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ON THE THOM-BOARDMAN SYMBOLS FOR POLYNOMIAL

MULTIPLICATION MAPS∗

JIAYUAN LIN† AND JANICE WETHINGTON‡

Abstract. The Thom-Boardman symbol was first introduced by Thom in 1956 to classify
singularities of differentiable maps. It was later generalized by Boardman to a more general set-
ting. Although the Thom-Boardman symbol is realized by a sequence of non-increasing, nonnegative
integers, to compute those numbers is, in general, extremely difficult. In the case of polynomial
multiplication maps, Robert Varley conjectured that computing the Thom-Boardman symbol for
polynomial multiplication reduces to computing the successive quotients and remainders for the Eu-
clidean algorithm applied to the degrees of the two polynomials. In this paper, we confirm Varley’s
conjecture.
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1. Introduction. This paper proves Robert Varley’s conjecture on the Thom-
Boardman symbols for polynomial multiplication maps.

In 1956, R. Thom developed a method to classify singularities of differentiable
maps according to the rank of the first differential of the map and the ranks of its
restrictions to submanifolds of singularities. His theory depended upon the manifold
structure of the singular locus of each restriction of the map. Eleven years later, J.M.
Boardman [3] generalized Thom’s work to include maps whose singular loci may fail
to be manifolds, or whose successive restrictions may fail to be manifolds. In effect,
Boardman expanded Thom’s work to almost all differential maps on manifolds. The
Thom-Boardman classification is realized by an infinite, non-increasing sequence of
nonnegative integers referred to as the Thom-Boardman symbol. When the number
of nonzero terms is finite, the sequence for the symbol is usually truncated after the
last nonzero entry.

Joint work concerning invariants of Gauss maps of theta divisors by M. Adams,
C. McCrory, T. Shifrin and R. Varley [1] revealed a fundamental connection between
these Gauss maps and secant maps. Continued work by R. Varley (see [5] or Chapter 3
in [7]) indicated a strong potential connection between secant maps and maps defined
by the multiplication of two monic single-variable polynomials. The Claim 3.1.2
in [7] is unconditionally true and the transversality hypothesis in Conjecture 3.1.3
in the same paper is also very natural since the geometry of a curve will depend
on how “generic” it is embedded. James McKernan [4] proved that for a generic
curve of genus g in its canonical embedding, the transversality hypothesis of Janice’s
conjecture 3.1.3 does hold. Janice and I are still working on a proof of her conjecture
3.1.3. If we succeed, the Thom-Boardman symbol for the secant map of a generic
canonically embedded curve and hence the Thom-Boardman symbol for the Gauss
map at all smooth points on the theta divisor of a generic Jacobian will be known.
So the classification by singularities of these polynomial multiplication maps would
result in the classification of the secant maps and hence Gauss maps. However, the
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Thom-Boardman symbol is usually difficult to compute. Even in the case of the
polynomial multiplication maps the computation becomes extremely difficult in all but
a small number of cases. A conversation with V. Goryunov led R. Varley to conjecture
that computing the Thom-Boardman symbol for polynomial multiplication reduces
to computing the successive quotients and remainders for the Euclidean algorithm
applied to the degrees of the two polynomials.

In her Ph.D. dissertation [7], Janice Wethington revealed many fundamental
structures in the Jacobian matrices. She proved Varley’s Conjecture in several special
cases and obtained upper bounds for the Thom-Boardman symbols. In this paper,
we completely prove Varley’s Conjecture. Recently, using Theorem 1.2 below, Y.
Wang et al. [6] proved that for any non-increasing sequence of nonnegative integers,
there is a map-germ with the prescribed sequence as its Thom-Boardman symbol.
This result provides a complete list of representatives of map-germs classified by their
Thom-Boardman symbols.

For the reader’s convenience, let us first recall the definition of Thom-Boardman
symbol from [2] and then state Robert Varley’s conjecture.

Let x1, · · · , xm be local coordinates on a differential manifold M of dimension m.
Denote A the local ring of germs of differentiable functions at a point x ∈ M . For
any ideal B in A, the Jacobian extension, ∆kB, is the ideal spanned by B and all the
minors of order k of the Jacobian matrix (∂φi/∂xj), denoted δB, formed from partial
derivatives of functions φi in B. Since the determinant of this matrix is multilinear
and since (∂φ/∂x′) = ∂φ/∂x · ∂x/∂x′, the Jacobian extension is independent of the
coordinate system chosen, hence is an invariant of the ideal. We say that ∆iB is
critical if ∆iB 6= A but ∆i−1B = A (just ∆1B 6= A when i = 1). That is, the
critical extension of B is B adjoined with the least order minors of the Jacobian
matrix of B for which the extension does not coincide with the whole algebra. If
every size minor of δB is a unit in A, then the map was of full rank at the given point
already and the critical extension is the ideal B itself. Note that B ⊆ ∆iB.

Suppose that N is another differential manifold of dimension n and y1, · · · , yn be
local coordinates on it. For a differential map F : M → N,F = (f1, f2, · · · , fn), we
denote J the ideal generated by f1, · · · , fn in A. Then ∆kJ is spanned by J and all
the minors of order k of the Jacobian matrix δJ = (∂fi/∂xj).

Now we shift the lower indices to upper indices of the critical extensions by the
rule ∆iJ = ∆m−i+1J . We repeat the process described above with the resulting ideals
until we have a sequence of critical extensions of J ,

J ⊆ ∆i1J ⊆ ∆i2∆i1J ⊆ · · · ⊆ ∆ik∆ik−1 · · ·∆i1J = m

where m is the maximal ideal of A. Then the Thom-Boardman symbol, TB(J), is
given by (i1, i2, · · · , ik). The purpose of switching the indices is that doing so allows
us to express TB(J) as follows:

i1 = corank(J), i2 = corank(∆i1J), · · · , ik = corank(∆ik−1 · · ·∆i1J)

where the rank of ideal is defined to be the maximal number of independent coordi-
nates from the ideal and the corank is the number of variables minus the rank. For
concrete examples of computing Thom-Boardman symbols, we refer the interested
reader to [7].

Let Mn be the set of monic complex polynomials in one variable of degree n.
Mn

∼= Cn by the map sending f(x) = xn + an−1x
n−1 + · · · + a0 to the n-tuple

(a0, a1, · · · , an−1) ∈ Cn.
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If we take f(x) of degree n as above and g(x) = xr + br−1x
r−1 + · · · + b0 of

degree r, then the product h(x) = f(x)g(x) is a monic polynomial of the form h(x) =
xn+r + cn+r−1x

n+r−1 + · · ·+ c0, where the cj ’s are polynomials in the coefficients of
f and g. We can also assume that n ≥ r. The cj ’s are as shown below:





cn+r−1 = an−1 + br−1

cn+r−2 = an−2 + br−2 + an−1br−1

and
cn+r−j = an−j + br−j +

∑
i+k=n+r−j

aibk, for j ≤ r

cn+r−j = an−j +
∑

i+k=n+r−j

aibk, for r < j ≤ n

cn+r−j =
∑

i+k=n+r−j

aibk, for j > n

.

This gives us maps

µn,r : C
n × C

r → C
n+r

defined by

(a0, · · · , an−1, b0, · · · , br−1) → (cn+r−1, · · · , c0).

Consider the Euclidean algorithm applied to n and r:

n = q1r + r1, 0 < r1 < r
r = q2r1 + r2, 0 < r2 < r1
...
rk−1 = qk+1rk, 0 < rk < rk−1

.

Let I(n, r) be the tuple given by the Euclidean algorithm on n and r:

I(n, r) = (r, · · · , r, r1, · · · , r1, · · · , rk, · · · , rk)

where r is repeated q1 times, and ri is repeated qi+1 times.

Let I(µn,r) be the ideal in the algebra A of germs at origin generated by cj ’s in
the map µn,r : Cn × Cr → Cn+r. Denote TB(I(µn,r)) the Thom-Boardman symbol
of this ideal, Robert Varley conjectured that

Conjecture 1.1. (Varley’s Conjecture) TB(I(µn,r)) = I(n, r) for any n ≥ r.

In this paper, we prove Varley’s Conjecture, that is, we have

Theorem 1.2. TB(I(µn,r)) = I(n, r) is true for any n ≥ r.

One of the difficulties in computing Thom-Boardman symbol is that if we simply
add all (n+ r− ij+1) minors into the ideal representing the j-th critical extension of
I(µn,r) the number of generators grows exponentially. In her dissertation, Wethington
confirmed Varley’s Conjecture for all cases n + r ≤ 10 by computer. The memory
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demands grew exponentially for those calculations. In this paper, we overcome this
difficulty by carefully choosing the generators at each step of the critical extensions.
Specifically, we find a group of polynomials such that at each step of the critical
extensions we only need to add the same number of polynomials indexed by the
corresponding entry in I(n, r). We construct these polynomials explicitly and prove
that they have the desired property.

This paper is organized as follows: in section 2 we discuss the first critical exten-
sion of I(µn,r) and prove Varley’s Conjecture in the special case n = r. In section 3, we
first prove some properties of lower Toeplitz matrices and then construct (q1r + r1)
polynomials ψ0, · · · , ψq1r−1;ψq1r, · · · , ψq1r+r1−1 explicitly. We show that the s-th
critical extension of I(µn,r) is exactly obtained from the previous one by adjoining
ψ(s−1)r, · · · , ψsr−1 for 1 ≤ s ≤ q1 and the (q1 + 1)-th critical extension is the q1-th
one adjoining ψq1r+1, · · · , ψq1r+r1−1. Denote f0(x) = f(x), f1(x) = g(x), r−1 = n
and r0 = r. Starting from f0(x) and f1(x), we construct a sequence of polynomials
f2(x), · · · , fk+1(x) inductively such that the degree of fi(x) is ri−1 and the multipli-
cation of fi(x) and fi+1(x) gives a map µri−1,ri : C

ri−1 × Cri → Cri−1+ri . Following
the same idea we can produce (qi+1ri + ri+1) polynomials with the property that at
each of the next (qi+1 + 1) steps of the critical extensions of I(µn,r) we only need
to add the same number of polynomials indexed by the entries (ri, · · · , ri, ri+1) in
I(n, r). After adding all such polynomials into I(n, r), we reach the maximal ideal
m. Therefore the rest of the entries in TB(I(µn,r)) are zeros and Varley’s Conjecture
follows.

Acknowledgment. We appreciate Professor Robert Varley for his detailed ex-
planation about the motivation to compute Thom-Boardman symbols of polynomial
multiplication maps. We also thank the referee for a number of helpful comments and
suggestions.

2. The first critical extension of I(µn,r). Let I(µn,r) be the ideal generated
by cn+r−1, cn+r−2, · · · , c0 defined by the multiplication map µn,r. There is an in-
teresting fact that becomes obvious when taking the Jacobian δI(µn,r). Taking the
derivatives of cj’s in descending order from n + r − 1 to 0 with respect to the ai’s
and bi’s in descending order from n − 1 to 0 and r − 1 to 0 respectively, we get the
following:

δI(µn,r) =





1 0 0 · · · · · · 0 1 0 · · · 0
br−1 1 0 · · · · · · 0 an−1 1 · · · 0
br−2 br−1 1 · · · · · · · · · an−2 an−1 · · · 0
... br−2 br−1 · · · · · · · · ·

... an−2 · · · 1
...

... br−2 · · · · · · 1
...

... · · · an−1

...
...

... · · · · · · br−1

...
... · · · an−2

b0
...

... · · · · · · br−2

...
... · · ·

...

0 b0
... · · · · · · 0

...
... · · ·

...

0 0 b0 · · · · · ·
... a0

... · · ·
...

...
...

...
...

...
... 0 a0 · · ·

...
...

...
...

...
...

...
...

... · · ·
...

0 0 0 · · · · · · b0 0 0 · · · a0





(2.1)
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This is the Sylvester matrix for f and g. The rank of the Sylvester matrix for
two polynomials when evaluated at the origin is the larger of the two degrees and
thus the corank is the smaller. This gives the first entry of TB(µn,r) for any n ≥ r;
i1 = corank(δI(µn,r)) = r.

Let dn−1 = an−1 − br−1, dn−j = an−j − br−j −
∑

i+k=j

dn−ibr−k, for j ≤ r and

dn−j = an−j −
∑

i+k=j

dn−ibr−k, for r < j ≤ n. The following is true.

Proposition 2.1. ∆rI(µn,r) = I(µn,r) + (d0, · · · , dr−1)

Proof. By the definition of critical extension, ∆rI(µn,r) is the sum of I(µn,r) and
the ideal spanned by all the (n + 1) × (n + 1) minors of δI(µn,r). The later one is
unchanged under elementary row operations on δI(µn,r). We can do row operations
on δI(µn,r) as follows (in the next section, we will describe these operations in matrix
language).

Multiply the first row by −br−i and add it to the (i + 1)-th row for i = 1, · · · , r.
After that, multiply the second row by −br−i and add it to the (i + 2)-th row for
i = 1, · · · , r. Continue this process until all the b0, · · · , br−1 disappear from the first
n columns. After that, multiply the (n + 1)-th row by −br−i and add it to the
(n+ i+ 1)-th row for i = 1, · · · , r− 1. For each j = 2, · · · , r− 1, starting from j = 2,
we can multiply the (n+ j)-th row by −br−i and add it to the (n+ j + i)-th row for
i = 1, · · · , r − j. At the end, we get a matrix with the following form:





1 0 0 · · · 0 1 0 · · · 0

0 1 0 · · · 0 dn−1

. . .
. . . 0

0 0 1 · · · · · · dn−2

. . .
. . .

...
... 0 · · · · · · · · ·

...
. . .

. . . 1
...

... · · · · · · 1
...

. . .
. . .

...

0
... · · · · · · 0 d0

. . .
. . . dr−1

...
...

...
...

... ∗
. . .

. . . dr−2

... 0 · · · · · · · · · ∗ ∗
. . .

...
0 0 · · · · · · 0 ∗ ∗ ∗ d0





(2.2)

The elements in the position marked with “*” in matrix (2.2) can be generated
by d0, · · · , dr−1. Now it is easy to see that the ideal of all the (n+1)× (n+1) minors
of the matrix (2.2) is generated by d0, · · · , dr−1, so is that of δI(µn,r). Proposition
2.1 follows.

As an easy consequence of Proposition 2.1, we have the following corollary.

Corollary 2.2. TB(I(µn,n)) = (n) = I(n, n) for any positive integer n.

Proof. From the discussion on the first Jacobian, we know the first entry in
TB(I(µn,n)) is n.

To show that TB(I(µn,n)) = (n), we only need to prove that the corank of
δ∆nI(µn,n) evaluated at origin is 0.
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By Proposition 2.1, ∆nI(µn,n) = I(µn,n)+(d0, · · · , dn−1), so δ∆
nI(µn,n) has the

following form when evaluated at origin.



In In
0 0
In −In



(2.3)

whose corank is obviously equal to 0, hence TB(I(µn,n)) = (n).

3. Proof of Theorem 1.2.

3.1. Toeplitz matrices. Before we give a proof of Theorem 1.2, let us discuss
some properties on certain class of matrices called Toeplitz matrices.

A n× n Toeplitz matrix is a matrix in which each descending diagonal from left
to right is constant. The lower shift matrix Ln is a n×n binary matrix with ones only
on the subdiagonal and zeros elsewhere. It is obvious that Ln is Toeplitz. Moreover,
it is nilpotent.

A matrix V is called a lower Toeplitz matrix if V = vIn + vm−1Ln + vm−2L
2
n +

· · · + v0L
m
n for some m(m ≤ n), where In is the identity matrix and v, v0, · · · , vm−1

are variables or constants.
The following lemma is true.

Lemma 3.1. Let V = In + vm−1Ln + vm−2L
2
n + · · · + v0L

m
n and W = In +

wl−1Ln + wl−2L
2
n + · · ·+ w0L

l
n be two n× n lower Toeplitz matrices. Then

1. VW is a lower Toeplitz matrix and VW =WV .
2. V −1 is a lower Toeplitz matrix and each entry below the diagonal is a poly-

nomial in variables v0, · · · , vm−1.

Proof. It is easy to see that VW = (In + vm−1Ln + vm−2L
2
n + · · ·+ v0L

m
n )(In +

wl−1Ln + wl−2L
2
n + · · ·+ w0L

l
n) =WV and VW is a lower Toeplitz matrix.

Using long division to 1
1+vm−1Ln+vm−2L2

n+···+v0Lm
n

in the formal power series ring
C[v0,··· ,vm−1][[Ln]]

(Ln
n)

, we immediately have that V −1 is a lower Toeplitz matrix and each

entry below the diagonal is a polynomial in variables v0, · · · , vm−1.

3.2. Proof of Theorem 1.2. Let An+r+1 = In+r+1 + an−1Ln+r+1 +
an−2L

2
n+r+1 + · · ·+ a0L

n
n+r+1 and Bn+r+1 = In+r+1 + br−1Ln+r+1 + br−2L

2
n+r+1 +

· · · + b0L
r
n+r+1 , where ai, bj are the coefficients of f(x) and g(x) respectively. The

first Jacobian matrix is

δI(µn,r) =

((
In+r, 0

)
Bn+r+1

(
In
0

)
,
(
In+r, 0

)
An+r+1

(
Ir
0

))
(3.1)

Let Dn+r+1 = (Bn+r+1)
−1An+r+1. It is easy to see that the row operations

we did in section 2 on δI(µn,r) is exactly multiplying δI(µn,r) by (Bn+r)
−1 on the

left, where Bn+r =
(
In+r , 0

)
Bn+r+1

(
In+r
0

)
. So Dn+r+1 = In+r+1 + dn−1Ln+r+1 +

dn−2L
2
n+r+1+ · · ·+d0L

n
n+r+1+d−1L

n+1
n+r+1+ · · ·+d−rL

n+r
n+r+1 for some d−1, · · · , d−r.

Comparing the corresponding coefficients Ln+jn+r+1 for j = 1, · · · , r on both sides of the
equation Bn+r+1Dn+r+1 = An+r+1, we have that d−j+ br−1d−j+1+ · · ·+ b0dr−j = 0,
which imply that d−j , j = 1, · · · , r are generated by d0, · · · , dr−1. This coincides with
what we said about the elements in the position marked with “*” in matrix (2.2).

From An+r+1 = Bn+r+1Dn+r+1, it is easy to get the following equations:
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an−1 = dn−1 + br−1

an−2 = dn−2 + br−2 + br−1dn−1

and

an−j = dn−j + br−j +
∑

i+k=j

br−kdn−i, for j ≤ r

an−j = dn−j +
∑

i+k=j

br−kdn−i, for r < j ≤ n

Taking derivatives with respect to ai’s and bi’s in descending order from n − 1 to 0
and r− 1 to 0 respectively in the above equations and using the Chain Rule, we have
that

(
In, 0

)
=
(
B, D

)
((

∂di
∂aj

) (
∂di
∂bj

)

0 Ir

)

(3.2)

where B = (In, 0)Bn+r+1

(
In
0

)
and D = (In, 0)Dn+r+1

(
Ir
0

)
. This gives that

B
(
∂di
∂aj

)
= In

B
(
∂di
∂bj

)
+D = 0.

(3.3)

Let A = (In, 0)An+r+1

(
Ir
0

)
, then A = (In, 0)An+r+1

(
Ir
0

)
=

(In, 0)Bn+r+1Dn+r+1

(
Ir
0

)
= (B, 0)

(
D

∗

)
= BD.

Using Equation (3.3) and A = BD, we can prove the following lemma.

Lemma 3.2.
(

∂sdi
∂s−1b0∂bj

)
= −s

(
∂sdi

∂s−1b0∂aj

)
D for s = 1, · · · , q1.

Proof. It is easy to see that B = (In, 0)Bn+r+1

(
In
0

)
= In + br−1Ln + · · ·+ b0L

r
n

is a lower Toeplitz matrix. Its derivative with respect to b0 is again a lower Toeplitz
matrix, in fact, ∂B

∂b0
= Lrn. So B

∂B
∂b0

= ∂B
∂b0

B by Lemma 3.1 or direct verification.

The equation ∂B
∂b0

= Lrn implies that any higher derivatives of B with respect to

b0 is zero. From B
(
∂di
∂aj

)
= In in Equation (3.3), we have

(
∂di
∂aj

)
= B−1.(3.4)

Taking derivatives with respect to b0 repeatedly on both sides of Equation (3.4)
gives

(
∂sdi

∂s−1b0∂aj

)
= (−1)(−2) · · · (−s+ 1)B−s

(
∂B

∂b0

)s−1

= (−1)s−1(s− 1)!B−s

(
∂B

∂b0

)s−1

(3.5)

for any positive integer s.

From B
(
∂di
∂bj

)
+D = 0 and A = BD, we have

(
∂di
∂bj

)
= −B−1D = −B−2A(3.6)
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Taking derivatives with respect to b0 repeatedly on both sides of Equation (3.6)
and using the commutativity B ∂B

∂b0
= ∂B

∂b0
B give that

(
∂sdi

∂s−1b0∂bj

)
= (−1)(−2) · · · (−s)B−s−1

(
∂B

∂b0

)s−1

A = (−1)ss!B−s

(
∂B

∂b0

)s−1

D.

(3.7)

Now our lemma follows immediately from Equations (3.5) and (3.7).

We also need the following lemma.

Lemma 3.3. The n× r matrix
(
∂di
∂bj

)
in Equation (3.3) is the first r columns in

a n × n lower Toeplitz matrix; moreover, the elements ∂di
∂bj

for i = 0, · · · , r − 1 and

j = 0, · · · , r−1 can be generated by ∂dr−1

∂bj
, j = 0, · · · , r−1 and d1, · · · , dr−1 if q1 ≥ 2.

Proof. From B
(
∂di
∂bj

)
+D = 0 in Equation (3.3), we have that

(
∂di
∂bj

)
= −B−1D.

Let D̂ = In + dn−1Ln + · · · + d1L
n−1
n , which is a lower Toeplitz matrix. Then D =

D̂

(
Ir
0

)
. By Lemma 3.1, −B−1D̂ is a lower Toeplitz matrix. So

(
∂di
∂bj

)
= −B−1D =

−B−1D̂

(
Ir
0

)
is the first r columns in the n× n lower Toeplitz matrix −B−1D̂.

Denote B−1D̂ as In + tn−1Ln + · · ·+ t1L
n−1
n , we have that

In + dn−1Ln + · · ·+ d1L
n−1
n = D̂ = BB−1D̂ =

(In + br−1Ln + · · ·+ b0L
r
n)(In + tn−1Ln + · · ·+ t1L

n−1
n ).

(3.8)

Comparing the coefficients of Lkn for k = n− r + 1, · · · , n− 1 in Equation (3.8),
we have that

di = ti + br−1ti+1 + · · ·+ b0tr+i for i = 1, · · · , r − 1.(3.9)

From Equation (3.9), it is easy to see that t1, · · · , tr−1 are generated by

tr, · · · , t2r−1 and d1, · · · , dr−1. From the equation
(
∂di
∂bj

)
= −B−1D̂

(
Ir, 0

)
we see

that tk = −∂di
∂bj

for k = r − j + i , where i = 0, · · · , r − 1 and j = 0, · · · , r − 1.

Hence the elements ∂di
∂bj

for i = 0, · · · , r − 1 and j = 0, · · · , r − 1 can be generated by

t2r−1−j =
∂dr−1

∂bj
, j = 0, · · · , r − 1 and d1, · · · , dr−1.

As an easy consequence of Lemma 3.2 and Lemma 3.3, we have

Proposition 3.4. ∆r(∆rI(µn,r)) = I(µn,r)+ (d0, · · · , dr−1,
∂dr−1

∂br−1
, · · · , ∂dr−1

∂b0
) if

q1 ≥ 2.

Proof. By Proposition 2.1, we have that ∆rI(µn,r) = I(µn,r) + (d0, · · · , dr−1).
To prove this proposition, we only need to show that the corank of δ(I(µn,r) +
(d0, · · · , dr−1)) evaluated at origin is r and

∆r(I(µn,r) + (d0, · · · , dr−1)) = I(µn,r) + (d0, · · · , dr−1,
∂dr−1

∂br−1
, · · · ,

∂dr−1

∂b0
)(3.10)
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Because δ(I(µn,r) + (d0, · · · , dr−1)) =

(
δ(I(µn,r))(
∂di
∂aj

)
,
(
∂di
∂bj

)
)

=



Bn+r

(
In
0

)
An+r

(
Ir
0

)

(
∂di
∂aj

) (
∂di
∂bj

)


, left multiplying δ(I(µn,r) + (d0, · · · , dr−1)) by




In 0 0
0 Ir 0

−
(
∂di
∂aj

)
0 Ir



(
(Bn+r)

−1 0
0 Ir

)
gives



In D
0 ∗

0 −
(
∂di
∂aj

)
D +

(
∂di
∂bj

)


(3.11)

where elements in the position marked by “*” can be generated by d0, · · · , dr−1.
By Lemma 3.2 (the case s = 1), we can rewrite the above matrix as



In D
0 ∗

0 2
(
∂di
∂bj

)


 .(3.12)

The ∗ part is given by
(
0, Ir

)
(Bn+r)

−1An+r

(
Ir
0

)
, which evaluated at origin

is
(
0, Ir

) (Ir
0

)
= 0 because q1 ≥ 2. The same argument gives that

(
∂di
∂bj

)
=

−
(
0, Ir

)
B−1D̂

(
Ir
0

)
evaluated at origin is also equal to

(
0, Ir

)(Ir
0

)
= 0. There-

for the corank of δ(I(µn,r) + (d0, · · · , dr−1)) evaluated at origin is r.

By Lemma 3.3, any element in the r × r matrix
(
∂di
∂bj

)
can be generated by

∂dr−1

∂bj
, j = 0, · · · , r− 1 and d1, · · · , dr−1. So any (n+1)× (n+1) minor of the matrix

in (3.12) can be generated by ∂dr−1

∂bj
, j = 0, · · · , r−1 and d0, · · · , dr−1 because it must

have at least one row whose elements are from ∗ or 2
(
∂di
∂bj

)
. This implies that

∆r(I(µn,r) + (d0, · · · , dr−1)) ⊆ I(µn,r) + (d0, · · · , dr−1,
∂dr−1

∂br−1
, · · · ,

∂dr−1

∂b0
).(3.13)

For each j = 0, · · · , r−1, the (n+1)×(n+1) minor

(
In #

0 2∂dr−1

∂bj

)
has determinant

2∂dr−1

∂bj
, so the ⊆ in Equation (3.13) is actually an equality. This proves Proposition

3.4.

Let ψi = di for i = 0, · · · , r− 1 and ψsr+i =
∂sdr−1

∂s−1b0∂br−1−i
for i = 0, · · · , r− 1 and

s = 1, · · · , q1 − 1. We have the following lemma.

Lemma 3.5.
(
∂ψsr+i

∂bj

)
= −(s+ 1)

(
∂ψsr+i

∂aj

)
D for s = 0, · · · , q1 − 1.
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Proof. Equation (3.3) implies that
(
∂di
∂aj

)
= B−1 and

(
∂di
∂bj

)
= −B−1D. So

(
∂di
∂bj

)
= −

(
∂di
∂aj

)
D. Lemma 3.5 is true in the case s = 0.

For s ≥ 1, by Lemma 3.3 we have that ∂dr−1

∂br−1−i
= ∂di

∂b0
, so ψsr+i =

∂sdr−1

∂s−1b0∂br−1−i
=

∂s−1

∂s−1b0

(
∂dr−1

∂br−1−i

)
= ∂s−1

∂s−1b0

(
∂di
∂b0

)
= ∂sdi

∂sb0
.

By Lemma 3.2 we have that
(
∂ψsr+i

∂bj

)
=
(

∂
∂bj

∂sdi
∂sb0

)
= ∂

∂b0

(
∂sdi

∂s−1b0∂bj

)
=

∂
∂b0

(
−s ∂sdi

∂s−1b0∂aj
D
)

= −s
(

∂
∂aj

∂sdi
∂sb0

)
D − s

(
∂sdi

∂s−1b0∂aj

)
∂D
∂b0

. Our lemma follows if

we can show that −s
(

∂sdi
∂s−1b0∂aj

)
∂D
∂b0

= −
(

∂
∂aj

∂sdi
∂sb0

)
D. This can be done as follows.

From the equationA = BD, we have that ∂B
∂b0

D+B ∂D
∂b0

= 0. So ∂D
∂b0

= −B−1 ∂B
∂b0

D.

Applying Equation (3.5) to both indices s and s+1, we have that −s
(

∂sdi
∂s−1b0∂aj

)
∂D
∂b0

=

s
(

∂sdi
∂s−1b0∂aj

)
B−1 ∂B

∂b0
D = (−1)s−1s!B−(s+1)

(
∂B
∂b0

)s
D = −

(
∂
∂aj

∂sdi
∂sb0

)
D. This com-

pletes the proof of Lemma 3.5.

Theorem 3.6.

s︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψsr−1) for s = 1, · · · , q1.

Proof. The case s = 1 has been proved in Proposition 2.1. If q1 = 1, we are done.
So we may assume that q1 ≥ 2.

Suppose that Theorem 3.6 is true for s = 1, · · · , p. By Proposition 2.1 and
Proposition 3.4, we may assume p ≥ 2. If p = q1, we are done. Otherwise we may
assume that p ≤ q1 − 1.

By the inductive assumption, we have that

p︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψpr−1).

(3.14)

We need to prove that the corank of δ(I(µn,r) + (ψ0, · · · , ψpr−1)) evaluated at
origin is r and

∆r(

p
︷ ︸︸ ︷
∆r

· · ·∆r
I(µn,r)) = ∆r(I(µn,r) + (ψ0, · · · , ψpr−1)) = I(µn,r) + (ψ0, · · · , ψ(p+1)r−1).

(3.15)

It is easy to see that δ(I(µn,r)+ (ψ0, · · · , ψpr−1)) =

(
δ(I(µn,r))(

∂ψsr+i

∂aj
, ∂ψsr+i

∂bj

)
)
, where s

varies from 0 to p− 1 and i from 0 to r− 1 respectively. Left multiplying δ(I(µn,r) +

(ψ0, · · · , ψpr−1)) by




(
In 0
0 Ir

)
0 · · · 0

−
(
∂ψi

∂aj

)
Ir · · · 0

...
...

. . .
...

−
∂ψ(p−1)r+i

∂aj
0 · · · Ir







(Bn+r)
−1 0 · · · 0

0 Ir · · ·
...

...
. . .

. . . 0
0 · · · 0 Ir



, we

get the following matrix



In D
0 ∗

0 −
(
∂ψsr+i

∂aj

)
D +

(
∂ψsr+i

∂bj

)
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where elements in the position marked by “*” can be generated by d0, · · · , dr−1 and
s varies from 0 to p− 1.

By Lemma 3.5 and induction assumption, it is equal to



In D
0 ∗

0 ( 1
p
+ 1)

(
∂ψ(p−1)r+i

∂bj

)


(3.16)

where elements in the position marked by “*” can be generated by ψ0, · · · , ψpr−1.

By induction assumption, the corank of

(
In D
0 ∗

)
evaluated at origin is r. To

show that the corank of δ(I(µn,r) + (ψ0, · · · , ψpr−1)) evaluated at origin is r, it is

sufficient to prove
(
∂ψ(p−1)r+i

∂bj

)
is zero when evaluated at origin.

The matrix
(
∂ψ(p−1)r+i

∂bj

)
=

(
∂
∂bj

(
∂p−1dr−1

∂p−2b0∂br−1−i
)
)

=
(

∂
∂bj

( ∂p−2

∂p−2b0

∂dr−1

∂br−1−i
)
)

=
(

∂
∂bj

( ∂p−2

∂p−2b0

∂di
∂b0

)
)

=
(

∂p−1

∂p−1b0
( ∂di
∂bj

)
)
. By Equation (3.6), we have that(

∂p−1

∂p−1b0
(∂di
∂bj

)
)

= −
(
0, Ir

) (
∂p−1

∂p−1b0
(B−2)

)
A = (−1)pp!

(
0, Ir

)
B−p−1( ∂B

∂b0
)p−1A =

(−1)pp!
(
0, Ir

)
B−p−1L

(p−1)r
n A, which evaluated at origin is zero because

B−p−1L
(p−1)r
n A evaluated at origin has the form




0
Ir
0


 and the bottom 0 con-

sists of (q1 − p)r ≥ r rows.

By the definition
∂ψ(p−1)r+i

∂bj
= ∂

∂bj
( ∂p−1dr−1

∂p−2b0∂br−1−i
) = ∂

∂bj
( ∂p−2

∂p−2b0

∂dr−1

∂br−1−i
) =

∂
∂bj

( ∂p−2

∂p−2b0

∂di
∂b0

) = ∂
∂b0

∂p−2

∂p−2b0
(∂di
∂bj

) = ∂
∂b0

∂ψ(p−2)r+i

∂bj
. By induction assumption

∂ψ(p−2)r+i

∂bj
can be generated by ψ0, · · · , ψ(p−1)r+r−1 and

∂ψ(p−1)r+i

∂b0
for i = 0, · · · , r−1.

By the definition
∂ψ(p−1)r+i

∂b0
= ∂

∂b0
( ∂p−1dr−1

∂p−2b0∂br−1−i
) = ∂pdr−1

∂p−1b0∂br−1−i
= ψpr+i. Therefore

any (n+1)×(n+1) minor of matrix (3.16) and hence δ(I(µn,r)+(ψ0, · · · , ψpr−1)) can
be generated by (ψ0, · · · , ψ(p+1)r−1), this implies that ∆r(I(µn,r)+(ψ0, · · · , ψpr−1)) ⊆
I(µn,r) + (ψ0, · · · , ψ(p+1)r−1). Actually the inequality is an equality because each
ψpr+i is only different from a (n+ 1)× (n+ 1) minor of δ(I(µn,r) + (ψ0, · · · , ψpr−1))
by a nonzero constant. Theorem 3.6 follows.

As an easy corollary of Theorem 3.6 and its proof, we have

Corollary 3.7. The first q1 entries in TB(I(µn,r)) are (r, · · · , r).

Our next goal is to prove that

Proposition 3.8. The (q1 + 1)-th entry in TB(I(µn,r)) is r1.

Proof. By Theorem 3.6, it is sufficient to prove that the rank of δ(I(µn,r) +
(ψ0, · · · , ψq1r−1)) evaluated at origin is n+ r − r1. By the proof of Theorem 3.6, we

only need to prove that the rank of
(
∂ψ(q1−1)r+i

∂bj

)
evaluated at origin is r − r1, where

i = 0, · · · , r − 1 and j = 0, · · · , r − 1.

When q1 = 1, we have that
(
∂ψ(q1−1)r+i

∂bj

)
=
(
∂di
∂bj

)
. By Equation (3.6) and that

B−1 is equal to In when evaluated at origin, we have that
(
∂di
∂bj

)
evaluated at origin
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has the same rank as that of −
(
0 Ir

)(Ir
0

)
, the latter one has rank r − r1 because

n = r1+r and
(
0 Ir

)(Ir
0

)
represents the first r columns in the r×n matrix

(
0 Ir

)
.

When q1 > 1, we have that
(
∂ψ(q1−1)r+i

∂bj

)
=

(
∂
∂bj

∂q1−1dr−1

∂q1−2b0∂br−1−i

)
=

(
∂
∂bj

∂q1−2

∂q1−2b0

∂dr−1

∂br−1−i

)
=
(

∂
∂bj

∂q1−2

∂q1−2b0

∂di
∂b0

)
=
(

∂q1di
∂q1−1b0∂bj

)
. By Equation (3.7), we

have that
(

∂q1di
∂q1−1b0∂bj

)
=
(
0 Ir

)
(−1)q1q1!B

−q1

(
∂B
∂b0

)q1−1

D, which evaluated at

origin has the same rank as
(
0 0 Ir

)
L
(q1−1)r
n



Ir
0
0


, where the first zero in

the r × n matrix
(
0 0 Ir

)
represents the first (q1 − 1)r columns and the sec-

ond zero represents the next r1 columns. Because L
(q1−1)r
n =




0 0 0
Ir1 0 0
0 Ir 0


, so

(
0 0 Ir

)
L
(q1−1)r
n =

(
0 Ir 0

)
, where the first zero in

(
0 Ir 0

)
occupies the

first r1 columns and the second one occupies the last (q1 − 1)r columns. It is easy to

see that
(
0 0 Ir

)
L
(q1−1)r
n



Ir
0
0


 =

(
0 Ir 0

)


Ir
0
0


 has rank r − r1.

In order to obtain the (q1+1)-th critical extension ∆r1(

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r)), we need

a key lemma.
Denote B−q1D̂ = In + αn−1Ln + · · ·+ α1L

n−1
n . We have that

(
0 Ir

)
L
(q1−1)r
n B−q1D̂

(
Ir
0

)
=




αq1r · · · αn−1 1 · · · 0
... · · · · · · αn−1

. . .
...

... · · · · · ·
... · · · 1

...
...

...
α(q1−1)r+1 · · · αn−r αn−r+1 · · · αq1r




It is easy to see that
(
0 Ir

)
L
(q1−1)r
n B−q1D̂

(
Ir
0

)(
0

Ir−r1

)
= (Ir + αn−1Lr + · · · +

αn−r+1L
r−1
r )

(
Ir−r1
0

)

The matrix (Ir +αn−1Lr + · · ·+αn−r+1L
r−1
r )−1

(
0, Ir

)
L
(q1−1)r
n B−q1D̂

(
Ir
0

)
has

the form (
∗ Ir−r1
K 0

)

where K =
(
0, Ir1

)
(Ir + αn−1Lr + · · ·+ αn−r+1L

r−1
r )−1

(
0, Ir

)
L

(q1−1)r
n B−q1D̂

(
Ir
0

)(
Ir1
0

)

is a r1 × r1 matrix.
We have the following lemma.

Lemma 3.9. The elements in the first row of K and ψ0, · · · , ψq1r−1 generate all
elements in K.
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Proof. Denote Φ = Ir + αn−1Lr + · · · + αn−r+1L
r−1
r and (In + αn−1Ln + · · · +

α1L
n−1
n )−1 = In + βn−1Ln + · · ·+ β1L

n−1
n . Using the partition (r1, r, (q1 − 1)r) of n,

we can split In + βn−1Ln + · · ·+ β1L
n−1
n and In + αn−1Ln + · · ·+ α1L

n−1
n into 3× 3

block matrices. Comparing the (2, 1) block in (In + βn−1Ln + · · · + β1L
n−1
n )(In +

αn−1Ln + · · ·+ α1L
n−1
n ) = In we have that





βq1r · · · βn−1

...
...

...
β(q1−1)r+1 · · · βn−r









1 · · · 0
...

. . .
...

αn−r1+1 · · · 1



+ Φ−1





αq1r · · · αn−1

...
...

...
α(q1−1)r+1 · · · αn−r



 = 0.

So

K =
(
0, Ir1

)
Φ−1




αq1r · · · αn−1

...
...

...
α(q1−1)r+1 · · · αn−r


 = −

(
0, Ir1

)



βq1r · · · βn−1

...
...

...
β(q1−1)r+1 · · · βn−r







1 · · · 0
...

. . .
...

αn−r1+1 · · · 1


 = −



β(q1−1)r+r1 · · · β(q1−1)r+2r1−1

...
...

...
β(q1−1)r+1 · · · β(q1−1)r+r1







1 · · · 0
...

. . .
...

αn−r1+1 · · · 1




Because each row in K can be generated by the corresponding row

in



β(q1−1)r+r1 · · · β(q1−1)r+2r1−1

...
...

...
β(q1−1)r+1 · · · β(q1−1)r+r1


 and vice versa, to prove Lemma 3.9, it is suf-

ficient to show that β(q1−1)r+r1 , · · · , β(q1−1)r+2r1−1 and ψ0, · · · , ψq1r−1 generate all
β(q1−1)r+i for 1 ≤ i ≤ r1 − 1.

Denote B−(q1−1)D̂ = B−q1Â as In + γn−1Ln + · · · + γ1L
n−1
n , where Â = BD̂.

From Equation (3.7), we have that γ(q1−1)r+i ∝
∂q1−1dr−1

∂q1−2b0∂br−1−i
= ψ(q1−1)r+i for i =

0, · · · , r − 1.

From the equation (In + αn−1Ln + · · · + α1L
n−1
n )−1 = Bq1D̂−1, we have that

B−(q1−1)D̂(In + αn−1Ln + · · ·+ α1L
n−1
n )−1 = B, that is,

(In + γn−1Ln + · · ·+ γ1L
n−1
n )(In + βn−1Ln + · · ·+ β1L

n−1
n ) = In + br−1Ln + · · ·+ b0L

r
n

(3.17)

Comparing the coefficients of Lkn for k = r + 1, · · · , r + r1 − 1 in both sides of
Equation (3.17), we have that

β(q1−1)r+i + β(q1−1)r+i+1γn−1 + · · ·+ βn−1γ(q1−1)r+i+1 + γ(q1−1)r+i = 0

for i = r1 − 1, · · · , 1.
(3.18)

For each term βkγl in the equation β(q1−1)r+r1−1 + β(q1−1)r+r1γn−1 + · · · +
βn−1γ(q1−1)r+r1 + γ(q1−1)r+r1−1 = 0, we have either (q1 − 1)r + r1 ≤ k ≤

(q1 − 1)r + 2r1 − 1 or (q1 − 1)r + r1 ≤ l = n + (q1 − 1)r + r1 − 1 − k ≤

n + (q1 − 1)r + r1 − 1 − (q1 − 1)r − 2r1 = q1r − 1 = (q1 − 1)r + r − 1. So
β(q1−1)r+r1−1 can be generated by β(q1−1)r+r1 , · · · , β(q1−1)r+2r1−1 and γ(q1−1)r+r1 =
ψ(q1−1)r+r1 , · · · , γ(q1−1)r+r−1 = ψ(q1−1)r+r−1. Using Equation (3.18) and induc-
tion on i in descend order, we can prove that β(q1−1)r+r1 , · · · , β(q1−1)r+2r1−1 and
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γ(q1−1)r+1 = ψ(q1−1)r+1, · · · , γ(q1−1)r+r−1 = ψ(q1−1)r+r−1 generate all β(q1−1)r+i for
1 ≤ i ≤ r1 − 1.

This completes the proof of Lemma 3.9.

Let ψq1r+i = β(q1−1)r+r1+i for i = 0, · · · , r1 − 1. We have

Theorem 3.10. ∆r1(

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r)) = I(µn,r) + (ψ0, · · · , ψq1r−1, ψq1r,

· · · , ψq1r+r1−1).

Proof. By Lemma 3.5, Theorem 3.6 and Proposition 3.8, we only need to prove

that any (r − r1 + 1) × (r − r1 + 1) minor of
(
∂ψ(q1−1)r+i

∂bj

)
can be generated by

ψ0, · · · , ψq1r−1 and ψq1r, · · · , ψq1r+r1−1.

It is easy to deduce that
(
∂ψ(q1−1)r+i

∂bj

)
=

(
∂q1di

∂q1−1b0∂bj

)
=

(
0 Ir

)
(−1)q1q1!B

−q1

(
∂B
∂b0

)q1−1

D =
(
0 Ir

)
(−1)q1q1!B

−q1L
(q1−1)r
n D̂

(
Ir
0

)
∝

(
0 Ir

)
B−q1L

(q1−1)r
n D̂

(
Ir
0

)
. So we only need to prove that any

(r − r1 + 1) × (r − r1 + 1) minor of
(
0 Ir

)
B−q1L

(q1−1)r
n D̂

(
Ir
0

)
, and hence

(Ir+αn−1Lr+ · · ·+αn−r+1L
r−1
r )−1

(
0, Ir

)
L
(q1−1)r
n B−q1D̂

(
Ir
0

)
=

(
∗ Ir−r1
K 0

)
, can

be generated by ψ0, · · · , ψq1r−1 and ψq1r, · · · , ψq1r+r1−1. Any (r−r1+1)×(r−r1+1)

minor of

(
∗ Ir−r1
K 0

)
must contain a row with elements either in K or equal to zero.

Expanding this minor along that row gives that elements in K generate the minor.
By the proof of Lemma 3.9, each element in K can be generated by ψ0, · · · , ψq1r−1

and β(q1−1)r+r1 , · · · , β(q1−1)r+2r1−1. By the definition of (ψq1r, · · · , ψq1r+r1−1), we
have that ψ0, · · · , ψq1r−1 and ψq1r, · · · , ψq1r+r1−1 generate all (r−r1+1)×(r−r1+1)

minors of
(
∂ψ(q1−1)r+i

∂bj

)
. This completes the proof of Theorem 3.10.

Denote f0(x) = f(x), f1(x) = g(x), h0(x) = h(x), r−1 = n and r0 = r. We will
show that a sequence of monic polynomials f0(x), f1(x), f2(x), · · · , fk+1(x) can be
produced inductively starting from f0(x) and f1(x) such that the degree of fi(x) is ri−1

and each product of hi(x) = fi(x)fi+1(x) gives a map µri−1,ri : C
ri−1×Cri → Cri−1+ri

with the property that the polynomials generated at each of the first (qi+1 + 1) steps
of the critical extensions of I(µri−1,ri) can be added into the corresponding steps to
form the critical extensions of I(µn,r).

Recall that B−q1Â = In+γn−1Ln+ · · ·+γ1L
n−1
n . Let f2(x) = xr1 +γn−1x

r1−1+
· · ·+γn−r1 . Then the product h1(x) = f1(x)f2(x) = g(x)f2(x) = xn+σr+r1−1x

n−1+
· · ·+ σ0 gives a map µr,r1 : Cr × Cr1 → Cr+r1 . Taking derivatives of the coefficients
of h1(x) with respect to br−1, · · · , b0, γn−1, · · · , γn−r1 gives its first Jacobian

δI(µr,r1) =

((
Ir+r1 , 0

)
Γr+r1+1

(
Ir
0

)
,
(
Ir+r1 , 0

)
Br+r1+1

(
Ir1
0

))
(3.19)

where Γr+r1+1 = Ir+r1+1+γn−1Lr+r1+1+· · ·+γn−r1L
r1
r+r1+1 and Br+r1+1 = Ir+r1+1+

br−1Lr+r1+1 + · · ·+ b0L
r
r+r1+1.

Repeating the same process as we did for I(µn,r), we get polynomials
ϕ0, · · · , ϕr1−1, · · · , ϕ(q2−1)r1 , · · · , ϕq2r1−1 and ϕq2r1 , · · · , ϕq2r1+r2−1 which satisfy
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(
∂ϕsr1+i

∂γn−j

)
= −(s+ 1)

(
∂ϕsr1+i

∂bj

) (
Ir , 0

)
Γ−1
r+r1

(
Ir+r1 , 0

)
Br+r1+1

(
Ir1
0

)
for s = 0, · · · ,

q2 − 1, i = 0, · · · , r1 − 1 and j = 1, · · · , r1,where Γr+r1 =
(
Ir+r1 , 0

)
Γr+r1+1

(
Ir+r1
0

)

(3.20)

and

s︷ ︸︸ ︷
∆r1 · · ·∆r1I(µr,r1) = I(µr,r1) + (ϕ0, · · · , ϕsr1−1) for s = 1, · · · , q2

∆r2(

q2︷ ︸︸ ︷
∆r1 · · ·∆r1I(µr,r1)) = I(µr,r1) + (ϕ0, · · · , ϕq2r1−1, ϕq2r1 , · · · , ϕq2r1+r2−1).

(3.21)

We will prove that adding these polynomials correspondingly into the generator

sets gives the critical extensions of

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r).

The following lemma is true.

Lemma 3.11. For any s (1 ≤ s ≤ q1), the coefficients of Lin+r+1 in
B−s
n+r+1An+r+1 for i = n− sr + 1, · · · , n+ r are zeros mod(ψ0, · · · , ψsr−1).

Proof. The case s = 1 was proved at the beginning of this subsection.
Suppose that we proved Lemma 3.11 for s ≤ p. If p = q1, we are done. Otherwise,

we may assume that 1 ≤ p < q1. We will show that the coefficients of Lin+r+1 in

B
−(p+1)
n+r+1 An+r+1 for i = n− (p+ 1)r + 1, · · · , n+ r are zeros mod(ψ0, · · · , ψ(p+1)r−1).

Denote B
−(p+1)
n+r+1 An+r+1 = In+r+1+λn−1Ln+r+1+ · · ·+λ0L

n
n+r+1+λ−1L

n+1
n+r+1+

· · · + λ−rL
n+r
n+r+1 and B−p

n+r+1An+r+1 = In+r+1 + κn−1Ln+r+1 + · · · + κ0L
n
n+r+1 +

κ−1L
n+1
n+r+1+· · ·+κ−rL

n+r
n+r+1. By inductive assumption κn−i ≡ 0mod(ψ0, · · · , ψpr−1)

for i = n− pr + 1, · · · , n+ r.

By Equation (3.7), we have
(
In, 0

)
(−1)pp!B

−(p+1)
n+r+1 L

(p−1)r
n+r+1An+r+1

(
Ir
0

)
=

(−1)pp!B−p−1L
(p−1)r
n A =

(
∂pdi

∂p−1b0∂bj

)
. Left multiplying this equation by en−r+1

gives that λpr+i ∝
∂pdr−1

∂p−1b0∂br−1−i
= ψpr+i for i = 0, · · · , r− 1, where en−r+1 is a 1× n

vector with 1 in the (n−r+1) position and zero elsewhere. Comparing the coefficients

of Lin+r+1 in both sides of the equation (B
−(p+1)
n+r+1 An+r+1)Bn+r+1 = B−p

n+r+1An+r+1

for i = n− pr + 1, · · · , n+ r, we have that

λn−i + λn−i+1br−1 + · · ·+ λn−i+rb0 ≡ 0mod(ψ0, · · · , ψ(p+1)r−1)

for i = n− pr + 1, · · · , n+ r
(3.22)

Using Equation (3.22) and λpr+i ∝ ψpr+i for i = 0, · · · , r − 1, we immediately
have that λn−i ≡ 0mod(ψ0, · · · , ψ(p+1)r−1) for i = n − pr + 1, · · · , n + r. Because
λpr+i = λn−(n−pr−i) for i = 0, · · · , r − 1, so λn−i ≡ 0mod(ψ0, · · · , ψ(p+1)r−1) for i =
n− (p+ 1)r + 1, · · · , n− pr as well. This completes the proof of Lemma 3.11.

From Lemma 3.11, we have the following proposition.
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Proposition 3.12. ϕi ≡ ψq1r+imod(ψ0, · · · , ψq1r−1) for i = 0, · · · , r1 − 1.

Proof. From the first Jacobian δI(µr,r1), we have that Γ−1
r+r1δI(µr,r1) =((

Ir
0

)
,W

(
Ir1
0

))
, where W = Γ−1

r+r1

(
Ir+r1 , 0

)
Br+r1+1

(
Ir+r1
0

)
. Denote W as

Ir+r1 + wr−1Lr+r1 + · · · + w0L
r
r+r1 + w−1L

r+1
r+r1 + · · · + w−r1+1L

r+r1−1
r+r1 . We have

that wi = ϕi for i = 0, · · · , r1 − 1.

By Lemma 3.11,
(
Ir+r1 , 0

)
B−q1
n+r+1An+r+1

(
Ir+r1
0

)
≡ Ir+r1 + γn−1Lr+r1 + · · ·+

γn−r1L
r1
r+r1 ≡ Ir+r1 + γn−1Lr+r1 + · · ·+ γn−rL

r
r+r1 mod(ψ0, · · · , ψq1r−1). Comparing

the coefficients of Lkn in both sides of Equation (3.17) and Lkr+r1 in both sides of

(Ir+r1+γn−1Lr+r1+· · ·+γn−rL
r
r+r1)(Ir+r1+wr−1Lr+r1+· · ·+w0L

r
r+r1+w−1L

r+1
r+r1+

· · ·+w−r1+1L
r+r1−1
r+r1 ) ≡ Γr+r1W =

(
Ir+r1 , 0

)
Br+r1+1

(
Ir+r1
0

)
= Ir+r1 +br−1Lr+r1 +

· · ·+ b0L
r
r+r1 mod(ψ0, · · · , ψq1r−1) for k = 1, · · · , r, we have that

βn−k + βn−k+1γn−1 + · · ·+ βn−1γn−k+1 + γn−k = br−k ≡ wr−k + wr−k+1γn−1+

· · ·+ wr−1γn−k+1 + γn−kmod(ψ0, · · · , ψq1r−1) for k = 1, · · · , r

(3.23)

Let k = 1 in Equation (3.23), we have βn−1+γn−1 ≡ wr−1+γn−1, so βn−1 ≡ wr−1.
Let k = 2, · · · , r in Equation (3.23) and use induction, we have βn−k ≡ wr−k for each
k = 1, · · · , r, so ϕi = wi ≡ βn−r+i = β(q1−1)r+r1+i = ψq1r+imod(ψ0, · · · , ψq1r−1) for
i = 0, · · · , r1 − 1.

As an immediate corollary of Theorem 3.10 and Proposition 3.12, we have

Corollary 3.13. ∆r1(

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r)) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0,

· · · , ϕr1−1).

Now we can prove the following theorem.

Theorem 3.14.

s︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0,

· · · , ϕsr1−1) for s = 1, · · · , q2 and ∆r2(

q2︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) +

(ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕq2r1−1, ϕq2r1 , · · · , ϕq2r1+r2−1).

We need the following two lemmas.

Lemma 3.15. (ψ0, · · · , ψq1r−1, γn−r1 , · · · , γn−1, b0, · · · , br−1) forms a new local
coordinate system around zero on C

n × C
r.

Proof. Let An+1 =
(
In+1, 0

)
An+r+1

(
In+1

0

)
and Bn+1 =

(
In+1, 0

)
Bn+r+1

(
In+1

0

)
. Then we have that An+1 = In+1+an−1Ln+1+· · ·+a0L

n
n+1,

Bn+1 = In+1 + br−1Ln+1 + · · ·+ b0L
r
n+1 and B−q1

n+1An+1 = In+1 + γn−1Ln+1 + · · ·+

γ0L
n
n+1. By Lemma 3.1(2) and the equation An+1 = (B−q1

n+1An+1)B
q1
n+1, it is easy to

see that γ0, · · · , γn−1, b0, · · · , br−1 form a new local coordinate system around zero
on Cn × Cr.
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By Lemma 3.11, γi ≡ 0mod(ψ0, · · · , ψq1r−1) for i = 0, · · · , q1r − 1. So to
prove Lemma 3.15, it is sufficient to prove that ψ0, · · · , ψq1r−1 are polynomials in
γ0, · · · , γn−1, b0, · · · , br−1. This follows directly from the fact that ψis are polyno-
mials in a0, · · · , an−1, b0, · · · , br−1 while a0, · · · , an−1, b0, · · · , br−1 are polynomials in
γ0, · · · , γn−1, b0, · · · , br−1.

Denote h1(x)g(x)
q1 = xn+r + τn+r−1x

n+r−1 + · · ·+ τ0. We have

Lemma 3.16. ci ≡ τimod(ψ0, · · · , ψq1r−1) for i = 0, · · · , n+ r − 1.

Proof. Let Cn+r+1 = In+r+1 + cn+r−1Ln+r+1 + · · · + c0L
n+r
n+r+1, where cis

are the coefficients of h(x). Then Cn+r+1 = An+r+1Bn+r+1. By Lemma 3.11,
B−q1
n+r+1An+r+1 ≡ In+r+1 + γn−1Ln+r+1 + · · · + γn−r1L

r1
n+r+1mod(ψ0, · · · , ψq1r−1).

So Cn+r+1 = An+r+1Bn+r+1 = (B−q1
n+r+1An+r+1)B

q1+1
n+r+1 ≡ (In+r+1 +

γn−1Ln+r+1 + · · · + γn−r1L
r1
n+r+1)B

q1+1
n+r+1 = In+r+1 + τn+r−1Ln+r+1 + · · · +

τ0L
n+r
n+r+1mod(ψ0, · · · , ψq1r−1). Therefore ci ≡ τimod(ψ0, · · · , ψq1r−1) for i =

0, · · · , n+ r − 1.

Proof of Theorem 3.14. The case s = 1 is Corollary 3.13.

Suppose we have proved that
s︷ ︸︸ ︷

∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕsr1−1) for s =

1, · · · , p.

If p = q2, we have done the first part of Theorem 3.14. Otherwise, we may assume
p < q2. We will show that

p+1︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕ(p+1)r1−1).

By Lemma 3.16,

p︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0,

· · · , ϕpr1−1) = (cn+r−1, · · · , c0, ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕpr1−1) = (τn+r−1, · · · , τ0,

ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕpr1−1). Considering δ

p︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) =

δ(τn+r−1, · · · , τ0, ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕpr1−1) with derivatives taken with respect
to the new coordinate system in the order γn−1, · · · , γn−r1 , ψq1r−1, · · · , ψ0, br−1,
· · · , b0, we have that it is given by the following matrix




Bq1+1
n+r

(
Ir1
0

)
0 (q1 + 1)Bq1n+rΓn+r

(
Ir
0

)

0 Iq1r 0(
∂ϕsr1+i

∂γn−j

)
0

(
∂ϕsr1+i

∂bj

)


(3.24)

where Γn+r = In+r + γn−1Ln+r + · · ·+ γn−r1L
r1
n+r and s varies from 0 to p− 1.

Left multiplying matrix (3.24) by

(
B−q1
n+r 0
0 Iq1r+pr1

)
, we have
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Bn+r

(
Ir1
0

)
0 (q1 + 1)Γn+r

(
Ir
0

)

0 Iq1r 0(
∂ϕsr1+i

∂γn−j

)
0

(
∂ϕsr1+i

∂bj

)





=





(
Ir+r1 , 0

)
Br+r1+1

(
Ir1
0

)
0 (q1 + 1)Γr+r1

(
Ir
0

)

0 0 0
0 Iq1r 0(

∂ϕsr1+i

∂γn−j

)
0

(
∂ϕsr1+i

∂bj

)




.

(3.25)

Left multiplying (3.25) by

(
1

q1+1Γ
−1
r+r1 0

0 I2q1r+pr1

)



Ir+r1 0 0
0 I2q1r 0

−1
q1+1

(
∂ϕsr1+i

∂bj

) (
Ir, 0

)
Γ−1
r+r1 0 Ipr1




and using Equation (3.20), we have that




1
q1+1Γ

−1
r+r1

(
Ir+r1 , 0

)
B

(
Ir1
0

)
0

(
Ir
0

)

0 0 0
0 Iq1r 0

(1 + 1
(s+1)(q1+1) )

(
∂ϕsr1+i

∂γn−j

)
0 0



.(3.26)

By induction and the construction of ϕis, the matrix (3.26) is equal to




1
q1+1

(
Ir, 0

)
Γ−1
r+r1

(
Ir+r1 , 0

)
B

(
Ir1
0

)
0 Ir

0 0 0
0 Iq1r 0
0 0 0




mod(ϕ0, · · · , ϕ(p+1)r1−1).(3.27)

So the corank of δ

p︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) is r1 and any (n + r − r1 + 1)

minor is generated by (ϕ0, · · · , ϕ(p+1)r1−1). Because each ϕi is only different from a

(n+ r − r1 + 1) minor of δ

p︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) by a nonzero constant, so

p+1︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕ(p+1)r1−1).

This completes the proof of the first part of Theorem 3.14.

Using the same idea, we can prove that δ

q2︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) is equivalent

to
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1
q1+1

(
Ir, 0

)
Γ−1
r+r1

(
Ir+r1 , 0

)
B

(
Ir1
0

)
0 Ir

0 0 0
0 Iq1r 0
0 0 0

(1 + 1
q2(q1+1) )

(
∂ϕ(q2−1)r1+i

∂γn−j

)
0 0




mod(ϕ0, · · · , ϕq2r1−1).(3.28)

By comparison with δ

q2︷ ︸︸ ︷
∆r1 · · ·∆r1I(µr,r1) which is equivalent to




1
q1+1

(
Ir, 0

)
Γ−1
r+r1

(
Ir+r1 , 0

)
B

(
Ir1
0

)
Ir

0 0

(1 + 1
q2
)
(
∂ϕ(q2−1)r1+i

∂γn−j

)
0


mod(ϕ0, · · · , ϕq2r1−1)(3.29)

the matrices (3.28) and (3.29) have the same corank. By induction, the latter one has
corank r2, so does the matrix (3.28). All the (n+ r− r2 + 1) minors of matrix (3.28)
and the (r + r1 − r2 + 1) minors of matrix (3.29) generate the same idea, so

∆r2(

q2︷ ︸︸ ︷
∆r1 · · ·∆r1

q1︷ ︸︸ ︷
∆r · · ·∆rI(µn,r) = I(µn,r) + (ψ0, · · · , ψq1r−1, ϕ0, · · · , ϕq2r1−1,

ϕq2r1 , · · · , ϕq2r1+r2−1).

As a consequence of Theorem 3.14, we have that

Corollary 3.17. The first (q1 + q2 + 1) entries in TB(I(µn,r)) is
(r, · · · , r, r1, · · · , r1, r2) with r repeating q1 times and r1 repeating q2 times.

Replacing f0(x), f1(x) with f1(x), f2(x) and repeating the same process, we
can produce f3(x) of degree r2 and a map µr1,r2 : Cr1 × Cr2 → Cr1+r2 . Us-
ing the first (q3 + 1) critical extensions of I(µr1,r2), we can generate polynomials
ϕq2r1 , · · · , ϕq2r1+q3r2−1, ϕq2r1+q3r2 , · · · , ϕq2r1+q3r2+r3−1 such that they can be added
correspondingly into the generator set to form the next (q3 + 1) critical exten-
sions of I(µn,r). Repeating the same procedure over and over, we can produce
f4(x), · · · , fk+1(x) and use them to prove TB(I(µn,r)) = I(n, r). Due to the heavy
notations, we will not do so here. Instead, we mention a key observation that explains
why we can add polynomials at each step to obtain the corresponding critical exten-
sion of I(µn,r). At the (q1 + · · · + qp + s)-th step of the critical extension of I(µn,r)
for some 1 ≤ s ≤ qp+1, the Jacobian matrix is equivalent to a matrix with the form





Irp−1 0 µΛ
0 0 0
0 Iq1r+q2r1+···+qprp−1 0
0 0 0
0 0 νΘ




mod(ϕq2+···+qp , · · · , ϕq2+···+qp+srp−1)(3.30)

for some nonzero constant µ and ν.

The matrix δ

s︷ ︸︸ ︷
∆rp−1 · · ·∆rp−1I(µrp−1,rp) is equivalent to
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Irp−1 Λ
0 0
0 ν′Θ


mod(ϕq2+···+qp , · · · , ϕq2+···+qp+srp−1)(3.31)

for some nonzero constant ν′.
It is obvious that the matrices (3.30) and (3.31) have the same corank and the

corresponding minors generate the same ideal. So we can add the polynomials gen-
erated by the first (qp+1 + 1) critical extensions of I(µrp−1,rp) into the corresponding
generator sets to form the critical extensions of I(µn,r). Hence Theorem 1.2 is true.
This completes the proof of Varley’s Conjecture.
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