ of $X^{\prime}-$ a twosheeted covering of P^{3} ramified at a quartic W, while 0.9 and 0.10 are not true for X^{\prime}. The end of Section 3 contains a description of a special Fano threefold of genus 6 defined in [1] - a two-sheeted covering of a section of G by 3 hyperplanes ramified at an intersection with a quadric - whose properties are similar to the ones of X^{\prime}.

Section 4 of the present paper contains a proof of the tangent bundle theorem for $F(X)$. Let us give the necessary definitions. There exists a locally free sheaf $\tau_{2, M}$ of rank 2 on F such that for $c \in F \quad P\left(\tau_{2, M}(c)\right)$ is the linear envelope of $\gamma_{1}(c), \gamma_{2}(c)$. Let $i: l_{1} \cup l_{2} \rightarrow F$ be the natural inclusion.

Theorem 0.12. (Tangent bundle theorem). There exists an exact sequence of sheaves on F :

$$
0 \rightarrow \tau_{2, M}^{*} \rightarrow r^{*}\left(\Omega_{F_{m}}\right) \rightarrow i_{*}\left(2 O_{l_{1} \cup l_{2}}\right) \rightarrow 0
$$

The main resilt of Section 6 is a the following
Theorem 0.13. $h^{1,0}(F)=10, h^{1,0}\left(F_{0}\right)=0, h^{0,0}(F)=1, h^{0,0}\left(F_{0}\right)=1$.
The method of the proof is to consider a degeneration of X in a family of Fano threefolds $f_{X}: X_{4} \rightarrow \Delta$ whose base Δ is a complex analytic neighbourhood of 0 . A generic fibre of f_{X} is a smooth Fano threefold, a special fibre $X_{0}=f_{X}^{-1}(0)$ has one double point. X_{0} is birationally equivalent to a special intersection of 3 quadrics in P^{6} denoted by X_{0}^{\prime}.

Let us consider main objects related to a generic intersection of 3 quadrics in P^{n-1} (denoted by X_{8}^{n-4}) for an odd $n([28],[47]$ for any $n,[21],[50]$ for $n=7)$. Namely, attached to X_{8}^{n-4} is a Hesse curve H_{n} which is a plane curve of degree n, and its two-sheeted non-ramified covering $p_{H_{n}}: \hat{H}_{n} \rightarrow H_{n}$. We define $S=S\left(p_{H_{n}}\right)$ as a connected component of the set of effective divisors of degree n on \hat{H}_{n} such that $d \in S \Longleftrightarrow O_{H_{n}}\left(p_{H_{n *}}(d)\right)=\left.O_{P^{2}}(1)\right|_{H_{n}}$. We define a Fano surface $F\left(X_{8}^{n-4}\right)$ as a set of $\frac{n-5}{2}$-dimensional quadrics on X_{8}^{n-4}. Then:
(1) There exists an isomorphism $\operatorname{Pr} \hat{H}_{n} / H_{n} \rightarrow J^{n-4}\left(X_{8}^{n-4}\right)$ ([21]), where Pr is the Prym variety;
(2) There exists an isogeny Alb $S \rightarrow \operatorname{Pr} \hat{H}_{n} / H_{n}([50])$;
(3) There exists an isomorphism $F\left(X_{8}^{n-4}\right) \rightarrow S$ ([47]).

Section 5 contains a proof of the following
Theorem 0.14 . An analog of a Hesse curve for X_{0}^{\prime} is a smooth plane curve H_{6} of degree 6 . Sing $\left(F\left(X_{0}\right)\right)$ is a double curve which is isomorphic to H_{6}. Analogs of the above (1) - (3) are true for X_{0}^{\prime} after replacement of $F\left(X_{0}\right)$ and X_{0}^{\prime} by their desingularizations $\widetilde{F\left(X_{0}\right)}$ and \tilde{X}_{0}^{\prime} respectively. Particularly, $h^{1,0}\left(\widetilde{F\left(X_{0}\right)}\right)=\operatorname{dim} \operatorname{Pr}\left(\hat{H}^{6} / H^{6}\right)=$ 9 .

To finish a proof of Theorem 0.13, we use a Clemens - Schmidt exact sequence ([40]) for a family $f_{F}: F_{3} \rightarrow \Delta$ whose fibres are Fano surfaces of fibres of f_{X}.

The next result of Section 6 is
Theorem 0.15. Abel - Jacobi map $\Phi: \operatorname{Alb} F(X) \rightarrow J^{3}(X)$ is an isogeny.
Finally, a sketch of a proof of the following theorem is given:
THEOREM 0.16. $\Phi(F) \subset J^{3}(X)$ is algebraically equivalent to $\frac{2 \Theta^{8}}{8!}$ where $\Theta \subset$ $J^{3}(X)$ is a Poincaré divisor.

The idea of the proof is the following. A result of Beauville ([28]) implies that an analog of this result is true for the image of $S\left(p_{H_{6}}\right)$ in $\operatorname{Pr} \hat{H}^{6} / H^{6}$ (i.e. that it is equivalent to $\frac{2 \Theta^{7}}{7!}$. Investigation of topology of degeneration of abelian varieties given in [25], [31], permits to deduce (0.16) from this property.

Section 7 contains proofs of 2 theorems:
Theorem 0.17 . (Geometric interpretation of the tangent bundle theorem). Let us denote $V_{10}=H^{0}\left(F, \Omega_{F}\right)^{*}$, and let $B_{10}: F_{m} \rightarrow G\left(2, V_{10}\right)$ be a map defined by $\Omega_{F_{m}}$. Let $B_{8}: F \rightarrow G\left(2, V_{8}\right)$ be a map defined as follows: $B_{8}(f)=<\gamma_{1}(f), \gamma_{2}(f)>$ (here $\left.V_{8}=H_{1} \cap H_{2} \subset \lambda^{2}(V)\right)$. Then there exists a natural projection $p_{10,8}: V_{10} \rightarrow V_{8}$ such that

$$
B_{8}=G\left(2, p_{10,8}\right) \circ B_{10} \circ r
$$

(recall that $r: F \rightarrow F_{m}$ is a blowing down map). If B_{10} is regular at $c_{0 \Omega} \in F_{m}$ then $p_{10,8}$ is a projection from a plane $B_{10}\left(c_{0 \Omega}\right) \subset V_{10}$.

Theorem 0.18 . Let X satisfies the property: B_{10} is regular at $c_{\Omega} \in F_{m}$. Then, if for another Fano threefold X^{\prime} of the same type we have $F_{c}(X)=F_{c}\left(X^{\prime}\right)$ then $X=X^{\prime}$.

The proof of this theorem is based on the above geometric interpretation of the tangent bundle theorem that permits to recover uniquely a map $B_{8}: F \rightarrow G\left(2, V_{8}\right)$ by a given $F_{c}(X)$, and then to recover uniquely X by B_{8}.

1. Introduction - Intermediate Jacobian of algebraic varieties and Abel - Jacobi map. Let Y be a smooth n-dimensional algebraic variety over \mathbb{C}. We consider the Hodge decomposition of its Betti cohomology of an odd dimension k :

$$
H^{k}(Y, \mathbb{C})=\sum_{i+j=k} H^{i, j}(Y, \mathbb{C})
$$

and we denote

$$
\begin{aligned}
& H^{+}=H^{k}(Y, \mathbb{C})^{+}=\sum_{i+j=k, i>j} H^{i, j}(Y, \mathbb{C}) \\
& H^{-}=H^{k}(Y, \mathbb{C})^{-}=\sum_{i+j=k, i<j} H^{i, j}(Y, \mathbb{C})
\end{aligned}
$$

so we have

$$
\begin{equation*}
H^{+}=\overline{H^{-}} ; \quad H^{+} \cap H^{-}=0 \tag{1.1}
\end{equation*}
$$

(1.1) implies that the image of $H^{k}(Y, \mathbb{Z})$ in H^{-}under the projection along H^{+}is a lattice. A complex torus $H^{k}(Y, \mathbb{C})^{-} / \operatorname{im} H^{k}(Y, \mathbb{Z})$ is called the k-th intermediate Jacobian of Y, it is denoted by $J^{k}(Y)$. For $k=n$ it is called also the middle Jacobian.

To define a structure of a polarized abelian variety on a complex torus V / R, it is necessary to define an hermitian form H on V satisfying conditions:
(i) H is positively defined;
(ii) im H restricted on R takes integer values.

There exists a Hodge real bilinear form Q on $H^{k}(Y, \mathbb{C})$ (see, for example, [39]) which is defined (for $k \leq n$) as follows:

$$
Q(\xi, \eta)=\xi \wedge \eta \wedge L^{n-k} \in H^{2 n}(Y, \mathbb{C})
$$

Here $H^{2 n}(Y, \mathbb{C})$ is identified with $\mathbb{C}, L \in H^{1,1}(Y, \mathbb{C}) \cap H^{2}(Y, \mathbb{Z})$ is the fundamental class of a hyperplane section of Y or, which is the same, the cohomology class that corresponds to a Kähler form on Y. Now we define H on H^{-}as follows:

$$
H(\xi, \eta)=i Q(\xi, \bar{\eta})
$$

H is hermitian, because Q is skew symmetric on odd-dimensional cohomology. A map

$$
\wedge L^{n-k}: H^{k}(Y, \mathbb{Z}) \rightarrow H^{2 n-k}(Y, \mathbb{Z})
$$

is an inclusion, and a pairing $H^{k}(Y, \mathbb{Z}) \otimes H^{2 n-k}(Y, \mathbb{Z}) \rightarrow \mathbb{Z}$ is unimodular, according a Poincaré theorem. This means that (ii) is satisfied for H, and moreover if $\wedge L^{n-k}$ is an isomorphism then $B(H):=\operatorname{im} H$ is unimodular. Nevertheless, (i) is not satisfied in general. We denote $k=2 l+1$. Hodge - Riemann bilinear relations show that a sufficient condition for $J^{k}(Y)$ to be an abelian variety is the following: $H^{-}=$ $H^{l, l+1}(Y, \mathbb{C})$ and $H^{l-1, l}(Y, \mathbb{C})=0$ (i.e. all elements of $H^{l, l+1}(Y, \mathbb{C})$ are primitive). These conditions are always true for $k=1$, and $J^{1}(Y)=\operatorname{Pic}{ }^{0}(Y)$.

For $k=n \quad \wedge L^{n-k}$ is an identical operator, hence $B(H)$ is unimodular. Complex torus V / R having an hermitian form H on V satisfying (ii) such that $B(H)$ is unimodular, is called a principal torus. So, a middle Jacobian $J^{n}(X)$ is a principal torus (Griffiths, [38]).

For a principal torus T (like for principally polarized abelian varieties) there exists a notion of a dual torus which is isomorphic to T. For $J^{n}(Y)=H^{-} / \mathrm{im} H^{n}(Y, \mathbb{Z})$ the dual torus is $\left(H^{+}\right)^{*} / \mathrm{im} H_{n}(Y, \mathbb{Z})$. This is a convenient way to define an Abel - Jacobi map (it is possible to define it for all $J^{k}(Y)$ without consideration of the dual torus, see for example [42], but we do not need it).

Let F be a family of l-dimensional algebraic cycles on Y. Abel - Jacobi map $\Phi: F \rightarrow J^{n}(Y)\left(\right.$ or $\left.\Phi: \operatorname{Alb} F \rightarrow J^{n}(Y)\right)$ is a generalization for $n \geq 1$ of a map $Y \rightarrow \operatorname{Alb} Y$ for $n=1$. A family of cycles F is defined by its graph $\Gamma_{F} \stackrel{i}{\hookrightarrow} F \times Y$ such
that for $f \in F\left(p_{F} \circ i\right)^{-1}(f)$ is a cycle that corresponds to f, here p_{F} is a projection from $F \times Y$ to F. Then there are cylinder maps

$$
\begin{array}{cccc}
\Phi_{\mathbb{Z}}: H_{1}(F, \mathbb{Z}) & \rightarrow H_{n}(Y, \mathbb{Z}) \\
\Phi_{\mathbb{C}}: \quad H^{1}(F, \mathbb{C})^{*} & \rightarrow & H^{n}(Y, \mathbb{C})^{*} \\
\| & & \| \\
H_{1}(F, \mathbb{C}) & \rightarrow & H_{n}(Y, \mathbb{C})
\end{array}
$$

Since F is an algebraic family, $\Phi_{\mathbb{C}}$ behaves good with respect to the Hodge decomposition:

$$
\Phi_{\mathbb{C}}\left(H^{i, j}(F, \mathbb{C})^{*}\right) \subset H^{i+l, j+l}(Y, \mathbb{C})^{*}
$$

For $(i, j)=(1,0)$ we have $\Phi_{\mathbb{C}}\left(H^{1,0}(F, \mathbb{C})^{*}\right) \subset H^{l+1, l}(Y, \mathbb{C})^{*}$ and hence $\Phi_{\mathbb{C}}$ and $\Phi_{\mathbb{Z}}$ define a map $\Phi: \operatorname{Alb} F \rightarrow J^{n}(Y)$ which is called the Abel - Jacobi map.

Further we shall consider only the middle Jacobian of threefolds. To have a possibility to distinguish rational and non-rational threefolds we should know what is the behaviour of the Jacobian under the simplest rational maps.

Proposition 1.2. ([32]; see also [20]). Let Y be a threefold and \tilde{Y} be the blowing up of a point (resp. of a curve C) on Y. Then $J^{3}(\tilde{Y})=J^{3}(Y)$ (resp. $\left.J^{3}(\tilde{Y})=J^{3}(Y) \oplus J(C)\right)$.

According Hironaka ([41]) any birational map of algebraic varieties over \mathbb{C} is a composition of blowings up and down. This implies a general theorem which is used to apply the method of middle Jacobian to proofs of non-rationality of threefolds:

Theorem 1.3. ([32]). Middle Jacobian of a rational threefold is an abelian variety which is isomorphic to the direct sum of Jacobians of curves.

To apply this theorem we need to know properties of Jacobians of curves. Here is one of them:

Theorem 1.4. (Andreotti - Mayer criterion, $[24])$. Let (X, Θ) be a principally polarized abelian variety. If (X, Θ) is the Jacobian of a curve C then $\operatorname{Codim}{ }_{X} \operatorname{Sing} \Theta=4$ (resp. 3) if C is not a hyperelliptic curve (resp. if C is a hyperelliptic curve).
2. Introduction - Fano threefolds. A threefold X is called a Fano threefold if its anticanonical sheaf K_{X}^{-1} is ample on X. A survey on Fano threefolds can be found in [2], [3], [16]. According a Kodaira criterion, a Fano threefold X has an important property $H^{i}\left(X, O_{X}\right)=0$ for $i>0$, i.e. X satisfies an obvious necessary condition of rationality. $J^{3}(X)$ is an abelian variety whose dimension is $h^{2,1}(X)$.

Let us consider the main steps of the proof of Clemens - Griffiths ([32]) of nonrationality and global Torelli theorem of a cubic threefold. Firstly we give some general definitions.

Let $\phi: Y \rightarrow A$ be a map of a k-dimensional variety Y to an abelian variety A. For any $y \in Y$ a map of tangent spaces is defined: $T_{\phi}(y): T_{Y}(y) \rightarrow T_{A}(\phi(y))$. Let ϕ satisfy a property that T_{ϕ} is an inclusion at a generic point. Then there exists a Gauss map which is a rational map $G(\phi): Y \rightarrow G\left(k, T_{A}(0)\right)$ where $G\left(k, T_{A}(0)\right)$ is the Grassmann variety. The Gauss map is defined as follows. For $y \in Y \quad T_{\phi}(y)\left(T_{Y}(y)\right)$ is an element of $G\left(k, T_{A}(\phi(y))\right)$. The group law on an abelian variety defines a canonical isomorphism of tangent spaces at any its points, and hence an isomorphism $G\left(k, T_{A}(\phi(y))\right) \rightarrow$
$G\left(k, T_{A}(0)\right)$. An image of the above element under this isomorphism is the desired element $G(\phi)(y)$.

Let $\Phi: Y \rightarrow$ Alb Y be the Albanese map. If its Gauss map exists then it coincides with the map $Y \rightarrow G\left(k, H^{0}\left(Y, \Omega_{Y}\right)^{*}\right)$ associated with the sheaf $\Omega_{Y}\left(\right.$ since $T_{\text {Alb }}{ }^{(0)}$ is canonically isomorphic to $\left.H^{0}\left(Y, \Omega_{Y}\right)\right)$.

Let now V be a vector space of dimension 5 and $X \subset P(V)$ a cubic threefold. By definition, its Fano surface $F=F(X)$ is a set of straight lines on X. It is a subvariety of $G(2, V)$, we denote the corresponding inclusion $F \rightarrow G(2, V)$ by i_{F}.

Theorem 2.1. $\operatorname{dim} \operatorname{Alb} F=h^{1,0}(F)=5$.
A proof of this theorem given in [32] uses a technique of degeneration of X to a threefold X_{0} having one double point x_{0}. A set of straight lines on X_{0} which contain x_{0} is a smooth curve D_{0} on $F_{0}=F\left(X_{0}\right)$; it is easy to calculate that its genus is 4 and that Sing $F_{0}=D_{0}$. The tangent cone to X_{0} at x_{0} has 2 rulings. This implies: if $r: \tilde{F}_{0} \rightarrow F_{0}$ is a desingularization of F_{0} then $r^{-1}\left(D_{0}\right)=D_{1} \cup D_{2}$ is a pair of curves which are isomorphic to D_{0}. Further, we have: $\tilde{F}_{0}=S^{2}\left(D_{0}\right), h^{1,0}\left(\tilde{F}_{0}\right)=$ $h^{1,0}\left(S^{2}\left(D_{0}\right)\right)=g\left(D_{0}\right)=4$. Finally, degeneration theory for X and F implies that $h^{1,0}(F)=h^{1,0}\left(\tilde{F}_{0}\right)+1=5$. The situation for the Fano threefolds considered in the present paper is the same (see Proposition 5.12).

Theorem 2.1 implies the following
Corollary 2.2. Abel - Jacobi map $\Phi: \operatorname{Alb} F \rightarrow J^{3}(X)$ is an isogeny.
Really, Φ is an isomorphism, but we do not need it.
The next step is a proof of the tangent bundle theorem for F. It establishes a connection between Ω_{F} (or T_{F}) and a sheaf defined on X "geometrically". For the case of a cubic threefold its statement is very simple:

Theorem 2.3. There is an isomorphism of sheaves on $F: \Omega_{F}=i_{F}^{*}\left(\tau_{2, V}^{*}\right)$.
A proof of this theorem for the Fano surface of a cubic threefold is also very easy (comparatively to proofs of analogous theorems for other Fano threefolds). The main idea of the proof is a calculation of T_{F} by means of deformation theory.

Theorems 2.1 and 2.3 imply
Corollary 2.4. (Geometric interpretation of the tangent bundle theorem). There exists an isomorphism $H^{0}\left(F, \Omega_{F}\right)^{*} \rightarrow V$ such that the canonical map $F \rightarrow$ $G\left(2, H^{0}\left(F, \Omega_{F}\right)^{*}\right)$ coincides with the inclusion $i_{F}: F \rightarrow G(2, V)$.

Corollaries 2.2 and 2.4 imply that the Gauss map of Φ (i.e. a map $G(\Phi): F \rightarrow$ $\left.T_{J^{3}(X)}(0)\right)$ coincides with i_{F}.

Theorem 2.5. (Analog of a Riemann theorem). A set of points of type $\Phi\left(f_{1}\right)-$ $\Phi\left(f_{2}\right)$ where $f_{1}, f_{2} \in F$ is (up to a shift) a Poincaré divisor $\Theta \stackrel{i \Theta}{\hookrightarrow} J^{3}(X)$.

Theorem 2.5 and Corollary 2.4 are used for a description of the Gauss map of i_{Θ}, i.e. a $\operatorname{map} G\left(i_{\Theta}\right): \Theta \rightarrow G(4, V)=P\left(V^{*}\right)$. It is clear that if $f_{1}, f_{2} \in F$ and the corresponding straight lines in X do not meet one another, then (2.4) implies that $G\left(i_{\Theta}\right)\left(\Phi\left(f_{1}\right)-\Phi\left(f_{2}\right)\right)$ is a space $P^{3} \in P\left(V^{*}\right)$ spanned on f_{1}, f_{2} considered as straight lines in $P(V)$. It is possible to prove that if t is an intersection point of f_{1}, f_{2} considered as straight lines in $P(V)$ then $G\left(i_{\Theta}\right)\left(\Phi\left(f_{1}\right)-\Phi\left(f_{2}\right)\right)$ is the tangent space of X at t.

This means that $G\left(i_{\Theta}\right): \Theta \rightarrow G(4, V)=P\left(V^{*}\right)$ is a n-fold covering where $n=\#\left(G\left(i_{\Theta}\right)^{*}\left(P^{3}\right)\right)$ for a $P^{3} \in P\left(V^{*}\right)$ is equal to the number of pairs of non-meeting straight lines on a smooth cubic surface $P^{3} \cap X$. We have $n=216$. This is sufficient to make a conclusion that $J^{3}(X)$ is not a Jacobian of a curve C of genus 5. Really, for $J(C)$ the degree of covering of the Gauss map $G\left(i_{\Theta}\right): \Theta \rightarrow G(4, V)$ is clearly $\binom{8}{4}=70$. Another way to see that $J^{3}(X) \neq J(C)$ is to investigate the ramification divisor of $G\left(i_{\Theta}\right)$. For $J^{3}(X)$ (resp. $\left.J(C)\right)$ it is the set of P^{3} which are tangent to X (resp. to $C)$. Finally, the above recovering of X by ramification divisor of $G\left(i_{\Theta}\right)$ means that the global Torelli theorem is proved for it:

Theorem 2.6. The polarized abelian variety $\left(J^{3}(X), \Theta\right)$ defines X uniquely.
Analogs of results of [32] for cubic threefolds are obtained for the following Fano threefolds:

1. Two-sheeted covering of P^{3} with ramification in a quartic ([11], [12], [14], [49], [51]). Since many properties of X_{10}^{3} - a Fano threefold of genus 6 (the main object of the present paper) are analogous to the ones of a two-sheeted covering of P^{3} with ramification in a quartic, a brief survey of them will be given below.
2. X_{8}^{3} - an intersection of 3 quadrics in P^{6} ([21], [28], [50], [51]). Main theorems concerning X_{8}^{3} are given in Section 5, because they are necessary for a calculation of irregularity of X_{10}^{3}. Here there is no complete analogy: proofs of non-rationality and of global Toreeli theorem for X_{8}^{3} use a fact that $J^{3}\left(X_{8}^{3}\right)$ is a Prym variety. Tangent bundle theorem for X_{8}^{3} is unknown.
3. "Double cone Veronese" $X_{1}^{3}([13])$. Here the situation is more complicated than for other investigated types of Fano varieties. Namely, $F\left(X_{1}^{3}\right)$ is not reduced, and X_{1}^{3} is the only known Fano threefold for which $h^{1,0}\left(F\left(X_{1}^{3}\right)\right) \neq h^{2,1}\left(X_{1}^{3}\right)$ (here we have $\left.h^{1,0}\left(F\left(X_{1}^{3}\right)\right)=2 h^{2,1}\left(X_{1}^{3}\right)\right)$.

We give here main steps and results of a proof of non-rationality of a two-sheeted covering of $P^{3} \subset P\left(V_{4}\right)$ with ramification in a quartic $W \subset P^{3}$, because they are analogs of the results of the present paper. Let $v: P^{3} \rightarrow P^{9}=P\left(S^{2}\left(V_{4}\right)\right)$ be a Veronese map (i.e. defined by the complete linear series $\left.O_{P^{3}}(2)\right)$, t a point in a $P^{10}-P^{9}, K$ a cone over $v\left(P^{3}\right)$ and a vertex $t, \quad p: K \rightarrow v\left(P^{3}\right)$ a projection from t, Ω a quadric in P^{10} such that $t \notin \Omega$. Then "a double $P^{3 "} X=K \cap \Omega$. Without loss of generality we can suppose that P^{9} is the polar hyperplane for Ω with respect to t. Then the ramification quartic $W=v^{-1}\left(\Omega \cap v\left(P^{3}\right)\right)$.

Smoothness of X implies smoothness of W. We consider below only the case when W does not contain straight lines (this restriction is rejected in [15]). It is easy to see that a condition that W does not contain straight lines is analogous to a condition of the lemma 3.7 of the present paper for X_{10}^{3}.

If c is a conic on X then $p(c)$ is a conic on $v\left(P^{3}\right)$ and $v^{-1}(p(c))$ is a straight line in $P\left(V_{4}\right)$ which is tangential to W at 2 points (a bitangent of W). We define a Fano surface $F=F(X)$ of X as a set of conics on X, and we denote a set of bitangents of W in $P\left(V_{4}\right)$ by F_{0}. A map $c \mapsto v^{-1}(p(c))$ is a two-sheeted non-ramified covering $p_{F}: F \rightarrow F_{0}$, we denote the corresponding involution on F by i_{F}. All conics on X are smooth. Involutory conics c and $i_{F}(c)$ meet at 2 points $\gamma_{1}(c), \gamma_{2}(c) \in v(W)$, and $v^{-1}\left(\gamma_{i}(c)\right)$ are points of tangency of $p_{F}(c)$ of W. There are 12 conics passing through a fixed generic point of X and 6 pairs of involutory conics passing through a fixed generic point of $v(W)$.

By definition, F_{0} is included in $G\left(2, V_{4}\right) \subset P^{5}=P\left(\lambda^{2}\left(V_{4}\right)\right)$. It was indicated above (in (0.11)) that (0.4) and (0.5) are true for this inclusion and hence Hodge numbers of F and F_{0} are given in (0.6) - (0.8).

Main theorems for a "double $P^{3 "}$ are the following:
Theorem 2.7. (Tangent bundle theorem). There exists a locally free sheaf τ_{2} on F of rank 2 such that for $c \in F \quad P\left(\tau_{2}(c)\right)$ is a linear envelope of $\gamma_{1}(c), \gamma_{2}(c)$. Then $\Omega_{F}=\tau_{2}^{*}$.

Theorem 2.8. $h^{1,0}(F)=10$. Moreover, the Abel - Jacobi map $\Phi:$ Alb $F \rightarrow$ $J^{3}(X)$ is an isomorphism.

Corollary 2.9. (Geometric interpretation of the tangent bundle theorem). Let us consider a map $\rho_{1}: F \rightarrow G\left(2, H^{0}\left(F, \Omega_{F}\right)^{*}\right)$ given by Ω_{F}, and a map $\rho_{2}: F \rightarrow$ $G\left(2, S^{2}\left(V_{4}\right)\right)$ which sends $c \in F$ to a linear envelope of $\gamma_{1}(c), \gamma_{2}(c) \subset P\left(S^{2}\left(V_{4}\right)\right)$. Then there exists a natural isomorphism $\iota: H^{0}\left(F, \Omega_{F}\right)^{*} \rightarrow S^{2}\left(V_{4}\right)$ such that $\iota \circ \rho_{1}=\rho_{2}$.

Theorem 2.10. $F(X)$ defines X uniquely.
Theorem 2.11.(Analog of a Riemann theorem). Let us consider a map Φ_{5} : $\prod_{i=1}^{5} F \rightarrow J^{3}(X)$ defined as follows: $\Phi_{5}\left(f_{1}, \ldots, f_{5}\right)=\sum_{i=1}^{5} \Phi\left(f_{i}\right)-\Phi\left(i_{F}\left(f_{i}\right)\right)$. Then its ramification divisor is a Poincaré divisor Θ on $J^{3}(X)$.

Theorem 2.12. Θ is irreducible, and $\operatorname{codim}{ }_{J^{3}(X)} \operatorname{Sing} \Theta=2$.
So, according Andreotti - Meier criterion, $J^{3}(X)$ is not the Jacobian of a curve, and hence X is not rational.

Theorem 2.13. (Global Torelli theorem). $\left(J^{3}(X), \Theta\right)$ defines X uniquely.
3. Fano surface as a determinantal variety. Here we introduce some notations that will be used throughout the paper.

A sheaf of type $O_{\alpha}(a) \otimes O_{\beta}(b) \otimes \ldots$ will be denoted by $O\left({ }_{\alpha} a,_{\beta} b \ldots\right)$. The inverse image of a sheaf will be denoted often by the same symbol as the sheaf itself, if it is clear what map we have in mind (the map whose inverse image is considered). The blowing up map of a variety Y along $X \subset Y$ will be denoted by r with some subscript, and for $Z \subset Y$ the notation $r^{-1}(Z)$ will mean the total inverse image of Z, if $Z \subset X$, and the proper inverse image if $Z \not \subset X . V_{\bullet}$ means a vector space, and the subscript is its dimension. If E is a locally free sheaf on a variety Y, then the fibre of the corresponding vector bundle at a point $y \in Y$ will be denoted by $E(y) . P_{Y}(E) \rightarrow$ Y and $G_{Y}(k, E) \rightarrow Y$ mean the geometric projectivization and grassmannization respectively, i.e. $P_{Y}(E)=\operatorname{Proj}\left(\sum_{k} S^{*}\left(E^{*}\right)\right)$. Members of tautological exact sequences on $G_{Y}(k, E)$ are denoted as follows:

$$
\begin{gathered}
0 \rightarrow \tau_{k, E} \rightarrow E \rightarrow \tau_{n-k, E}^{*} \rightarrow 0 \\
0 \rightarrow \tau_{n-k, E^{*}} \rightarrow E^{*} \rightarrow \tau_{k, E}^{*} \rightarrow 0
\end{gathered}
$$

(here $n=\operatorname{dim} E$). For $t \in G_{Y}\left(k, V_{n}\right) \quad t_{V}$ means a k-dimensional subspace in V_{n} that corresponds to t. In some cases a vector space and its projectivization will be denoted by the same symbol.

Here we give without proofs some results about $G(2,5)$ and its hyperplane sections (see, for example, [48]).

We identify $G\left(2, V_{n}\right)$ and its image in $P\left(\lambda^{2}\left(V_{n}\right)\right)$ under the Plücker embedding. For $n=4 \quad G(2,4)$ is a quadric hypersurface in $P\left(\lambda^{2}\left(V_{4}\right)\right)$, we shall denote the corresponding element in $P\left(S^{2}\left(\lambda^{2}\left(V_{4}^{*}\right)\right)\right)$ by $P l\left(V_{4}\right)$. Further we shall consider a space $V=V_{5}$ and a Grassmannian $G=G\left(2, V_{5}\right)$.

For a conic line c we denote by $\pi(c)$ the plane spanned on c. Let c be a conic line on G. If $\pi(c) \not \subset G$ or if $\pi(c) \subset G$ as an α-plane (i.e. as a Schubert cycle $\Omega(1,4)$), then there exists the only $V_{4} \subset V$ such that $c \subset G\left(2, V_{4}\right)$. If $\pi(c) \subset G$ as a β-plane (i.e. $P\left(V_{3}\right)$ for some $\left.V_{3} \subset V\right)$, then all spaces V_{4} which contain V_{3} satisfy the condition $c \subset G\left(2, V_{4}\right)$.

Let H_{1}, H_{2} be hypersurfaces in $\lambda^{2}(V)$, i.e. elements of $P\left(\lambda^{2}\left(V^{*}\right)\right)$, and E_{2} a plane that they generate in $\lambda^{2}\left(V^{*}\right)$. We denote $V_{8}=H_{1} \cap H_{2} \subset \lambda^{2}(V)$ and $G_{4}=$ $G(2, V) \cap H_{1} \cap H_{2} \subset P\left(V_{8}\right)$. We can associate to an element $H \in \lambda^{2}\left(V^{*}\right)$ a skewsymmetric map $S_{H}: V \rightarrow V^{*}$, and we can associate to an inclusion $E_{2} \hookrightarrow \lambda^{2}\left(V^{*}\right)$ a map $S: E_{2} \otimes V \rightarrow V^{*}$ such that for $H \in E_{2}, v \in V$ we have $S(H \otimes v)=S_{H}(v)$.

For generic $H_{1}, H_{2} \quad G_{4}$ is smooth. Condition of smoothness of G_{4} is equivalent to a condition that $\forall H \in P\left(E_{2}\right)$ rank $S_{H}=4$. Further, taking into consideration (3.5), we shall suppose that the pair H_{1}, H_{2} satisfies this condition.

We shall often consider the space $P\left(V^{*}\right)$, and we shall consider an element $V_{4} \in P\left(V^{*}\right)$ as a hyperplane in V. The tautological exact sequence on $P\left(V^{*}\right)$ is the following:

$$
0 \rightarrow \tau_{4} \stackrel{i_{V}}{\hookrightarrow} V \otimes O \rightarrow O(1) \rightarrow 0 .
$$

For $V_{4} \in P\left(V^{*}\right)$ we denote

$$
\begin{gathered}
M\left(V_{4}\right)=\lambda^{2}\left(V_{4}\right) \cap H_{1} \cap H_{2} \subset V_{8} \\
Q_{G}\left(V_{4}\right)=G\left(2, V_{4}\right) \cap P\left(V_{8}\right)=G\left(2, V_{4}\right) \cap P\left(M\left(V_{4}\right)\right) .
\end{gathered}
$$

It is clear that $Q_{G}\left(V_{4}\right)$ is a quadric hypersurface in $P\left(M\left(V_{4}\right)\right)$.
Lemma 3.1. $\forall V_{4} \in P\left(V^{*}\right)$ we have: $\operatorname{dim} M\left(V_{4}\right)=4$.
Proof. $\operatorname{dim} \lambda^{2}\left(V_{4}\right)=6$. If $\operatorname{dim} M\left(V_{4}\right)>4$, then there exists an element $H \in$ $P\left(E_{2}\right)$ such that $H \supset \lambda^{2}\left(V_{4}\right)$. This means that the composition map

$$
V_{4} \hookrightarrow V \xrightarrow{S_{H}} V^{*} \rightarrow V_{4}^{*}
$$

is 0 , hence $S_{H}\left(V_{4}\right) \subset\left(V / V_{4}\right)^{*}$, i.e. rank $\left(S_{H}\right)=2-$ a contradiction.
Let us define a sheaf M on $P\left(V^{*}\right)$ as the kernel of the composition

$$
\lambda^{2}\left(\tau_{4}\right) \stackrel{\lambda^{2}\left(i_{V}\right)}{\hookrightarrow} \lambda^{2}(V) \otimes O \rightarrow E_{2}^{*} \otimes O
$$

where an epimorphism $\lambda^{2}(V) \rightarrow E_{2}^{*}$ is dual to the inclusion $E_{2} \rightarrow \lambda^{2}\left(V^{*}\right)$. It is clear that the fibre of M at $V_{4} \in P\left(V^{*}\right)$ is $M\left(V_{4}\right)$. Lemma 3.1 implies that M is a locally free sheaf of rank 4.

Let a locally free sheaf E on a variety Y be given. A bundle of quadrics Q on (Y, E) is a map that associates to any $y \in Y$ a quadric (a fibre of Q in y) $Q(y) \subset P(E(y))$ such that they form an algebraic family. This means that there exists an invertible sheaf $L(Q)$ on Y and a map of sheaves $i(Q): L(Q) \rightarrow S^{2}\left(E^{*}\right)$ such that

$$
\forall y \in Y \quad i(Q)(y)=Q(y) \in P\left(S^{2}(E(y))^{*}\right)
$$

So, there exists a bundle of quadrics Q_{G} on $\left(P\left(V^{*}\right), M\right)$ whose fibre at $V_{4} \in P\left(V^{*}\right)$ is $Q_{G}\left(V_{4}\right)$.

Lemma 3.2. Let E be a locally free sheaf of rank 4 on Y. Then there exists a bundle of quadrics $\mathrm{Pl}(E)$ on $\left(Y, \lambda^{2}(E)\right.$ having $\mathrm{Pl}(E)(y)=\mathrm{Pl}(E(y))$. Then $L(\operatorname{Pl}(E))=(\operatorname{det} E)^{-1}$.

Proof. Let $U_{1}, U_{2} \subset Y$ be affine open subsets such that $\left.E\right|_{U_{i}}$ is a free $O_{U_{i}}$-module. Let $e_{i}=\left(e_{i 1}, \ldots, e_{i 4}\right)(i=1,2)$ be its basis, and $e_{i 1}^{*}, \ldots, e_{i 4}^{*}$ a basis of $\left.E^{*}\right|_{U_{i}}$ which is dual to $\left(e_{i}\right)$. Further, let $e_{i k l}^{*}=e_{i k}^{*} \wedge e_{i l}^{*}$. We have:

$$
\operatorname{Pl}\left(e_{i}\right)=e_{i 12}^{*} \circ e_{i 34}^{*}-e_{i 13}^{*} \circ e_{i 24}^{*}+\left.e_{i 14}^{*} \circ e_{i 23}^{*} \in S^{2}\left(\lambda^{2}\left(E^{*}\right)\right)\right|_{U_{i}}
$$

is an equation of the Plücker quadric. Let us consider a map of sheaves $O \rightarrow$ $S^{2}\left(\lambda^{2}\left(E^{*}\right)\right)$ on U_{i} defined by the element $P l\left(e_{i}\right)$. Let on $U_{1} \cap U_{2}$ we have $e_{1}=A\left(e_{2}\right)$ for an $A \in G L\left(\left.E\right|_{U_{1} \cap U_{2}}\right)$. Then it is easy to check that $\mathrm{Pl}\left(e_{1}\right)=(\operatorname{det} A)^{-1} P l\left(e_{2}\right)$ on $U_{1} \cap U_{2}$. This implies the desired.

Let us apply this lemma to τ_{4} on $P\left(V^{*}\right)$. Since $\operatorname{det}\left(\tau_{4}\right)=O(-1)$, we have: the bundle $\mathrm{Pl}\left(\tau_{4}\right)$ can be given by a map

$$
i\left(\mathrm{Pl}\left(\tau_{4}\right)\right): O(1) \rightarrow S^{2}\left(\lambda^{2}\left(\tau_{4}^{*}\right)\right)
$$

The restriction of $\mathrm{Pl}\left(\tau_{4}\right)$ to $M \subset \lambda^{2}\left(\tau_{4}\right)$ gives us the bundle Q_{G}. This means that $L\left(Q_{G}\right)=O(1)$.

Let us describe now the set of planes on G_{4}. We define an inclusion $\psi_{1}: P\left(E_{2}\right) \rightarrow$ $P(V)$ as follows: $\psi_{1}(H)=\operatorname{Ker} S_{H}$. Then im ψ_{1} is a conic line, we denote it by c_{u} and its plane $\pi\left(c_{u}\right)$ by $U=P\left(U_{3}\right)$, where U_{3} is a subspace of V. We have: $U^{*}=P\left(U_{3}^{*}\right) \subset G_{4}$ is the only β-plane on G_{4}. A straight line in $P\left(V^{*}\right)$ which is dual to U will be denoted by l, i.e. $l=P\left(\left(V / U_{3}\right)^{*}\right) \subset P\left(V^{*}\right)$, and a point of l is a subspace V_{4} such that $U_{3} \subset V_{4} \subset V$. There exists an isomorphism $\psi: c_{u} \rightarrow l$ such that $\psi(v)=S\left(E_{2} \otimes v\right) \in P\left(V^{*}\right)$, and we denote by $\alpha(v)$ a Schubert cycle $\Omega(v, \psi(v))$. Then $\forall v \in c_{u} \quad \alpha(v) \subset G_{4}$, and all α-planes on G_{4} are $\alpha(v)$ for some $v \in c_{u}$. Further, we have $\alpha(v) \cap U^{*} \subset G_{4}$ is a straight line, we denote it by $l_{g}(v)$. It is dual to the point v with respect to the plane U. All lines $l_{g}(v)$ are tangent to the conic line $c_{u}^{*} \subset U^{*}$ (the dual to c_{u}). It is clear that $\forall V_{4} \in l$ we have $Q_{G}\left(V_{4}\right)=U^{*} \cup \alpha\left(\psi^{-1}\left(V_{4}\right)\right)$, i.e. is a pair of planes.
(3.3). The converse is also true: if for $V_{4} \in P\left(V^{*}\right) \quad Q_{G}\left(V_{4}\right)$ is a pair of planes, then it follows easily from the description of the set of planes on G_{4} that $V_{4} \in l$.
(3.4). There exists a map $b: G_{4} \rightarrow P^{4}$ having the following properties: it is a birational isomorphism; it is a restriction to G_{4} of the linear projection p_{85} whose center is U^{*}, from $P\left(V_{8}\right)$ to $P^{4}=P\left(V_{8} / U_{3}^{*}\right)$. There exist: (a) the unique normcubic $c_{3} \subset P^{4}$ whose linear envelope is a $P^{3} \subset P^{4},(\mathrm{~b})$ an isomorphism $\psi_{2}: c_{u} \rightarrow c_{3}$ and (c) an isomorphism $\tilde{b}:\left(\tilde{G}_{4}\right)_{U^{*}} \rightarrow\left(\tilde{P}^{4}\right)_{c_{3}}$ - a desingularization of b such that the following diagram is commutative:

$$
\begin{array}{ccc}
\left(\tilde{G}_{4}\right)_{U^{*}} & \xrightarrow{\tilde{b}} & \left(\tilde{P}^{4}\right)_{c_{3}} \\
\downarrow & & \downarrow \\
G_{4} & \xrightarrow{b} & P^{4}
\end{array}
$$

where left and right vertical maps (denoted by r_{G} and r_{P} respectively) are blowings up of G_{4} and P^{4} respectively. Further, for $v \in c_{u}$ we have: $r_{G}^{*}(\alpha(v))$ is a plane, and

$$
\tilde{b}\left(r_{G}^{*}(\alpha(v))\right)=r_{P}^{*}\left(\psi_{2}(v)\right) .
$$

For $t \in U^{*} \subset G$ we denote $\left\{v_{1}, v_{2}\right\}=t_{V} \cap c_{u}$. Then $<\psi_{2}\left(v_{1}\right), \psi_{2}\left(v_{2}\right)>$ is a bisecante of c_{3} in P^{3}, and

$$
\tilde{b}\left(r_{G}^{*}(t)\right)=r_{P}^{*}\left(<\psi_{2}\left(v_{1}\right), \psi_{2}\left(v_{2}\right)>\right) .
$$

For $V_{4} \in P\left(V^{*}\right)-l$ the map $\left.b\right|_{Q_{G}\left(V_{4}\right)}: Q_{G}\left(V_{4}\right) \rightarrow P^{2}$ can be described as follows. $Q_{G}\left(V_{4}\right) \cap U^{*}=\{t\}$ (one point); it is clear that $t_{V}=V_{4} \cap U_{3}$. Then $\left.b\right|_{Q_{G}\left(V_{4}\right)}$ is the blowing up of t to a bisecante of c_{3} and blowing down of t_{1}, t_{2} to intersection points of this bisecante with c_{3}, where t_{1}, t_{2} are straight lines on $Q_{G}\left(V_{4}\right)$, which contain t.

Let us describe now conic lines on X. Let $X=G_{4} \cap \Omega$, where Ω is a quadric hypersurface on $P\left(V_{8}\right)$.

Lemma 3.5. G_{4} is smooth.
Proof. If G_{4} is not smooth, then $\exists H \in P\left(E_{2}\right)$ such that rank $S_{H}=2$. Then Sing $(G \cap H)=G\left(2, \operatorname{Ker} S_{H}\right)=P^{2}$, hence Sing $X \supset P^{2} \cap H_{1} \cap \Omega$. This means that Sing X is not empty - a contradiction.

We denote by $F_{c}=F_{c}(X)$ the set of conics on X; it is an algebraic variety which is called the Fano surface of X (later we shall see that F_{c} is really a surface). Taking into consideration that for a generic conic $c \subset G \quad \exists!V_{4} \in P\left(V^{*}\right)$ such that $c \subset G\left(2, V_{4}\right)$, we define a surface $F=F(X)$ (which we shall call the Fano surface as well) as a set of pairs $\left(c \in F_{c}, V_{4} \in P\left(V^{*}\right)\right)$ such that $c \subset G\left(2, V_{4}\right)$. There are natural projections

$$
r_{F}: F \rightarrow F_{c}, \quad \tilde{\phi}: F \rightarrow P\left(V^{*}\right)
$$

There exists a bundle of quadrics Q_{Ω} on $\left(P\left(V^{*}\right), M\right)$ whose fibre at $V_{4} \in P\left(V^{*}\right)$ is $Q_{\Omega}\left(V_{4}\right)=P\left(M\left(V_{4}\right)\right) \cap \Omega$. It is clear that
(a) $L\left(Q_{\Omega}\right)=O$;
(b) $X \cap G\left(2, V_{4}\right)=Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)$.

Further, we have $\forall V_{4} \in P\left(V^{*}\right) \quad \operatorname{dim} Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)=1$, because smoothness of X implies that Pic (X) is generated by $\left.O_{P\left(V_{8}\right)}(1)\right|_{X}$, so the degree of any surface on X is a multiple of $10(=\operatorname{deg} X)$. But if $Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)$ contains a surface, then its degree is 1 or 2 .

It is clear that $\left(c, V_{4}\right) \in F \Longleftrightarrow c \subset Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)$. Since $Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)$ is a curve of degree $(2,2)$ on a quadric surface, and c is a curve of degree $(1,1)$, then $Q_{G}\left(V_{4}\right) \cap Q_{\Omega}\left(V_{4}\right)-c$ is also a conic line. We denote it by c^{\prime}. So, there exists an involution i_{F} on F defined as follows: $i_{F}\left(c, V_{4}\right)=\left(c^{\prime}, V_{4}\right)$. Let F_{0} be the quotient surface F / i_{F} and $p_{F}: F \rightarrow F_{0}$ the corresponding two-sheeted covering. A point $f_{0} \in F_{0}$ will be denoted as follows: $f_{0}=\left(c, c^{\prime}, V_{4}\right)$, where $f_{0}=p_{F}\left(c, V_{4}\right)=p_{F}\left(c^{\prime}, V_{4}\right)$. It is clear that c and c^{\prime} have 2 (possible coinciding) intersection points which we denote by $\gamma_{1}\left(f_{0}\right)$ and $\gamma_{2}\left(f_{0}\right)$ (or $\gamma_{1}(c)$ and $\gamma_{2}(c)$). Their linear envelope (i.e. a line $<\gamma_{1}(c), \gamma_{2}(c)>$) will be denoted by $l_{8}(c)$ (or $l_{8}\left(f_{0}\right)$).
(3.6). There exist smooth threefolds X which contain a pair of involutory conics c and c^{\prime} such that both of them is a pair of straight lines such that $l_{8}(c)$ is their common component. Considerations analogous to ones used in the proof of Lemma
3.7 show that the set of X having this property has codimension 1 in the set of all possible X. These X will not be considered in the present paper, although most likely main results which are obtained in the present paper for a "generic" X, are true for them as well (for example, smoothness of F).

It is clear that there exists a map $\phi: F_{0} \rightarrow P\left(V^{*}\right)$ satisfying a condition $\phi \circ p_{F}=\tilde{\phi}$. Further, it is clear that

$$
\left(c, V_{4}\right) \in F \Longleftrightarrow \pi(c) \cup \pi\left(c^{\prime}\right) \in<Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)>_{P\left(S^{2}\left(M\left(V_{4}\right)\right)^{*}\right)}
$$

i.e. some linear combination of $Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)$ is a pair of planes. So, let us define Z as a variety of pairs $\left(V_{4}, Q\right)$ where $V_{4} \in P\left(V^{*}\right), Q \in<Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)>$ together with a natural projection $\eta: Z \rightarrow P\left(V^{*}\right)$. Since $L\left(Q_{G}\right)=O(1), L\left(Q_{\Omega}\right)=O$, we have

$$
Z=P_{P\left(V^{*}\right.}(O+O(1))
$$

There is a tautological exact sequence on Z :

$$
0 \rightarrow O_{\eta}(-1) \xrightarrow{i_{\eta}} O+O(1) \rightarrow O\left(1,{ }_{\eta} 1\right) \rightarrow 0
$$

as well as the dual sequence. Further, Z is a blowing up of $P^{5}=P\left(V_{6}\right)$ at a point $t \in P^{5}$; we denote the corresponding map by $r_{Z}: Z \rightarrow P^{5}$. It is clear that $V_{6} / t=V^{*}$ and $r_{Z}^{*}\left(O_{P^{5}}(1)\right)=O(1, \eta)$. There are divisors D_{G}, D_{Ω} on Z which are defined as follows: a point of Z can be considered as a pair $\left(V_{4}, Q\right)$; we have:

$$
\begin{aligned}
& \left(V_{4}, Q\right) \in D_{G} \Longleftrightarrow Q=Q_{G}\left(V_{4}\right) \\
& \left(V_{4}, Q\right) \in D_{\Omega} \Longleftrightarrow Q=Q_{\Omega}\left(V_{4}\right)
\end{aligned}
$$

It is clear that $D_{G}=r_{Z}^{*}(t)$ is the exceptional divisor on Z, and $r_{Z}\left(D_{\Omega}\right)$ is a hypersurface in P^{5}.

Let $\left(V_{4}, Q\right) \in Z$; we associate it the quadric $Q \subset P\left(M\left(V_{4}\right)\right)$. This gives us a bundle of quadrics (denoted by T) on (Z, M). It is clear that $L(T)=O_{\eta}(-1)$ and

$$
i(T)=\left(i\left(Q_{G}\right) \oplus i\left(Q_{\Omega}\right)\right) \circ i_{\eta}: O_{\eta}(-1) \rightarrow S^{2}\left(M^{*}\right)
$$

There exists an inclusion $\bar{\phi}: F_{0} \rightarrow Z$ defined as follows: $\bar{\phi}\left(c, c^{\prime}, V_{4}\right)=\left(V_{4}, \pi(c) \cup\right.$ $\left.\pi\left(c^{\prime}\right)\right)$. It is clear that $z \in \operatorname{im} \bar{\phi} \Longleftrightarrow T(z)$ is a pair of planes, i.e. a rank 2 quadric surface. This means that $F_{0} \hookrightarrow Z$ is the second determinantal of T.

Let us remember the definition and main properties of determinantal varieties. Let E be a locally free sheaf of rank n on an algebraic variety Y, Q a bundle of quadrics on (Y, E) and $i(Q): L^{*} \rightarrow S^{2}\left(E^{*}\right)$ the corresponding map. For any $y \in Y$ we can consider the fibre $i(Q)(y)$ as a symmetric map from $E(y)$ to $E(y)^{*}$. The determinantal $D_{k}=D_{k}(Q)$ of Q is defined as a set of points $y \in Y$ such that $\operatorname{dim} \operatorname{im} i(Q)(y) \leq k$. We define also a variety $\tilde{D}_{k}=\tilde{D}_{k}(Q)$ as a set of pairs $\left(y, V_{k}\right)$ such that $y \in D_{k}$ and $\operatorname{im} i(Q)(y) \subset V_{k} \subset E(y)^{*}$. The natural projection $\pi_{k}: \tilde{D}_{k} \rightarrow D_{k}$ is an isomorphism outside of $\pi_{k}^{-1}\left(D_{k-1}\right)$. There is also a tautological inclusion $\tilde{D}_{k} \rightarrow G_{y}\left(k, E^{*}\right)$, and we have a commutative diagram:

$$
\begin{array}{ccc}
\tilde{D}_{k} & \hookrightarrow & G_{Y}\left(k, E^{*}\right) \\
\downarrow & & \downarrow \\
D_{k} & \hookrightarrow & Y
\end{array}
$$

There is a sheaf $C=C(k)=\operatorname{Coker}\left(S^{2}\left(\tau_{k, E^{*}}\right) \rightarrow S^{2}\left(E^{*}\right)\right)$ on $G_{Y}\left(k, E^{*}\right)$. A sheaf $L \otimes C$ has a distinguished section coming from a map

$$
O \xrightarrow{i(Q) \otimes L} L \otimes S^{2}\left(E^{*}\right) \rightarrow L \otimes C .
$$

It is clear that \tilde{D}_{k} is the set of zeros of this section. Q is called k-regular, if for $i=k$ and $i=k-1$

$$
\operatorname{Codim}_{G_{Y}\left(i, E^{*}\right)} \tilde{D}_{i}=\operatorname{dim} L \otimes C(i)
$$

(if $D_{i} \neq \emptyset$). If so, we have $\operatorname{Codim}_{Y} D_{k}=\frac{(n-k)(n-k+1)}{2}$. Further, for a k-regular bundle Q we have $\bar{D}_{k-1}=\pi_{k}^{-1}\left(D_{k-1}\right)$ is a divisor in \tilde{D}_{k}, which is the determinantal of rank $k-1$ of a bundle of quadrics $L^{*} \rightarrow S^{2}\left(\tau_{k}\right)$, which is defined naturally on \tilde{D}_{k}. Porteus formula ([7]) implies that

$$
O_{\tilde{D}_{k}}\left(\bar{D}_{k-1}\right)=L^{k} \otimes O_{G}(-2) .
$$

Particularly, if $D_{k-1}=\emptyset$, then $\bar{D}_{k-1}=\emptyset$ as well, and $L^{k}=O_{G}(2)$ in $\operatorname{Pic}\left(D_{k}\right)$.
Let us consider the case of even k. For a quadric Q of rank k the set of projective spaces of the maximal possible dimension which are contained in Q, has 2 connected components. We denote this set of connected components by $\Gamma(Q)$, and we define a two-sheeted covering $p_{D_{k}}: \hat{\tilde{D}}_{k} \rightarrow \tilde{D}_{k}$ as follows: $p_{D_{k}}^{-1}(y)=\Gamma(Q(y))$ for any $y \in$ $\tilde{D}_{k}-\bar{D}_{k-1}$. We have: \bar{D}_{k-1} is the ramification divisor of $p_{D_{k}}$, and a sheaf that corresponds to $p_{D_{k}}$ is $L^{\frac{k}{2}} \otimes O_{G}(-1)$.

Let us consider the case $k=2$. For $y \in D_{2} \quad Q(y)$ is a pair of hyperplanes in $P(E(y))$, and a choice of a point in $p_{D_{2}}^{-1}(y)$ is a choice of one of these hyperplanes. So, there exists an inclusion $\hat{\tilde{D}}_{2} \rightarrow P_{Y}(E)$, and there exist sheaves $\tau_{n-1, E}$ and $O_{\pi}(1)$ on $\hat{\tilde{D}}_{2}$ (here $\pi: P_{Y}(E) \rightarrow Y$ is a projection). It is clear that $\hat{\tilde{D}}_{2}$ is the set of zeros of a section of $L \otimes S^{2}\left(\tau_{n-1, E}^{*}\right)$ (here $L \otimes S^{2}\left(\tau_{n-1, E}^{*}\right)$ is a sheaf on $P_{Y}\left(E^{*}\right)$).

Let us return to study of the Fano surface. As we have seen, $F_{0}=D_{2}(T)$.
Lemma 3.7. For a generic X we have $D_{1}(T)=\emptyset$.
Proof. It is clear that

$$
D_{1}(T) \neq \emptyset \Longleftrightarrow \exists V_{4} \in P\left(V^{*}\right), \exists V_{3} \subset M\left(V_{4}\right)
$$

such that the double plane $2 P\left(V_{3}\right) \in<Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)>$. Let us fix G_{4}. For given $V_{4} \in P\left(V^{*}\right), V_{3} \subset M\left(V_{4}\right) \quad Q_{G}\left(V_{4}\right)$ is defined uniquely, and the set of quadrics $Q_{\Omega}\left(V_{4}\right)$ such that $2 P\left(V_{3}\right) \in<Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)>$ has codimension 8 in the space of all quadrics in $P\left(V_{8}\right)$. This means that the set of quadrics Ω such that $2 P\left(V_{3}\right) \in<$ $Q_{G}\left(V_{4}\right), Q_{\Omega}\left(V_{4}\right)>$ has codimension 8 in the space of all quadrics in $P\left(V_{8}\right)$. But the set of pairs $\left\{V_{4} \in P\left(V^{*}\right), V_{3} \subset M\left(V_{4}\right)\right\}$ is 7-dimensional, hence the set of quadrics Ω such that for $X=G_{4} \cap \Omega \quad D_{1}(T) \neq \emptyset$ is a union of a 7 -dimensional set of subvarieties of codimension 8 , hence has codimension ≥ 1.
(4.2) (see below) implies that $\operatorname{dim} F=2$. This means that a condition $D_{1}(T)=\emptyset$ for X is equivalent to a condition of 2-regularity of the bundle T. Further we shall consider only X that satisfy this condition.

Properties of determinantal varieties given above imply the following

Proposition 3.8. There exist inclusions

$$
F_{0} \rightarrow G_{Z}\left(2, M^{*}\right), \quad F \rightarrow P_{Z}\left(M^{*}\right)
$$

hence tautological sheaves on $G_{Z}\left(2, M^{*}\right)$ and $P_{Z}\left(M^{*}\right)$ can be restricted to F_{0} and F respectively. Further, F_{0} is the set of zeros of a section of $O_{\eta}(1) \otimes C(2)$ on $G_{Z}\left(2, M^{*}\right)$, and F is the set of zeros of a section of $O_{\eta}(1) \otimes S^{2}\left(\tau_{3, M}^{*}\right)$ on $P_{Z}\left(M^{*}\right)$. We have equalities of sheaves $O_{G}(2)=O_{\eta}(2)$ (respectively $\left.O_{G}(1)=O_{\eta}(1)\right)$ on F_{0} (respectively on F). The covering $p_{F}: F \rightarrow F_{0}$ is non-ramified, and the corresponding sheaf is $\sigma=O\left({ }_{\eta} 1,{ }_{G}-1\right)$. For $f_{0} \in F_{0} \quad l_{8}\left(f_{0}\right)=P\left(\tau_{2, M}\left(f_{0}\right)\right)$.

If for $V_{4} \in P\left(V^{*}\right) \quad Q_{G}\left(V_{4}\right)$ or $Q_{\Omega}\left(V_{4}\right)$ is already a pair of planes then it is clear that $V_{4} \in \phi\left(F_{0}\right)$. We denote the set of these V_{4} (and the set of their ϕ-inverse images on F_{0}) by l_{G} and l_{Ω} respectively. They are curves on F_{0}, and it is clear that $l_{G}=\bar{\phi}^{*}\left(D_{G}\right), l_{\Omega}=\bar{\phi}^{*}\left(D_{\Omega}\right) . l_{\Omega}$ is not defined by X uniquely, it depends on a choice of Ω such that $X=G_{4} \cap \Omega$. (3.3) implies that $l_{G}=l$. It is clear that $p_{F}^{-1}(l)$ is a pair of straight lines, we denote them by l_{1} and l_{2} by such a way that

$$
\begin{gathered}
\left(c, V_{4}\right) \in l_{1} \Longleftrightarrow\left\{c=U^{*} \cap \Omega, V_{4} \in l\right\} \\
\left(c, V_{4}\right) \in l_{2} \Longleftrightarrow\left\{c=\alpha\left(\psi^{-1}\left(V_{4}\right)\right) \cap \Omega, V_{4} \in l\right\}
\end{gathered}
$$

It is clear that $\left.p_{F}\right|_{l_{i}}: l_{i} \rightarrow l$ are isomorphisms $(i=1,2)$ and that $r_{F}\left(l_{1}\right)$ is a point $c_{\Omega} \in F_{c}$; the corresponding conic line $U^{*} \cap \Omega$ on X is also c_{Ω}. Using properties of conic lines on G we see that for $c \in F_{c} \quad r_{F}^{-1}(c)$ is either a point or a straight line on F. If $r_{F}^{-1}(c)$ is a straight line, then $\pi(c)$ is a β-plane on G. In this case $\pi(c) \cap H_{1} \cap H_{2} \supset c$, hence $\pi(c) \subset G_{4}$ and $\pi(c)=U^{*}, c=c_{\Omega}$. So, c_{Ω} is the only point of F_{c} such that $r_{F}^{-1}\left(c_{\Omega}\right)$ is not a point. This means that $r_{F}: F \rightarrow F_{c}$ is the blowing up of c_{Ω}.

Proposition 3.9. $O_{F_{0}}(l)=O_{\eta}(1), O_{F_{0}}\left(l_{\Omega}\right)=O(1, \eta 1)$.
Proof. This important proposition (it implies smoothness of F_{c} at c_{Ω}, see below) can be proved by different ways. Here is one of them. Let us consider maps of sheaves on $G_{Z}\left(2, M^{*}\right)$:

$$
\begin{gather*}
0 \rightarrow O_{\eta}(-1) \stackrel{i_{\eta}}{\longrightarrow} O \oplus O(1) \xrightarrow{i_{1}} O\left(1,{ }_{\eta} 1\right) \rightarrow 0 \tag{3.10}\\
O(1) \stackrel{i_{2}}{\longrightarrow} O \oplus O(1) \xrightarrow{i_{3}} S^{2}\left(M^{*}\right) \xrightarrow{i_{4}} C(2) \tag{3.11}
\end{gather*}
$$

where $i_{3}=i\left(Q_{\Omega}\right) \oplus i\left(Q_{G}\right)$. By definition, for $f_{0} \in F_{0} \quad i_{4} \circ i_{3} \circ i_{\eta}\left(f_{0}\right)=0$, and exactness of (3.10) implies that there exists an inclusion $i_{5}: O(1, \eta 1) \rightarrow C(2)$ on F_{0} satisfying a condition $i_{5} \circ i_{1}=i_{4} \circ i_{3}$. It is clear that

$$
f_{0} \in l \Longleftrightarrow \operatorname{im}\left(i_{3} \circ i_{2}\left(f_{0}\right)\right)=\operatorname{im}\left(i_{3} \circ i_{\eta}\left(f_{0}\right)\right)
$$

This implies that for $f_{0} \in F_{0} \quad f_{0} \in l \Longleftrightarrow i_{1} \circ i_{2}\left(f_{0}\right)=0$, i.e. l is the set of zeros of $i_{1} \circ i_{2}$ on F_{0}. This means that $O_{F_{0}}(l)=O_{\eta}(1)$. Replacing in (3.11) $O(1)$ by O, we get analogously that $O_{F_{0}}\left(l_{\Omega}\right)=O\left(1,{ }_{\eta} 1\right)$.

We denote the projection $P_{Z}\left(M^{*}\right) \rightarrow Z$ by π, and its inversible sheaf by $O_{\pi}(1)$. Further, we denote $c_{1}(O(1))=H, c_{1}\left(O_{\eta}(1)\right)=E, c_{1}\left(O_{\pi}(1)\right)=P$. Chow ring
$A\left(P_{Z}\left(M^{*}\right)\right)$ is generated by H, E, P satisfying relations

$$
H^{5}=0, E^{2}=-E H, P^{4}=-3 P^{3} H-5 P^{2} H^{2}-5 P H^{3} .
$$

Proposition 3.13. Intersection indices on F_{0} are: $E H=1, E^{2}=-1$.
Proof. Equality $E H=1$ is obvious, because cl $(l)=E, l$ is a straight line in $P\left(V^{*}\right)$, and H is a class of a hyperplane section in $P\left(V^{*}\right)$. Equality $E^{2}=-E H$ is true even on Z and moreover on F_{0}.

Corollary 3.14. c_{Ω} is a non-singular point on F_{c}.
Proof. $<E^{2}>_{F}=-2$. i_{F} interchanges l_{1} and l_{2} and hence $<l_{1}^{2}>_{F}=<l_{2}^{2}>_{F}$. Further, $l_{1} \cap l_{2}=\emptyset$, hence $<l_{1}^{2}>_{F}=<l_{2}^{2}>_{F}=-1$. This implies that c_{Ω} is a nonsingular point on F_{c}.

Maps of blowing down of $l_{1} \cup l_{2}$ on F and of l on F_{0} are denoted by $r: F \rightarrow F_{m}$ and $r_{0}: F_{0} \rightarrow F_{0 m}$ respectively. There exists an involution $i_{F_{m}}: F_{m} \rightarrow F_{m}$ and a projection $p_{F_{m}}: F_{m} \rightarrow F_{0 m}$ making the following diagram commutative:

Let us consider a map $r_{Z} \circ \bar{\phi}: F_{0} \rightarrow P^{5}$. Since $l \subset D_{\Omega}=r_{Z}^{*}(t)$, we have: $r_{Z} \circ \bar{\phi}$ factors through $\bar{\phi}_{m}: F_{0 m} \rightarrow P^{5}$, hence we have a commutative diagram

F_{0}	$\xrightarrow{\bar{\phi}}$	Z
\downarrow		\downarrow
$F_{0 m}$	$\xrightarrow{\bar{\phi}_{m}}$	P^{5}

where vertical maps are r_{0} and r_{Z} respectively. Further, we have $l=F_{0}{ }_{Z} D_{G}$. This implies

Proposition 3.15. $\bar{\phi}_{m}$ is regular at $c_{0 \Omega}$, and $\bar{\phi}_{m}\left(c_{0 \Omega}\right)=t$.
Since $l_{\Omega}=\bar{\phi}^{*}\left(D_{\Omega}\right)$ and $r_{Z}\left(D_{\Omega}\right)$ is a hyperplane in P^{5}, we have that $\bar{\phi}_{m}\left(l_{\Omega}\right)$ is a hyperplane section of $\bar{\phi}_{m}\left(F_{0 m}\right)$. We denote by $P^{5^{\prime}}$ the set of quadrics in $P\left(V_{8}\right)$ that contain X; it is the linear envelope of Ω and $q(P(V))$ (the definition of $q(P(V))$ is given in the beginning of Section 5). To each $\Omega^{\prime} \in P^{5^{\prime}}-q(P(V))$ we can associate its own straight line $l_{\Omega^{\prime}}$ and hyperplane $r_{Z}\left(D_{\Omega^{\prime}}\right)$ in P^{5}. It is easy to see that the $\operatorname{map} \Omega^{\prime} \rightarrow r_{Z}\left(D_{\Omega^{\prime}}\right)$ gives us a natural isomorphism $P^{5^{\prime}} \rightarrow\left(P^{5}\right)^{*}$ such that quadrics in $q(P(V))$ correspond to hyperplanes that contain t.

Lemma 3.16. $\operatorname{deg} \phi\left(l_{\Omega}\right)=40$.
Proof. We have $l_{\Omega}=D_{Z}\left(Q_{\Omega}\right)$ on $P\left(V^{*}\right)$. According the Porteus formula ([7]), we have: $\operatorname{deg} \phi\left(l_{\Omega}\right)=4\left(c_{1}\left(M^{*}\right) c_{2}\left(M^{*}\right)-c_{3}\left(M^{*}\right)\right)$. Further, $M=8 O-5 O(1)+O(2)$ in $K_{0}\left(P\left(V^{*}\right)\right.$, hence $c_{t}\left(M^{*}\right)=1+3 H+5 H^{2}+5 H^{3}$, and $\operatorname{deg} \phi\left(l_{\Omega}\right)=40$.

Since $\mathrm{cl}_{F_{0}}\left(l_{\Omega}\right)=H+E$, we have $\operatorname{deg} l_{\Omega}=<H+E, H>_{F_{0}}$, and $<H^{2}>_{F_{0}}=$ $\operatorname{deg} \phi\left(F_{0}\right)=39$. It is easy to see that $\operatorname{deg}_{P^{5}}\left(\bar{\phi}_{m}\left(F_{0 m}\right)\right)=40$ and $\operatorname{cl}_{Z}\left(\bar{\phi}\left(F_{0}\right)\right)=$ $40 H^{3}+39 H^{2} E$ (this formula can be got by application of the Porteus formula for T, but calculations will be longer than in Lemma 3.16).

REMARK. $<H^{2}>_{F_{0}}$ is equal to the number of conics passing through a fixed generic point on X. Really, let $x \in X, x_{V}$ the corresponding straight line in $P(V)$ and $\tilde{x}_{V}=P\left(V / x_{V}\right)^{*} \subset P\left(V^{*}\right)$ the dual plane in $P\left(V^{*}\right)$, i.e. the set of P^{3} that contain x_{V}. Let $f=\left(c, V_{4}\right) \in F$ and $x \in c$. Then $x_{V} \subset P\left(V_{4}\right)$, i.e. $V_{4} \in \tilde{x}_{V}$. But $V_{4} \in \phi\left(F_{0}\right)$, i.e. if $x \in c$, then $\tilde{\phi}(f) \in \tilde{x}_{V} \cap \phi\left(F_{0}\right)$. Clearly the converse is also true, so the number of conics passing through x is equal to the number of intersection points of $\phi\left(V_{0}\right)$ and \tilde{x}_{V}. So, there are 39 conics passing through a generic point of X.

We have an equality in $K_{0}\left(P_{Z}\left(M^{*}\right)\right)$:

$$
\begin{equation*}
\Omega_{F}=\Omega_{P_{Z}\left(M^{*}\right)}-O_{\eta}(-1) \otimes S^{2}\left(\tau_{3, M}\right) \tag{3.17}
\end{equation*}
$$

We deduce easily from this formula that $\omega_{F}=O\left(3,{ }_{\eta} 4\right)$. Further, we have an exact sequence (where i is an inclusion $l_{1} \cup l_{2} \rightarrow F$)

$$
\begin{equation*}
0 \rightarrow r^{*}\left(\Omega_{F_{m}}\right) \rightarrow \Omega_{F} \rightarrow i_{*}\left(\Omega_{l_{1} \cup l_{2}}\right) \rightarrow 0 \tag{3.18}
\end{equation*}
$$

It implies that $r^{*}\left(\omega_{F_{m}}\right)=O\left(3, \eta_{\eta} 3\right)$, i.e. $\omega_{F_{m}}=p_{F_{m}}^{*}\left(\bar{\phi}_{m}^{*}\left(O_{P^{5}}(3)\right)\right)$. Let σ_{m} be a sheaf of order 2 that corresponds to a two-sheeted covering $p_{F_{m}}$; it is clear that $r_{0}^{*}\left(\sigma_{m}\right)=$ $\sigma=O\left({ }_{G}-1,{ }_{\eta} 1\right)$. This means that $\omega_{F_{0}}=O\left(3,_{G} 1, \eta_{\eta} 3\right)$ and $\omega_{F_{0 m}}=\bar{\phi}_{m}^{*}\left(O_{P^{5}}(3)\right) \otimes \sigma_{m}$. Since $\operatorname{deg} \bar{\phi}_{m}\left(F_{0 m}\right)=40$, we get that $c_{1}\left(\Omega_{F_{0 m}}\right)^{2}=360$ and $c_{1}\left(\Omega_{F_{m}}\right)^{2}=720$.

To calculate $c_{2}\left(\Omega_{F}\right)$, it is necessary to find $\mathrm{cl}(F)$ in $A\left(P_{Z}\left(M^{*}\right)\right)$, which is equal $c_{6}\left(O_{\eta}(1) \otimes S^{2}\left(\tau_{3, M}^{*}\right)\right)($ see $(3.8))$. A calculation gives the desired result:

$$
\mathrm{cl}(F)=80 P^{3} H^{3}+240 P^{2} H^{4}+78 P^{3} H^{2} E+235 P^{2} H^{3} E
$$

Further, we get (taking into consideration (3.12)) intersection indices of divisors on F :

$$
H^{2}=78 ; P^{2}=-13 ; P H=1 ; E H=2 ; E P=-1
$$

We deduce from (3.17) after some calculations:

$$
c_{2}\left(\Omega_{F}\right)=4 H^{2}-4 P^{2}+13 E H+4 E P=386
$$

and using (3.18) we get

$$
c_{2}\left(\Omega_{F_{m}}\right)=384
$$

We define a surface $W \subset X$ as a set of intersection points of involutory conics, i.e.

$$
W=\bigcup_{f_{0} \in F_{0}}\left(\gamma_{1}\left(f_{0}\right) \cup \gamma_{2}\left(f_{0}\right)\right)
$$

Further, we define a surface \bar{W} which makes the following diagram commutative:

where the vertical map is p, and p_{W} is a two-sheeted covering of F_{0} such that for $f_{0} \in F_{0}$ we have

$$
p_{W}^{-1}\left(f_{0}\right)=\left\{\gamma_{1}\left(f_{0}\right), \gamma_{2}\left(f_{0}\right)\right\} \subset p^{-1}\left(f_{0}\right)=l_{8}\left(f_{0}\right)
$$

It is clear that there exists a map $\xi: P_{F_{0}}\left(\tau_{2, M}\right) \rightarrow P\left(V_{8}\right)$, that corresponds to an inclusion of sheaves $\tau_{2, M} \hookrightarrow M \hookrightarrow V_{8} \otimes O$ on F_{0}. We have: $\left.\xi\right|_{W}: \bar{W} \rightarrow W$ is an epimorphism and $\xi^{*}\left(O_{P\left(V_{8}\right)}(1)\right)=O_{P}(1)$.

LEMMA 3.19. Let $f_{a}=\left(c_{a}, c_{a}^{\prime}, V_{4 a}\right) \in F_{0}-l, f_{b}=\left(c_{b}, c_{b}^{\prime}, V_{4 b}\right) \in F_{0}$ and $\gamma_{1}\left(f_{a}\right)=$ $\gamma_{1}\left(f_{b}\right)$. Then $j=j\left(f_{a}, f_{b}\right)=P\left(M\left(V_{4 a}\right) \cap M\left(V_{4 b}\right)\right)$ is a straight line in G_{4} which is tangent to Ω.

Proof. Since $P\left(V_{4 a} \cap V_{4 b}\right)$ is a plane, we have $P\left(\lambda^{2}\left(V_{4 a} \cap V_{4 b}\right)\right) \subset G$ and $j=$ $P\left(\lambda^{2}\left(V_{4 a} \cap V_{4 b}\right)\right) \cap H_{1} \cap H_{2}$ is a linear subspace in G_{4}. Since $f_{a} \notin l, j$ is not a plane. If j is a point, then $j=\gamma_{1}\left(f_{a}\right)=\gamma_{1}\left(f_{b}\right)$ and $T_{P\left(M\left(V_{4 a}\right)\right)}(j), T_{P\left(M\left(V_{4 b}\right)\right)}(j)$ are linearly independent in $T_{P\left(V_{8}\right)}(j)$. But $\operatorname{dim} T_{X}(j) \cap T_{P\left(M\left(V_{4 a}\right)\right)}(j)=2$, because this space coincide with $T_{Q_{G}\left(V_{4 a}\right)}(j)$ or $T_{Q_{\Omega}\left(V_{4 a}\right)}(j)$. Analogously, $\operatorname{dim} T_{X}(j) \cap T_{P\left(M\left(V_{4 b}\right)\right)}(j)=2$, and linear independence of these spaces implies that $\operatorname{dim} T_{X}(j) \geq 4$ that contradicts to non-singularity. This means that j is a straight line. It is easy to see that it is tangential to Ω at $\gamma_{1}\left(f_{a}\right)$.

Lemma 3.20. Let γ be a straight line on G_{4} which is tangential to Ω at a point t_{0}. Let $\pi(j)=\cup_{t \in j} t_{V}$ be a plane in $P(V)$ and $\pi(j)$ the dual straight line in $P\left(V^{*}\right)$, i.e. the set of subspaces $P\left(V_{4}\right) \in P\left(V^{*}\right)$ that contain $\pi(j)$. If $\left(c, c^{\prime}, V_{4}\right) \in F_{0}$ and $V_{4} \in \widetilde{\pi(j)}$, then $t_{0} \in\left\{\gamma_{1}(c), \gamma_{2}(c)\right\}$ or $j \subset X$.

Proof. The above conditions imply that $j \subset Q_{G}\left(V_{4}\right)$. It is clear that $j \cap \Omega=$ $\left\{j \cap c, j \cap c^{\prime}\right\}$. Since j is tangential to Ω at a point t_{0}, then:

If $j \not \subset X$, then $t_{0}=j \cap c=j \cap c^{\prime}$,
and hence $t_{0} \in c \cap c^{\prime}$.
Proposition 3.21. For a generic point $t \in W \quad\left(\left.\xi\right|_{\bar{W}}\right)^{-1}(t)$ is one point.
Proof. Let for a point $t \in W \quad\left(\left.\xi\right|_{\bar{W}}\right)^{-1}(t)$ is more than one point. $f_{a}, f_{b} \in$ $p_{W}\left(\left.\xi\right|_{\bar{W}}\right)^{-1}(t)$ and $j=j\left(f_{a}, f_{b}\right)$. Then a straight line $\widetilde{\pi(j)}$ meets $\phi\left(F_{0}\right)$ at points $\phi\left(f_{a}\right), \phi\left(f_{b}\right)$. But a variety $B \subset G\left(2, V^{*}\right)$ of bisecants of $\phi\left(F_{0}\right)$ is 4-dimensional, while a variety B^{\prime} of straight lines on G_{4} which are tangential to Ω is 3 -dimensional. Let j be such a line. We can associate it a straight line $\widetilde{\pi(j)}$ in $P\left(V^{*}\right)$. These lines form a threefold $B^{\prime} \subset G\left(2, V^{*}\right)$. Intersection of B and B^{\prime} in $G\left(2, V^{*}\right)$ is a curve, hence the set of points $t \in W$ such that $\left(\left.\xi\right|_{\bar{W}}\right)^{-1}(t)$ is more than one point is 1-dimensional.

Proposition 3.22. $O_{X}(W)=O_{X}(21)$.

Proof. $\forall f_{0} \in F_{0} \quad\left\{\gamma_{1}\left(f_{0}\right), \gamma_{2}\left(f_{0}\right)\right\}$ is a quadric in $P\left(\tau_{2, M}\left(f_{0}\right)\right)$, and these quadrics form a bundle Γ on $\left(F_{0}, \tau_{2, M}\right)$. Let us find $L(\Gamma)$. There are maps of sheaves on F_{0} :

$$
O_{\eta}(-1) \xrightarrow{i_{\eta}} O \oplus O(1) \rightarrow S^{2}\left(M^{*}\right) \rightarrow S^{2}\left(\tau_{2, M}^{*}\right)
$$

Their composition is 0 , hence there exists a map

$$
O(1, \eta 1)=\text { Coker } i_{\eta} \rightarrow S^{2}\left(M^{*}\right) \rightarrow S^{2}\left(\tau_{2, M}^{*}\right)
$$

It is easy to see that this map is $i(\Gamma)$ and $L(\Gamma)=O\left(1,{ }_{\eta} 1\right)$. This implies that

$$
\begin{equation*}
O_{P\left(\tau_{2, M}\right)}(\bar{W})=O\left({ }_{P} 2,-1,{ }_{\eta}-1\right) \tag{3.23}
\end{equation*}
$$

We denote $c_{1}\left(O_{P\left(V_{8}\right)}(1)\right)$ by R. We have

$$
\operatorname{deg} W=<W, R, R>_{P\left(V_{8}\right)}=<\bar{W}, R, R>_{P\left(\tau_{2, M}\right)}
$$

In $A\left(P_{F_{0}}\left(\tau_{2, M}\right)\right)$ we have an equality $R^{2}=-c_{1} R-c_{2}$, where $c_{1}=c_{1}\left(\tau_{2, M}\right)=-3 H-E$, $c_{2}=c_{2}\left(\tau_{2, M}\right)$. (3.23) implies that $\mathrm{cl} \bar{W}=2 R-H-E$. This means that

$$
\begin{gathered}
<\bar{W}, R, R>_{P\left(\tau_{2, M}\right)}=\left(2 R^{3}-H R^{2}-E R^{2}\right)_{P\left(\tau_{2, M}\right)} \\
=\left(\left(2 c_{1}^{2}-2 c_{2}+H c_{1}+E c_{1}\right) R+2 c_{1} c_{2}+H c_{2}+E c_{2}\right)_{P\left(\tau_{2, M}\right)} \\
=\left(2 c_{1}^{2}-2 c_{2}+H c_{1}+E c_{1}\right)_{F_{0}}=210
\end{gathered}
$$

Since $\operatorname{deg} X=10$, we have $O_{X}(W)=O_{X}(21)$.
Let us compare properties of a threefold X under consideration and another threefold X^{\prime} which is a two-sheeted covering of P^{3} with ramification at a quartic surface W (see [11], [12], [49]). $c_{1}(\Omega)^{2}$ and $c_{2}(\Omega)$ of their Fano surfaces $F\left(X^{\prime}\right)$ and $F_{m}(X)$ coincide. Since irregularities coincide as well:

$$
h^{1,0}\left(F_{m}(X)\right)=h^{1,0}\left(F\left(X^{\prime}\right)\right)=10, h^{1,0}\left(F_{0 m}(X)\right)=h^{1,0}\left(F_{0}\left(X^{\prime}\right)\right)=0
$$

we have that their Hodge numbers as well as their decomposition on symmetric and antisymmetric part with respect to $i_{F_{m}(X)}, i_{F\left(X^{\prime}\right)}$ also coincide. Moreover, we have the following properties of inclusions $F_{m}(X) \hookrightarrow P^{5}, F\left(X^{\prime}\right) \hookrightarrow P^{5}$: $\operatorname{deg} F_{m}(X)=$ $\operatorname{deg} F\left(X^{\prime}\right)=40, \omega_{F_{0 m}(X)}=\omega_{F_{0}\left(X^{\prime}\right)}=O_{p^{5}}(3) \otimes \sigma$. Nevertheless, some properties of $F_{m}(X)$ and $F\left(X^{\prime}\right)$ are different. For example, we have for X^{\prime} :
(a) There are 12 conics passing through a generic point $x \in X^{\prime}$;
(b) $\left.\xi\right|_{\bar{W}}: \bar{W} \rightarrow W$ is a six-sheeted covering;
(c) image of $F\left(X^{\prime}\right)$ in P^{5} is contained in the Plücker quadric (apparently this is not true for the image of $F_{m}(X)$ in P^{5});
(d) There are no exceptional points and lines on $F\left(X^{\prime}\right)$.
[16] contains a conjecture that X and X^{\prime} can be birationally isomorphic. Differences of properties of their Fano surfaces given above show that this is few likely. Nevertheless, there exists a Fano threefold $X^{\prime \prime}([1])$ whose properties are in some sense "intermediate" between properties of X and X^{\prime}.

Namely, let G_{3} be a $G(2,5) \cap P^{3} . \quad X^{\prime \prime}$ is a two-sheeted covering of G_{3} with ramification in $W=G_{3} \cap \Omega$, where Ω is a quartic surface in $P\left(\lambda^{2}(V)\right)$. There exists a variation in a smooth family of X in $X^{\prime \prime}$. Let K be a cone over G_{4} with vertex t and $X_{4}=K \cap \Omega$. Then a section of X_{4} by a hyperplane which does not contain t is isomorphic to a X and a section of X_{4} by a hyperplane which contains t is isomorphic
to a $X^{\prime \prime}$. From another side, some properties of $X^{\prime \prime}$ are analogous to the ones of X^{\prime}. For example, $F_{0}\left(X^{\prime \prime}\right)$ (an analog of $F_{0}\left(X^{\prime}\right)$) is isomorphic to the set of conics on G_{3} which are bitangent to W.
4. Tangent bundle theorem. Firstly we shall prove this theorem "locally". Remember that there exist maps $F \rightarrow F_{0} \rightarrow G_{Z}\left(2, M^{*}\right)$ and $F \rightarrow P_{Z}\left(M^{*}\right)$ so the corresponding tautological sheaves $\tau_{2, m}$ and $\tau_{3, m}$ are defined on F. We denote $l=$ $l_{1} \cup l_{2} \hookrightarrow F$.

Proposition 4.1. Let $c \in F-l$. Then there exists a natural isomorphism $\Omega_{F}(c) \rightarrow \tau_{2, m}^{*}(c)$.

Proof of this proposition is a logically necessary step of the proof of the Tangent Bundle Theorem for F, because it implies the following

Corollary 4.2. F is smooth, $\operatorname{dim} F=2, T$ is a regular bundle.
Steps of the proof of Proposition 4.1 correspond to ones of the proof of Theorem 4.14 below. The proof of (4.14) is more complicated only because of necessity to consider exceptional lines l_{1}, l_{2}.

Proof of 4.1. We introduce the following notation. Let $\alpha: P_{P\left(V^{*}\right)}(M) \rightarrow P\left(V^{*}\right)$ is the projectivization of M and $O_{\alpha}(1)$ is the tautological sheaf on $P_{P\left(V^{*}\right)}(M)$. There exists an inclusion of sheaves $M \rightarrow V_{8} \otimes O$ on $P\left(V^{*}\right)$ and hence maps

$$
\left.\begin{array}{crrccc}
P\left(M\left(V_{4}\right)\right) & & X & \hookrightarrow & G_{4} & \hookrightarrow
\end{array}\right] G
$$

where vertical maps are inclusions and $P_{P\left(V^{*}\right)}\left(V_{8} \otimes O\right)=P\left(V^{*}\right) \times P\left(V_{8}\right)$.
We denote by $O_{\alpha}(1)$ the sheaf $O_{P\left(\lambda^{2}(V)\right)}(1)$ and its inverse images in all obgects of this diagram, as well as in subvarieties of $P\left(M\left(V_{4}\right)\right)$ (for a generic V_{4}).

Let $c=\left(c, V_{4}\right) \in F-l$. We consider diagrams

$$
\begin{array}{ccc}
c & \rightarrow & \pi(c) \tag{4.3}\\
\downarrow & & \downarrow \\
Q_{G}\left(V_{4}\right) & \rightarrow & P\left(M\left(V_{4}\right)\right)
\end{array}
$$

$$
\begin{array}{clc}
c & \rightarrow & X \\
\downarrow & & \downarrow \\
Q_{G}\left(V_{4}\right) & \rightarrow & G_{4}
\end{array} .
$$

According deformation theory, $T_{F}(c)=H^{0}(c, N(c, X))$, if

$$
\begin{equation*}
H^{1}(c, N(c, X))=0 \tag{4.5}
\end{equation*}
$$

Later it will be shown that condition (4.5) is satisfied, hence we denote $H^{0}(c, N(c, X))$ by $T_{F}(c)$. Analogous notations will be used in other cases where we shall use deformation theory. According Serre duality for c we have:

$$
\begin{gathered}
H^{0}(c, N(c, X))=H^{1}\left(c, N(c, X)^{*} \otimes \omega_{c}\right)^{*}=H^{1}\left(c, N(c, X)^{*} \otimes \operatorname{det} N(c, X)^{*} \otimes \omega_{c}\right)^{*} \\
=H^{1}\left(c, N(c, X) \otimes \omega_{X}\right)^{*}
\end{gathered}
$$

and analogously $H^{1}(c, N(c, X))=H^{0}\left(c, N(c, X) \otimes \omega_{X}\right)^{*}$, i.e.

$$
\begin{equation*}
\Omega_{F}(c)=H^{1}\left(c, N(c, X) \otimes \omega_{X}\right)^{*} \tag{4.6}
\end{equation*}
$$

if $H^{0}\left(c, N(c, X) \otimes \omega_{X}\right)=0$.
Since $c \notin l$ we have that (4.3) is a fibred product, and hence

$$
N\left(c, Q_{G}\left(V_{4}\right)\right)=N\left(\pi(c), P\left(M\left(V_{4}\right)\right)\right)=O_{\alpha}(1)
$$

Exact sequences of normal sheaves for both pairs of inclusions in (4.4) are the following:

$$
\left.\begin{align*}
0 \rightarrow N(c, X) & \rightarrow N\left(c, G_{4}\right) \tag{4.7}
\end{align*} \rightarrow N\left(X, G_{4}\right)\right|_{c} \rightarrow 0 .
$$

Let us consider the composite map

$$
\begin{equation*}
O_{\alpha}(1)=\left.N\left(c, Q_{G}\left(V_{4}\right)\right) \rightarrow N\left(c, G_{4}\right) \rightarrow N\left(X, G_{4}\right)\right|_{c}=O_{\alpha}(2) \tag{4.9}
\end{equation*}
$$

Further, let us consider a diagram

$$
\begin{array}{cccc}
c & \hookrightarrow & c \cup c^{\prime} & \rightarrow \\
& & X \\
& & & \downarrow \\
& Q_{G}\left(V_{4}\right) & \rightarrow & G_{4}
\end{array}
$$

where $c^{\prime}=i_{f}(c)$. We have $c \cup c^{\prime}=X \underset{G_{4}}{\times} Q_{G}\left(V_{4}\right)$, so $\left.\left.\tilde{N}\left(c \cup c^{\prime}, Q_{G}\left(V_{4}\right)\right)\right|_{c} \rightarrow N\left(X, G_{4}\right)\right|_{c}$ is an isomorphism (here and below $\tilde{N}\left(Y_{1}, Y_{2}\right)$ means - for an inclusion of varieties $Y_{1} \subset Y_{2}$ - a locally free sheaf on Y_{2} such that Y_{1} is the set of zeros of a section of it).
(4.10). There is a map $\left.N\left(c, Q_{\Omega}\left(V_{4}\right)\right) \rightarrow \tilde{N}\left(c \cup c^{\prime}, Q_{G}\left(V_{4}\right)\right)\right|_{c}$ which is a multiplication by a section of a sheaf $O_{c}\left(c \cap c^{\prime}\right)=O_{\alpha}(1)$ which corresponds to the divisor $c \cap c^{\prime}$ on c.

It is clear that $N\left(Q_{G}\left(V_{4}\right), G_{4}\right)=\left.\tau_{2, V}^{*}\right|_{Q_{G}\left(V_{4}\right)}$. Multiplying (4.7) and (4.8) by $\omega_{X}=O_{\alpha}(-1)$ we get

$$
\begin{gather*}
0 \rightarrow N(c, X) \otimes \omega_{X} \rightarrow N\left(c, G_{4}\right) \otimes O_{\alpha}(-1) \rightarrow O_{\alpha}(1) \rightarrow 0 \tag{4.11}\\
\left.0 \rightarrow O \rightarrow N\left(c, G_{4}\right) \otimes O_{\alpha}(-1) \rightarrow \tau_{2, V}\right|_{c} \rightarrow 0 \tag{4.12}
\end{gather*}
$$

According (4.10), the composite map

$$
\phi_{c}: O \rightarrow N\left(c, G_{4}\right) \otimes O_{\alpha}(-1) \rightarrow O_{\alpha}(1)
$$

corresponds to the divisor $c \cap c^{\prime}$ on c. Let us consider the long exact cohomology sequences for (4.11) and (4.12). Since $c \notin l$, we have $\left.\tau_{2, V}\right|_{c}=2 O_{c}(-1)$ and $H^{i}\left(c,\left.\tau_{2, V}\right|_{c}\right)=0$. This means that the long exact cohomology sequence for (4.11) is the following:

$$
\begin{equation*}
0 \rightarrow H^{0}\left(N(c, X) \otimes \omega_{X}\right) \rightarrow H^{0}\left(O_{c}\right) \xrightarrow{H^{0}\left(\phi_{c}\right)} H^{0}\left(O_{\alpha}(1)\right) \rightarrow \Omega_{F}(c) \rightarrow 0 \tag{4.13}
\end{equation*}
$$

We have $H^{0}\left(c, O_{\alpha}(1)\right)=\tau_{3, M}^{*}(c)$ (see (4.43) below) and $H^{0}\left(\phi_{c}\right)$ is dual to an epimorhpism

$$
\tau_{3, M}(c) \rightarrow \tau_{3, M}(c) / \tau_{2, M}(c)
$$

This means that $H^{0}\left(\phi_{c}\right)$ is an inclusion, $H^{0}\left(N(c, X) \otimes \omega_{X}\right)=0$ and $\Omega_{F}(c)=\tau_{2, M}^{*}(c)$.

Theorem 4.14. (The Tangent Bundle Theorem). There exists an exact sequence of sheaves on F :

$$
0 \rightarrow \tau_{2, M}^{*} \rightarrow r^{*}\left(\Omega_{F_{m}}\right) \rightarrow i_{*}\left(O_{l} \oplus O_{l}\right) \rightarrow 0
$$

where i is an inclusion $l \rightarrow F$.
Proof. Let us consider a Fano family $D_{F}(c) \hookrightarrow F \times X$ defined as follows: $(c, x) \in D_{F}(c) \Longleftrightarrow x \in c$, and let

$$
\begin{array}{ccc}
D_{F}(c) & \hookrightarrow & f \times X \\
& \searrow & \downarrow \\
& \searrow & F
\end{array}
$$

be a diagram of natural projections on F, the vertical map is α. According the deformation theory, $r_{F}^{*}\left(T_{F_{c}}\right)=\beta_{*}\left(N\left(D_{F}(c), F \times X\right)\right)$, if $\beta_{* 1}\left(N\left(D_{F}(c), F \times X\right)\right)=0$. Like in (4.6), the relative Serre duality for β implies that

$$
r_{F}^{*}\left(\Omega_{F_{c}}\right)=\beta_{* 1}\left(N\left(D_{F}(c), F \times X\right) \otimes O_{\alpha}(-1)\right)
$$

if $\beta_{*}\left(N\left(D_{F}(c), F \times X\right) \otimes O_{\alpha}(-1)\right)=0$.
Let us define the following subvarieties of $P_{F}(M)$ (here (f, x) is an element of $P_{F}(M) \subset F \times P\left(\lambda^{2}(V)\right)$ and $\left.f=\left(c, V_{4}\right)\right):$

$$
\begin{gathered}
D_{F}(G)=\left\{(f, x) \mid x \in Q_{G}\left(V_{4}\right)\right\} \\
D_{F}\left(P^{2}\right)=P_{F}\left(\tau_{3, M}\right)=\{(f, x) \mid x \in \pi(c)\} \\
D_{l}\left(P^{2}\right)=P_{l}\left(\tau_{3, M}\right)=\{(f, x) \mid f \in l \text { and } x \in \pi(c)\} .
\end{gathered}
$$

Recall that for $f=\left(c, V_{4}\right) \in F$ we have $Q_{G}\left(V_{4}\right) \cap \pi(c)=c$ if $f \notin l$ and $Q_{G}\left(V_{4}\right) \cap$ $\pi(c)=\pi(c)$ if $f \in l$. Hence there is a diagram which is a fibred product:

$$
\begin{array}{ccc}
D_{l}\left(P^{2}\right) \cup D_{F}(c) & \rightarrow & D_{F}\left(P^{2}\right) \tag{4.15}\\
\downarrow & & \downarrow \\
D_{F}(G) & \rightarrow & P_{F}(M)
\end{array} .
$$

Normal sheaves of inclusions of this diagram are the following. Since $N(l, F)=O_{\eta}(1)$, we have

$$
\begin{equation*}
N\left(D_{l}\left(P^{2}\right), D_{F}\left(P^{2}\right)\right)=O_{\eta}(1) \tag{4.16}
\end{equation*}
$$

and since $M / \tau_{3, M}=O_{\eta}(1)$ (recall that the projectivization map $P_{Z}\left(M^{*}\right) \rightarrow Z$ is denoted by π) we have

$$
\begin{equation*}
N\left(D_{F}\left(P^{2}\right), P_{F}(M)\right)=O\left({ }_{\alpha} 1, \pi 1\right) \tag{4.17}
\end{equation*}
$$

Let us consider a diagram

$$
\begin{array}{ccc}
D_{F}(c) & \rightarrow & F \times X \tag{4.18}\\
\downarrow & & \downarrow \\
D_{F}(G) & \rightarrow & F \times G_{4}
\end{array} .
$$

We have

$$
\begin{equation*}
N\left(F \times X, F \times G_{4}\right)=O_{\alpha}(2) \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{N}\left(D_{F}(G), F \times G_{4}\right)=O(1) \otimes \tau_{2, V}^{*} \tag{4.20}
\end{equation*}
$$

where (4.20) is obtained by restriction to $F \times G_{4}$ of the corresponding equality for a general flag variety $D_{P\left(V_{n}^{*}\right)}(G) \subset P\left(V_{n}^{*}\right) \times G\left(k, V_{n}\right)$ defined as follows:

$$
D_{P\left(V_{n}^{*}\right)}(G)=\left\{\left(V_{n-1}, g\right) \mid V_{n-1} \in P\left(V_{n}^{*}\right), g \in G\left(k, V_{n}\right), g_{V_{n}} \subset V_{n-1}\right\}
$$

We have $N\left(D_{P\left(V_{n}^{*}\right)}(G), P\left(V_{n}^{*}\right) \times G\left(k, V_{n}\right)\right)=O_{P\left(V_{n}^{*}\right)}(1) \otimes \tau_{k, V_{n}}^{*}$.
Lemma 4.21. Sing $D_{F}(G)=S$, where $S \subset F \times Q_{G}\left(V_{4}\right)$ is defined as follows:

$$
S=\left\{(f, x) \mid f \in l, x \in\left\{\gamma_{1}(f), \gamma_{2}(f)\right\}\right\}
$$

$\left(f \in F, \quad x \in Q_{G}\left(V_{4}\right)\right) . S$ is a double curve on $D_{F}(G)$.
Proof. Explicit calculations in coordinates of the equation of the tangent space of points of $D_{F}(G)$ and of the equation of the tangent cone of points of S. We omit these calculations.

Let us consider the blowing up of (4.15) along S (recall that the blowing up along S of a variety $Y \supset S$ is denoted by $\tilde{Y} \xrightarrow{r} Y)$:

$$
\begin{array}{cl}
\widetilde{D_{l}\left(P^{2}\right)} \cup \widetilde{D_{F}(c)} & \rightarrow \widetilde{D_{F}\left(P^{2}\right)} \\
\frac{\downarrow}{D_{F}(G)} & \rightarrow \widetilde{P_{F}(M)} . \tag{4.22}
\end{array}
$$

(4.22) is also a fibred product. (4.16), (4.17) imply that normal sheaves for inclusions are the following:

$$
\begin{gather*}
N\left(\widetilde{D_{l}\left(P^{2}\right)}, \widetilde{D_{F}\left(P^{2}\right)}\right)=O\left({ }_{\eta} 1, r 1\right) \tag{4.23}\\
\left.N\left(\widetilde{D_{F}\left(P^{2}\right)}\right), \widetilde{P_{F}(M)}\right)=O\left({ }_{\alpha} 1,{ }_{\pi} 1,{ }_{r} 1\right) \tag{4.24}
\end{gather*}
$$

where $O_{r}(1)$ is the tautological sheaf of the map r. (4.23), (4.24) imply

$$
\begin{equation*}
N\left(\widetilde{D_{F}(c)}, \widetilde{D_{F}(G)}\right)=O\left({ }_{\alpha} 1, \pi,,_{\eta}-1\right) \tag{4.25}
\end{equation*}
$$

Lemma 4.26. Let us denote $N=N\left(\widetilde{D_{F}(G)}, \widetilde{F \times G_{4}}\right)$. Then N appears in the exact sequence (4.31) below.

Proof. Let us consider a diagram of restictions of blowings up on S

$$
\begin{array}{ccccccc}
\tilde{S}_{1} & \hookrightarrow & \tilde{S}_{2} & \hookrightarrow & \tilde{S}_{3} & \hookrightarrow & \tilde{S}_{4} \\
\downarrow & & \downarrow & & \downarrow \\
S & = & & \downarrow \\
S & = & S & = &
\end{array}
$$

where $\tilde{S}_{1}, \tilde{S}_{2}, \tilde{S}_{3}, \tilde{S}_{4}$ are inverse images of S in $\widetilde{D_{F}(c)}, \widetilde{D_{F}(G)}, \widetilde{P_{F}(M)}, \widetilde{F \times G_{4}}$ respectively; projections (vertical arrows) are denoted by $r_{1}, r_{2}, r_{3}, r_{4}$ respectively. For $s \in S \quad r_{1}^{-1}(s)=P^{1}, r_{2}^{-1}(s)$ is a 2 -dimensional quadric, $r_{3}^{-1}(s)=P^{3}$ which is the linear envelope of $r_{2}^{-1}(s)$, and $r_{4}^{-1}(s)=P^{4}$.
(4.20) and properties of blowings up imply that

$$
\begin{equation*}
\tilde{N}\left(\tilde{S}_{3} \cup \widetilde{D_{F}(G)}, \widetilde{F \times G_{4}}\right)=O\left(1,{ }_{r} 1\right) \otimes \tau_{2, V}^{*} \tag{4.27}
\end{equation*}
$$

If we have a diagram of inclusions

$$
\begin{array}{ccc}
Y^{\prime}=Y_{1} \cap Y_{2} & \xrightarrow{i} & Y_{1} \tag{4.28}\\
\downarrow & & \downarrow \\
Y_{2} & & \rightarrow
\end{array}
$$

where all objects are smooth varieties, $\operatorname{codim} Y_{Y} Y_{i}=k, \operatorname{codim}_{Y_{i}} Y^{\prime}=1(i=1,2)$, then there exists an exact sequence of sheaves on Y_{1}

$$
\begin{equation*}
\left.0 \rightarrow N\left(Y_{1}, Y\right) \rightarrow \tilde{N}\left(Y_{1} \cup Y_{2}, Y\right)\right|_{Y_{1}} \rightarrow i_{*}\left(N\left(Y^{\prime}, Y_{1}\right) \otimes N\left(Y^{\prime}, Y_{2}\right)\right) \rightarrow 0 \tag{4.29}
\end{equation*}
$$

We let in (4.28): $Y=\widetilde{F \times G_{4}}, Y_{1}=\widetilde{D_{F}(G)}, Y_{2}=\tilde{S}_{3}, Y^{\prime}=\tilde{S}_{2}$. In this case (4.29) is the following:

$$
\begin{equation*}
0 \rightarrow N \rightarrow O(1, r 1) \otimes \tau_{2, V}^{*} \rightarrow i_{*}\left(N\left(\tilde{S}_{2}, \tilde{S}_{3}\right) \otimes N\left(\tilde{S}_{2}, \widetilde{D_{F}(G)}\right)\right) \rightarrow 0 \tag{4.30}
\end{equation*}
$$

We have $N\left(\tilde{S}_{2}, \widetilde{D_{F}(G)}\right)=O_{r}(-1)$, and since for $s \in S \quad r_{2}^{-1}(s)$ is a quadric in $r_{3}^{-1}(s)=P^{3}$, we have $N\left(\tilde{S}_{2}, \tilde{S}_{3}\right)=O_{r}(2) \otimes r_{2}^{*}(L)$ for some sheaf L on S. It is possible to show that $L=\left.\tilde{N}\left(D_{F}(G), P_{F}(M)\right)\right|_{S}=O(-1, \alpha 2)$, but we do not need it. So, (4.30) can be written as follows:

$$
\begin{equation*}
0 \rightarrow N \rightarrow O(1, r 1) \otimes \tau_{2, V}^{*} \rightarrow i_{*}\left(O_{r}(1) \otimes r_{2}^{*}(L)\right) \rightarrow 0 \tag{4.31}
\end{equation*}
$$

This is an exact sequence of sheaves on $\widetilde{D_{F}(G)}$ that we need.
Now we need an exact sequence of normal sheaves for a pair of inclusions $\widetilde{D_{F}(c)} \hookrightarrow$ $\widetilde{D_{F}(G)} \hookrightarrow \widetilde{F \times G_{4}}:$

$$
\begin{equation*}
\left.0 \rightarrow O\left({ }_{\alpha} 1, \pi 1,,_{\eta}-1\right) \rightarrow r^{*} N\left(D_{F}(c), F \times G_{4}\right) \otimes O_{r}(1) \rightarrow N\right|_{\widetilde{D_{F}(c)}} \rightarrow 0 \tag{4.32}
\end{equation*}
$$

Let us restrict (4.31) to $\widetilde{D_{F}(c)}$. Since \tilde{S}_{2} and $\widetilde{D_{F}(c)}$ are divisors in $\widetilde{D_{F}(G)}, \tilde{S}_{2} \cap$ $\widetilde{D_{F}(c)}=\tilde{S}_{1}$ and codim $\widetilde{D_{F}(G)} \tilde{S}_{1}=2$, we have: $\operatorname{Tor}{ }_{1}^{\widetilde{D_{F}(g)}}\left(i_{*} O_{\tilde{S}_{2}}, i_{*} O_{\widetilde{D_{F}(c)}}\right)=0$, and the restriction of (4.31) is the following:

$$
\begin{equation*}
\left.0 \rightarrow N\right|_{\widetilde{D_{F}(c)}} \rightarrow O\left(1,{ }_{r} 1\right) \otimes \tau_{2, V}^{*} \rightarrow i_{*} O_{r}(1) \otimes L \rightarrow 0 \tag{4.33}
\end{equation*}
$$

where i is an inclusion $\tilde{S}_{1} \rightarrow \widetilde{D_{F}(c)}$.
Multiplying (4.32) and (4.33) by $O_{r}(-1)$ we get

$$
\begin{equation*}
\left.0 \rightarrow O\left({ }_{\alpha} 1,,_{\pi} 1,{ }_{\eta}-1,_{r}-1\right) \rightarrow r^{*} N\left(D_{F}(c), F \times G_{4}\right) \rightarrow N \otimes O_{r}(-1)\right|_{\widetilde{D_{F}(c)}} \rightarrow 0 \tag{4.34}
\end{equation*}
$$

$$
\begin{equation*}
\left.0 \rightarrow N \otimes O_{r}(-1)\right|_{\widetilde{D_{F}(c)}} \rightarrow O(1) \otimes \tau_{2, V}^{*} \rightarrow i_{*} L \rightarrow 0 \tag{4.35}
\end{equation*}
$$

Now we consider direct images of the above sequences to $D_{F}(c)$. To do it, we consider an exact sequence of sheaves on $\widetilde{D_{F}(c)}$:

$$
\left.0 \rightarrow O \rightarrow O_{r}(-1) \rightarrow i_{*} O_{r}(-1)\right|_{\tilde{S}_{1}} \rightarrow 0
$$

We get that $r_{*} O_{r}(-1)=O, r_{* i} O_{r}(-1)=0$ for $i>0$. Long exact r_{*}-direct images sequences of $(4.34),(4.35)$ are the following (here we denote $\left.N^{\prime}=r_{*}\left(\left.N \otimes O_{r}(-1)\right|_{\widetilde{D_{F}(c)}}\right)\right)$:

$$
\begin{equation*}
0 \rightarrow O\left({ }_{\alpha} 1, \pi,{ }_{\pi}, \eta\right) \rightarrow N\left(D_{F}(c), F \times G_{4}\right) \rightarrow N^{\prime} \rightarrow 0 \tag{4.36}
\end{equation*}
$$

We get: $r_{* 1}\left(\left.N \otimes O_{r}(-1)\right|_{\widetilde{D_{F}(c)}}\right)=0$, and

$$
\begin{equation*}
0 \rightarrow N^{\prime} \rightarrow O(1) \otimes \tau_{2, V}^{*} \rightarrow i_{*} L \rightarrow 0 \tag{4.37}
\end{equation*}
$$

An exact sequence of normal sheaves for a pair of inclusions $D_{F}(c) \hookrightarrow F \times X \hookrightarrow$ $F \times G_{4}$ is the following:

$$
\begin{equation*}
0 \rightarrow N\left(D_{F}(c), F \times X\right) \rightarrow N\left(D_{F}(c), F \times G_{4}\right) \rightarrow O_{\alpha}(2) \rightarrow 0 \tag{4.38}
\end{equation*}
$$

Multiplying (4.36) - (4.38) by $O_{\alpha}(-1)$ and taking the long exact β_{*}-direct image sequence we get (here we denote $B=N\left(D_{F}(c), F \times G_{4}\right) \otimes O_{\alpha}(-1)$):

$$
\begin{gather*}
0 \rightarrow O\left({ }_{\pi} 1,{ }_{\eta}-1\right) \rightarrow \beta_{*}(B) \rightarrow \beta_{*}\left(N^{\prime} \otimes O_{\alpha}(-1)\right) \rightarrow 0 \tag{4.39}\\
0 \rightarrow \beta_{* 1}(B) \rightarrow \beta_{* 1}\left(N^{\prime} \otimes O_{\alpha}(-1)\right) \rightarrow 0 \tag{4.40}
\end{gather*}
$$

$0 \rightarrow \beta_{*}\left(N^{\prime} \otimes O_{\alpha}(-1)\right) \rightarrow O(1) \otimes \beta_{*} \tau_{2, V} \rightarrow \beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right) \rightarrow \beta_{* 1}\left(N^{\prime} \otimes O_{\alpha}(-1)\right) \rightarrow$

$$
\begin{equation*}
O(1) \otimes \beta_{* 1} \tau_{2, V} \rightarrow \beta_{* 1} i_{*}\left(L \otimes O_{\alpha}(-1)\right) \rightarrow 0 \tag{4.41}
\end{equation*}
$$

$$
0 \rightarrow \beta_{*}\left(N\left(D_{F}(c), F \times X\right) \otimes O_{\alpha}(-1)\right) \rightarrow \beta_{*}(B) \rightarrow \beta_{*} O_{\alpha}(1) \rightarrow r_{F}^{*}\left(\Omega_{F_{c}}\right) \rightarrow
$$

$$
\begin{equation*}
\beta_{* 1}(B) \rightarrow \beta_{* 1} O_{\alpha}(1) \rightarrow 0 \tag{4.42}
\end{equation*}
$$

It is easy to see that the restriction of $\tau_{2, V}$ on a conic line $c \subset G$ is equal to $2 O_{c}(-1)$ (resp. $\left.O_{c} \oplus O_{c}(-2)\right)$ if c is not contained in a α-plane (resp. if c is contained in a α-plane). There exists the following property of the map $\beta: D_{F}(c) \rightarrow F$:

For $f \in F$ we have: $\beta^{-1}(f)$ is a conic line on a α-plane $\Longleftrightarrow f \in l_{2}$.
Hence, only for $f \in l_{2}$ cohomology of a sheaf $\left.\tau_{2, V}\right|_{\beta^{-1}(f)}$ are non-zero. This means that $\beta_{*} \tau_{2, V}=0$ and $\beta_{* 1} \tau_{2, V}$ is a sheaf whose support is l_{2}, and it is invertible on l_{2}. (4.41) implies that $\beta_{*}\left(N^{\prime} \otimes O_{\alpha}(-1)\right)=0$, and (4.39) implies that $\beta_{*}(B)$ is isomorphic to $O\left({ }_{\pi} 1,{ }_{\eta}-1\right)$.

Since we have a commutative diagram

where vertical maps are β_{S}, β respectively, we see that $\beta_{* k} i_{*}\left(L \otimes O_{\alpha}(-1)\right)=i_{*} \beta_{S * k}(L \otimes$ $\left.O_{\alpha}(-1)\right)$. Since β_{S} is a two-sheeted covering, we have $\beta_{* 1} i_{*}\left(L \otimes O_{\alpha}(-1)\right)=0$ and $\beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right)$ is a locally free sheaf of rank 2 on l. Let us consider a diagram

$$
\begin{gathered}
D_{F}(c) \xrightarrow{\stackrel{i_{c}}{\longrightarrow}} \\
\\
\\
\searrow
\end{gathered} c \begin{gathered}
\\
\\
\end{gathered}
$$

where the vertical map is α. Since for any $f \in F$ we have an equality of sheaves on $\alpha^{-1}(f): O_{\alpha^{-1}(f)}\left(\beta^{-1}(f)\right)=O_{\alpha}(2)$, we have globally on $D_{F}\left(P^{2}\right): O_{D_{F}\left(P^{2}\right)}\left(D_{F}(c)\right)=$ $\alpha^{*} L_{F} \otimes O_{\alpha}(2)$, where L_{F} is some invertible sheaf on F. There is an exact sequence of sheaves on $D_{F}\left(P^{2}\right)$:

$$
0 \rightarrow L_{F}^{-1} \otimes O_{\alpha}(-1) \rightarrow O_{\alpha}(1) \rightarrow i_{c *}\left(\left.O_{\alpha}(1)\right|_{D_{F}(c)}\right) \rightarrow 0
$$

Considering its long exact α_{*}-direct image sequence we see that

$$
\begin{equation*}
\beta_{*} O_{\alpha}(1)=\tau_{3, M}^{*} \tag{4.43}
\end{equation*}
$$

and that $\beta_{* 1}\left(O_{\alpha}(1)\right)=0$.
Now let us consider a map $i_{B}: \beta_{*}(B) \rightarrow \beta_{*} O_{\alpha}(1)$ which is isomorphic to $O\left({ }_{\pi} 1,{ }_{\eta}-1\right) \rightarrow \tau_{3, M}^{*}$. Its fibre at a point $c=\left(c, V_{4}\right) \in F-l$ is $i_{B}(c)=H^{0}\left(\phi_{c}\right)$ because of (4.13), i.e. $i_{B}(c)$ is an inclusion $\left(\tau_{3, M}(c) / \tau_{2, M}(c)\right)^{*} \rightarrow \tau_{3, M}^{*}(c)$. Tautological exact sequences on $P_{Z}\left(M^{*}\right)$ and on $G_{Z}\left(2, M^{*}\right)$ and an equality of sheaves on F : $O_{\eta}(1) \otimes \operatorname{det} \tau_{2, M}^{*}=O$ imply an equality $\left(\tau_{3, M} / \tau_{2, M}\right)^{*}=O\left({ }_{\pi} 1,{ }_{\eta}-1\right)$. So, there are 2 maps of sheaves

$$
\left(\tau_{3, M} / \tau_{2, M}\right)^{*}=O\left({ }_{\pi} 1, \eta-1\right) \rightarrow \tau_{3, M}^{*}
$$

namely i_{B} and the natural inclusion $\left(\tau_{3, M} / \tau_{2, M}\right)^{*} \hookrightarrow \tau_{3, M}^{*}$ whose cokernel is $\tau_{2, M}^{*}$. For all $f \in F-l$ their fibres at f coincide, hence the maps coincide as well. So, the exact sequence (4.42) (resp. (4.41), taking into consideration (4.40)) can be rewritten as follows:

$$
\begin{equation*}
0 \rightarrow \tau_{2, M}^{*} \rightarrow r^{*}\left(\Omega_{F_{c}}\right) \rightarrow \beta_{* 1}(B) \rightarrow 0 \tag{4.44}
\end{equation*}
$$

respectively

$$
\begin{equation*}
0 \rightarrow \beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right) \rightarrow \beta_{* 1}(B) \rightarrow O(1) \otimes \beta_{* 1} \tau_{2, V} \rightarrow 0 \tag{4.45}
\end{equation*}
$$

where $\beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right)$ is a locally free sheaf of rank 2 on l and $O(1) \otimes \beta_{* 1} \tau_{2, V}$ is an invertible sheaf on l_{2}.

Let us prove that $O(1) \otimes \beta_{* 1} \tau_{2, V}=\Omega_{l_{2}}$ and a composition map

$$
r^{*}\left(\Omega_{F_{c}}\right) \rightarrow \beta_{* 1}(B) \rightarrow O(1) \otimes \beta_{* 1} \tau_{2, V}
$$

coincides with the natural epimorphism $r^{*}\left(\Omega_{F_{c}}\right) \rightarrow i_{2 *}\left(\Omega_{l_{2}}\right)$ associated to an inclusion $i_{2}: l_{2} \rightarrow F_{c}$.

We define respectively $D_{l_{2}}(c), D_{l_{2}}\left(P^{2}\right), D_{l_{2}}(G)=D_{l_{2}}\left(P^{2}\right) \cup l_{2} \times U^{*}$ as restrictions on l_{2} of $D_{F}(c), D_{F}\left(P^{2}\right), D_{F}(G)$ respectively. We find $\Omega_{l_{2}}$ by using deformation theory and a fact that l_{2} is a variety of α-planes on G_{4}. Let

be the corresponding family (both maps to l_{2} are α); then we have:

$$
T_{l_{2}}=\alpha_{*}\left(N\left(D_{l_{2}}\left(P^{2}\right), l_{2} \times G_{4}\right)\right), \text { if }
$$

$$
\begin{equation*}
\alpha_{* 1}\left(N\left(D_{l_{2}}\left(P^{2}\right), l_{2} \times G_{4}\right)\right)=0 \tag{4.46}
\end{equation*}
$$

Serre duality implies that $\Omega_{l_{2}}=\alpha_{* 2}\left(N\left(D_{l_{2}}\left(P^{2}\right), l_{2} \times G_{4}\right) \otimes \omega_{G_{4}}\right)$. Now we apply (4.29) to a diagram

$$
\begin{array}{ccc}
P_{l_{2}}\left(\tau_{2, m}\right) & \xrightarrow{i} & D_{l_{2}}\left(P^{2}\right) \\
\downarrow & & \downarrow \\
l_{2} \times U^{*} & \rightarrow & l_{2} \times G_{4}
\end{array} .
$$

We get an exact sequence of sheaves on $D_{l_{2}}\left(P^{2}\right)$:

$$
0 \rightarrow N\left(D_{l_{2}}\left(P^{2}\right), l_{2} \times G_{4}\right) \rightarrow O(1) \otimes \tau_{2, V}^{*} \rightarrow i_{*}\left(N_{1} \otimes N_{2}\right) \rightarrow 0
$$

where $N_{1}=N\left(P_{l_{2}}\left(\tau_{2, M}\right), D_{l_{2}}\left(P^{2}\right)\right), N_{2}=N\left(P_{l_{2}}\left(\tau_{2, M}\right), l_{2} \times U^{*}\right)$. We multiply it by $\omega_{G_{4}}=O_{\alpha}(-3)$ and consider a long exact α_{*}-direct image sequence. Since $\forall x \in l_{2}$ we have $\left.\tau_{2, V}^{*}\right|_{\alpha^{-1}(x)}=O \oplus O_{\alpha}(1)$, then $\alpha_{* i}\left(O\left(1,{ }_{\alpha}-3\right) \otimes \tau_{2, V}^{*}\right)$ is 0 for $i=0,1$ and one-dimensional for $i=2$. Restriction of both sheaves N_{1} and N_{2} on $\tau_{2, M}(x)$ (i.e. the fibre of the projection $P_{l_{2}}\left(\tau_{2, M}\right) \rightarrow l_{2}$ at $\left.x\right)$ is $O_{\alpha}(1)$, so $N_{1} \otimes N_{2} \otimes O_{\alpha}(-3)$ at this fibre is equal to $O_{\alpha}(-1)$, and its cohomology is 0 . This implies that the condition (4.46) is satisfied and

$$
\begin{equation*}
\Omega_{l_{2}} \rightarrow \alpha_{* 2}\left(O\left(1,{ }_{\alpha}-3\right) \otimes \tau_{2, V}^{*}\right) \tag{4.47}
\end{equation*}
$$

is an isomorphism. It is clear that a divisor $D_{l_{2}}(c) \stackrel{i}{\hookrightarrow} D_{l_{2}}\left(P^{2}\right)$ corresponds to a sheaf $O_{\alpha}(2)$, so we consider an exact sequence on $D_{l_{2}}\left(P^{2}\right)$:

$$
0 \rightarrow O_{\alpha}(-2) \rightarrow O \rightarrow i_{*}\left(O_{D_{l_{2}}(c)}\right) \rightarrow 0
$$

We multiply it by $O(1) \otimes \tau_{2, V}=O(1, \alpha-1) \otimes \tau_{2, V}^{*}$ and consider a long exact α_{*}-direct image sequence:

$$
\begin{equation*}
0 \rightarrow \alpha_{* 1}\left(\left.O(1) \otimes \tau_{2, V}\right|_{D_{l_{2}}(c)}\right) \rightarrow \alpha_{* 2}\left(O\left(1,_{\alpha}-3\right) \otimes \tau_{2, V}^{*}\right) \rightarrow 0 \tag{4.48}
\end{equation*}
$$

(4.47) and (4.48) imply an isomorphism that we need. It is clear that it is compatible with the map $r_{F}^{*}\left(\Omega_{F_{c}}\right) \rightarrow i_{2 *}\left(\Omega_{l_{2}}\right)$. The kernel of this map is $r^{*}\left(\Omega_{F_{m}}\right)$, where $r: F \rightarrow$ F_{m}, and the exact sequences $(4.44),(4.45)$ can be rewritten as follows:

$$
\begin{equation*}
0 \rightarrow \tau_{2, M}^{*} \rightarrow r^{*}\left(\Omega_{F_{m}}\right) \rightarrow \beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right) \rightarrow 0 \tag{4.49}
\end{equation*}
$$

It is clear that $\left.r^{*}\left(\Omega_{F_{m}}\right)\right|_{l}=2 O_{l}$, and hence the restriction of (4.49) on l gives us an exact sequence

$$
\begin{equation*}
\left.2 O_{l} \rightarrow \beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right)\right|_{l} \rightarrow 0 \tag{4.50}
\end{equation*}
$$

Since $\left.\beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right)\right|_{l}$ is a locally free sheaf of rank 2 , (4.50) imply that it is isomorphic to $2 O_{l}$ (equality $2 O_{l}=\beta_{*} i_{*}\left(L \otimes O_{\alpha}(-1)\right)$ can be proved also by means of explicit calculations). So, (4.49) can be rewritten as follows:

$$
\begin{equation*}
0 \rightarrow \tau_{2, M}^{*} \rightarrow r^{*}\left(\Omega_{F_{m}}\right) \rightarrow 2 O_{l} \rightarrow 0 \tag{4.51}
\end{equation*}
$$

It is clear that (4.51) is isomorphic the the exact sequence associated to the divisor $l \subset F$

$$
0 \rightarrow O_{\eta}(-1) \rightarrow O \rightarrow i_{*}\left(O_{l}\right) \rightarrow 0
$$

multiplied by $r^{*}\left(\Omega_{F_{m}}\right)$. So, $\tau_{2, M}^{*}=r^{*}\left(\Omega_{F_{m}}\right) \otimes O_{\eta}(-1)$.
REMARK. (4.51) can be used for a calculation of Chern classes of Ω_{F}, because calculation of the class of $\tau_{2, M}^{*}$ in $K_{0}(F)$ is much easier than the one of Ω_{F}.
5. Special intersection of 3 quadrics in P^{6}. In this section X will mean a special intersection of 3 quadrics in P^{6} (see below for its definition).

Firstly we continue to describe some properties of $G(2,5)$. For a variety $Y \subset$ $P^{n}=P\left(V_{n+1}\right)$ we denote by $T P_{Y}(t) \subset P^{n}$ (resp. $\left.T V_{Y}(t) \subset V_{n+1}\right)$ the projective (resp. vector) tangent space to Y at a point $t \in Y$, i.e. $T P_{Y}(t)=P\left(T V_{Y}(t)\right)$.

For any $n \quad G\left(2, V_{n}\right)$ is an intersection of quadrics in $P\left(\lambda^{2} V_{n}\right)$, and the set of these quadrics is isomorphic to $G\left(n-4, V_{n}\right)$. Namely, for $V_{n-4} \subset V_{n}$ the corresponding quadric is $\mathrm{Pl}\left(V_{n} / V_{n-4}\right) \in P\left(S^{2} \lambda^{2} V_{n} / V_{n-4}\right)^{*}$. For $n=5$ we denote the corresponding inclusion by $q: P(V) \rightarrow P\left(S^{2} \lambda^{2} V^{*}\right)$; it is linear. All quadrics $q(P(V))$ are cones whose vertex has dimension 3 .

Let $t \in G, v \in P(V)$. Then $t \in \operatorname{Sing} q(v) \Longleftrightarrow v \in t_{V}$.
5.1. Let $T V_{G}(t)=V_{7} \subset \lambda^{2}(V)$. Then V_{7} is a member of exact sequences

$$
\begin{aligned}
& 0 \rightarrow \lambda^{2} t_{V} \rightarrow V_{7} \rightarrow t_{V} \otimes V / t_{V} \rightarrow 0 \\
& 0 \rightarrow V_{7} \rightarrow \lambda^{2} V \rightarrow \lambda^{2}\left(V / t_{V}\right) \rightarrow 0
\end{aligned}
$$

$\forall v \in t_{V}$ we have $\operatorname{Sing} q(v) \subset T P_{G}(t) \subset q(v)$. The same inclusions are valid for projections from t.
5.2. Let $c \subset G$ be a conic line such that $\pi(c) \not \subset G$. Then there exists the only $V_{4} \in P\left(V^{*}\right)$ such that $v \in P\left(V_{4}\right) \Longleftrightarrow \pi(c) \subset q(v)$. It is easy to see that $c \subset G\left(2, V_{4}\right)$.

Let $t \in G$; for any variety Y we denote by Y_{t} the projection of Y from t. Since $\operatorname{deg} G=5$, we have: $\operatorname{deg} G_{t}=4$, for $v \in t_{V} \quad(q(v))_{t}$ is a quadric containing G_{t}. This means that G_{t} is a complete intersection of 2 quadrics. They generate a straight line P^{1} which is isomorphic to t_{V}, all quadrics belonging to this line are cones whose vertex is 2-dimensional, and they contain $\left(T P_{G}(t)\right)_{t}$.

Let $t \in G_{4}$ and $t_{V} \cap U=\emptyset$; then $\left(G_{4}\right)_{t}$ is a complete intersection of two quadrics in P^{6}, they generate a straight line P^{1} which is isomorphic to t_{V}, all quadrics belonging to this line are cones whose vertex is a point, they contain $P_{T}^{3}=\left(T P_{G}(t) \cap H_{1} \cap H_{2}\right)_{t}$, and their vertices are contained in P_{T}^{3} and form a normcubic \bar{c}_{3} in it. The set of straight lines on G_{4} passing through t is canonically isomorphic to \bar{c}_{3}; a projection from t sends any such a line to the corresponding point of \bar{c}_{3}.

Let us recall now properties of X_{8}^{3} - a generic intersection of 3 quadrics in $P_{6}=$ $P\left(V_{7}\right)$ (see [21], [28], [47], [50]). Let P^{2} be a linear envelope in $P\left(S^{2} V_{7}^{*}\right)$ of these 3 quadrics, and for $h \in P^{2}$ let $Q(h)$ be the corresponding quadric. The Hesse curve $H_{7}=H_{7}\left(X_{8}^{3}\right)$ is defined as follows: $h \in H_{7} \Longleftrightarrow Q(h)$ is a cone. The set of planes on a non-singular 4-dimensional quadric Q has 2 connected components, we denote this set of components by $\Gamma(Q)$. Planes belonging to one component either coincide or their intersection is one point; intersection of planes belonging to different components is either empty or a straight line, and analogously for P^{3} lying on a cone over such a quadric. We denote a two-sheeted covering $p=p_{H_{7}}: \hat{H}_{7} \rightarrow H_{7}$ as follows: $p^{-1}(h)=\Gamma(Q(h))$.

For any plane curve H of degree n and its two-sheeted covering $p: \hat{H} \rightarrow H$ whose involution is denoted by $i_{H}: \hat{H} \rightarrow \hat{H}$, we define a set $\bar{S}=\bar{S}(p)$ of effective divisors on \hat{H} as follows:
$d \in \bar{S} \Longleftrightarrow O_{H}\left(p_{*}(d)\right)=\left.O_{P^{2}}(1)\right|_{H} \Longleftrightarrow p_{*}(d)$ is a sum of n points $H \cap l$ where l is a straight line in P^{2}.
\bar{S} is non-connected, $\bar{S}=S \cup S^{\prime}$, and if $d \in \bar{S}, d=\sum_{i=1}^{n} \hat{h}_{i}$ for $\hat{h}_{i} \in \hat{H}$, then d and $d-\hat{h}_{1}+i_{H}\left(\hat{h}_{1}\right)$ belong to different components of \bar{S}. Particularly, if n is even then S has an involution $i_{S}: i_{S}\left(\sum \hat{h}_{i}\right)=\sum i_{H}\left(\hat{h}_{i}\right) . S$ is irreducible ([50]).

There exists an isomorphism $\phi_{7}: F\left(X_{8}^{3}\right) \rightarrow S=S\left(p_{H_{7}}\right)$, where $F\left(X_{8}^{3}\right)$ is a set of conics in $X_{8}^{3} . \phi_{7}$ is defined as follows. For a conic $c \subset X_{8}^{3}$ we define firstly a straight line $l(c) \subset P^{2}$ as follows: $h \in l(c) \Longleftrightarrow Q(h) \supset \pi(c)$. For $h \in l(c) \cap H_{7} \quad \pi(c)$ defines an element $\gamma(c, h) \in \Gamma(Q(h))=p^{-1}(h) \subset \hat{H}_{7}$. We let

$$
\phi_{7}(c)=\sum_{h \in l(c) \cap H_{7}} \gamma(c, h) .
$$

A fact that ϕ_{7} is an isomorphism follows easily from the following proposition ([47]):
5.3. Let $l \subset P\left(S^{2} V_{7}^{*}\right)$ be a straight line in a space of quadrics in $P^{6}, h_{i} \in l$ $(i=1, \ldots, 7)$ are such that $Q\left(h_{i}\right)$ are cones. Then $\cap_{h \in l} Q(h)$ contains 2^{6} planes. Let π be such a plane. It defines a component in $\Gamma\left(Q\left(h_{i}\right)\right)$ denoted by $\gamma\left(\pi, h_{i}\right)$. Let us consider $\gamma\left(\pi, h_{i}\right)$ as a function in i, it maps a set $\{1, \ldots, 7\}$ to $\cup_{i=1}^{7} \Gamma\left(Q\left(h_{i}\right)\right)$. Then these functions are different for different π, and values of 2 such functions are different at even numbers of elements of $\{1, \ldots, 7\}$.

A composition map $S \rightarrow \operatorname{Div} \hat{H}_{7} \rightarrow \operatorname{Pic} \hat{H}_{7}$ (defined up to a shift) factors through a map $\operatorname{Pr}\left(\hat{H}_{7} / H_{7}\right) \hookrightarrow \operatorname{Pic} \hat{H}_{7}$.

Theorem 5.4. ([50]) The corresponding map $\operatorname{Alb}(S) \rightarrow \operatorname{Pr}\left(\hat{H}_{7} / H_{7}\right)$ is an isogeny.

Theorem 5.5. ([21]) There exists an isomorphism $\operatorname{Pr}\left(\hat{H}_{7} / H_{7}\right) \rightarrow J^{3}\left(X_{8}^{3}\right)$.
We denote the Abel - Jacobi map for conics by Φ. We get a diagram where the left vertical map is 2Φ :

$$
\begin{array}{ccc}
\operatorname{Alb} F & \operatorname{Alb}_{\left(\phi_{7}\right)} & \operatorname{Alb} S \\
\downarrow & & \downarrow \\
J^{3}\left(X_{8}^{3}\right) & \leftarrow & \operatorname{Pr}\left(\hat{H}_{7} / H_{7}\right)
\end{array}
$$

Theorem 5.6. ([28]) This diagram is commutative.
Let us consider now properties of a threefold $G_{4} \cap \Omega$ which is smooth everythere except one point t which is an ordinary double point. Recall that in this section it will be denoted by X. The set of conics on X will be denoted by $F=F(X)$. It is well-known that the projection of X from t is an intersection of 3 quadrics in P^{6}; this fact is used for a proof of non-rationality of a "generic" $G(2,5) \cap H_{1} \cap H_{2} \cap \Omega$ ([26]).

Lemma 5.7. There exists a cone $\Omega^{\prime} \in P\left(S^{2} V_{8}^{*}\right)$ such that t is its vertex and such that $X=G_{4} \cap \Omega^{\prime}$.

Proof. We deprojectivize a map $q: P(V) \rightarrow P\left(S^{2} \lambda^{2} V^{*}\right)$ and we restrict it to V_{8}. We get a map $q: V \rightarrow S^{2} V_{8}$. Let $T: V \rightarrow V_{8}^{*}$ be a map defined as follows: $T(v)$ is an equation of the polar line of $q(v)$ with respect to t. Then im $T \subset\left(V_{8} / T V_{G_{4}}(t)\right)^{*}$ and Ker T is a set of points $v \in V$ such that $t \in \operatorname{Sing} q(v)$, i.e. Ker $t=t_{V}$, hence T is an epimorphism on $\left(V_{8} / T V_{G_{4}}(t)\right)^{*}$. Since t is a singular point in $G_{4} \cap \Omega$, we have $T V_{\Omega}(t) \in\left(V_{8} / T V_{G_{4}}(t)\right)^{*}$ and $\exists v \in V$ such that $T(v)=T V_{\Omega}(t)$. This means that the
equation of the tangent hyperplane at t of the quadric $\Omega-q(v)$ is 0 , i.e. $\Omega^{\prime}=\Omega-q(v)$ is a desired cone.

Further we shall suppose that Ω is such a cone. We see that X_{t} is an intersection of 3 quadrics: Ω_{t} and $\left(q\left(t_{V}\right)\right)_{t}$. As earlier, let P^{2} be the plane that they generate, and we denote by t_{P} the straight line that corresponds to quadrics $\left(q\left(t_{V}\right)\right)_{t}$, or, in formal notations, $h \in t_{P} \Longleftrightarrow Q(h) \in\left(\left.q\left(t_{V}\right)\right|_{H_{1} \cap H_{2}}\right)_{t}$.
t_{P} is a component of $H_{7}\left(X_{t}\right)$, another component is a curve of degree 6 denoted by $H_{6}=H_{6}(X)$. It is clear that for a generic X it is non-singular, later we shall consider only these X. Let $t_{P} \cap H_{6}=\left\{R_{1}, \ldots, R_{6}\right\} . Q\left(R_{i}\right)$ are ordinary cones, like all other quadrics corresponding to points of t_{P} and H_{6}. Hence there are a two-sheeted non-ramified covering $p=p_{H_{6}}: \hat{H}_{6} \rightarrow H_{6}$ and a corresponding surface $S=S\left(p_{H_{6}}\right)$ together with an involution i_{S}. Vertices of $Q\left(R_{i}\right)$ are projections of 6 straight lines on X passing through t, and they are the only singular points on X_{t}. These vertices are intersection points of \bar{c}_{3} and Ω_{t} as well.

Proposition 5.8. There exists a birational isomorphism $\phi_{6}: F(X) \rightarrow S\left(p_{H_{6}}\right)$.
Proof. Let $c=\left(c, V_{4}\right) \in F$. If $t \notin \pi(c)$ then the projection $c_{t} \subset X_{t}$ is a conic. We denote by χ a rational map $\left(c, V_{4}\right) \mapsto c_{t}$ from $F(X)$ to $F\left(X_{t}\right)$. c_{t} defines a straight line $l(c)=l\left(c_{t}\right) \subset P^{2}$. We denote $l(c) \cap t_{P}=h_{0}(c), \quad l(c) \cap H_{6}=\left\{h_{1}(c), \ldots, h_{6}(c)\right\}$. If $c \notin l_{1} \cup l_{2}$, then $l(c) \neq t_{P}$ and (5.2) implies that $Q\left(h_{0}(c)\right)=q\left(t_{V} \cap V_{4}\right)$.

Lemma 5.9. Sing $Q\left(h_{0}(c)\right)=P\left(M\left(V_{4}\right)\right)_{t} \cap P_{T}^{3}$.
Proof. This statement is formulated on $G(2, V)$ as follows. For some given $t \in G$, $V_{4} \subset V$ we set $s=t_{V} \cap V_{4}$. Then the linear envelope of t and $P\left(\lambda^{2}\left(V_{4}\right)\right) \cap T P_{G}(t)$ coincide with Sing $q(s)$. Really, let s_{0}, t_{1} (resp. $s_{0}, v_{1}, v_{2}, v_{3}$) be a basis of t_{V} (resp. $\left.V_{4}\right)$. Then (considering vector spaces) we have
a basis of $t \subset \lambda^{2} V$ is $s_{0} \wedge t_{1}$
a basis of $T V_{G}(t)$ is $s_{0} \wedge t_{1}, s_{0} \wedge v_{i}, t_{1} \wedge v_{i}$
a basis of $\lambda^{2} V_{4}$ is $s_{0} \wedge v_{i}, v_{i} \wedge v_{j}$
and a basis of Sing $q(s)$ is $s_{0} \wedge t_{1}, s_{0} \wedge v_{i}$ (see (5.1); i,j=1,2,3). This implies the proposition for G. Intersecting it with H_{1}, H_{2} and projecting from t we get the desired.
$\forall h \in t_{P}$ the quadric $Q(h)$ contains P_{T}^{3}, we denote the corresponding element of $\Gamma(Q(h))$ by $\beta(h)$.

Lemma 5.10. $\beta\left(h_{0}(c)\right) \neq \gamma\left(c_{t}, h_{0}(c)\right)$.
Proof. Since $\pi(c) \subset P\left(M\left(V_{4}\right)\right)$, we have: $\pi\left(c_{t}\right)$ and $\left(P_{T}^{3}\right) \operatorname{Sing} Q\left(h_{0}(c)\right)$ have an empty intersection after the projection from Sing $Q\left(h_{0}(c)\right)$.

We define $\phi_{6}(c)=\sum_{i=1}^{6} \gamma\left(c_{t}, h_{i}(c)\right)$. (5.10) and (5.3) imply that at a generic point ϕ_{6} is an inclusion. Since S is irreducible and $\operatorname{dim} F=\operatorname{dim} S$ we have that ϕ_{6} is a birational isomorphism.

LEMMA 5.11. ϕ_{6} commutes with involutions i_{F}, i_{S}.
Proof. Let $\left(c, V_{4}\right)$ and $\left(c^{\prime}, V_{4}\right) \in F$ be 2 involutory conics. Then $\pi(c) \cap \pi\left(c^{\prime}\right)$ is a straight line, hence (if $t \notin P\left(M\left(V_{4}\right)\right.$), i.e. if $\left.V_{4} \not \supset t_{V}\right) \quad \pi\left(c_{t}\right) \cap \pi\left(c_{t}^{\prime}\right)$ is also a straight line. For $h \in l(c) \quad Q(h)$ contains c_{t}^{\prime} and $\pi\left(c_{t}\right) \cap \pi\left(c_{t}^{\prime}\right)$, i.e. a curve of degree 3 on
$\pi\left(c_{t}^{\prime}\right)$ and hence the whole $\pi\left(c_{t}^{\prime}\right)$, i.e. $l(c)=l\left(c^{\prime}\right), h_{i}(c)=h_{i}\left(c^{\prime}\right)$. The intersection of projections of $\pi\left(c_{t}\right)$ and $\pi\left(c_{t}^{\prime}\right)$ from Sing $Q\left(h_{i}(c)\right)(i=1, \ldots, 6)$ is a straight line, and if

$$
\text { Sing } Q\left(h_{i}(c)\right) \notin P\left(M\left(V_{4}\right)\right)_{t}
$$

then $\gamma\left(c_{t}, h_{i}(c)\right) \neq \gamma\left(c_{t}^{\prime}, h_{i}\left(c^{\prime}\right)\right)$. But else

$$
P\left(M\left(V_{4}\right)\right)_{t} \subset Q\left(h_{i}(c)\right) \Rightarrow \text { Sing } Q\left(h_{0}(c)\right) \in Q\left(h_{i}(c)\right)
$$

If $h_{i}(c) \notin\left\{R_{1}, \ldots, R_{6}\right\}$ then $h_{i}(c) \notin t_{P}$ and Sing $Q\left(h_{0}(c)\right)$ belongs to 3 basis quadrics of P^{2} and hence to X_{t}, i.e. $h_{0}(c) \in\left\{R_{1}, \ldots, R_{6}\right\}$. This is not true at an open set, hence at this set c and c^{\prime} are mapped to involutory elements of S, hence the last is true at all F.

The above description of ϕ_{6} does not indicate images of points $\left(c, V_{4}\right) \in F$ for which $V_{4} \supset t_{V}$, as well as images of straight lines $l_{1}, l_{2} \subset F$. The set of spaces V_{4} which contain t_{V} is isomorphic to $P_{T}^{2}=P\left(\left(V / t_{V}\right)^{*}\right) \hookrightarrow P\left(V^{*}\right)$. For this $V_{4} \quad Q_{\Omega}\left(V_{4}\right)$ is a cone in $P\left(M\left(V_{4}\right)\right)$ whose vertex is t, and $\left.Q_{G}\left(V_{4}\right)\right)$ is a generic quadric containing t. Let $\left(c, V_{4}\right) \in F, V_{4} \in P_{T}^{2}$ and

$$
Q=T(\bar{\phi}(c))=\pi(c) \cup \pi\left(c^{\prime}\right) \in<Q_{\Omega}\left(V_{4}\right), Q_{G}\left(V_{4}\right)>
$$

is a pair of planes. If $Q \notin Q_{\Omega}\left(V_{4}\right)$, then $Q_{\Omega}\left(V_{4}\right) \cap Q_{G}\left(V_{4}\right)=c \cup c^{\prime}=Q \cap Q_{\Omega}\left(V_{4}\right)$. Let $t \in \pi(c)$, then $Q_{\Omega}\left(V_{4}\right) \cap \pi(c)$ is a pair of straight lines passing through t, and $Q_{\Omega}\left(V_{4}\right) \cap \pi\left(c^{\prime}\right)$ is a generic conic. There are 6 straight lines on X passing through t, i.e. there are only $\binom{6}{2}=15$ such spaces V_{4} while there are 30 conics. It is possible to prove (although we do not need it) that ϕ_{6} maps these conics (as well as lines $\left.l_{1}, l_{2} \subset F\right)$ to 32 points $S \cap\left(\left(p_{H_{6}}\right)^{-1}\left(\sum_{i} R_{i}\right)\right)$.

Let now $Q=Q_{\Omega}\left(V_{4}\right)$. We denote the set of these $V_{4} \in P_{T}^{2}$ by K_{0}, i.e. $K_{0}=$ $l_{\Omega} \cap P_{T}^{2}$. We multiply an inclusion of vector spaces $(t) \rightarrow V_{8}$ by $O_{P_{T}^{2}}$; it is clear that the obtained map $t \otimes O_{P_{T}^{2}} \rightarrow V_{8} \otimes O_{P_{T}^{2}}$ factors through an inclusion $\left.M\right|_{P_{T}^{2}} \rightarrow V_{8} \otimes O_{P_{T}^{2}}$, and we denote Coker $\left(\left.t \otimes O_{P_{T}^{2}} \rightarrow M\right|_{P_{T}^{2}}\right)$ by M_{t}. Since Ω is a cone whose vertex is t, we have: a bundle of quadrics Q_{Ω} restricted to $P_{T}^{2} \subset P\left(V^{*}\right)$ induces a bundle of quadrics $Q_{\Omega_{t}}$ on $\left(P_{T}^{2}, M_{t}\right)$ whose fibre at $V_{4} \in P_{T}^{2}$ is a projection $Q_{\Omega}\left(V_{4}\right)$ from its vertex. It is clear that $K_{0}=D_{2}\left(Q_{\Omega_{t}}\right)$, hence K_{0} is a curve on P_{T}^{2}, and according the Porteus formula ($[7]$) we have $\operatorname{deg} K_{0}=2 c_{1}\left(M_{t}^{*}\right)=6$.

Since $K_{0} \subset F_{0}(X)$, there exists a two-sheeted non-ramified covering $p_{K}: K \rightarrow K_{0}$ whose involution is denoted by $i_{K}: K \rightarrow K$, and $p_{K}=\left.p_{F}\right|_{K}, i_{K}=\left.i_{F}\right|_{K}$. Involutory conics corresponding to points of K have 2 points of intersection, one of each is t. For a generic cone Ω whose vertex is t, we have: K_{0} is non-singular and K is connected.

Let $d: \tilde{F} \rightarrow F$ be a desingularization map and $\tilde{K}=d^{-1}(K)$. There exists an involution $i_{\tilde{F}}$ on \tilde{F} such that $i_{F} \circ d=d \circ i_{\tilde{F}}$. There exist rational maps $\tilde{\phi}_{6}: \tilde{F} \rightarrow S$ and $\tilde{\chi}: \tilde{F} \rightarrow F\left(X_{t}\right)$.

Proposition 5.12. \tilde{K} is non-connected, $\tilde{K}=K_{1} \cup K_{2}$ and $d_{i}=\left.d\right|_{K_{i}}: K_{i} \rightarrow K$ are isomorphisms $(i=1,2)$. For $f \in \tilde{K}$ we have: $d(f)$ is a conic on X passing through t, $\tilde{\chi}(f)$ is a pair of straight lines on X_{t}, one of them is contained in a quadric $Q_{2}=P_{T}^{3} \cap \Omega_{t}$.

Proof. Since S is smooth and \tilde{K} is not a union of straight lines, we have that $\tilde{\phi}_{6}(\tilde{K})$ is a curve on S. Let us find which points $s \in S$ do not belong to $\phi_{6}(F-K)$.

Let $s=\sum_{i=1}^{6} \hat{h}_{i}, \quad \hat{h}_{i} \in \hat{H}_{6}, \quad p_{h_{6}}\left(\hat{h}_{i}\right)=h_{i} \in H_{6}$, and l a straight line in P^{2} such that $\left\{h_{i}\right\}=l \cap H_{6}$. We can suppose that $l \neq t_{P}$ (this is true for all except a finite number points $s \in S)$. We let $h_{0}=l \cap t_{P}$ and $\hat{h}_{0} \in \Gamma\left(Q\left(h_{0}\right)\right), \quad \hat{h}_{0} \notin \beta\left(h_{0}\right)$. According (5.3), there exists a plane $\pi=\pi(s)$ on $\cap_{h \in l} Q(h)$ that corresponds to the set $\left\{\hat{h}_{i}\right\}(i=0, \ldots, 6)$. Really, their images under the projection from $\operatorname{Sing} Q\left(h_{0}\right)$ must intersect namely by this way. Let $\pi \cap P_{T}^{3}=\emptyset$; then $c=\pi \cap X_{t}$ is a conic. Let us consider the 2-dimensional cone containing c and having a vertex $t \in P\left(V_{8}\right) \supset X$. Since X is an intersection of quadrics, any straight line either intersects X at most at 2 points, or is contained in X. Since $c \subset X_{t}$, any ruling line of the above cone intersects X at one point (the other intersection point is t). This point does not coincide with t because $c \cap P_{T}^{3}=\emptyset$. So, the set of these intersection points is a conic, and $s \in S$ is its image under the map ϕ_{6}. (If we choose a plane π on $\cap_{h \in l} Q(h)$ that corresponds to a set $\beta\left(h_{0}\right), \hat{h}_{1}, \ldots, \hat{h}_{6}$, then $\pi \cap P_{T}^{3}$ is one point, and instead of a conic we should get a normcubic on X passing throught t).

So, if $s=\tilde{\phi}_{6}(c)$ for $c \in \tilde{K}$, then $\pi(s) \cap P_{T}^{3}=P^{1}$. It is clear that $\pi(s)=\pi(\tilde{\chi}(c))$ and $\forall h \in P^{2}-l(c)$ we have $\tilde{\chi}(c)=\pi(s) \cap Q(h)$. Choosing $h \in t_{P}$ we get that $\tilde{\chi}(c) \supset \pi(s) \cap P_{T}^{3}=P^{1}$. This means that $\tilde{\chi}(c)$ is a pair of straight lines, one of which lies on a quadric $Q_{2}=\Omega_{t} \cap P_{T}^{3}$, and other intersects it.

Conversely, let l_{X} be any straight line on X_{t} that intersects Q_{2}. There are 2 ruling lines u_{1}, u_{2} of Q_{2} that pass through a point $l_{X} \cap Q_{2}$, hence we get 2 conics $c_{i}\left(l_{X}\right)=l_{X} \cup u_{i}(i=1,2)$. We can associate them:
(a) 2 different straight lines $\left.l\left(c_{i}\left(l_{X}\right)\right)\right) \subset P^{2}$;
(b) points $h_{i j}=h_{j}\left(c_{i}\left(l_{X}\right)\right) \in H_{6}$;
(c) elements $\gamma\left(c_{i}\left(l_{X}\right), h_{i j}\right) \in \hat{H}_{6}$
such that the element

$$
s_{i}\left(l_{X}\right)=\sum_{j=1}^{6} \gamma\left(c_{i}\left(l_{X}\right), h_{i j}\right) \in S
$$

and $\pi\left(s_{i}\left(l_{X}\right)\right) \cap P_{T}^{3}=u_{i}$. Let us find $\tilde{\phi}_{6}^{-1}\left(s_{i}\left(l_{X}\right)\right)$. A cone over $c_{i}\left(l_{X}\right)$ having a vertex t in $P\left(V_{8}\right)$ is a plane $<l_{X}, t>$, and each straight line in this plane passing through t meets X exactly at one point (except t). Further, one straight line in this plane (it is the inverse image of $l_{X} \cap Q_{2}$ under the projection from t) is tangential to X at t. So, $<l_{X}, t>\cap X$ is a conic $c_{X}\left(l_{X}\right) \in K$, and $\tilde{\phi}_{6}^{-1}\left(s_{i}\left(l_{X}\right)\right) \in d^{-1}\left(c_{X}\left(l_{X}\right)\right)$. This means that $\forall c \in K \quad d^{-1}(c)$ are 2 points, i.e. $\tilde{K} \rightarrow K$ is a non-ramified two-sheeted covering, and for $c \in \tilde{K}$ we have $\tilde{\chi}(c)=d(c)_{t} \cup u(c)$, where $u(c)$ is a ruling line of Q_{2}. Since there are 2 systems of rulings on Q_{2}, we have: $\tilde{K}=K_{1} \cup K_{2}$ is non-connected, namely $c \in K_{i}$ iff $u(c)$ is a ruling line of type i. It is clear that restrictions $d_{i}=\left.d\right|_{K_{i}}: K_{i} \rightarrow K$ are isomorphisms $(i=1,2)$.

REMARK. Let $\tilde{r}: \tilde{F} \rightarrow \tilde{F}_{m}$ be a map of blowing down of $l_{1} \cup l_{2} \subset \tilde{F}$ to points. There exists an isomorphism $i: \tilde{F}_{m} \rightarrow S$ such that $\tilde{\phi}_{6}=i \circ \tilde{r}$.

Let us denote an isomorphism $d_{2}^{-1} \circ d_{1}: K_{1} \rightarrow K_{2}$ by α, and let $i_{K_{1}}=d_{1}^{-1} \circ i_{K} \circ d_{1}$ be an involution of K_{1}.

Lemma 5.13. For $c \in K_{1}$ we have $i_{\tilde{F}}(c)=\alpha\left(i_{K_{1}}(c)\right)$.
Proof. $i_{\tilde{F}}(c)$ is equal to $i_{K_{1}}(c)$ or $\alpha\left(i_{K_{1}}(c)\right)$. We have: the intersection of $\tilde{\chi}(c)$
and $\tilde{\chi}\left(i_{K_{1}}(c)\right)$ is 1 point, while $\forall f \in \tilde{F}$ the intersection of $\tilde{\chi}(f)$ and $\tilde{\chi}\left(i_{\tilde{F}}(f)\right)$ is 2 points.

We denote by \tilde{X} the desingularization of X. Any point of \tilde{F} defines a conic on \tilde{X} by an obvious way (for $c \in \tilde{F}$ the corresponding conic is the inverse image of $\tilde{\chi}(c)$ under the desingularization map $\tilde{X} \rightarrow X$). So, there exists the Abel - Jacobi map $\Phi: \tilde{F} \rightarrow J^{3}(\tilde{X})$.

The next 3 propositions are analogs for X_{t} of the theorems (5.4) - (5.6) for a generic X_{8}^{3}, and their proofs follow the proofs of these theorems.

Proposition 5.14. A map $\operatorname{Alb} S\left(p_{H_{6}}\right) \rightarrow \operatorname{Pr} \hat{H}_{6} / H_{6}$ is an isogeny.
Proof. [50], Proposition 1.3.3 implies that this map is an epimorphism, hence it is sufficient to prove that $h^{1,0}(S) \leq 9$. The proof of ([50], Proposition 3.4.4) implies that:
(1) There exist plane curves C_{i} of degree $6(i=0, \ldots, 6)$, their non-ramified twosheeted coverings $p_{i}: \hat{C}_{i} \rightarrow C_{i}$ and points $P_{1}, \ldots, P_{6} \in P^{2}$ in a general position such that:
(a) $p_{0}=p_{H_{6}}$;
(b) Sing $C_{i}=\left\{P_{1}, \ldots, P_{i}\right\}$ and these points are ordinary double points on C_{i};
(2) $\forall i=0, \ldots, 5$ there exists a commutative diagram

$$
\begin{array}{lll}
\hat{D}_{i} & \rightarrow & D_{i} \\
& \searrow & \downarrow \\
& & T_{i}
\end{array}
$$

where T_{i} is an open subset in P^{1}, D_{i} is a smooth surface, the fibre of the covering $\hat{D}_{i} \rightarrow D_{i}$ at a point $t \in T_{i}$ is a non-ramified two-sheeted covering of smooth curves $\left(\hat{D}_{i}\right)_{t} \rightarrow\left(D_{i}\right)_{t}$ for all t except $t=0$, where $\left(D_{i}\right)_{t}$ has one double point and $\left(\hat{D}_{i}\right)_{t}$ has 2 double points which are its inverse images. Further, for $t=t_{0}$ the above fibre is isomorphic to the normalization of the covering p_{i} denoted by $\tilde{p}_{i}: \tilde{\hat{C}}_{i} \rightarrow \tilde{C}_{i}$, and for $t=0$ it is isomorphic to the blowing up of the covering p_{i+1} at $P_{1} \cup \cdots \cup P_{i}$ for C_{i+1} and their p_{i+1}-inverse images for \hat{C}_{i+1}.
(3) There exist maps $D_{i} \rightarrow T_{i} \times P^{2}$ over T_{i} whose fibres at points t_{0} and $0 \in T_{i}$ are ordinary maps $\tilde{C}_{i} \rightarrow C_{i} \hookrightarrow P^{2}$ and $\left(\tilde{C}_{i+1}\right)_{P_{1} \cup \ldots \cup P_{i}} \rightarrow C_{i+1} \hookrightarrow P^{2}$.

Some properties of C_{i} and coverings $D_{i} \rightarrow T_{i}$ of purely technical nature are omitted, their complete list is given in [50], 2.2.1.

These conditions and ([50], 2.2.7) imply that

$$
\forall i \quad h^{1,0}\left(S\left(\tilde{p}_{i}\right)\right) \leq h^{1,0}\left(S\left(\tilde{p}_{i+1}\right)\right)+1
$$

If points P_{1}, \ldots, P_{6} do not belong to one conic then the linear system of a sheaf $\left.O_{P^{2}}(1)\right|_{\tilde{C}_{6}}$ is non-special. ([50], 1.3.8) implies that $h^{1,0}\left(S\left(\tilde{p}_{6}\right)\right)=g\left(\tilde{C}_{6}\right)-1=3$ and hence $h^{1,0}\left(S\left(p_{H_{6}}\right)\right) \leq 9$.

Proposition 5.15. There exists an isomorphism $I: \operatorname{Pr} \hat{H}_{6} / H_{6} \rightarrow J^{3}(\tilde{X})$.
Proof. Let $\hat{h} \in \hat{H}_{6}$ and $p(\hat{h})=h$. Let us consider a cone $Q(h)$. The set of spaces P^{3} of type \hat{h} on $Q(h)$ is isomorphic to P^{2}, so for all these P^{3} curves $P^{3} \cap X$ are
birationally equivalent. We denote such a curve by $C_{4}(\hat{h})$, they can be lifted on \tilde{X} and these lifts define a cylinder map $\Phi: H_{1}\left(\hat{H}_{6}, \mathbb{Z}\right) \rightarrow H_{3}(\tilde{X}, \mathbb{Z})$ and an Abel - Jacobi $\operatorname{map} \hat{I}: J\left(\hat{H}_{6}\right) \rightarrow J^{3}(\tilde{X})$.

Let us choose a generic straight line $l \subset X ; \quad \forall \hat{h} \in \hat{H}_{6}$ there exists the only P^{3} of type \hat{h} such that $P^{3} \supset l$. We have

$$
P^{3} \cap X=C_{4}(\hat{h})=l \cup C_{3}(\hat{h}, l)
$$

where $C_{3}(\hat{h}, l)$ is a normcubic in P^{3} meeting l at 2 points. A system of curves C_{3} defines the same cylinder map $\Phi: H_{1}\left(\hat{H}_{6}, \mathbb{Z}\right) \rightarrow H_{3}(\tilde{X}, \mathbb{Z})$. Let us apply a formula ([20], p. 44) to Φ :

$$
\forall \gamma_{1}, \gamma_{2} \in H_{1}\left(\hat{H}_{6}, \mathbb{Z}\right)<\Phi\left(\gamma_{1}\right), \Phi\left(\gamma_{2}\right)>=k<\gamma_{1}, \gamma_{2}>+<i\left(\gamma_{1}\right), \gamma_{2}>
$$

where $k \in \mathbb{Z}$ and $i \in$ End $H_{1}\left(\hat{H}_{6}, \mathbb{Z}\right)$ corresponds to a correspondence C on $\hat{H}_{6} \times \hat{H}_{6}$ defined as follows: $\left(\hat{h}_{1}, \hat{h}_{2}\right) \in C \Longleftrightarrow C_{3}\left(\hat{h}_{1}, l\right) \cap C_{3}\left(\hat{h}_{2}, l\right) \neq \emptyset$. Further, [20], p. 96 implies that $i=H_{1}\left(i_{H}\right)$.

From another side, we have $g\left(H_{6}\right)=10, h^{2,1}(\tilde{X})=9$ (because $h^{2,1}(X)=10$ and because \tilde{X} is a blowing up of a degenerated fibre of a Lefschetz pencil). This implies that $\operatorname{dim} \operatorname{Ker} \Phi \geq h_{1}\left(\hat{H}_{6}\right)-h_{3}(\tilde{X})=20$, i.e. for a 20 -dimensional space of cycles γ we have $i(\gamma)+k \gamma=0$. This can be only for $k=-1$, hence $\operatorname{Ker} \Phi=J\left(H_{6}\right)$ and $\operatorname{Pr} \hat{H}_{6} / H_{6} \rightarrow J^{3}(\tilde{X})$ is an isomorphism.

Proposition 5.16. A diagram

where the left vertical map is 2Φ, is commutative.
Proof. Let $c \in \tilde{F}, \quad l(c) \cap t_{P}=h_{0}, \quad l(c) \cap H_{6}=\left\{h_{1}, \ldots, h_{6}\right\}$ and $\gamma\left(c_{t}, h_{i}\right)=$ \hat{h}_{i}. Then $\phi_{6}(c)=\sum_{\tilde{X}=1}^{6} \hat{h}_{i}$ and it is sufficient to prove that codimension 2 cycles $2 c-\sum_{i=1}^{6} C_{4}\left(\hat{h}_{i}\right)$ on \tilde{X} are linearly equivalent for all $c \in \tilde{F}$. Let $X_{4}=\cap_{h \in l(c)} Q(h)$ be an intersection of 2 quadrics and P_{i}^{3} the only P^{3} of type \hat{h}_{i} containing $\pi\left(c_{t}\right)$. Then $X_{4} \cap P_{i}^{3}$ is a quadric containing $\pi\left(c_{t}\right)$, i.e. $X_{4} \cap P_{i}^{3}$ is a pair of planes $\pi\left(c_{t}\right) \cup L_{i}$. According ([47], Section 3, Lemma 6) there is a linear equivalence (\equiv) on X_{4} of 2 cycles:

$$
\sum_{i=0}^{6} L_{i}+5 \pi\left(c_{t}\right) \equiv 3\left(P^{4} \cap X_{4}\right)
$$

Intersecting this equivalence with X we get:

$$
\sum_{i=0}^{6} L_{i} \cap X+6 c \equiv 2 c-\left(c+L_{0} \cap X\right)+\text { const } .
$$

But $c+L_{0} \cap X=$ const, because $c \cup\left(L_{0} \cap X\right)=P_{0}^{3} \cap X$ and P_{0}^{3} varies along $t_{P}=P^{1}$. Equality $\left.C_{4}\left(\hat{h}_{i}\right)=\left(L_{i} \cap X\right) \cup c\right)$ implies that $\sum_{i=1}^{6} C_{4}\left(\hat{h}_{i}\right)-2 c \equiv$ const.
6. Abel-Jacobi map of $F(X)$ is an isogeny. Here X will mean again a Fano threefold of genus 6. Let us prove that $h^{1,0}(F(X))=\operatorname{dim} J^{3}(X)=10$. We consider $X_{4}^{\prime}=G \cap H_{1} \cap \Omega$ and a Lefschetz pencil $f^{\prime}: X_{4}^{\prime} \rightarrow P^{1}$, we restrict it to a neighbourhood of zero $\Delta \subset P^{1}$, so the only singular fibre of $f^{\prime-1}(t), \quad t \in \Delta$, is a threefold $X_{0}=$ $f^{\prime-1}(0)$ having the only double point. We denote $F_{3}^{\prime}=\cup_{t \in \Delta} F\left(f^{\prime-1}(t)\right)$, and f_{F}^{\prime} : $F_{3}^{\prime} \rightarrow \Delta$ is the projection.

Lemma 6.1. For a generic $f^{\prime}: X_{4}^{\prime} \rightarrow P^{1} \quad F_{3}^{\prime}$ is non-singular.
Proof. Non-singularity of F_{3}^{\prime} is not obvious only at points of $K=F\left(X_{0}\right) \subset F_{3}^{\prime}$. For a given X_{0} it is possible to choose $X_{4}^{\prime} \subset P^{8}=P\left(H_{1}\right)$ such that $X_{0}=X_{4}^{\prime} \cap P^{7}$, where $P^{7} \subset T P_{X_{4}^{\prime}}(t)$ and such that all points of K are non-singular on $F\left(X_{4}^{\prime}\right)$ - the variety of conics on X_{4}^{\prime}. A generic $P^{6} \subset P^{7}$ defines a Lefschetz pencil $f^{\prime}: X_{4}^{\prime} \rightarrow P^{1}$; we denote by $U\left(P^{6}\right)$ a set of conics $c \subset P^{8}$ such that $\operatorname{dim}\left(\pi(c) \cap P^{6}\right) \geq 1$. We have $F_{3}^{\prime}=U\left(P^{6}\right) \cap F\left(X_{4}^{\prime}\right)$. Let $c \in K$. Let us look which conditions must be imposed on $P^{6} \subset P^{7}$ in order to achieve non-singularity of $F_{3}^{\prime}=F_{3}^{\prime}\left(P^{6}\right)$ at points of c. For any variety $Y \ni c$ we denote $T V_{Y}(c)$ by \bar{Y}, and we denote by U_{7} (resp. U_{8}) varieties of conics in $P^{7}\left(\right.$ resp. $\left.P^{8}\right)$. We get a diagram of tangent spaces at c :

$$
\begin{array}{cccc}
\overline{F\left(X_{0}\right)} & \hookrightarrow & & \overline{F\left(X_{1}^{\prime}\right)} \\
\downarrow & & & \\
\overline{U_{7}} & \hookrightarrow \overline{U\left(P^{6}\right)} & \hookrightarrow & \frac{\downarrow}{U_{8}}
\end{array}
$$

(vertical maps are inclusions). Here we have: $\overline{F\left(X_{0}\right)}=\overline{F\left(X_{4}^{\prime}\right)} \cap \bar{U}_{7}$, codim $\bar{U}_{8} \bar{U}_{7}=3$, $\operatorname{dim} \overline{F\left(X_{4}^{\prime}\right)}=5, \operatorname{dim} \overline{F\left(X_{0}\right)}=3$, because c is a smooth point on $\overline{F\left(X_{0}\right)}$. Condition of smoothness of $F_{3}^{\prime}\left(P^{6}\right)$ at c is equivalent to a condition that $\operatorname{dim} \overline{U\left(P^{6}\right)} \cap \overline{F\left(X_{4}^{\prime}\right)}=3$, i.e. that $\overline{U\left(P^{6}\right)} \not \subset<\overline{F\left(X_{4}^{\prime}\right)}, \bar{U}_{7}>$. But $\overline{U\left(P^{6}\right)} \in P\left(\bar{U}_{8} / \bar{U}_{7}\right)=P^{2}$, and a map $P^{6} \mapsto$ $P\left(\overline{U\left(P^{6}\right)} / \bar{U}_{7}\right) \in P^{2}$ is a linear projection from $P^{7 *}$ to P^{2} whose center $P^{4} \subset P^{7 *}$ is dual to $\pi(c) \subset P^{7}$. The inverse image of $\left\langle\overline{F\left(X_{4}^{\prime}\right)}, \bar{U}_{7}>\right.$ under this projection is a hyperplane in $P^{7 *}$ containing P^{4}, i.e. the set of $P^{6} \subset P^{7}$ which contain a fixed point in $\pi(c)$. It is easy to see that this point is t. So, for a non-singularity of F_{3}^{\prime} it is sufficient to choose a generic P^{6} which does not contain t.

So, it is clear that for any X we can choose $f^{\prime}: X_{4}^{\prime} \rightarrow P^{1}$ such that:

1. $X=f^{\prime-1}\left(t_{0}^{\prime}\right)$ for $t_{0}^{\prime} \in \Delta$;
2. The special fibre satisfies properties of general position of Section 5 (smoothness of H_{6}, K_{0});
3. F_{3}^{\prime} is non-singular.
6.2. To transform $f^{\prime}, f_{F}^{\prime}$ to a desired degeneration we use a standard method (see, for example, [30]). Let us consider blowings up of X_{4}^{\prime} and of F_{3}^{\prime} along singular points of the fibre over 0 , we denote the corresponding maps by $\tilde{f}^{\prime}: \tilde{X}_{4}^{\prime} \rightarrow \Delta, \tilde{f}_{F}^{\prime}: \tilde{F}_{3}^{\prime} \rightarrow \Delta$. Their fibres at 0 are $\tilde{X}_{0} \cup P^{3}, \widetilde{F\left(X_{0}\right)} \cup R$ respectively, where P^{3}, R are exceptional divisors of blowing up of X_{4}^{\prime} and F_{3}^{\prime}, and R is a fibration over $K=K\left(F\left(X_{0}\right)\right)$ whose fibres are isomorphic to P^{1}. It is clear that $\tilde{X}_{0} \cap P^{3}=Q$ is a non-singular quadric in P^{3} and $\widetilde{F\left(X_{0}\right)} \cap R=K_{1} \cup K_{2}$. Components of the fibre at 0 of P^{3} and R are double, that's why we consider a map $\phi_{2}: \Delta \rightarrow \Delta: t \mapsto t^{2}$ and a diagram which is a fibred
product:

$$
\begin{array}{ccc}
X_{4} & \rightarrow & \tilde{X}_{4}^{\prime} \\
\downarrow & & \downarrow \\
\Delta & \xrightarrow{\phi_{2}} & \Delta
\end{array}
$$

where the right vertical map is \tilde{f}^{\prime}. We denote the left vertical map by f. The fibre of f at $t_{0}=\left(t_{0}^{\prime}\right)^{\frac{1}{2}}$ (resp. at $t=0$) is X (resp. $X(0)=\tilde{X}_{0} \cup \bar{P}_{3}$), where \bar{P}_{3} is a two-sheeted covering of P^{3} ramified at Q, so $\tilde{X}_{0} \cap \bar{P}_{3}=Q$, and both components have multiplicity 1. Analogously we define a map $f_{F}: F_{3} \rightarrow \Delta$ having a singular fibre $F(0)=F \cup \bar{R}$, where $F=\widetilde{F\left(X_{0}\right)}$, and $\bar{R} \rightarrow R$ is a two-sheeted covering ramified at $K_{1} \cup K_{2}$, so $F \cap \bar{R}=K_{1} \cup K_{2}$, and composition maps $K_{i} \hookrightarrow \bar{R} \rightarrow R \rightarrow K$ coincide with $d_{i}(i=1,2)$.

Clemens - Schmidt exact sequence ([8], [40]) for f_{F} is the following:

$$
\begin{equation*}
0 \rightarrow H^{1}(F(0)) \xrightarrow{\nu} H^{1}(F(X)) \xrightarrow{N} H^{1}(F(X)) . \tag{6.3}
\end{equation*}
$$

There exists a mixed Hodge structure on $H^{1}(F(0)), H^{1}(F(X))$, and ν and N are strict morphisms with respect to these structures of degrees $(0,0)$ and $(-1,-1)$ respectively. We shall need only weight filtrations; their definition in our case is the following ([8]): for $H^{1}(F(X))$ we have

$$
0 \subset W_{0} \subset W_{1} \subset W_{2}=H^{1}(F(X))
$$

where $W_{0}=\operatorname{im} N, W_{1}=\operatorname{Ker} N$. For $H^{0}(F(0))$ we have

$$
0 \subset W_{0} \subset W_{1}=H^{1}(F(0))
$$

where $W_{0}=H^{1}(\Pi(F(0)))$ and $\Pi(F(0))$ is a CW-complex whose vertices correspond to components of $F(0)$ and edges correspond to irreducible components of intersections of these components. We have

$$
W_{1} / W_{0}=\operatorname{Ker}\left(\left(H^{1}(F) \oplus H^{1}(\bar{R})\right) \rightarrow H^{1}(F \cap \bar{R})\right)
$$

for a natural restriction map. In our case $\Pi(F(0))=S^{1}$ (2 vertices, 2 edges), i.e. $\operatorname{dim} W_{0}\left(H^{1}(F(0))\right)=1$. Exactness of (6.3) implies that $\operatorname{dim} W_{2} / W_{1}=\operatorname{dim} W_{0}\left(H^{1}(F(X))\right)=$ $\operatorname{dim} W_{0}\left(H^{1}(F(0))\right)=1$ and W_{1} / W_{0} for $H^{1}(F(X))$ and $H^{1}(F(0))$ coincide. So, an equality $h^{1}(F(X))=20$ is a corollary of

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ker}\left(\left(H^{1}(F) \oplus H^{1}(\bar{R})\right) \rightarrow H^{1}(F \cap \bar{R})\right)=18 \tag{6.4}
\end{equation*}
$$

So, we have to prove (6.4).
Lemma 6.5. Let us identify K_{1} and K_{2} via α. Then (6.4) follows from the following statement: the image of a restriction map

$$
\begin{equation*}
H^{1}(F) \rightarrow H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right) \tag{6.6}
\end{equation*}
$$

is contained in the diagonal.
Proof. Since $\bar{R} \rightarrow K$ is a fibration with a fibre P^{1}, we have: $H^{1}(K) \rightarrow H^{1}(\bar{R})$ is an isomorphism. This means that the restriction map $H^{1}(\bar{R}) \rightarrow H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right)$ is an inclusion, and its image is the diagonal. According (5.14), $h^{1}(F)=18$, this implies the lemma.

Lemma 6.7. (6.6) is equivalent to the following condition

$$
\begin{equation*}
\left.\forall h \in H^{1}(F) \quad h\right|_{K}=i_{K}^{*}\left(\left.\left(i_{F}^{*}(h)\right)\right|_{K}\right) \tag{6.8}
\end{equation*}
$$

(here and below $K=K_{1}$).
Proof. Follows from commutativity of the diagram

K_{1}	$\xrightarrow{i_{K}}$	K_{1}	$\xrightarrow{\alpha}$	K_{2}
\downarrow				\downarrow
F		$\xrightarrow{i_{F}}$		F

(vertical maps are natural inclusions).
There exists a composite map defined up to a shift

$$
f: F \xrightarrow{\tilde{\Phi}_{\oint}} S \rightarrow \operatorname{Pr} \hat{H}^{6} / H^{6} .
$$

Lemma 6.9. $f \circ i_{F}=-f$ (up to a shift).
Proof. For $c \in F$ let $f(c)=\sum_{i=1}^{6} \hat{h}_{i}$ for $\hat{h}^{i} \in \hat{H}_{6}$; then $f\left(i_{F}(c)\right)=\sum_{i=1}^{6} i_{H}\left(\hat{h}_{i}\right)$. But $O_{\hat{H}_{6}}\left(\sum_{i=1}^{6}\left(\hat{h}_{i}+i_{H}\left(\hat{h}_{i}\right)\right)\right)=\left.O_{P^{2}}(1)\right|_{\hat{H}_{6}}$, i.e. $\sum \hat{h}_{i} \equiv-\sum i_{H}\left(\hat{h}_{i}\right)+$ const .

This means that $H^{1}\left(i_{F}\right)$ is a multiplication by -1 . This is equvalent to the following: $H^{1}\left(F_{0}\right)=0$, where $F_{0}=\widetilde{F_{0}\left(X_{0}\right)}$.

Let $E_{i} \hookrightarrow H^{1}(K)(i= \pm 1)$ be eigenspaces of $H^{1}\left(i_{K}\right)$ with eigenvalues i, then $E_{1}=H^{1}(K), E_{-1}=H^{1}\left(\operatorname{Pr} K / K_{0}\right)$, and (6.8) is equivalent to the following:

The image of the restriction map $H^{1}(F) \rightarrow H^{1}(K)$ is contained in E_{-1}, or, which is the same, the composition map Alb $K_{0} \rightarrow \operatorname{Alb} K \rightarrow \operatorname{Alb} F$ is 0 .

Taking into consideration (5.15) and (5.16), it is sufficient to prove that the map Alb $K_{0} \rightarrow J^{3}\left(\tilde{X}_{0}\right)$ is 0 . Let $k_{10}, k_{20} \in K_{0}$ and k_{1}, k_{2} their representatives in K. Let us find a cycle D on \tilde{X}_{0} which is the image of $k_{10}-k_{20}$:

$$
D=\tilde{\chi}\left(k_{1}\right)+\tilde{\chi}\left(i_{K}\left(k_{1}\right)\right)-\tilde{\chi}\left(k_{2}\right)-\tilde{\chi}\left(i_{K}\left(k_{2}\right)\right)
$$

We have $\forall f \in F \quad \Phi(\tilde{\chi}(f))+\Phi\left(\tilde{\chi}\left(i_{F}(f)\right)\right)=\mathrm{const}$ and $i_{F}\left(i_{K}\left(k_{1}\right)\right)=\alpha\left(k_{1}\right)$, hence

$$
D=\tilde{\chi}\left(k_{1}\right)-\tilde{\chi}\left(\alpha\left(k_{1}\right)\right)-\tilde{\chi}\left(k_{2}\right)+\tilde{\chi}\left(\alpha\left(k_{2}\right)\right)=U\left(k_{1}\right)-U\left(\alpha\left(k_{1}\right)\right)+U\left(\alpha\left(k_{2}\right)\right)-U\left(k_{2}\right)
$$

i.e. $D \equiv 0$. So, we have proved that $h^{1,0}(F(X))=10$.

REMARK. The above considerations imply that there exists a map $\operatorname{Pr} K / K_{0} \rightarrow$ $J^{3}\left(\tilde{X}_{0}\right) \rightarrow \operatorname{Pr} \hat{H}_{6} / H_{6}$. For a generic covering $p_{H_{6}}$ existence of this map implies that $p_{K}=p_{H_{6}}$ which implies in its turn that $p_{K}\left(X_{0}\right)=p_{H_{6}}\left(X_{0}\right)$ is true for any X_{0}.

Calculation of $h^{1,0}\left(F_{0}(X)\right)$, as well as a proof of connectedness of $F(X)$ and of $F_{0}(X)$ is made by the same method, but easier. Analogously to a fibration $f_{F}: F_{3} \rightarrow$ Δ we construct a fibration $f_{0 F}: F_{03} \rightarrow \Delta$ having a generic fibre $f_{0 F}^{-1}\left(t_{0}\right)=F_{0}(X)$ and a special fibre $f_{0 F}^{-1}(0)=F_{0}(0)=F_{0} \cup \bar{R}_{0}$, where $F_{0}=\widetilde{F_{0}\left(X_{0}\right)}$ and \bar{R}_{0} is a two-sheeted covering of $R_{0}\left(R_{0}\right.$ is a fibration over K_{0} whose fibre is $\left.P^{1}\right)$ ramified at $K \subset R_{0}$, and $F_{0} \cap \bar{R}_{0}=K$. There exists a weight filtration on $H^{1}\left(F_{0}(0)\right)$:

$$
0 \subset W_{0} \subset W_{1}=H^{1}\left(F_{0}(0)\right)
$$

where $W_{0}=H^{1}\left(\Pi\left(F_{0}(0)\right)\right), W_{1} / W_{0}=\operatorname{Ker}\left(\left(H^{1}\left(F_{0}\right) \oplus H^{1}\left(R_{0}\right)\right) \rightarrow H^{1}(K)\right)$. Since $\Pi\left(F_{0}(0)\right)$ is a segment, then $W_{0}=0$. As we have seen (Lemma 6.9), $H^{1}\left(F_{0}\right)=0$. Since the cohomology map $H^{1}\left(K_{0}\right) \rightarrow H^{1}\left(\bar{R}_{0}\right)$ of the fibration $\bar{R}_{0} \rightarrow K_{0}$ is an isomorphism, we have:

$$
\operatorname{Ker}\left(H^{1}\left(\bar{R}_{0}\right) \rightarrow H^{1}(K)\right)=\operatorname{Ker}\left(H^{1}\left(K_{0}\right) \rightarrow H^{1}(K)\right)=0
$$

So, $H^{1}\left(F_{0}(0)\right)=0$. It follows immediately from the Clemens - Schmidt exact sequence of the fibration $f_{0 F}$ that $H^{1}\left(F_{0}(X)\right)=0$ as well.

To calculate $H^{0}(F(X))$ we consider the even Clemens - Schmidt exact sequence of the fibration f_{F} :

$$
0 \rightarrow H^{0}(F(0)) \rightarrow H^{0}(F(X)) \xrightarrow{N} H^{0}(F(X))
$$

Connectedness of F implies that $h^{0}(F(0))=1$ and N is 0 . This implies connectedness of $F(X)$ and hence of $F_{0}(X)$ as well.

Proposition 6.10. The Abel - Jacobi map $\Phi: \operatorname{Alb} F \rightarrow J^{3}(X)$ is an epimorphism (here $F=F(X)$).

Proof. Let F_{1} be the family of straight lines on $X, \quad D \subset F_{1} \times F_{1}$ the incidence divisor, i.e. $\left(t_{1}, t_{2}\right) \in D \Longleftrightarrow t_{1} \neq t_{2}$ and $t_{1} \cap t_{2} \neq \emptyset, \quad p_{j}: D \rightarrow F_{1}$ a projection to the j-th component $(j=1,2), N=\operatorname{deg} p_{j}$, i.e. the number of straight lines meeting a given straight line, $i: D \rightarrow D$ the natural involution (permutation of t_{1}, t_{2}) and $p_{D}: D \rightarrow D_{0}$ a factorization of D by i. Then $D_{0} \stackrel{d}{\hookrightarrow} F$ is a set of reducible conics. Let us consider cylinder maps in complex homology
(a) for conics: $\Phi_{F}: H_{1}(F, \mathbb{C}) \rightarrow H_{3}(X, \mathbb{C})$;
(b) for straight lines: $\Phi_{F_{1}}: H_{1}\left(F_{1}, \mathbb{C}\right) \rightarrow H_{3}(X, \mathbb{C})$.

It is clear that for $\gamma \in H^{1}(D)$ we have

$$
\Phi_{F} \circ d_{*} \circ p_{D *}(\gamma)=\Phi_{F_{1}}\left(p_{1 *}(\gamma)\right)+\Phi_{F_{1}}\left(p_{2 *}(\gamma)\right) \stackrel{\text { def }}{=} B(\gamma)
$$

If $\gamma=p_{1}^{*}\left(\gamma^{\prime}\right)$, where $\gamma^{\prime}=H_{1}\left(F_{1}\right)$, then

$$
B(\gamma)=\Phi_{F_{1}}\left(p_{1 *}\left(p_{1}^{*}\left(\gamma^{\prime}\right)\right)\right)+\Phi_{F_{1}}\left(p_{2 *}\left(p_{1}^{*}\left(\gamma^{\prime}\right)\right)\right)=N \cdot \Phi_{F_{1}}\left(\gamma^{\prime}\right)+\Phi_{F_{1}}\left(p_{1 *}\left(i^{*}\left(p_{1}^{*}\left(\gamma^{\prime}\right)\right)\right)\right)
$$

According ([20], Section 4.3, Lemma 6) we have

$$
\Phi_{F_{1}}\left(p_{1 *}\left(i^{*}\left(p_{1}^{*}\left(\gamma^{\prime}\right)\right)\right)\right)=(1-n) \Phi_{F_{1}}\left(\gamma^{\prime}\right)
$$

where n is a number of straight lines passing through a generic point X_{4}^{\prime}, so $B(\gamma)=$ $(N+1-n) \Phi_{F_{1}}\left(\gamma^{\prime}\right)$. For X we have $N=11, n=6$. According to a lemma of Clemens ([20], Section 4.3) $\Phi_{F_{1}}$ is an epimorphism, hence $\gamma^{\prime} \mapsto B(\gamma)=\Phi_{F} \circ d_{*} \circ p_{D}(\gamma)$ is an epimorhism as well. This implies that Φ_{F} is also an epimorphism, which is equivalent to (6.10).

Since Alb F and $J^{3}(X)$ have the same dimension, we get
Theorem 6.11. Abel - Jacobi map $\Phi: \operatorname{Alb} F \rightarrow J^{3}(X)$ is an isogeny.
Now we give a sketch of a proof of the following theorem:
Theorem 6.12. The class of $\Phi(F)$ in $A\left(J^{3}(X)\right)$ is $\frac{2 \Theta^{8}}{8!}$ where Θ is the class of a Poincaré divisor.

Sketch of proof. For a degeneration $f: X_{4} \rightarrow \Delta$ (see 6.2) we denote $f^{-1}(t)=X_{t}$ and $F\left(X_{t}\right)=F_{t}$ for $t \neq 0$. There exists a complex analytic fibration $j: J_{11} \rightarrow \Delta$ whose fibre at $t \in \Delta^{*}=\Delta-\{0\}$ is $j^{-1}(t)=J^{3}\left(X_{t}\right)$ ([52], Section 2). Its fibre $j^{-1}(0)=J(0)$ at 0 is a fibration over $J^{3}\left(\tilde{X}_{0}\right)$ whose fibre is $\mathbb{C}^{*}([52], 4.56)$. There exists a compactification of $J(0)$. It is a fibration $\mu: \tilde{J}_{0} \rightarrow J^{3}\left(\tilde{X}_{0}\right)$ whose fibre is P^{1}. It has 2 sections $\alpha_{0}, \alpha_{\infty}: J^{3}\left(\tilde{X}_{0}\right) \rightarrow \tilde{J}_{0}$ which map any point $t \in J^{3}\left(\tilde{X}_{0}\right)$ to points $(0),(\infty) \in P^{1}=\mu^{-1}(t)$ such that $J(0)=\tilde{J}_{0}-\operatorname{im} \alpha_{0}-\operatorname{im} \alpha_{\infty}$. There exists also a compactification of J_{11} which is a fibration $j_{c}: J_{11, c} \rightarrow \Delta$ whose non-singular fibre is the same as the one of j and whose singular fibre is $j_{c}^{-1}(0)=J_{0}$. Further, there is a $\operatorname{map} \nu: \tilde{J}_{0} \rightarrow J_{0}$ which is a normalization of $J_{0} . \nu$ identifies (with a shift) im α_{0} and $\operatorname{im} \alpha_{\infty}$, outside these subsets ν is an inclusion.

Let us consider now the Abel - Jacobi map. We fix a section $s_{0}: \Delta \rightarrow F_{3}$ such that $s_{0}(0) \in F\left(X_{0}\right)-K$, and for any section $s: \Delta \rightarrow F_{3}$ such that $s(0) \in F\left(X_{0}\right)-K$ we consider an element $\Phi_{s}(t)=\Phi\left(s(t)-s_{0}(t)\right) \in J^{3}\left(X_{t}\right)$. They form a section $\Delta^{*} \rightarrow J_{11}$ which can be expanded to a section $\Phi_{s}: \Delta \rightarrow J_{11}$. We have: $\Phi_{s}(0)$ depends only on $s(0)$ but not on s and $\mu\left(\Phi_{s}(0)\right)=\Phi_{\tilde{X}_{0}}\left(s(0)-s_{0}(0)\right)([52], 4.58)$ where $\Phi_{\tilde{X}_{0}}$ is the Abel - Jacobi map of \tilde{X}_{0}. We denote by $\cup_{s} \Phi_{s}(t)=F_{\Phi}(t) \subset j^{-1}(t)$ the image of F_{t} under the Abel-Jacobi map shifted by such a way that $s_{0}(t)$ goes to 0 . For $t=0$ we have an inclusion $F\left(X_{0}\right)-K \hookrightarrow J(0)$. There exists a commutative diagram where the above inclusion is the left vertical map:

$$
\begin{array}{ccccc}
F\left(X_{0}\right)-K & \hookrightarrow & \widetilde{F\left(X_{0}\right)} & \rightarrow & F\left(X_{0}\right)=F_{\Phi}(0) \\
\downarrow & & \downarrow & & \downarrow \\
J(0) & \hookrightarrow & \tilde{J}_{0} & \rightarrow & J_{0}
\end{array}
$$

(vertical maps are inclusions) and we get a family of surfaces $\left(F_{\Phi} \rightarrow \Delta\right) \subset\left(j_{c}: J_{11, c} \rightarrow\right.$ $\Delta)$ whose fibre at $t \in \Delta$ is $F_{\Phi}(t)=F\left(X_{t}\right)$. Since

$$
\mu\left(\widetilde{F\left(X_{0}\right)}\right)=\Phi_{\tilde{X}_{0}}\left(\widetilde{F\left(X_{0}\right)}\right) \subset J^{3}\left(\tilde{X}_{0}\right), \quad J^{3}\left(\tilde{X}_{0}\right)=\operatorname{Pr}\left(\hat{H}_{6} / H_{6}\right) \text { and } \widetilde{F\left(X_{0}\right)}=S\left(p_{H_{6}}\right)
$$

then according $([28])$ the homology class of $\Phi_{\tilde{X}_{0}}\left(\widetilde{F\left(X_{0}\right)}\right)$ in $H_{4}\left(J^{3}\left(\tilde{X}_{0}\right), \mathbb{Z}\right)$ is

$$
\begin{equation*}
\frac{2 \Theta^{7}}{7!}=2 \sum_{i<j} \gamma_{i} \times \delta_{i} \times \gamma_{j} \times \delta_{j} \tag{6.13}
\end{equation*}
$$

where Θ is the class of a Poincaré divisor and $\left(\gamma_{i}, \delta_{i}\right)$ is a simplectic basis of $H_{1}\left(J^{3}\left(\tilde{X}_{0}\right), \mathbb{Z}\right)$ with respect to the principal polarization associated with $\Theta \subset J^{3}\left(\tilde{X}_{0}\right)$.

There exists a map of topological spaces $(0,0): J^{3}\left(X_{t}\right) \rightarrow J_{0}([25])$ such that $(0,0)\left(F_{\Phi}(t)\right)$ is homologically equivalent to $F_{\Phi}(0) \hookrightarrow J_{0}$. By analogy with proofs of ([25], Lemma 2.6) and ([31], Theorem 8.27) it is possible to show - using (6.13) that the class of $F_{\Phi}(t) \subset J^{3}\left(X_{t}\right)$ in $H_{4}\left(J^{3}\left(X_{t}\right), \mathbb{Z}\right)$ is

$$
2 \sum_{i<j} \gamma_{i} \times \delta_{i} \times \gamma_{j} \times \delta_{j}=\frac{2 \Theta^{8}}{8!}
$$

7. Geometric interpretation of the tangent bundle theorem and recovering of X by its Fano surface. We denote $V_{10}=H^{0}\left(F, \Omega_{F}\right)^{*}$. Here we impose the following condition on F :
7.1. The natural map $V_{10}^{*}=H^{0}\left(F_{m}, \Omega_{F_{m}}\right) \rightarrow \Omega_{F_{m}}\left(c_{\Omega}\right)$ is an epimorphism.

Apparently this condition is true for any X or at least for a generic X. Theorem about recovering of X by its Fano surface $F(X)$ will be proved only for X that satisfy (7.1).

Let us define a map $B_{8}: F \rightarrow G\left(2, V_{8}\right)$ as follows: $B_{8}(f)=<\gamma_{1}(f), \gamma_{2}(f)>$. We denote by $B_{10}: F_{m} \rightarrow G\left(2, V_{10}\right)$ a map associated to $\Omega_{F_{m}}$. (7.1) means that B_{10} is regular at c_{Ω}. It is clear that B_{8} factors through $p_{F}: F \rightarrow F_{0}$. Since $H^{0}\left(F_{0}, \Omega_{F_{0}}\right)=0$, we have: B_{10} factors through $p_{F_{m}}: F_{m} \rightarrow F_{0 m}$, and the corresponding map $F_{0 m} \rightarrow$ $G\left(2, V_{10}\right)$ is associated to a sheaf $\Omega_{F_{0} m} \otimes \sigma_{m}$.

THEOREM 7.2. (Geometric interpretation of the tangent bundle theorem). A map $B_{10} \circ r: F \rightarrow G\left(2, V_{10}\right)$ is regular. There exists the only epimorphism $p_{10,8}: V_{10} \rightarrow V_{8}$ such that

$$
\begin{equation*}
B_{8}=G\left(2, p_{10,8}\right) \circ B_{10} \circ r . \tag{7.3}
\end{equation*}
$$

If (7.1) is satisfied then $p_{10,8}$ is a projection from the straight line $B_{10}\left(c_{\Omega}\right)$.
Proof. We denote $H=H^{0}\left(F, \tau_{2, M}^{*}\right)^{*}$ and let $B_{H}: F \rightarrow G(2, H)$ be the map difined by $\tau_{2, M}^{*}$. Let us consider the long exact cohomology sequence for (4.51):

$$
0 \rightarrow H^{*} \xrightarrow{i_{1}} V_{10}^{*} \rightarrow H^{0}\left(2 O_{l_{1} \cup l_{2}}\right) .
$$

It is clear that (7.1) is equivalent to a condition $H=V_{8}$. Since the linear envelope of straight lines $<\gamma_{1}(f), \gamma_{2}(f)>=l_{8}(f) \subset P\left(V_{8}\right)$ is the whole $P\left(V_{8}\right)$, there exists an inclusion $i_{2}: V_{8}^{*}=H^{0}\left(G\left(2, V_{8}\right), \tau_{2, V_{8}}^{*}\right) \hookrightarrow H^{*}=H^{0}\left(F, \tau_{2, M}^{*}\right)$, and we have

$$
\begin{equation*}
B_{8}=G\left(2, i_{2}^{*}\right) \circ B_{H} \tag{7.4}
\end{equation*}
$$

This implies that $\forall f \in F \quad B_{H}$ is regular at f. For $f \in F-l$ the restriction of (4.51) to f is

$$
\left.\left.0 \rightarrow \tau_{2, M}^{*}\right|_{f} \rightarrow r^{*} \Omega_{F_{m}}\right|_{f} \rightarrow 0
$$

and there exists a commutative diagram

$$
\begin{gather*}
H^{*} \tag{7.5}\\
H^{0}\left(\left.\tau_{2, M}^{*}\right|_{f}\right)=\underset{\tau_{2, M}^{*}}{\downarrow}(f) \\
\stackrel{i}{\hookrightarrow}
\end{gather*} \stackrel{V_{10}^{*}}{\downarrow} \quad H^{0}\left(\left.r^{*} \Omega_{F_{m}}\right|_{f}\right)=r^{*} \Omega_{F_{m}}(f) .
$$

Since $H^{*} \rightarrow \tau_{2, M}^{*}(f)$ is an epimorphism, we have that $V_{10}^{*} \rightarrow r^{*} \Omega_{F_{m}}(f)$ is also an epimorphism, i.e. B_{10} is regular at $F-l$. If so, there exists a continuation of B_{10} to l, i.e. B_{10} is regular on F. Commutativity of the diagram dual to (7.5) shows that

$$
\begin{equation*}
B_{H}(f)=G\left(2, i_{1}^{*}\right) \circ B_{10}(f) \tag{7.6}
\end{equation*}
$$

We denote now $p_{10,8}=\left(i_{1} \circ i_{2}\right)^{*}$. (7.4) and (7.6) imply that on $F-l$ we have $B_{8}=G\left(2, p_{10,8}\right) \circ B_{10} \circ r$, hence this is true on the whole F.

If (7.1) is true then for $f \in l$ we have $B_{10} \circ r(f)=B_{10}\left(c_{\Omega}\right)$ which does not depend on f. But $B_{8}(f)$ for $f \in l$ are different straight lines having no commun points. This observation shows that (7.3) can be satisfied only if $p_{10,8}$ is the projection from the straight line $B_{10}\left(c_{\Omega}\right)$.

Theorem 7.7. Here we suppose that (7.1) is satisfied for F_{c}. Then X satisfying the property $F_{c}=F_{c}(X)$ is defined uniquely up to isomorphism.

Proof. Let us consider the map $F_{c} \rightarrow G\left(2, V_{10}\right)$ associated to $\Omega_{F_{c}}$. It factors through $F_{0 m}$ and hence it permits us to recover uniquely the point $c_{\Omega} \in F_{c}$, the straight line $l_{2} \subset F_{c}$, the involution i_{F} on F and the straight line $B_{10}\left(c_{\Omega}\right) \subset P\left(V_{10}\right)$. Since (7.1) implies that $p_{10,8}$ is the projection from $B_{10}\left(c_{\Omega}\right)$, we can recover as well the map $B_{8}: F_{0} \rightarrow G\left(2, V_{8}\right)$. Since the straight line $l \subset F_{0}$ can be recovered by F_{c} and the straight lines $l_{0}(c)$ for $c \in l$ are contained in U^{*} and are tangent to the conic c_{u}^{*}, we have that U^{*}, c_{u}^{*} and the isomorphism $l \rightarrow c_{u}^{*}$ are recovered by F_{c}.

Proposition 7.8. $c_{\Omega} \subset U^{*}$ can be recovered uniquely by F_{c}.
Proof. We prove
(a) If $c \in F_{0}-l$ and $l_{8}(c) \cap U^{*} \neq \emptyset$ then $l_{8}(c) \cap U^{*} \in c_{\Omega}$.
(b) The quantity of these points $c \in F_{0}-l$ is finite and >4.

So, having F_{c} it is possible to construct more than 4 points on the conic line c_{Ω}, i.e. to recover c_{Ω} itself.
(a) can be proved easily. For $c \in F_{0}-l$ we have: $X \cap l_{8}(c)=G_{4} \cap l_{8}(c)$. Since $U^{*} \subset G_{4}$, we have $l_{8}(c) \cap U^{*} \in G_{4}$, and hence $l_{8}(c) \cap U^{*} \in X$. But $c_{\Omega}=X \cap U^{*}$.

Let us define now a curve S as a set of pairs (t, c) where $t \in c_{\Omega}, c \in c_{u} \cap t_{V}$. We define a straight line $j(t, c)$ as a line lying in α-plane $\alpha(c)$ (see Section 3) and which is the tangent of $\alpha(c) \cap \Omega$ at t. Lemma 3.20 (whose notations are used here) implies that either $j(t, c) \subset X$ or $\left\{\right.$ if for $f_{0} \in F_{0}-l$ holds $\left.\left.\tilde{\phi}\left(f_{0}\right) \in \pi \widetilde{(j(t, c)}\right)\right\} t \in l_{8}\left(f_{0}\right)$. We define a surface

$$
\left.R=\bigcup_{(t, c) \in S} \pi \widetilde{(j(t, c)}\right) \subset P\left(V^{*}\right)
$$

It is clear that $R \supset l$. Let $\left.V_{4} \in(R-l) \cap\left(\phi\left(F_{0}-l\right)\right), V_{4}=\phi\left(f_{0}\right), V_{4} \in \pi \widetilde{(j(t, c)}\right)$. Then either
(i) $l_{8}\left(f_{0}\right) \cap c_{\Omega}=\{t\}$ or
(ii) There exists a straight line on X passing through t.

Let us find for how many $V_{4} \in(R-l) \cap\left(\phi\left(F_{0}-l\right)\right)$ we have the case (ii). Since the union of all straight lines on X is an intersection of X and a hypersurface of degree 10 , there are 20 points on c_{Ω} which belong to a straight line on X. Let t and $j(t)$ are one of these points and lines. We define $c=\cap_{t^{\prime} \in j(t)} t_{V}^{\prime}$; it is clear that $c \in c_{u} \cap t_{V}$ and $j(t)=j(t, c)$. Since $j(t)$ meets 11 straight lines on X, we have: a straight line $\widetilde{\pi(j(t, c))} \subset R$ meets $\phi\left(F_{0}\right)$ at 11 points. But one of them belongs to l. We get that for $20 \cdot(11-1)=200$ intersection points of $R-l$ and $\phi\left(F_{0}-l\right)$ there exist corresponding lines on X.

Let us find now $\#(R-l) \cap\left(\phi\left(F_{0}-l\right)\right)$. Let $r: \widetilde{P\left(V^{*}\right)} \rightarrow P\left(V^{*}\right)$ be the blowing up along $l, \quad \tilde{R}$ and \tilde{F}_{0} the proper inverse images of R and $\phi\left(F_{0}\right)$ respectively. Then $\#(R-l) \cap\left(\phi\left(F_{0}-l\right)\right)=<\tilde{R}, \tilde{F}_{0}>\widetilde{P\left(V^{*}\right)}$.

Lemma 7.9. $<\tilde{R}, \tilde{F}_{0}>\widetilde{P\left(V^{*}\right)}=36 d+8$ where $d=\operatorname{deg} R$.
Proof. $\widetilde{P\left(V^{*}\right)}$ is a variety of pairs $\left(V_{2}, V_{4}\right)$ where $V_{2} \subset V_{4} \subset V$ and $V_{2} \subset U_{3}$; $r\left(V_{2}, V_{4}\right)=V_{4}$. There exists an isomorphism

$$
\widetilde{P\left(V^{*}\right)}=P_{U^{*}}(O \oplus O \oplus O(1)) \xrightarrow{\mu} U^{*}
$$

and $\mu\left(V_{2}, V_{4}\right)=V_{2} \in U^{*}$. The ring $A\left(\widetilde{P\left(V^{*}\right)}\right)$ has generators $D=\mu^{*}\left(c_{1}\left(O_{U^{*}}(1)\right)\right)$, $\tilde{H}=c_{1}\left(O_{\mu}(1)\right)$ and relations $D^{3}=0, \tilde{H}^{3}=D \tilde{H}^{2}$. Further, we have $r^{-1}(l)=\tilde{H}-D$, $r^{-1}(H)=\tilde{H}, r_{*}\left(\tilde{H}^{2}\right)=r_{*}(\tilde{H} D)=r_{*}\left(D^{2}\right)=H^{2}$ where $H=c_{1}(O(1))$. Let us find the class of R in $A\left(\widetilde{P\left(V^{*}\right)}\right)$. By definition,

$$
\left\{\left(V_{2}, V_{4}\right) \in \tilde{R} \Longleftrightarrow P\left(V_{2}\right)=t_{V} \text { for some } t \in c_{\Omega} \text { and } P\left(V_{4}\right) \supset \pi(j(t, c))\right\}
$$

where $c \in t_{V} \cap c_{u}$. So, $\mu(\tilde{R})=c_{\Omega}$, and for $t \in c_{\Omega} \quad \mu^{-1}(t) \cap \tilde{R}$ is a pair of straight lines $\pi\left(\widetilde{j\left(t, c_{i}\right)}\right)(i=1,2)$, where $\left\{c_{1}, c_{2}\right\}=t_{V} \cap c_{u}$. This means that \tilde{R} is a divisor in $\mu^{-1}\left(c_{\Omega}\right)$ and $O_{\mu^{-1}\left(c_{\Omega}\right)}(\tilde{R})=L \otimes O_{\mu}(2)$ where L is an invertible sheaf on c_{Ω}. Since $\mu^{-1}\left(c_{\Omega}\right)$ is a divisor on $\widetilde{P\left(V^{*}\right)}$ of degree $2 D$, we have: cl $(\tilde{R})=4 D \tilde{H}+n D^{2}$ where n is defined by the condition $r_{*}(\tilde{R})=d H^{2}=(4+n) H^{2}$, i.e. $n=d-4$.

Let us find now the class of \tilde{F}_{0} in $A\left(\widetilde{P\left(V^{*}\right)}\right)$. Let us assume that there exists a locally free sheaf E of rank 2 on $P\left(V^{*}\right)$ such that $\phi\left(F_{0}\right)$ is the set of zeros of a section of E. Then \tilde{F}_{0} is the set of zeros of a section of $r^{*}(E) \otimes O_{r}(1)$ on $\widetilde{P\left(V^{*}\right)}$ and

$$
\operatorname{cl}\left(\tilde{F}_{0}\right)=c_{2}\left(r^{*}(E) \otimes O_{r}(1)\right)=r^{*} c_{2}(E)+r^{*} c_{1}(E) \cdot c_{1}\left(O_{r}(1)\right)+c_{1}\left(O_{r}(1)\right)^{2} .
$$

We have $c_{2}(E)=\operatorname{deg} \phi\left(F_{0}\right)=39 H^{2}, c_{1}\left(O_{r}(1)\right)=D-\tilde{H}$, and $c_{1}(E)$ can be easily found by consideration of the exact sequence of normal sheaves for inclusions $l \hookrightarrow$ $\phi\left(F_{0}\right) \hookrightarrow P\left(V^{*}\right):$

$$
\left.0 \rightarrow O_{l}(-1) \rightarrow 3 O_{l}(1) \rightarrow E\right|_{l} \rightarrow 0
$$

Namely, det $\left.E\right|_{l}=O_{l}(4)$, i.e. $c_{1}(E)=4 H$ and

$$
\operatorname{cl} \tilde{F}_{0}=39 \tilde{H}^{2}+4 \tilde{H}(D-\tilde{H})+(D-\tilde{H})^{2}=36 \tilde{H}^{2}+2 \tilde{H} D+D^{2}
$$

Really, E does not exist, but it is clear that the above formalism is correct. So, $<\tilde{R}, \tilde{F}_{0}>\widetilde{P\left(V^{*}\right)}=\left(4 \tilde{H} D+(d-4) D^{2}\right)\left(36 \tilde{H}^{2}+2 \tilde{H} D+D^{2}\right)=36 d+8$.

This means that there are $36 d+8-200$ straight lines of type $l_{8}\left(f_{0}\right)$ which meet c_{Ω}. Since this number is ≥ 0, we get that $d \geq 6$ and this number is ≥ 24. So, we can recover c_{Ω} uniquely by F_{c}.

Let us consider now the birational isomorphism $b: G_{4} \rightarrow P^{4}$ (see (3.4)) which is the restriction to G_{4} of the projection $p_{85}: P\left(V_{8}\right) \rightarrow P^{4}=P\left(V_{8} / U_{3}^{*}\right)$.

Proposition 7.10. It is possible to recover the normcubic $c_{3} \subset P^{3} \subset P^{4}$ and the isomorphism $\psi_{2}: c_{u} \rightarrow c_{3}$ by F_{c}.

Proof. For $f_{0} \in F_{0}$ we let $l_{5}\left(f_{0}\right)=G\left(2, p_{85}\right)\left(l_{8}\left(f_{0}\right)\right)$, i.e. l_{5} is a map from F_{0} to $G\left(2, V_{8} / U_{3}^{*}\right)$. Since l is a divisor in F_{0}, then $l_{5}\left(f_{0}\right)$ is defined also for a generic point $f_{0} \in l$. We shall consider $l_{5}\left(f_{0}\right)$ also as a straight line in P^{4}. A natural map of straight lines $\left.p_{85}\right|_{l_{8}\left(f_{0}\right)}: l_{8}\left(f_{0}\right) \rightarrow l_{5}\left(f_{0}\right)$ is defined also for a generic point $f_{0} \in l$. Analogously, the map $\xi_{5}=p_{85} \circ \xi: P_{F_{0}}\left(\tau_{2, M}\right) \rightarrow P^{4}$ is defined at a generic point of $P_{l}\left(\tau_{2, M}\right)$.

It is clear that in $P_{F_{0}}\left(\tau_{2, M}\right)$ we have: $S=\bar{W} \cap P_{l}\left(\tau_{2, M}\right)$ (here we identify c_{u} and l via ψ). Let us consider a commutative diagram

$$
\begin{array}{ccccccccc}
S & \hookrightarrow & \bar{W} & \stackrel{\xi \mid W}{\rightarrow} & W & \hookrightarrow & X & \hookrightarrow & G_{4} \\
\downarrow & & \downarrow & & & & & & \downarrow \\
P_{l}\left(\tau_{2, M}\right) & \hookrightarrow & P_{F_{0}}\left(\tau_{2, M}\right) & & & \xrightarrow[马]{ } & & & P^{4}
\end{array}
$$

where the left and middle vertical maps are inclusions, the right vertical map is b. Let $t_{1} \in c_{u}$, then $l_{8}\left(\psi\left(t_{1}\right)\right) \subset U^{*}$, and let $\left\{t^{\prime}, t^{\prime \prime}\right\}=l_{8}\left(\psi\left(t_{1}\right)\right) \cap c_{\Omega}$. We denote $\left\{t_{1}, t_{2}\right\}=t_{V}^{\prime} \cap c_{u}$ and $\left\{t_{1}, t_{3}\right\}=t_{V}^{\prime \prime} \cap c_{u}$. Then $\left(t^{\prime}, t_{1}\right) \in S,\left(t^{\prime}, t_{2}\right) \in S$. The image of these elements in G_{4} is t^{\prime}, hence their images in P^{4} belong to a bisecant $<\psi_{2}\left(t_{1}\right), \psi_{2}\left(t_{2}\right)>$ of c_{3}. Since c_{Ω} can be recovered by F_{c}, we have: for $t_{1} \in c_{u}$ we can find images of points $\left(t^{\prime}, t_{1}\right)$ and $\left(t^{\prime}, t_{2}\right)$ in P^{4} going along the left-lower way of the above diagram, and hence we can find the bisecant $<\psi_{2}\left(t_{1}\right), \psi_{2}\left(t_{2}\right)>$. Analogously we can find the bisecant $<\psi_{2}\left(t_{1}\right), \psi_{2}\left(t_{3}\right)>$; their intersection point indicates us the point $\psi_{2}\left(t_{1}\right) \in P^{4}$.

Let us consider an isomorphism $I: P\left(V_{8}\right) \rightarrow P\left(V_{8}^{\prime}\right)$ and a map $b^{-1}: P^{4} \rightarrow I\left(G_{4}\right)$ such that $b^{-1} \circ b=\left.I\right|_{G_{4}}$. Since we can recover uniquely $c_{3} \subset P^{4}$, we can also recover $b^{-1}: P^{4} \rightarrow I\left(G_{4}\right)$ and $P\left(V_{8}^{\prime}\right)$ as the linear envelope of $I\left(G_{4}\right)$.

Proposition 7.11. Isomorphism $I: P\left(V_{8}\right) \rightarrow P\left(V_{8}^{\prime}\right)$ can be recovered by F_{c}.
Proof. Let $\phi\left(f_{0}\right)=V_{4}$ where $f_{0} \in F_{0}-l$, and let $\{t\}=Q_{G}\left(V_{4}\right) \cap U^{*}$. Then (see 3.4) $b\left(Q_{G}\left(V_{4}\right)\right)=P^{2}$ and since points $b\left(\gamma_{1}\left(f_{0}\right)\right), b\left(\gamma_{2}\left(f_{0}\right)\right)$ belong to P^{2}, we have: $l_{5}\left(f_{0}\right) \subset P^{2}$. This implies that $b^{-1}\left(l_{5}\left(f_{0}\right)\right)$ is a conic on $I\left(Q_{G}\left(V_{4}\right)\right)$ passing through $I(t), I\left(\gamma_{1}\left(f_{0}\right)\right), I\left(\gamma_{2}\left(f_{0}\right)\right)$. Since b is the restriction of $p_{85}: P\left(V_{8}\right) \rightarrow P^{4}$ to G_{4}, we have that for $a \in l_{8}\left(f_{0}\right)$ points $I(t), I(a)$ and $b^{-1}\left(p_{85}(a)\right)$ are collinear.

We can recover an isomorphism $S^{2}\left(c_{3}\right) \rightarrow I\left(U^{*}\right)$ and hence $\left.I\right|_{U^{*}}: U^{*} \rightarrow I\left(U^{*}\right)$ as well. For f_{0} we can recover a point $l_{5}\left(f_{0}\right) \cap P^{3}$. There exists only one bisecant of c_{3} passing through this point, and the linear envelope of this bisecant and $l_{5}\left(f_{0}\right)$ is equal clearly $P^{2}=b\left(Q_{G}\left(V_{4}\right)\right)$. So, we can recover this P^{2}.

Let now $f_{1}, f_{2} \in F_{0}-l$ be such that $l_{5}\left(f_{1}\right) \cap l_{5}\left(f_{2}\right)=\{m\}$, where $m=m\left(f_{1}, f_{2}\right) \in$ P^{4}, and $m_{1} \in l_{8}\left(f_{1}\right), m_{2} \in l_{8}\left(f_{2}\right)$ are inverse images of $m: p_{85}\left(m_{1}\right)=p_{85}\left(m_{2}\right)=m$. Let, further, $t_{1}=Q_{G}\left(\phi\left(f_{1}\right)\right) \cap U^{*}, t_{2}=Q_{G}\left(\phi\left(f_{2}\right)\right) \cap U^{*}$. Then the point $b^{-1}(\mathrm{~m})$ belongs to both lines $<I\left(t_{i}\right), I\left(m_{i}\right)>(i=1,2)$, hence $I^{-1}\left(b^{-1}(m)\right)=<t_{1}, m_{1}>\cap<$ $t_{2}, m_{2}>$, because these lines are different. If f_{1}, f_{2} are given, then we can construct points $m, m_{1}, m_{2}, t_{1}, t_{2}, b^{-1}(m)$, and hence $I^{-1}\left(b^{-1}(m)\right)$. So, there are many points in $P\left(V_{8}\right)$ whose I-image can be constructed. To prove that they permit to recover uniquely the linear map I it is sufficient to prove that all points of type $b^{-1}\left(m\left(f_{1}, f_{2}\right)\right)$ do not belong to a hyperplane containing $I\left(U^{*}\right)$, or - the same - to prove that all points of type $m\left(f_{1}, f_{2}\right)$ do not belong to a hyperplane in P^{4}.

Lemma 7.12. Let Y be a surface on $G(2, V), d=c_{1}\left(\left.\tau_{2, V}\right|_{Y}\right)^{2}-c_{2}\left(\left.\tau_{2, V}\right|_{Y}\right)$. Then for a generic point $y \in Y$ we have: the straight line y_{V} meets $d-3$ straight lines of type y_{V}^{\prime} where $y^{\prime} \in Y-y$.

Proof. Follows easily from a calculation of intersection index on \tilde{G}_{y}.
Chern classes of $l_{5}^{*}\left(\tau_{2}\right)$ (this sheaf corresponds to the inclusion $l_{5} \times F_{0} \rightarrow G\left(2,\left(V_{8} / V_{3}\right)^{*}\right)$) can be easily found by using exact sequences (4.51) and

$$
\left.\left.0 \rightarrow \tau_{2}^{*}\right|_{F_{0}} \rightarrow \tau_{2, M}^{*}\right|_{F_{0}} \rightarrow i_{*}\left(\left.\tau_{2, M}^{*}\right|_{l}\right) \rightarrow 0
$$

where $i: l \rightarrow F_{0}$. We get: $d=168$. This means that straight lines of type $l_{5}\left(f_{0}\right)$ for $f_{0} \in F$ do not belong to one hypersurface and a generic straight line of this type meets 165 others. This implies that all points of type $m\left(f_{1}, f_{2}\right)$ do not belong to a hyperplane in P^{4}.

Now we can recover $G_{4} \subset P\left(V_{8}\right)$ by F_{c}, because $G_{4}=I^{-1}\left(b^{-1}\left(P^{4}\right)\right)$. It is clear that for $f_{0} \in F_{0}-l$

$$
\left\{\gamma_{1}\left(f_{0}\right), \gamma_{2}\left(f_{0}\right)\right\}=G_{4} \cap l_{8}\left(f_{0}\right)
$$

hence we can recover W by F_{c}. Since $O_{X}(W)=O_{X}(21)$ and X is an intersection of quadrics in $P\left(V_{8}\right), X$ is an intersection of all quadrics in $P\left(V_{8}\right)$ which contain W. So, we can recover uniquely X by F_{c}.

REFERENCES

[1] N. P. Gushel, Special Fano threefold of genus 6, in: Constructive algebraic geometry. Yaroslavl, 200 (1982), pp. 26-34.
[2] V. A. Iskovskih, Anticanonical models of algebraic threefolds, in: Contemporary problems of mathematics, vol. 12 (Itogi nauki i tehniki, VINITI), Moscow, 1979, pp. 59-157.
[3] V. A. Iskovskin, Birational automorphisms of threefolds, in: Contemporary problems of mathematics, vol. 12. (Itogi nauki i tehniki, VINITI), Moscow, 1979, pp. 159-236.
[4] V. A. Iskovskih, On birational automorphisms of threefolds, Dokl. AN SSSR, 234:4 (1977), pp. 743-745.
[5] V. A. Iskovskih, Birational automorphisms of a Fano theefold V_{6}^{3}, Dokl. AN SSSR, 235:3 (1977), pp. 509-511.
[6] V. A. Iskovskih, Ju. I. Manin, Quartic threefolds and counterexamples to the Luroth problem, Math. Sbornik, 86:1 (1971), pp. 140-166.
[7] T. Jozefiak, A. Lascoux, and P. Pragacz, Classes of determinantal varieties associated to symmetric and skew-symmetric matrices, Izv. AN SSSR. Ser. mat., 45 (1981), pp. 662-673.
[8] Vik. S. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. AN SSSR. Ser. mat., 41:5 (1977), pp. 1008-1042.
[9] D. Yu. Logachev, Abel - Jacobi map of a Fano threefold of genus 6 is an isogeny, in: Constructive algebraic geometry, Yaroslavl, 200 (1982), pp. 67-76.
[10] D. Yu. Logachev, Isomorphism of middle Jacobians of some dual sections of determinantals, Izv. AN SSSR, Ser. Mat., 46:2 (1982), pp. 269-275.
[11] A. S. Tikhomirov, Geometry of Fano surface of a double space P^{3} ramified at a quartic, Izv. AN SSSR, Ser. mat., 44:2 (1980), pp. 415-422.
[12] A. S. Tikhomirov, Middle Jacobian of a double space P^{3} ramified at a quartic, Izv. AN SSSR, Ser. mat., 44:6 (1980), pp. 1329-1377.
[13] A. S. Tikhomirov, Fano surface of a double cone of Veronese, Izv. AN SSSR, Ser. mat., 45:5 (1981), pp. 1121-1197.
[14] A. S. Tikhomirov, Singularities of a theta divisor of a double space P^{3} of index 2, Izv. AN SSSR, Ser. mat., 46:5 (1982), pp. 1062-1081.
[15] A. S. Tikhomirov, Special double space P^{3} of index 2. In: Constructive algebraic geometry, Yaroslavl (1982:200), pp. 121-129.
[16] A. N. Tyurin, Middle Jacobian of threefolds, in: Contemporary problems of mathematics, (Itogi nauki i tehniki, VINITI), Moscow, 12 (1979), pp. 5-57.
[17] A. N. Tyurin, On Fano surface of a non-singular cubic in P ${ }^{4}$, Izv. AN SSSR, Ser. mat., 34:6 (1970), pp. 1200-1208.
[18] A. N. Tyurin, Geometry of a Fano surface of a non-singular cubic $F \subset P^{4}$ and Torelli theorems, Izv. AN SSSR, Ser. mat., 35 (1971), pp. 498-529.
[19] A. N. Tyurin, Geometry of a Poincaré divisor of a Prym variety, Izv. AN SSSR, Ser. mat., 39:5 (1975), pp. 1003-1043.
[20] A. N. Tyurin, Five lectures on threefolds, Uspehi Mat. Nauk, 27:5 (1972), pp. 3-50.
[21] A. N. Tyurin, On intersection of quadrics, Uspehi Mat. Nauk, 30:6 (1975), pp. 51-99.
[22] S. N. Hashin, Birational automorphisms of a double cone of Veronese of dimension 3, Vestnik MGU. Ser. mat., mech. 1983, no. 1.
[23] A. Altman and S. Kleiman, Foundations of theory of Fano schemas, preprint.
[24] A. Andreotti and A. Mayer, On period relations for abelian integrals, Ann. Scuola Norm.

Sup. Pisa, 21:2 (1967), pp. 189-238.
[25] C. Barton and C. H. Clemens, A result on the integral Chow ring of a generic principally polarized complex abelian variety of dimension four, Comp. Math., 34, fasc. 1 (1977), pp. 49-67.
[26] A. Beauville, Variétiés de Prym et Jacobiennes intermédiaires, Ann. Scient. Ecole Norm. Sup., 10 (1977), pp. 304-392.
[27] A. Beauville, Prym varieties and Schottky problem, Invent. Math., 41:2 (1977), pp. 149-196.
[28] A. Beauville, Sous - variétiés speciales des variétiés de Prym, preprint.
[29] E. Bombieri and H. Swinnerton-Dyer, On the local zeta function of a cubic threefold, Ann. Scuola Norm. Sup. Pisa, 21 (1967), pp. 1-29.
[30] C. H. Clemens, Degeneration of Kähler manifolds, Duke Maht. J., 44:2 (1977), pp. 215-290.
[31] C. H. Clemens, Double solids, preprint.
[32] C. H. Clemens and Ph. Griffiths, The intermediate Jacobian of a cubic threefold, Ann. of Math., 95:2 (1972), pp. 281-356.
[33] A. Collino, J. P. Murre, and G. E. Welters, On the surface of conics on a quartic threefold, Rend. Sem. Math. Univ. Politecn, Torino, 38:1 (1980).
[34] G. FANo, Sul sistema ∞^{2} di rette contenuto in una varietà cubica generale dello spazio a quattro dimensioni, Atti R. Acc. Sc. Torino, 39 (1904), pp. 778-792.
[35] G. Fano, Osservazioni sopra alcune varietà non razionali aventi tutti i generi nulli., Atti R. Acc. Sc. Torino, 50 (1915), pp. 1067-1072.
[36] G. Fano, Sulle seczioni spaziali della varietà Grassmanniana delle rette spazio a cinque dimensioni, Rend. R. Accad. Lincei, 11:6 (1930), pp. 329-356.
[37] Ph. Griffiths, On periods of integrals on algebraic manifolds I, Amer. J. Math., 90 (1968), pp. 568-626.
[38] Ph. Griffiths, On periods of integrals on algebraic manifolds II, Amer. J. Math., 90 (1968), pp. 805-865.
[39] Ph. Griffiths and J. Harris, Principles of algebraic geometry, New York, 1977.
[40] Ph. Griffiths and W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, in: Proc. Intern. Colloq. on discrete subgroups of Lie groups, Bombay, Oxford Univ. Press, 1973.
[41] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math., 79 (1964), pp. 109-326.
[42] D. Lieberman, Higher Picard varieties, Amer. J. Math., 90:4 (1968), pp. 1165-1199.
[43] D. Mumford, Prym varieties I, Contrib. Anal. New York - London (1974), pp. 325-350.
[44] J. P. Murre, Algebraic equivalence modulo rational equivalence on a cubic threfold, Comp. Math., 25 (1972), pp. 161-206.
[45] J. P. Murre, Reduction of a proof of the non-rationality of a non-singular cubic threefold to a result of Mumford, Comp. Math., 27 (1973), pp. 63-82.
[46] J. P. Murre, Some results on a cubic threefold, in: Lecture Notes in Math., 412 (1974).
[47] M. Reid, The complete intersection of two or more quadrics, Ph.D. thesis, Cambridge Univ., 1972.
[48] J. A. Todd, The locus representing the lines of four-dimensional space, Proc. London Math. Soc., 30 (1930), pp. 513-550.
[49] G. E. Welters, The Fano surface of lines on a double P^{3} with 4 th order discriminant locus I, Univ. Utrecht, preprint, no. 123, 60 p.
[50] G. E. Welters, Divisor varieties, Prym varieties and a conjecture of Tyurin, Univ. Utrecht, preprint, no. 139, 57 p.
[51] G. E. Welters, Abel - Jacobi isogenies for certain types of Fano threefolds, Ph.D. thesis, Amsterdam, 1981.
[52] S. Zucker, Generalized intermediate Jacobians and the theorem on normal functions, Invent. Math., 33:3 (1976), pp. 185-222.

[^0]: * Received October 15, 2011; accepted for publication October 24, 2011.
 ${ }^{\dagger}$ Departamento de Matemáticas, Universidad Simón Bolívar, Apartado Postal 89000, Caracas, Venezuela (logachev@usb.ve); and Institute for Applied Mathematics, Khabarovsk Division, 680000, 92 Zaparina str., Khabarovsk city, Russia. The author is very grateful to his advisor A. S. Tikhomirov for the statement of the problem and numerous consultations. Discussions with V. A. Iskovskih and A. N. Tyurin on the subject of this paper were very important.

