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GEOMETRIC FLOWS WITH ROUGH INITIAL DATA∗

HERBERT KOCH† AND TOBIAS LAMM‡

Abstract. We show the existence of a global unique and analytic solution for the mean curvature
flow, the surface diffusion flow and the Willmore flow of entire graphs for Lipschitz initial data with
small Lipschitz norm. We also show the existence of a global unique and analytic solution to the
Ricci-DeTurck flow on euclidean space for bounded initial metrics which are close to the euclidean
metric in L∞ and to the harmonic map flow for initial maps whose image is contained in a small
geodesic ball.
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1. Introduction. In this paper we prove the existence of solutions of geometric
flows with non-smooth initial data. More precisely, we consider the graphical Will-
more, surface diffusion and mean curvature flow, the Ricci-DeTurck flow on R

n and
the harmonic map flow for maps from R

n into a compact target manifold.
The initial data we are interested in are Lipschitz functions for the mean curva-

ture, surface diffusion and Willmore flow, and L∞ metrics (respectively maps) for the
Ricci-DeTurck and harmonic map flow. Here and in the rest of the paper we say that
a function f is Lipschitz if it belongs to the homogeneous Lipschitz space C0,1(Rn)
with norm ||f ||C0,1(Rn) = ||∇f ||L∞(Rn). We construct the solutions of the flows via
a fixed point argument and therefore we require the initial data to be small in the
corresponding spaces.

Crucial in our construction are scale invariant norms based on space-time cylin-
ders, similar to the Carleson weight characterization of BMO (see [26, 16]). This
point of view has been introduced by the first author and Tataru [16] in the context
of the Navier-Stokes equations. Here we approach quasilinear equations and we obtain
new and possibly optimal results in terms of the regularity of the initial data and the
regularity of the solution. Moreover our method to construct the solutions allows a
uniform and efficient treatment of the five geometric evolution equations.

In the above mentioned paper [16] a fixed point argument was used in order to
show the existence of a unique global solution of the Navier-Stokes equations for any
initial data which is divergence free and small in BMO−1 (the space of distributions
which are the divergence of vector fields with BMO components). By localizing
their construction the authors were also able to show the existence of a unique local
solution of the Navier-Stokes equations for any initial data which is divergence free
and in VMO−1.

In the case of the harmonic map flow we show how a similar local construction
can be used to obtain the existence of a local unique solution for initial maps which
are small L∞-perturbations of uniformly continuous maps.

Using an idea introduced by Angenent [1], [2] we obtain in all cases analyticity of
the solution as a byproduct of the fixed point argument.
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It is likely that related local constructions can be used to obtain unique local
and analytic solutions of the mean curvature, surface diffusion and Willmore flow for
C1 initial surfaces and even for small Lipschitz perturbations of such surfaces. This
remark may be of interest for numerical approximations by triangulated surfaces. We
remark that throughout the paper uniqueness always means uniqueness of the mild
solution.

In the following we give a brief outline of the paper.
In section 2 we recall some basic properties of the heat kernel and the biharmonic

heat kernel and we study solutions of the homogeneous linear equations with rough
initial data.

In section 3 we show the existence of a global unique and analytic solution of the
Willmore and surface diffusion flow of entire graphs for Lipschitz initial data with
small Lipschitz norm. Moreover we show the existence of global unique and analytic
self-similar solutions for self-similar Lipschitz initial data having small Lipschitz norm.

A global unique and analytic solution to the Ricci-DeTurck flow on R
n for L∞-

initial metrics which are L∞ close to the euclidean metric is constructed in section 4.
This yields a slight improvement of a recent existence result of Schnürer, Schulze &
Simon [22].

In section 5 we show the existence of a global unique and analytic solution of the
mean curvature flow of entire graphs for Lipschitz initial data with small Lipschitz
norm. We emphasize that this construction includes the case of higher codimensions.

In section 6 we construct a local unique solution of the harmonic map flow for
every initial data which is a L∞-perturbation of a uniformly continous map. As a
Corollary we get the existence of a global solution for the harmonic map flow for every
initial map whose image is contained in a small geodesic ball.

Finally, in the appendix, we use the method of the stationary phase to derive
some standard estimates for the biharmonic heat kernel.

2. Preliminaries. In this section we recall some estimates for the heat kernel
and the biharmonic heat kernel and we prove estimates for solutions of the corre-
sponding homogeneous initial value problems with rough initial data.

2.1. Heat kernel. The heat kernel Φ(x, t) = (4πt)−
n
2 e−

|x|2

4t is the fundamental
solution of the heat equation

(∂t −∆)Φ(x, t) = 0 on R
n × (0,∞).

We have the following estimates for the heat kernel and its derivatives.

Lemma 2.1. We have for every k, l ∈ N0 and t > 0, x ∈ R
n

|∂l
t∇kΦ(x, t)| ≤ c(t

1
2 + |x|)−n−k−2l and(2.1)

‖∂l
t∇kΦ(·, t)‖L1(Rn) ≤ ct−l− k

2 .(2.2)

Moreover, for any (x, t) ∈ R
n × (0, 1)\

(
B1(0)× (0, 1

4 )
)
, there exist constants c, c1 > 0

such that

|Φ(x, t)|+ |∇Φ|(x, t) + |∇2Φ|(x, t) ≤ ce−c1|x|.(2.3)

We note that solutions of the heat equation which grow slower than e|x|
2

at infinity
are unique (see for example [12]). In the following, whenever we speak of a solution
of the heat equation, we mean a solution satisfying this growth condition.
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As a consequence of the estimates for the heat kernel we get the following result
for solutions of the homogeneous heat equation.

Lemma 2.2. Let u0 ∈ L∞(Rn) and let u : Rn × R
+
0 → R be a solution of the

homogeneous linear equation

ut −∆u = 0, u(·, 0) = u0.

Then we have

||u||L∞(Rn×R+) + sup
t>0

t
1
2 ||∇u(t)||L∞(Rn) + sup

x∈Rn

sup
R>0

(

R−n
2 ||∇u||L2(BR(x)×(0,R2))

+R
2

n+4 ||∇u||
Ln+4(BR(x)×(R2

2 ,R2))

)

≤ c||u0||L∞(Rn).(2.4)

Proof. The estimate (2.4) is invariant under translations and the scaling (λ > 0)
uλ(x, t) = u(λx, λ2t) and therefore it suffices to show

|u(0, 1)|+ |∇u(0, 1)|+ ||∇u||L2(B1(0)×(0,1)) + ||∇u||Ln+4(B1(0)×( 1
2 ,1))

≤ c||u0||L∞(Rn).

Now (2.2) implies that for i ∈ {0, 1} we have

sup
x∈B1(0)

sup
1
2≤t≤1

|∇iu(x, t)| ≤ sup
x∈B1(0)

sup
1
2≤t≤1

|
∫

Rn

∇iΦ(y, t)u0(x− y)dy|

≤ c||u0||L∞(Rn).

In order to estimate the third term we let η ∈ C∞
c (B2(0)), 0 ≤ η ≤ 1, η ≡ 1 in B1(0)

with ||∇η||L∞(Rn) ≤ c be a standard cut-off function. Multiplying the homogeneous
heat equation with η2u and integrating by parts we get with the help of Young’s
inequality and the pointwise estimate for u

∂t

∫

Rn

η2|u|2 +
∫

Rn

η2|∇u|2 ≤ c

∫

B2(0)

|∇η|2|u|2 ≤ c||u0||2L∞(Rn).

Integrating this estimate from 0 to 1 and using the properties of η yields the desired
result.

Remark 2.3. The choice of the L2-spacetime norm of the gradient is motivated
by the Carleson measure characterization of BMO(Rn) (see [26, 16]). Namely, for a
solution u of ∂tu−∆u = 0 on R

n × (0,∞) with u(·, 0) = u0, we have

||u0||BMO(Rn) = sup
x∈Rn

sup
R>0

R−n
2 ||∇u||L2(BR(x)×(0,R2))

in the sense that the right hand side defines an equivalent norm for BMO(Rn).

2.2. Biharmonic heat kernel. The biharmonic heat kernel b(x, t) is the fun-
damental solution of

(∂t +∆2)b(x, t) = 0 on R
n × (0,∞)
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and it is given by

b(x, t) =F−1(e−|k|4t)

=t−
n
4 g(η),

where η = xt−
1
4 and

g(η) = (2π)−
n
2

∫

Rn

eiηk−|k|4dk.

We have the estimate

|g(η)| ≤ K(1 + |η|)−n
3 e−α|η|

4
3

with α = 2
1
3

3
16 . Additionally we have for every m ∈ N that

|d
mg

dηm
(η)| ≤ Km(1 + |η|)−n−m

3 e−α|η|
4
3
.

Standard proofs of these estimates are provided in appendix A. In the following
Lemma we rephrase the above estimates on b and its derivatives in such a way that
we can directly apply them later on.

Lemma 2.4. We have for every t > 0 and x ∈ R
n that

|b(x, t)| ≤ ct−
n
4 exp

(

− α
|x| 43
t
1
3

)

.(2.5)

Moreover we have for every k, l ∈ N0 and t > 0, x ∈ R
n

|∂l
t∇kb(x, t)| ≤ c(t

1
4 + |x|)−n−k−4l and(2.6)

‖∂l
t∇kb(·, t)‖L1(Rn) ≤ ct−l− k

4 .(2.7)

Finally, for all (x, t) ∈ R
n × (0, 1)\

(
B1(0) × (0, 1

4 )
)
and all 0 ≤ j ≤ 4 there exist

constants c, c1 > 0 such that

|∇jb(x, t)| ≤ ce−c1|x|.(2.8)

Solutions of the biharmonic heat equation which grow slower than e|x|
4
3 at infinity

are unique, and therefore, whenever we speak of a solution of the biharmonic heat
equation we mean the one which satisfies this growth condition.

We also need the following estimate for solutions of the homogeneous problem.

Lemma 2.5. Let u : R
n × R

+
0 → R be a solution of the homogeneous linear

equation

ut +∆2u = 0, u(·, 0) = u0 ∈ C0,1(Rn).

Then we have

||∇u||L∞(Rn×R+) + sup
t>0

t
1
4 ||∇2u(t)||L∞(Rn)

+ sup
x∈Rn

sup
R>0

R
2

n+6 ||∇2u||
Ln+6(BR(x)×(R4

2 ,R4))

≤c||u0||C0,1(Rn).(2.9)
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Proof. Since the estimate (2.9) is invariant under translations and the scaling
uλ(x, t) =

1
λu(λx, λ

4t) (λ > 0), it suffices to show that

|∇u(0, 1)|+ |∇2u(0, 1)|+ ||∇2u||Ln+6(B1(0)×( 1
2 ,1))

≤ c||u0||C0,1(Rn).

Using (2.5) and (2.7) we get for i = 1, 2

sup
x∈B1(0)

sup
1
2≤t≤1

|∇iu(x, t)| ≤ sup
x∈B1(0)

sup
1
2≤t≤1

|
∫

Rn

∇i−1b(y, t)∇u0(x− y)dy|

≤ c||u0||C0,1(Rn).

This finishes the proof of the Lemma.

3. Willmore and surface diffusion flow. For a closed two-dimensional surface
Σ and an immersion f : Σ → R

3 the Willmore functional is defined by

W (f) =
1

4

∫

Σ

H2dµg,(3.1)

where g is the induced metric, H = κ1+κ2 is the mean curvature of Σ and dµg is the
area element. Critical points of W are called Willmore surfaces and they are solutions
of the Euler-Lagrange equation

∆gH +
1

2
H3 − 2HK = 0,(3.2)

where ∆g is the Laplace-Beltrami operator of the induced metric and K = κ1κ2 is
the Gauss curvature of Σ. The Willmore flow is the L2-gradient flow of W and is
therefore given by the following fourth order quasilinear parabolic equation

f⊥
t = −∆gH − 1

2
H3 + 2HK on Σ× [0, T ),

f(·, 0) = f0,(3.3)

where f0 : Σ → R
3 is some given immersion and f⊥

t denotes the normal part of ft. In
the case that Σ is a sphere Kuwert & Schätzle [17]-[19] showed that if W (f0) ≤ 8π,
then the Willmore flow exists for all times and subconverges to a smooth Willmore
sphere. On the other hand Mayer & Simonett [21] gave a numerical example for a
singularity formation of the Willmore flow for an initial immersion of a sphere f0 with
W (f0) < 8π + ε, where ε > 0 is arbitrary (for an analytic proof of this result see
[3]). Moreover, in a recent paper, Chill, Fasangova & Schätzle [5] showed that if f0
is W 2,2 ∩ C1 close to a C2 local minimizer of W (i.e. a minimizer among all closed
immersions which are C2 close to each other), then the Willmore flow with initial data
f0 exists for all times and converges (after reparametrization) to a C2 local minimizer
of W .

In this section we are interested in the Willmore flow for graphs on R
2 (so called

entire graphs). Hence we assume that there exists a function u : R2 → R such that
Σ = graph(u) = {(x, u(x))|x ∈ R

2}. Standard calculations then yield

f⊥
t =

ut

v
, H = div(

∇u

v
), K =

det∇2u

v4
and

∆gH =
1

v
div
(

(vI − ∇u ⊗∇u

v
)∇H

)

,
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where v =
√

1 + |∇u|2. From the calculations in [6] we get

∆gH +
1

2
H3 − 2HK = div

(1

v

(
(I − ∇u⊗∇u

v2
)∇(vH)− 1

2
H2∇u

))

and therefore the Willmore flow equation (3.3) can be rewritten as

ut + v div
(1

v

(
(I − ∇u⊗∇u

v2
)∇(vH)− 1

2
H2∇u

))

= 0 on R
2 × [0, T )(3.4)

with initial condition u(·, 0) = u0, where u0 : R2 → R is some function. The following
observation concerning the scaling behavior of a solution of the Willmore flow turns
out to be very important: If u(x, t) is a solution of (3.4) with initial condition u(·, 0) =
u0, then the rescaled function

uλ(x, t) =
1

λ
u(λx, λ4t)(3.5)

is also a solution of (3.4) with initial condition uλ(·, 0) = uλ,0 = 1
λu0(λ·).

Our aim in this section is to show the existence of a global unique and analytic
solution of (3.4) under very weak regularity assumptions on the initial data u0. Since
the method we use to construct the solution does not depend on the dimension we
consider in the following solutions of (3.4) on R

n (n ∈ N).
Before stating the main result of this section we need to define a suitable Banach

space. For functions u : Rn×(0,∞) → R which are continuous and twice differentiable
with respect to the space variable we define a norm by

||u||X∞ := sup
t>0

||∇u(t)||L∞(Rn) + sup
x∈Rn

sup
R>0

R
2

n+6 ||∇2u||
Ln+6(BR(x)×(R4

2 ,R4))
.

Moreover we define the Banach space

X∞ ={u| ||u||X∞ < ∞}.

The following Theorem is our main result for the Willmore flow of graphs.

Theorem 3.1. There exists ε > 0, C > 0 such that for every u0 ∈ C0,1(Rn)
satisfying ||u0||C0,1(Rn) < ε there exists an analytic solution u ∈ X∞ of the Willmore
flow (3.4) with u(·, 0) = u0 which satisfies ||u||X∞ ≤ C||u0||C0,1(Rn). The solution is
unique in the ball BX∞(0, Cε) = {u ∈ X∞| ||u||X∞ ≤ Cε}.

More precisely, there exist R > 0, c > 0 such that for every k ∈ N0 and multiindex
α ∈ N

n
0 we have the estimate

sup
x∈Rn

sup
t>0

|(t 1
4∇)α(t∂t)

k∇u(x, t)| ≤ c||u0||C0,1(Rn)R
|α|+k(|α| + k)!.(3.6)

Moreover the solution u depends analytically on u0.

We remark that in the above Theorem the initial value u0 is allowed to have
infinite Willmore energy. Moreover weak solutions in X∞ are fixed points of the fixed
point map Fu0 , defined below.

It is an interesting open problem if one can drop the smallness assumption on the
Lipschitz norm of u0 in Theorem 3.1.
In the case of the mean curvature flow for entire graphs, Ecker & Huisken [10, 11]
showed the existence of a global solution for initial data which are locally Lipschitz
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continuous. Since the equation (3.4) is of fourth order it is not clear if one can expect
a corresponding result in this situation.

We would like to remark that the Willmore flow for graphs has previously been
studied from a numerical point of view by Deckelnick & Dziuk [6].

In order to show the existence of a solution if the Willmore flow we need to rewrite
the equation (3.4). We start by introducing some notation. We use the ⋆ notation to
denote an arbitrary linear combination of contractions of indices for derivatives of u.
For example we have ∇2

iju∇iu∇ju = ∇2u ⋆ ∇u ⋆ ∇u = |∇u|2∆u. Moreover we use
the abstract notation

Pi(∇u) = ∇u ⋆ . . . ⋆∇u
︸ ︷︷ ︸

i-times

.

With the help of this notation we are now able to rewrite equation (3.4) in a form
which is more suitable for our purposes.

Lemma 3.2. The Willmore flow equation (3.4) can be written as

ut +∆2u = f0[u] +∇if
i
1[u] +∇2

ijf
ij
2 [u] =: f [u],(3.7)

where

f0[u| = ∇2u ⋆∇2u ⋆∇2u ⋆

4∑

k=1

v−2kP2k−2(∇u),

f1[u] = ∇2u ⋆∇2u ⋆

4∑

k=1

v−2kP2k−1(∇u) and

f2[u] = ∇2u ⋆

2∑

k=1

v−2kP2k(∇u).

Proof. We calculate term by term.

v

2
div(

∇u

v
H2) =div(

∇uH2

2
)− ∇v∇u

2v
H2

=∇if
i
1[u] + f0[u]

v div(
1

v
∇(vH)) =∆(vH)− ∇v

v
∇(vH)

=∆2u−∆(
∇v∇u

v
)− ∇v

v
∇∆u+

∇v

v
∇(

∇v∇u

v
)

=∆2u+∇2
ijf

ij
2 [u]− I + II.

Now we can rewrite I as follows:

I =∇j(
∇ku

v2
∇2

iku∇2
iju)− f0[u]−

∇ku

v2
∇3

ijku∇2
iju

=f0[u] +∇jf
j
1 [u]−

∇ku

2v2
∇k|∇2u|2

=f0[u] +∇jf
j
1 [u]−∇k(

∇ku

2v2
|∇2u|2)

=f0[u] +∇jf
j
1 [u].
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For II we argue similarly to get

II =
∇ju∇ku∇lu

v4
∇2

iku∇3
ijlu+ f0[u]

=
∇ju∇ku∇lu

2v4
∇j(∇2

iku∇2
ilu) + f0[u]

=f0[u] +∇jf
j
1 [u].

Finally we have

v∇i(
∇iu∇ju

v3
∇j(vH)) =∇i(

∇iu∇ju

v2
∇j(vH))− ∇iv∇iu∇ju

v3
∇j(vH)

=∇2
ij(

∇iu∇ju

v
H) +∇if

i
1[u] + f0[u],

where we argued as above to rewrite the last term in the first line. Altogether this
finishes the proof of the Lemma.

Next we write equation (3.7) in integral form

u(x, t) = Su0(x, t) + V f [u](x, t),(3.8)

where

Su0(x, t) =

∫

Rn

b(x− y, t)u0(y)dy and

V f [u](x, t) =

∫ t

0

∫

Rn

b(x− y, t− s)f [u](y, s)dyds.

The goal for the rest of this section is to construct a solution of the integral equation
(3.8) by using a fixed point argument.

Another very important fourth order geometric evolution equation is the surface
diffusion flow, given by

f⊥
t = −∆gH.

For results on this flow see for example [7].
Restricting again to the situation of entire graphs (and using the above formulas)

we see that this equation is equivalent to

ut = − div
(

(vI − ∇u⊗∇u

v
)∇H

)

.(3.9)

Lemma 3.3. The equation for the graphical surface diffusion flow (3.9) can be
written in the form (3.7).

Proof. We write

ut =− div(v∇H) + div
(∇u⊗∇u

v
∇H

)

=I + II.

Next we use the calculations from Lemma 3.2 in order to conclude

I =−∆(vH) + div(∇vH)

=−∆2u+∇2
ijf

ij
2 [u] +∇if

i
1[u].
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Moreover, we observe

II =∆
(∇u⊗∇u

v
H
)

− div
(

H∇(
∇u ⊗∇u

v
)
)

=∇2
ijf

ij
2 [u] +∇if

i
1[u]

and this finishes the proof of the Lemma.
The fact that we can rewrite the graphical surface diffusion flow in the form (3.7)

allows to conclude the following result (compare with Theorem 3.1).

Theorem 3.4. There exists ε > 0, C > 0 such that for every u0 ∈ C0,1(Rn)
satisfying ||u0||C0,1(Rn) < ε there exists an analytic solution u ∈ X∞ of the surface
diffusion flow (3.9) with u(·, 0) = u0 which satisfies ||u||X∞ ≤ C||u0||C0,1(Rn). The
solution is unique in the ball BX∞(0, Cε).

More precisely there exists R > 0, c > 0 such that for every k ∈ N0 and multiindex
α ∈ N

n
0 we have the estimate

sup
x∈Rn

sup
t>0

|(t 1
4∇)α(t∂t)

k∇u(x, t)| ≤ c||u0||C0,1(Rn)R
|α|+k(|α|+ k)!.(3.10)

Moreover the solution u depends analytically on u0.

3.1. Model case. Before studying the general equation (3.7) we study solutions
of the simplified problem (which might be of independent interest)

ut +∆2u = f0[u] +∇f1[u] = fM [u],(3.11)

where f0[u] and f1[u] are as in Lemma 3.2. In this case we define for every 0 < T ≤ ∞
the Banach space XM,T by

XM,T = {u| ||u||XM,T
:= sup

0<t<T
||∇u(t)||L∞(Rn) + sup

0<t<T
t
1
4 ||∇2u(t)||L∞(Rn) < ∞}.

Moreover, we let

Y0,M,T = {f0| ||f0||Y0,M,T
= sup

0<t<T
t
3
4 ||f0(t)||L∞(Rn) < ∞}

and

Y1,M,T = {f1| ||f1||Y1,M,T
= sup

0<t<T
t
1
2 ||f1(t)||L∞(Rn) < ∞}.

Finally we define the norm

||f ||YM,T
= inf{||f0||Y0,M,T

+ ||f1||Y1,M,T
| f0 ∈ Y0,M,T , f1 ∈ Y1,M,T , f = f0 +∇f1}

and the Banach space

YM,T = {f | ||f ||YM,T
< ∞}.

Our main goal in this subsection is to prove the following Theorem.

Theorem 3.5. Let 0 < T ≤ ∞, u ∈ XM,T and fM [u] = f0[u] + ∇f1[u], where
f0[u] and f1[u] are as in Lemma 3.2. Then the map FM : C0,1(Rn)×XM,T → XM,T ,
defined by FM (u0, u) = Su0 + V fM [u] is analytic and we have

||FM (u0, u)||XM,T
≤ c(||u0||C0,1(Rn) + ||u||3XM,T

).(3.12)
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Moreover, there exists ε0 > 0 and q < 1 such that for all u0 ∈ C0,1(Rn) and all
u1, u2 ∈ Xε0

M,T = {u ∈ XM,T | ||u||XM,T
< ε0} we have

||FM (u0, u1)− FM (u0, u2)||XM,T
≤ q||u1 − u2||XM,T

.(3.13)

The Theorem will be a consequence of the next two results and Lemma 2.5.

Lemma 3.6. For every 0 < T ≤ ∞ the map fM [·] = f0[·]+∇f1[·] : XM,T → YM,T ,
where f0 and f1 are as in Lemma 3.2, is analytic. Moreover we have the estimates

||fM [u]||YM,T
≤c||u||3XM,T

(3.14)

for every u ∈ XM,T and

||fM [u1]−fM [u2]||YM,T

≤ c(||u1||XM,T
, ||u2||XM,T

)(||u1||XM,T
+ ||u2||XM,T

)||u1 − u2||XM,T
(3.15)

for all u1, u2 ∈ XM,T .

Proof. Polynomial maps are analytic. We expand the functions of ∇u into power
series. This yields a convergent power series expansion of f0 and f1 in the function
spaces.

In order to see (3.15) we notice that for every i ∈ N

|v−2i
1 − v−2i

2 | ≤ c(|∇u1|, |∇u2|)v−2i
1 v−2i

2 |∇u1 −∇u2|,
where vj =

√
1 + |∇uj |2, j ∈ {1, 2}.

Lemma 3.7. Let 0 < T ≤ ∞ and let f0+∇f1 = fM ∈ YM,T . Then V fM ∈ XM,T

and we have the estimate

||V fM ||XM,T
≤ c||fM ||YM,T

.(3.16)

Proof. Since the estimate (3.16) is invariant under translations and the scaling
defined in (3.5) it suffices to show that

|∇V fM (0, 1)|+ |∇2V fM (0, 1)| ≤ c||fM ||YM,T

for T > 1. Using the definition of the operator V and Lemma 2.4 we estimate

|∇V fM (0, 1)| ≤c

∫ 1

0

∫

Rn

(|∇b(−y, 1− s)||f0(y, s)|

+ |∇2b(−y, 1− s)|f1(y, s)|)dyds

≤c||f0||Y0,M,T

∫ 1

0

∫

Rn

s−
3
4

(

(1− s)
1
4 + |y|

)−n−1

dyds

+ c||f1||Y1,M,T

∫ 1

0

∫

Rn

s−
1
2

(

(1− s)
1
4 + |y|

)−n−2

dyds

≤c||fM ||YM,T
.

Arguing similarly for |∇2V fM (0, 1)| we get

|∇2V fM (0, 1)| ≤c

∫ 1

0

∫

Rn

(

(1− s)
1
4 + |y|

)−n−2

|f0(y, s)|dyds

+ c

∫ 1

0

∫

Rn

(

(1 − s)
1
4 + |y|

)−n−3

|f1(y, s)|dyds.

Estimating the integrals as above we get the desired bound for |∇2V fM (0, 1)|.



GEOMETRIC FLOWS WITH ROUGH INITIAL DATA 219

3.2. General case. For the general case of a solution of (3.7) we have to include
the term ∇2f2[u] into our analysis. In order to do this we need to modify our function
spaces while we still want them to be invariant under the scaling defined in (3.5).

Definition 3.8. For every 0 < T ≤ ∞ we define the function spaces XT and YT

by

XT ={u| sup
0<t<T

||∇u(t)||L∞(Rn) + sup
x∈Rn

sup
0<R4<T

R
2

n+6 ||∇2u||
Ln+6(BR(x)×(R4

2 ,R4))

< ∞} and

YT =Y0,T +∇Y1,T +∇2Y2,T ,

where

||f0||Y0,T = sup
x∈Rn

sup
0<R4<T

R
6

n+6 ||f0||
L

n+6
3 (BR(x)×(R4

2 ,R4))
,

||f1||Y1,T = sup
x∈Rn

sup
0<R4<T

R
4

n+6 ||f1||
L

n+6
2 (BR(x)×(R4

2 ,R4))
and

||f2||Y2,T = sup
x∈Rn

sup
0<R4<T

R
2

n+6 ||f2||Ln+6(BR(x)×(R4

2 ,R4))
.

As in the previous subsection our goal is to prove the following Theorem.

Theorem 3.9. Let 0 < T ≤ ∞, u ∈ XT and let f [u] = f0[u] +∇f1[u] +∇2f2[u],
where f0[u], f1[u] and f2[u] are as in Lemma 3.2. Then the map F : C0,1(Rn)×XT →
XT , defined by F (u0, u) = Su0 + V f [u] is analytic and we have

||F (u0, u)||XT
≤ c(||u0||C0,1(Rn) + ||u||3XT

).(3.17)

Moreover, there exists ε0 > 0 and q < 1 such that for all u0 ∈ C0,1(Rn) and all
u1, u2 ∈ Xε0

T = {u ∈ XT | ||u||XT
< ε0} we have

||F (u0, u1)− F (u0, u2)||XT
≤ q||u1 − u2||XT

.(3.18)

The Theorem will be a consequence of the following two results and Lemma 2.5.

Lemma 3.10. For every 0 < T ≤ ∞ the operator f [·] = (f0 +∇f1 + ∇2f2)[·] :
XT → YT , where f0, f1 and f2 are as in Lemma 3.2, is analytic and we have the
estimates

||f [u]||YT
≤ c||u||3XT

(3.19)

for all u ∈ XT and

||f [u1]−f [u2]||YT
≤ c(||u1||XT

, ||u2||XT
)(||u1||XT

+ ||u2||XT
)||u1 − u2||XT

(3.20)

for all u1, u2 ∈ XT .

Proof. The proof is the same as the one for Lemma 3.6.

Lemma 3.11. Let 0 < T ≤ ∞ and f0 +∇f1 +∇2f2 = f ∈ YT . Then V f ∈ XT

and we have

||V f ||XT
≤ c||f ||YT

.(3.21)
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Proof. Since the estimate (3.21) is invariant under translations and the scaling
defined in (3.5) it is enough to show that

|∇V f(0, 1)|+ ||∇2V f ||Ln+6(B1(0)×( 1
2 ,1))

≤ c||f ||YT

for some T > 1.
By definition we have

∇V f(0, 1) =

∫ 1

0

∫

Rn

∇b(x, 1− t)f(x, t)dxdt

and, with Q = B1(0)× [ 12 , 1) and Q′ = B1(0)× (0, 1
2 ), we decompose

|∇V f(0, 1)| ≤
∣
∣
∣

∫

Q

∇b(x, 1− t)f(x, t)dxdt
∣
∣
∣ +
∣
∣
∣

∫

Rn×(0,1)\Q
∇b(x, 1 − t)f(x, t)dxdt

∣
∣
∣

=I + II.

Now we estimate term by term. We start with I.

I ≤
∣
∣
∣
∣

∫

Q

(

∇b(x, 1− t)f0(x, t)−∇2b(x, 1 − t)f1(x, t) +∇3b(x, 1− t)f2(x, t)
)

dxdt

∣
∣
∣
∣

≤‖∇b‖
L

n+6
n+3 (Q′)

‖f0‖
L

n+6
3 (Q)

+ ‖∇2b‖
L

n+6
n+4 (Q′)

‖f1‖
L

n+6
2 (Q)

+ ‖∇3b‖
L

n+6
n+5 (Q′)

‖f2‖Ln+6(Q)

≤c||f ||YT
,

where we used the fact that

||∇b||
L

n+6
n+3 (Rn×[0,1])

+ ||∇2b||
L

n+6
n+4 (Rn×[0,1])

+ ||∇3b||
L

n+6
n+5 (Rn×[0,1])

≤ c,(3.22)

which is a consequence of the estimate (2.6).
Integrating by parts and using (2.8) we get

II ≤c

∞∑

m=0

∑

y∈Zn

∫ 2−m

2−m−1

∫

B1(y)

e−c1|x|(|f0|+ |f1|+ |f2|)(x, t)dxdt

≤c

∞∑

m=0

sup
y∈Zn

∫

B1(y)×(2−m−1,2−m)

(|f0|+ |f1|+ |f2|)dxdt.

Now we claim that there exists a number γ < 1 such that
∫

B1(0)×(2−m−1,2−m)

(|f0|+ |f1|+ |f2|)(x, t)dx dt ≤ cγm‖f‖YT
.(3.23)

Using the translation invariance this claim then implies that

II ≤ c‖f‖YT
,

which, combined with the above estimate, shows that

|∇V f(0, 1)| ≤ c‖f‖YT
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and finishes the proof of the first part of the estimate (3.21).
To prove (3.23) we cover the set B1(0) × (2−m−1, 2−m) by approximately 2

nm
4

cylinders of the form Qm(y) := B
2−

m
4
(y)× (2−m−1, 2−m). By Hölder’s inequality we

get

2∑

j=0

‖fj‖L1(Qm(y)) ≤c(2
6m−m(n+4)(n+3)

4(n+6) + 2
4m−m(n+4)2

4(n+6) + 2
2m−m(n+4)(n+5)

4(n+6) )‖f‖YT

≤c2−
m
4 −mn

4 ‖f‖YT
,

which implies (3.23) with γ = 2−
1
4 .

Using the same arguments as in the estimate for the term II above we get the
pointwise bound

sup
(x,t)∈Q

|
∫

Rn×(0,1)\B2(0)×( 1
4 ,1)

(

∇2b(x− y, t− s)f0(y, s)−∇3b(x− y, t− s)f1(y, s)

+∇4b(x− y, t− s)f2(y, s)
)

dyds| ≤ c‖f‖YT
.

Therefore it remains to show the estimate for the Ln+6-norm of ∇2V f on Q for
functions f0, f1 and f2 whose support is contained in B2(0)× (14 , 1).

In this situation the estimate for ∇2V (∇2f2) follows immediately from the fact
that

‖∇2u‖Ln+6(Rn×R+) ≤ c‖f2‖Ln+6(Rn×R+)(3.24)

for all solutions u of

ut +∆2u = ∇2
ijf

ij
2 , u(·, 0) = 0.(3.25)

(3.24) can be seen as follows: Multiplying the equation (3.25) by u and integrating
by parts, we get with the help of Hölder’s inequality

||∆u||2L2(Rn×R+) ≤ c||f2||L2(Rn×R+)||∇2u||L2(Rn×R+).

Integrating by parts again and interchanging derivatives yields

||∇2u||L2(Rn×R+) ≤ c||f2||L2(Rn×R+).

Hence the operator which maps f ij
2 to ∂2

klu is a continuous and linear operator Tijkl

from L2 to L2, which has an integral kernel given by ∂4
ijklb. We equip R

n × R with
the metric

d((x, t), (y, s)) = max{|x− y|, |t− s|1/4}.

and we let mn+1 be the Lebesgue measure. The triple (Rn × R, d,mn+1) is a space
of homogeneous type and Tijkl is a singular integral operator in this non Euclidean
setting. As a consequence of this we get for every 1 < p < ∞ that (see for example
[26])

||Tijklf ||Lp(Rn×R+) ≤ c
p2

p− 1
||f ||Lp(Rn×R+)
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and this shows (3.24) by choosing p = n+ 6.
In order to estimate the Ln+6-norm of ∇2V f0 and ∇2V∇f1 we recall the Young

inequality

||f ∗ g||Lm(Rn×R+) ≤ c||f ||Lp(Rn×R+)||g||Lq(Rn×R+),

where

1 ≤ p, q,m ≤ ∞ and
1

p
+

1

q
= 1 +

1

m
.

Applying this inequality with m = n+ 6, p = n+6
3 , q = n+6

n+4 , respectively m = n+ 6,

p = n+6
2 , q = n+6

n+5 and using (3.22) we therefore get

||∇2V f0||Ln+6(Rn×(0,1))+||∇2V∇f1||Ln+6(Rn×(0,1))

≤c(||f0||
L

n+6
3 (Rn×R+)

+ ||f1||
L

n+6
2 (Rn×R+)

).

Since the support of f0 and f1 is contained in B2(0)× (14 , 1) this estimate completes
the proof of the Lemma.

3.3. Proof of Theorem 3.1.

Proof. For every 0 < T ≤ ∞ and u0 ∈ C0,1(Rn) we define the operator Fu0 :
XT → XT by

Fu0(u) = F (u0, u) = Su0 + V f [u],(3.26)

where f [u] = f0[u] + ∇f1[u] + ∇2f2[u] and f0[u], f1[u] and f2[u] are as in Lemma
3.2. From Theorem 3.9 and the Banach fixed point theorem we get that there exist
δ1, δ2 > 0 such that for all u0 ∈ C0,1(Rn) with ||u0||C0,1(Rn) < δ1 the map Fu0 has a

unique fixed point u ∈ Xδ2
T (Xδ2

T is defined in Theorem 3.9). Moreover u depends on
u0 in a Lipschitz continous way. Thus u is the unique global solution of (3.7) we were
looking for.

Next we show that u depends analytically on u0. From Theorem 3.9 we get that
for every 0 < T ≤ ∞ the map G : C0,1(Rn)×XT → XT , defined by

G(u0, u) = u− Su0 − V f [u] = u− F (u0, u),

is analytic, G(0, 0) = 0 and

DuG(0, 0) = id.

Combining all these facts we can apply the (analytic) implicit function theorem (see
for example [8]) to get the existence of balls Bε(0) ⊂ C0,1(Rn), Bγ(0) ⊂ XT and
a unique analytic map A : Bε(0) ⊂ C0,1(Rn) → Bγ(0) ⊂ XT such that A(0) = 0
and G(u0, A(u0)) = 0 for all u0 ∈ Bε(0). Moreover G(u0, u1) = 0 if and only if
u1 = A(u0). From the above considerations we conclude that for δ = min{δ2, γ} there
exists a unique solution u ∈ Xδ

T of (3.7) which depends analytically on the initial
data u0.

It remains to prove that u(x, t) is analytic in x and t for every x ∈ R
n and

0 < t < ∞. In order to do this we let T < ∞ and we define for ε1, ε2 > 0 small an
operator G̃ : Dε1(0)× (1− ε2, 1+ ε2)×C0,1(Rn)×XT → XT , where Dε1(0) ⊂ R

n, by

G̃(a, τ, u0, u) = u− Su0 − V f̃a,τ [u],(3.27)
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where

f̃a,τ [u] = τf [u] + (1− τ)∆2u− a∇u.

Note that f̃0,1[u] = f [u]. By using Lemma 2.4 it is easy to see that ||V a∇u||XT
≤

c|a|T 3
4 ||u||XT

. Moreover, by defining f̃ [u] = τf [u] + ∆
(
(1 − τ)∆u

)
, we get that

Theorem 3.9 remains valid for f̃ [u] and we have the estimate

||G̃(a, τ, u0, u)||XT
≤ c
(

||u0||C0,1(Rn) + ||u||XT
(1 + |a|T 3

4 + |1− τ |+ ||u||2XT
)
)

.

Since G̃(0, 1, 0, 0) = 0 and DuG̃(0, 1, 0, 0) = id, another application of the implicit
function theorem gives the existence and uniqueness of an analytic map Ã : Dε̃(0)×
(1− ε̃, 1 + ε̃)×Bε̃(0) → XT such that G̃(a, τ, u0, Ã(a, τ, u0)) = 0 and therefore

Ã(a, τ, u0) = Su0 + V f̃ [Ã(a, τ, u0)].

Next we let ε < min{ε, ε̃} and we observe from the above uniqueness results
that A(u0)(x − at, τt) = Ã(a, τ, u0) since A(u0)(·, 0) = u0 = Ã(a, τ, u0)(·, 0) and
G̃(a, τ, u0, A(u0)(x − at, τt)) = 0.

Hence we get that A(u0)(x − at, τt) depends analytically on a and τ . Since for
finite t we moreover have that

∂

∂a
A(u0)(x− at, τt)|(a,τ)=(0,1) =− t∇A(u0)(x, t),

∂

∂τ
A(u0)(x− at, τt)|(a,τ)=(0,1) =t∂tA(u0)(x, t),

with similar formulas for higher and mixed derivatives, we conclude that A(u0) and
therefore also u is analytic in space and time for all x ∈ R

n and all 0 < t < ∞.
The estimate (3.6) (resp. (3.10)) now follows from a scaling argument and the above
formula for the derivatives of u.

3.4. Self-similar solutions. In this subsection we use Theorem 3.1 in order
to show the existence of self-similar solutions of the Willmore and surface diffusion
flow for graphs. More precisely we show the existence of homothetically expanding
solutions. Since the arguments for both flows are identical we restrict ourselves to the
situation of the Willmore flow.

We consider self-similar initial data u0, i.e. u0 which satisfy

u0(x) =
1

λ
u0(λx) for any λ > 0 and x ∈ R

n.(3.28)

Hence Σ0 = graph(u0) is a cone with vertex 0. If we assume that ||u0||C0,1(Rn) < ε,
where ε is as in Theorem 3.1, we get from Theorem 3.1 the existence of a unique
analytic solution u ∈ X∞ of (3.4) with initial condition u(·, 0) = u0. Next, if we
define u0,λ(x) =

1
λu0(λx), we get that ||u0,λ||C0,1(Rn) = ||u0||C0,1(Rn) < ε and hence

uλ(x, t) =
1
λu(λx, λ

4t) is the unique analytic solution of (3.4) in X∞ with uλ(·, 0) =
u0,λ. Since by (3.28) we have that u0 = u0,λ we get that for any self-similar initial
data u0 with ||u0||C0,1(Rn) < ε there exists a unique analytic solution of (3.4) which
satisfies

u(x, t) =
1

λ
u(λx, λ4t)(3.29)
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for any x ∈ R
n, t > 0 and λ > 0. Defining λ = t−

1
4 and Ψ(y) = u(y, 1) (note that Ψ

is analytic) we get that

u(x, t) = t
1
4Ψ(xt−

1
4 ).(3.30)

Moreover Ψ satisfies the elliptic equation

∆2Ψ+
1

4
Ψ− y

4
· ∇Ψ = f [Ψ],(3.31)

where f is as in Lemma 3.2. Combining all these facts we get the following Theorem.

Theorem 3.12. There exists ε > 0, C > 0 such that if u0 ∈ C0,1(Rn) is
self-similar with ||u0||C0,1(Rn) < ε, then there exists a global analytic and self-similar
solution u ∈ X∞ of the Willmore flow (3.4) which satisfies the estimates ||u||X∞ ≤
C||u0||C0,1(Rn) and (3.6). The solution is unique in the ball BX∞(0, Cε). Moreover u

can be written in the form (3.30), where Ψ is an analytic solution of (3.31).

4. Ricci-DeTurck flow. On a manifold Mn with a family of Riemannian met-
rics g(t) the Ricci flow is given by

∂tg =− 2Ric(g) in Mn × (0, T ) and

g(·, 0) =g0,(4.1)

where Ric(g) denotes the Ricci curvature of g and g0 is some metric on Mn. In this
section we are interested in a closely related flow, the so called Ricci-DeTurck flow
for a family of Riemannian metrics g(t) on R

n. This flow is given by (see for example
[13])

∂tg =− 2Ric(g)− Pδ(g) in R
n × (0, T ) and

g(·, 0) =g0,(4.2)

where δ is the euclidean metric and

Pδ(g) = −2d⋆gdg(G(g, δ)),

where G(g, δ) = δ− n
2 g, dg : h → dgh = −gij∇ihjkdx

k (dg maps symmetric covariant
two-tensors onto one-forms) and d⋆g : ω → d⋆gω = 1

2 (∇iωj + ∇jωi)dx
i ⊗ dxj (d⋆g is

the adjoint operator of dg with respect to the L2 inner product and therefore it maps
one-forms onto symmetric covariant two-tensors).

The Ricci-DeTurck flow was introduced by DeTurck [9] in order to give a short
proof for the short-time existence of the Ricci flow on compact manifolds. DeTurck
achieved this goal by showing that the flows are equivalent (see also [23]) and that
(4.2) is a strictly parabolic system for which the general short-time existence theory
can be applied.

In local coordinates the Ricci-DeTurck flow (4.2) can be written as (see [23])

∂tgij =gab∇a∇bgij +
1

2
gabgpq

(

∇igpa∇jgqb + 2∇agjp∇qgib − 2∇agjp∇bgiq

− 2∇jgpa∇bgiq − 2∇igpa∇bgjq

)

,(4.3)
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where all the derivatives are taken with respect to the euclidean background metric.
We can rewrite this system as follows

(∂t −∆)hij =∇a

((
(δ + h)ab − δab

)
∇bhij

)

−∇a(δ + h)ab∇bhij

+
1

2
(δ + h)ab(δ + h)pq

(

∇ihpa∇jhqb + 2∇ahjp∇qhib − 2∇ahjp∇bhiq

− 2∇jhpa∇bhiq − 2∇ihpa∇bhjq

)

=R0[h] +∇R1[h],(4.4)

where h = g − δ,
(

(δ + h)ab
)

=
(

(δ + h)ab

)−1

and

R0[h] =
1

2
(δ + h)ab(δ + h)pq

(

∇ihpa∇jhqb + 2∇ahjp∇qhib − 2∇ahjp∇bhiq

− 2∇jhpa∇bhiq − 2∇ihpa∇bhjq

)

−∇a(δ + h)ab∇bhij and

∇R1[h] =∇a

((
(δ + h)ab − δab

)
∇bhij

)

.

We note that the Ricci-DeTurck flow is invariant under the scaling (λ > 0)

hλ(x, t) = h(λx, λ2t).(4.5)

We remark that in the rest of this section all norms are taken with respect to the
euclidean metric δ.

For all 0 < T ≤ ∞ we define the function spaces

XT = {h| ||h||X = sup
0<t<T

||h(t)||L∞(Rn)

+ sup
x∈Rn

sup
0<R2<T

(

R−n
2 ‖∇h‖L2(BR(x)×(0,R2)) +R

2
n+4 ‖∇h‖

Ln+4(BR(x)×(R2

2 ,R2))

)

<∞} and

YT = Y 0
T +∇Y 1

T ,

where

‖f‖Y 0
T
= sup

x∈Rn

sup
0<R2<T

(

R−n‖f‖L1(BR(x)×(0,R2)) +R
4

n+4 ‖f‖
L

n+4
2 (BR(x)×(R2

2 ,R2))

)

,

‖f‖Y 1
T
= sup

x∈Rn

sup
0<R2<T

(

R−n
2 ‖f‖L2(BR(x)×(0,R2)) +R

2
n+4 ‖f‖

Ln+4(BR(x)×(R2

2 ,R2))

)

.

Note that these spaces are both invariant under the scaling defined in (4.5).
From the definition of the spaces XT , YT and the expressions for R0[h], R1[h] we

directly get the following Lemma.

Lemma 4.1. For every 0 < T ≤ ∞ and every 0 < γ < 1 the operator R0[·] +
∇R1[·] : Xγ

T = {h ∈ XT | ||h||XT
≤ γ} → YT is analytic and we have the estimate

||R0[h] +∇R1[h]||YT
≤ c(γ)||h||2XT

(4.6)

for all h ∈ X
γ
T and

||R0[h1]−R0[h2] +∇(R1[h1]−R1[h2])||YT

≤ c(γ)(||h1||XT
+ ||h2||XT

)||h1 − h2||XT
(4.7)
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for all h1, h2 ∈ X
γ
T .

Moreover we have

Lemma 4.2. Let 0 < T ≤ ∞ and R = R0 +∇R1 ∈ YT . Then every solution h of
(∂t −∆)h = R with h(·, 0) = h0 ∈ L∞(Rn) is in XT and we have the estimate

||h||XT
≤ c(||h0||L∞(Rn) + ||R||YT

).(4.8)

Proof. First of all we note that by Lemma 2.2 we can assume without loss of
generality that h0 = 0. Next we note that the estimate (4.8) is invariant under
translations and the scaling defined in (4.5). Hence it suffices to show that

|h(0, 1)|+ ||∇h||L2(B1(0)×(0,1)) + ||∇h||Ln+4(B1(0)×( 1
2 ,1))

≤ c||R||YT
,

for some T > 1.
The estimate for the L∞-norm of h follows from arguments similar to the ones

used in the proof of Lemma 3.11. More precisely, we decompose

|h(0, 1)| ≤|
∫

Q

Φ(x, 1 − t)R(x, t)dxdt| + |
∫

Rn×(0,1)\Q
Φ(x, 1− t)R(x, t)dxdt|

≤I + II,

where we let again Q = B1(0)× [ 12 , 1) and Q′ = B1(0)× (0, 1
2 ).

Now we estimate I by

I ≤||Φ||
L

n+4
n+2 (Q′)

||R0||
L

n+4
2 (Q)

+ ||∇Φ||
L

n+4
n+3 (Q′)

||R1||Ln+4(Q) ≤ c||R||YT
,

where we used that

||Φ||
L

n+4
n+2 (Rn×[0,1])

+ ||∇Φ||
L

n+4
n+3 (Rn×[0,1])

≤ c,

which is a consequence of (2.1).
Integration by parts and (2.3) yield

II ≤c
∑

y∈Zn

∫ 1

0

∫

B1(y)

e−c1|x|(|R0(x, t)|+ |R1(x, t)|)dxdt

≤c||R||YT
.

Combining the above estimates we conclude

|h(0, 1)| ≤ c||R||YT
.

In order to estimate the L2-norm of ∇h we multiply the equation (∂t − ∆)h =
R0 + ∇R1 with η2h, where η is defined as in the proof of Lemma 2.2, integrate by
parts and use Young’s inequality to get

∂t

∫

Rn

η2|h|2 +
∫

Rn

η2|∇h|2 ≤ c

∫

B2(0)

(|h|2 + |h||R0|+ |R1|2).

Integrating in time and using the pointwise estimate for h yields

||∇h||L2(B1(0)×(0,1)) ≤ c||R||YT
.
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Hence it remains to estimate the Ln+4-norm of ∇h on Q. Arguing as in the
estimate for II above we have

sup
(x,t)∈Q

|
∫

Rn×(0,1)\B2(0)×( 1
4 ,1)

(

∇Φ(x− y, t− s)R0(y, s)

−∇2Φ(x − y, t− s)R1(y, s)
)

dyds| ≤ c||R||YT

and hence we can assume that the support of R0 and R1 is contained in B2(0)×(14 , 1).
In this situation we can use an argument involving singular integrals and the Young
inequality as in the proof of Lemma 3.11 to finish the estimate for the Ln+4-norm of
∇h.

Since we know that the linearization of the operator

∂t + 2Ric(·) + Pδ(·)

at g = δ is ∂t −∆ (see e.g. [13]) we can argue as in the proof of Theorem 3.1 to get
the following result

Theorem 4.3. There exists ε > 0, C > 0 such that for every metric g0 ∈ L∞(Rn)
satisfying ||g0− δ||L∞(Rn) < ε there exists a global analytic solution g ∈ δ+X∞ of the
Ricci-DeTurck flow (4.2) with g(·, 0) = g0 and ||g − δ||X∞ ≤ C||g0 − δ||L∞(Rn). The
solution is unique in the ball BX∞(δ, Cε) = {g| ||g − δ||X∞ ≤ Cε}.

More precisely there exists R > 0, c > 0 such that for every k ∈ N0 and every
multiindex α ∈ N

n
0 we have the estimate

sup
x∈Rn

sup
t>0

|(t 1
2∇)α(t∂t)

k(g − δ)(x, t)| ≤ c||g0 − δ||L∞(Rn)R
|α|+k(|α|+ k)!.(4.9)

Moreover the solution g depends analytically on g0.

This result improves Theorem 1.2 of [22] since the solution we construct is unique
in X∞, analytic in x and t and the initial metric g0 is only assumed to be in L∞(Rn).
We like to remark that on general complete manifolds local solutions of (4.2) have
been constructed by Simon [24] for initial metrics g0 ∈ C0 which are close to a smooth
metric with bounded sectional curvature (see also [25]).

The relation between the solution of (4.2) constructed in Theorem 4.3 and a
solution of the Ricci flow is illustrated in the following remark.

Remark 4.4. Let g0 be a smooth initial metric satisfying ||g0−δ||L∞(Rn) < ε and
let g ∈ δ+X∞ be the analytic solution of (4.2) constructed in Theorem 4.3. It is shown
in [22] that there exists a smooth family of diffeomorphisms ϕ : Rn × [0,∞) → R

n

with ϕ(·, 0) = id such that the family of metrics g̃(x, t) = (ϕ(x, t))⋆g(x, t) is a solution
of the Ricci flow (4.1) with initial data g0.

5. Mean curvature flow. Let Mn be a n-dimensional orientable manifold and
let F0 : M → R

n+m (m ∈ N) be an immersion. We say that the family of immersions
F : M × [0, T ) → R

n+m solves the mean curvature flow with initial condition F0 if

∂tF =H on M× (0,T) and

F (·, 0) =F0,(5.1)

where H(x, t) is the mean curvature vector of Mt = F (M, t) at F (x, t). Here we
are interested in the case M = R

n and where F0(x) = (x, f0(x)), f0 : Rn → R
m, is
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the graph of f0 (entire graph). More precisely we consider f0 ∈ C0,1(Rn,Rm) and
we assume that the Lipschitz norm of f0 is ”small”. Then we construct solutions
f : Rn × [0,∞) → R

m of the parabolic system

∂tf =gij
∂2f

∂xi∂xj
,

f(·, 0) =f0,(5.2)

where gij = δij + 〈 ∂f
∂xi ,

∂f
∂xj 〉.

For m = 1 we calculate

gij = δij −
∇if∇jf

1 + |∇f |2

and therefore we have

∂tf =
√

1 + |∇f |2 div
( ∇f
√

1 + |∇f |2
)

and hence we recover the well-known equation for the mean curvature flow for graphs
in codimension one.

Concerning the relation between solutions of the equations (5.1) and (5.2) it was
shown in [29], Proposition 2.2, that for every graphical solution F of (5.1) there exists
a family of diffeomorphisms r : Rn× [0,∞) → R

n such that F̃ (x, t) = F (r(x, t), t) can
be written as F̃ (x, t) = (x, f(x, t)) and f is a solution of (5.2). Conversely, if f is a
solution of (5.2), then F̃ (x, t) = (x, f(x, t)) is a solution of (5.1).

Next we note that (5.2) can equivalently be written as

(∂t −∆)f =(gij − δij)
∂2f

∂xi∂xj
=: M [f ],

f(·, 0) =f0(5.3)

and this system is invariant under the scaling (λ > 0)

fλ(x, t) =
1

λ
f(λx, λ2t).(5.4)

For every 0 < T ≤ ∞ we define the function spaces

XT = {f | ||f ||XT
= sup

0<t<T
||∇f(t)||L∞(Rn)

+ sup
x∈Rn

sup
0<R2<T

R
2

n+4 ‖∇2f‖
Ln+4(BR(x)×(R2

2 ,R2))
< ∞} and

YT = {g| ||g||YT
= sup

x∈Rn

sup
0<R2<T

R
2

n+4 ||g||
Ln+4(BR(x)×(R2

2 ,R2))
< ∞}.

Now we are in a position to formulate our main Theorem of this subsection.

Theorem 5.1. There exists ε > 0, C > 0 such that for every map f0 : Rn → R
m

satisfying ||f0||C0,1(Rn,Rm) < ε there exists a global analytic solution f ∈ X∞ of (5.2)
with f(·, 0) = f0 and ||f ||X∞ ≤ C||f0||C0,1(Rn,Rm). The solution is unique in the ball
BX∞(0, Cε) = {f | ||f ||X∞ ≤ Cε}.
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More precisely, there exists R > 0, c > 0 such that for every k ∈ N0 and every
multiindex α ∈ N

n
0 we have the estimate

sup
x∈Rn

sup
t>0

|(t 1
2∇)α(t∂t)

k∇f(x, t)| ≤ c||f0||C0,1(Rn,Rm)R
|α|+k(|α|+ k)!.(5.5)

Moreover the solution f depends analytically on f0.

In the case m = 1 Ecker & Huisken [10, 11] showed the existence of a global
solution of the mean curvature flow of entire graphs for any initial data which is
locally Lipschitz.
We remark that for m > 1, one needs at least a certain ”smallness” condition for the
Lipschitz norm of the initial data in view of an example (due to Lawson & Osserman
[20]) of a minimal graph F : R4 → R

7 which is Lipschitz continuous but not C1.
For compact manifolds and Lipschitz initial data f0 with locally small Lipschitz

norm, Wang [30] showed the existence of a local smooth solution of the mean curvature
flow. Moreover, for M = Σ1×Σ1, where Σ1 and Σ2 are compact manifolds of constant
curvature, and initial maps f0 : Σ1 → Σ2 which are Lipschitz with small Lipschitz
norm, the mean curvature flow has been studied by Wang [28] (see also [27]).

In the special case m = n and f0 = ∇u0 ∈ C0,1 for some u0 : Rn → R (so called
Lagrangian graphs) satisfying −(1 − δ)id ≤ ∇2u0 ≤ (1 − δ)id, where 0 < δ < 1 is
arbitrary, a global smooth solution of the Lagrangian mean curvature flow for entire
graphs has recently been constructed by Chau, Chen & He [4].

In order to prove Theorem 5.1 we start with the following Lemma.

Lemma 5.2. For every 0 < T ≤ ∞ and every γ < 1 the operator M [·] : Xγ
T =

{f ∈ XT |||f ||XT
< γ} → YT is analytic and we have the estimates

||M [f ]||YT
≤ c||f ||2XT

(5.6)

for all f ∈ X
γ
T and

||M [f1]−M [f2]||YT
≤ c(γ)(||f1||XT

+ ||f2||XT
)||f1 − f2||XT

(5.7)

for all f1, f2 ∈ X
γ
T .

Proof. This is a consequence of the facts that for every f ∈ X
γ
T we have

||gij − δij ||L∞(Rn) ≤ c(||∇f ||L∞(Rn))||∇f ||L∞(Rn)

and

||gij1 − g
ij
2 ||L∞(Rn) ≤ c(||∇f1||L∞(Rn), ||∇f2||L∞(Rn))||∇(f1 − f2)||L∞(Rn),

where gl = δ + 〈∇fl,∇fl〉, l ∈ {1, 2}.
Next we have

Lemma 5.3. Let 0 < T ≤ ∞, f0 ∈ C0,1(Rn,Rm) and M ∈ YT . Then every
solution f of (∂t −∆)f = M with f(·, 0) = f0 is in XT and we have

||f ||XT
≤ c(||f0||C0,1(Rn,Rm) + ||M ||YT

).(5.8)

Proof. First of all we observe that by Lemma 2.2 and the above remark we can
assume without loss of generality that f0 = 0. From the translation and scaling
invariance it follows that we only have to show that for some T > 1 we have

|∇f(0, 1)|+ ||∇2f ||Ln+4(B1(0)×( 1
2 ,1))

≤ c||M ||YT
.
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The proof of this estimate follows from arguments similar to the ones used in the
proof of Lemma 3.11. Namely, we decompose

|∇f(0, 1)| ≤|
∫

Q

∇Φ(x, 1− t)M(x, t)dxdt| + |
∫

Rn×(0,1)\Q
∇Φ(x, 1 − t)M(x, t)dxdt|

=I + II

where again Q = B1(0)× [ 12 , 1), and we estimate (||∇Φ||
L

n+4
n+3 (Rn×(0,1))

≤ c)

I ≤c||∇Φ||
L

n+4
n+3 (Q′)

||M ||Ln+4(Q) ≤ c||M ||YT
.

Moreover, we use (2.3) to get

II ≤ c sup
y∈Zn

∞∑

m=0

∫ 2−m

2−m−1

∫

B1(y)

|M(x, t)|dxdt.

Next we claim that there exists 0 < γ < 1 such that

∫ 2−m

2−m−1

∫

B1(0)

|M(x, t)|dxdt ≤ cγm||M ||YT

which then finishes the proof of the L∞-estimate. In order to proof this claim we
cover B1(0) × (2−m−1, 2−m) by approximately 2

nm
2 cylinders of the form Qm(y) :=

B
2−

m
2
(y)× (2−m−1, 2−m) and we use Hölder’s inequality to estimate

||M ||L1(Qm(y)) ≤ c2
2m−m(n+2)(n+3)

2(n+4) ||M ||YT
≤ c2

−m(n+1)
2 ||M ||YT

and hence this proves the claim with γ =
√
2
2 .

In order to finish the proof of the Lemma it remains to show that

||
∫ t

0

∫

Rn

∇2Φ(x− y, t− s)M(y, s)dyds||Ln+4(Q) ≤c||M ||YT
.(5.9)

By using similar arguments as above we get

sup
(x,t)∈Q

|
∫

Rn×(0,1)\B2(0)×( 1
4 ,1)

∇2Φ(x− y, t− s)M(y, s)dyds| ≤ c||M ||YT

and therefore we can assume that the support of M is contained in B2(0)× (14 , 1). In
this situation we can use an argument involving singular integrals as in the proof of
Lemma 3.11 to finish the proof of (5.9).

Theorem 5.1 now follows from an application of the Banach fixed point theorem
and the implicit function theorem as in the proof of Theorem 3.1.

Arguing as in the case of the Willmore flow we get an existence result for self-
similar solutions of the mean curvature flow for entire graphs in higher codimensions.

Corollary 5.4. There exists ε > 0, C > 0 such that if f0 ∈ C0,1(Rn,Rm) is
self-similar (i.e. f0(x) =

1
λf0(λx) for every x ∈ R

n, λ > 0) with ||f0||C0,1(Rn,Rm) < ε,
then there exists an analytic, self-similar solution f ∈ X∞ of the mean curvature flow



GEOMETRIC FLOWS WITH ROUGH INITIAL DATA 231

(5.2) which satisfies the estimates ||f ||X∞ ≤ C||f0||C0,1(Rn,Rm) and (5.5). The solution

is unique in the ball BX∞(0, Cε). Moreover f can be written as f(x, t) =
√
tξ( x√

t
),

where ξ is an analytic solution of the elliptic system

hij(y)∇2
ijξ(y) +

1

2
(y · ∇ξ − ξ) = 0,

where hij = δij + 〈∇iξ,∇jξ〉.

6. Harmonic map flow. In this section we study the harmonic map flow for
maps from the euclidean space into a smooth and compact Riemannian manifold N ,
which we assume to be isometrically embedded into some euclidean space R

l. For
simplicity we assume first that N is the round sphere Sl−1 ⊂ R

l and later on we show
how to extend the results to the general case. A map u : Rn × [0, T ) → Sl−1 is a
solution of the harmonic map flow with initial condition u0 : Rn → Sl−1 if

(∂t −∆)u = u|∇u|2 in R
n × (0, T ) and

u(·, 0) = u0.(6.1)

Our main goal in this subsection is to prove a local existence result for solutions of
(6.1) in the case where u0 is a small L∞-perturbation of an uniformly continuous map.

We note that the harmonic map flow is invariant under the scaling (λ > 0)

uλ(x, t) = u(λx, λ2t)(6.2)

and we define for every 0 < T ≤ ∞ the function spaces

XT ={u| ||u||X = sup
0<t<T

(||u(t)||L∞(Rn) + t
1
2 ||∇u(t)||L∞(Rn))

+ sup
x∈Rn

sup
0<R2<T

R−n
2 ||∇u||L2(BR(x)×(0,R2)) < ∞} and

YT ={f | ||f ||YT
= sup

0<t<T
t||f(t)||L∞(Rn)

+ sup
x∈Rn

sup
0<R2<T

R−n||f ||L1(BR(x)×(0,R2)) < ∞}.

Similar function spaces have been used in [16] to construct a solution to the Navier-
Stokes equation.

Now we can formulate our main Theorem of this subsection.

Theorem 6.1. There exists ε0 = ε0(n) > 0 such that for every uniformly contin-
uous map w : Rn → Sl−1 and every map u0 : Rn → Sl−1 satisfying ||u0−w||L∞(Rn) <

ε0 there exists δ = δ(ε0, w) > 0 and an analytic solution u ∈ ϕδ +Xδ2 of (6.1). Here
ϕδ =

∫

Rn Φ(· − y, δ2)w(y)dy.

As a corollary of this Theorem and its proof we get

Corollary 6.2. There exists ε0 > 0 such that for all u0 : Rn → Sl−1 satisfying
||u0 − P ||L∞(Rn) < ε0, where P ∈ Sl−1 is some arbitrary point, there exists a global
analytic solution u ∈ P +X∞ of (6.1).

We remark that the harmonic map flow for smooth initial maps whose image lies
in a geodesic ball has previously been studied by Jost [15].
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In the following we let w : Rn → Sl−1 be a fixed uniformly continuous map and
we let ϕ : Rn × [0,∞) → R

l be the unique solution of

(∂t −∆)ϕ = 0 in R
n × (0,∞) and

ϕ(·, 0) = w.(6.3)

Since w is uniformly continuous we know that for every ε > 0 there exists δ > 0 such
that for every x ∈ R

n we have oscBδ(x)w ≤ ε and therefore we get for all x, y ∈ R
n

|w(x) − w(y)| ≤ ε(1 +
|x− y|

δ
).(6.4)

Now we have the following Lemma.

Lemma 6.3. Let w and ϕ be as above. Then we have

||ϕδ||L∞(Rn) ≤c and(6.5)

||ϕδ − w||L∞(Rn) + δ||∇ϕδ||L∞(Rn) + δ2||∇2ϕδ||L∞(Rn) ≤cε,(6.6)

where ϕδ = ϕ(·, δ2).
Proof. (6.5) follows from Lemma 2.2. For the second term in (6.6) we note that

for every x ∈ R
n we have

|∇ϕδ(x)| =|
∫

Rn

∇Φ(x− y, δ2)(w(y) − w(x))dy|

≤cεδ−n

∫

Rn

|x− y|
δ2

e
−|x−y|2

4δ2 (1 +
|x− y|

δ
)dy

≤cεδ−1,

where we used (6.4) in the first estimate. The first and third term in (6.6) are
estimated similarly.

Next we assume that u is a solution of (6.1) and we let v(x, t) = u(x, t)− ϕδ(x).
From this definition it follows that v is a solution of the system

(∂t −∆)v =v|∇v|2 + 2v〈∇v,∇ϕδ〉+ ϕδ|∇v|2 + v|∇ϕδ|2

+ 2ϕδ〈∇v,∇ϕδ〉+ ϕδ|∇ϕδ|2 −∆ϕδ

=:H [v, ϕδ],

v(·, 0) = v0 =u0 − ϕδ.(6.7)

By (6.6) we get

||v0||L∞(Rn) ≤ ||u0 − w||L∞(Rn) + cε

and hence we see that Theorem 6.1 will be a consequence of the next Proposition if
we choose ε small enough.

Proposition 6.4. There exists ε0 = ε0(n) > 0 such that for all v0 : Rn → R
l

satisfying ||v0||L∞(Rn) < ε0 there exists δ = δ(ε0, w) > 0 and a unique and analytic
solution v ∈ Xδ2 of (6.7).

In order to prove this Proposition we need the following two Lemmas.
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Lemma 6.5. Let ϕδ =
∫

Rn Φ(·−y, δ2)w(y)dy and let v ∈ Xδ2 . Then we have that
H [v, ϕδ] ∈ Yδ2 with

||H [v, ϕδ]||Y
δ2

≤ c
(

ε+ ||v||X
δ2

+ ||v||2Xδ2

)

||v||X
δ2

+ cε.(6.8)

Moreover there exists ε1 > 0 and q < 1 such that for all ε < ε1 and all v1, v2 ∈ Xε1
δ2 =

{v ∈ Xδ2 | ||v||X
δ2

< ε1} we have

||H [v1, ϕδ]−H [v2, ϕδ]||Yδ2
≤ q||v1 − v2||Xδ2

.(6.9)

Proof. This is a direct consequence of the definition of the function spaces Xδ2

and Yδ2 , the explicit expression for H [v, ϕδ] and Lemma 6.3.

Lemma 6.6. Let H ∈ YT for some 0 < T ≤ ∞. Then every solution v of
(∂t −∆)v = H with v(·, 0) = v0 ∈ L∞(Rn,Rl) is in XT and we have the estimate

||v||XT
≤ c(||v0||L∞(Rn) + ||H ||YT

).(6.10)

Proof. Lemma 2.2 shows that without loss of generality we can assume that
v0 = 0. In order to finish the proof of the Lemma we argue as in [16]. From the
translation and scaling invariance of the estimate (6.10) it follows that we only have
to show that (T > 1)

|v(0, 1)|+ |∇v(0, 1)|+ ||∇v||L2(B1(0)×(0,1)) ≤ c||H ||YT
.

Without loss of generality we can assume that H has compact support in R
n ×

(0, 1). The estimate for |v(0, 1)| follows directly from the estimate for the heat kernel
and the estimate for |∇v(0, 1)| can be shown as in [16]. Finally, in order to get the
estimate for ||∇v||L2(B1(0)×(0,1)), we multiply the equation by η2v, where η is as in
the proof of Lemma 2.2, and integrate by parts to get

∂t

∫

Rn

η2|v|2 +
∫

B1(0)

|∇v|2 ≤ c

∫

B2(0)

(|v|2 + |v||H |) ≤ c||H ||2YT
.

Integrating over t from 0 to 1 yields the desired result.
Proposition 6.4 (and therefore also Theorem 6.1) is now a consequence of the pre-

vious two Lemmas and a fixed point (respectively implicit function theorem) argument
similar to the one used in the proof of Theorem 3.1.

Remark 6.7. The above argument directly extends to the harmonic map flow for
maps from R

n into an arbitrary compact submanifold N of some euclidean space. The
regularity of the solution will then also depend on the regularity of N (for example the
solution will be analytic if N is analytic).

Appendix A. The fundamental solution of the biharmonic heat equa-

tion. The fundamental solution b(x, t) of the biharmonic heat equation

ut +∆2u = 0

can be expressed through the Fourier integral

g(x) = (2π)−
n
2

∫

Rn

eikx−|k|4dk
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by defining b(x, t) = t−
n
4 g(xt−

1
4 ). The function g is smooth and radial.

In the following we want to apply the method of the stationary phase to study the
behavior of g(x) as |x| → ∞. The asymptotics of g are determined by the complex
critical points of the complex phase function p(k) = ik − |k|4 which are given by

k± = (±
√
3

2
+

1

2
i)2−

2
3 |x| 13 , k0 = −i2−

2
3 |x| 13 .

The values of the function q(k) = ikx− k4 at the critical points k± of p are

q(k±) = ik±x− k4± = −3

4
ixk± = −2

1
3

(

3

16
± 3

3
2

16
i

)

|x| 43 .

Moreover the Hessian of the phase function is given by

∇2
ijp(k) = −4k2δij − 6(kikj).

To simplify the notation we will restrict ourselves to the case x = (r, 0). Next we
calculate the eigenvalues of the Hessian ∇2p at the critical points k± to be

−2

(

1

2
±

√
3

2
i

)

2−
1
3 |r| 23

and

−3

(

1

2
±

√
3

2
i

)

2−
1
3 |r| 23 ,

where the second one has multiplicity n− 1. Hence the oscillatory integral g is given
as the real part of a complex function g which satisfies





(

1

2
+

√
3

2
i

)− 1
2





n

|x|n3 exp

(

2
1
3

(

3

16
+

3
3
2

16
i

)

|x| 43
)

g ∼ π
n
2 +O(|x|−1).(A.1)

This is an asymptotic relation which remains true after differentiating both sides.
A rigorous proof of this asymptotic formula can be given as follows. We recall

that x = (r, 0) with r >> 1 and we shift the domain of integration to R
n + i2−

5
3 r

1
3 e1.

We obtain

g(x) =(2π)−
n
2 exp

(

−2
1
3
3

16
|x| 43

)∫

Rn

[

exp
(

i(xξ − 2−
1
3 |ξ|2ξ1r + 8−1ξ1r

3)

− (|ξ|2 − 32−
10
3 |x| 23 )2 − 2−

4
3 ξ22 |x|

2
3

)]

dξ.

The asymptotic relation (A.1) is now obtained by a standard evaluation of the oscil-
latory integral as in Theorem 7.7.5 of [14].
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