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Introduction. This article is a continuation of the conference made in the meet-
ing “On the Resolution of Singularities” (December ) at the Research Institute
for Mathematical Sciences (RIMS) of Kyoto and downloadable on their site.

The purpose of this conference is to give some hints about the proof of the theorem
cited below and to show on two examples that the notion of maximal contact should
be completely revised in the case of the positive characteristic.

Let us see the following theorem.

Theorem. (Cossart and Piltant) [CP1,CP2]. Let k be a field of positive char-
acteristic which is differentially finite over a perfect field k0 and Z/k be a reduced
quasiprojective scheme of dimension three with singular locus Σ. There exists a pro-
jective morphism π : Z̃ → Z, such that
(i) Z̃ is regular.
(ii) π induces an isomorphim Z̃\π−1(Σ) ≃ Z\Σ.
(iii) π−1(Σ) ⊂ Z̃ is a divisor with strict normal crossings.

Such a Z̃ is called a desingularization of Z.

Two strategies. There are two main strategies to prove the existence of a
desingularization.

The first one was initiated by O. Zariski in [Z]: he cutted the problem in two
parts.
(1) Uniformization along a valuation,
(2) patching the uniformizations to get a desingularization.

This is the strategy used in [A1], [CP1, CP2], [Z].
The other strategy was initiated by H. Hironaka who introduced in [H] the key

ideas and the fundamental techniques. This strategy is very fruitful in characteristic
0 and is followed by many others: Bierstone, Milman, Villamayor, Encinas, Hauser,
W lodarczyk, Cutkosky, Temkin and all people I forget.

To simplify, we can say that the trick is to make a descending induction on the
embedding dimension. At the very beginning, your singular variety Z is a closed sub-
variety of some regular variety W . Then, at every singular point x ∈ Z there exists
a closed regular subvariety Wx ⊂ W which has maximal contact with Z at x. This
notion is defined recursively (we are more precised in III.2.1):
(1) the Hilbert-Samuel stratum HS − stratum(Z, x) of x is contained in Wx,
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358 VINCENT COSSART

(2) if you blow up Z along any Y ⊂ HS − stratum(Z, x),

Z ′ ⊂W ′ −→ Z ⊂W,

Y regular, and if there exists x′ ∈ Z ′ above x with the same Hilbert-Samuel function,
then x′ is on the strict transform Wx′ of Wx and Wx′ has maximal contact with Z ′ at
x′.

Let us note that for any x′ ∈ Z ′ above x, the Hilbert-Samuel function HS(Z ′, x′)
(or HS(x′) to simplify) of x′ is smaller or equal to HS(Z, x) [B], [Gi1].

In characteristic 0, such a Wx exists, of dimension at most dim(Z). Then the trick
is to define a coefficient ideal or an “idealistic exponent” [H3], Coeff(x, Z) ⊂ OWx,x,
and to replace the problem of the desingularization of I(Z) ⊂ OW,x by the desingular-
ization of Coeff(x, Z) ⊂ OWx,x. As dim(Wx) <dim(W ), you get the induction. We
do not want to be more precised.

A negative result in characteristic p > 0. In [Gi2], Giraud proved that Wx

exists in characteristic p > 0 with all the properties of maximal contact except one:
Wx is in general not regular. Even worse, in the purely inseparable case (section I.2
below), Giraud gets Wx = Z: the theory is empty. The descending induction fails
completely.

A weaker notion of maximal contact? A new question arises (cf. III.2.2):
in characteristic p > 0 can we find a weaker notion of maximal contact but strong
enough to make some induction?

In the purely inseparable case (cf. I.2), Cossart and Piltant [CP2] use a new
invariant called ω and it appears that (HS(x), ω(x)) is upper semi-continuous along
Sing(Z) for the lexicographical ordering. So, in the purely inseparable case, the ques-
tion above may be precised: in (1)(2) replace HS − stratum(Z, x) of x by (HS, ω)−
stratum of x and HS(x) (resp. HS(x′)) by (HS(x), ω(x)) (resp. (HS(x′), ω(x′))).
Call these new conditions (1’)(2’).

Is there a regular Wx with condition (1’)(2’) with dim(Wx) =dim(Z)?

In this article, we show that, even in dimension 3, the answer is NO (example
II), there is another example in [CJS, appendix].

A new refined question arises (cf. III.2.2): in characteristic p > 0, in the very
general case, can we find a suitable Wν regular which has maximal contact “along the
valuation ν”, i.e. in (1)(2) above replace (2) by
(2”) let ν a valuation of the field of functions of Z such that x is the center of ν
in Z, if you blow up Z along any Y ⊂ HS − stratum(Z, x) permissible for ω [CP2,
chapter 1, II.5],

Z ′ ⊂W ′ −→ Z ⊂W,

Y regular, call x′ the center of ν in Z ′, if HS(x′) = HS(x), then x′ is on the strict
transform W ′

ν of Wν and W ′
ν has maximal contact along ν with Z ′ at x′.

If this turns out to be true, with dim(Wν ) =dim(Z), then we could at least solve
the uniformization problem.

In this article, we show that, even in dimension 2, the answer is NO (example
III.2).

Conclusion: for the moment, no reasonable notion of weak maximal contact is
proposed.
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Summary. In the first section we comment the proof of the theorem above and
define the invariant ω (I.2).

In section II, we show by a first example that there is no maximal contact for the
pair (HS, ω).

The worse example (= answer NO to the last question) is given in section III.

I. Main reduction in dimension 3. In [CP1], we prove that the proof may be
reduced to the case of this theorem below.

Theorem. Let k be a field of positive characteristic which is differentially finite
over a perfect field k0, i.e. Ω1

k/k0
has finite dimension.

Let S be a regular local ring of dimension three, essentially of finite type over k and
such that K := QF (S) has transcendance degree 3 over k. Let R̄ be an Artin-Schreier
or purely inseparable singularity of dimension three over S.

Let K := QF (S) and L := QF (R̄) (in particular L/K is a finite field extension).
Then, each k-valuation µ of L dominating R̄ and satisfying properties (i) and (ii)

below has a local uniformization:
(i) µ has rank one and κ(µ)/κ(S) is algebraic;
(ii) µ is the unique extension of its restriction to K.

I.1. Notations. We let R := S[X ](X,mS), X0 =Spec(R/(h), x0 his closed
point, M = (X,mS), and k(x0) = R/M is a finitely generated field extension of k.
We denote by (u1, u2, u3) a regular system of parameters (r.s.p. for short) of S, so
M = (X,u1, u2, u3). We assume all along this text that h is irreducible over S[X ], i.e.
that f is not of the form θp − θgp−1 for any θ ∈ S.

If g 6= 0, such a singularity is called “Artin-Schreier”, if g = 0, it is called “purely
inseparable”.

I.2 Purely inseparable case. Let us concentrate on the purely inseparable case
which already contains enough difficulties.

To simplify, we take

h = Xp + f(u1, u2, u3), f ∈ k[u1, u2, u3],

dimk0
(Ωk/k0

) < ∞, k0 perfect. We suppose that there is an exceptional divisor E
which contains locally the singular locus of h = 0 and such that I(E) divises u1u2u3.
This can be achieved easily (see [CP1]). We suppose that ordx0(f) > p (else, the sin-
gularity is easily solved). We define J (f, E), the ideal generated by the coefficients of

df ∈ Ω1
S/k0

(logE). We defined H(x) =
∏

div(ui)⊂E U
a(i)
i , where a(i) =ordui(J (f, E)),

then set
J(f, E) := H(x)−1J (f, E).

The main invariant is:
ω(x) := ordx(J(f, E))

which, obviously does not depend on X .

I.2.1 Important remark. The case ω(x0) = 0 is easily solved: see [CP2] II.4.4
to II.4.7.

It can be shown that

ω(x0) = 0 ⇔ f = γM modSp, M =
∏

div(ui)⊂E

u
a(i)
i ,
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with γ invertible or parameter orthogonal to E and, if γ invertible, then M is not a
p-power or γ̄ ∈ k(x0) is not a p-power, k(x0) is the residual field of the point x0.

Villamayor’s example. In his conference, O. Villamayor proposed the following
example as a “terminal case”.

X2 + u2v, p = 2, E = div(u).

The computations give:

J (E) = (u2), H(x) = u2, J(E) = (1), ω(x0) = 0.

We agree with Orlando: it is a terminal case. Indeed, the case ω(x0) = 0 is easy to
solve [CP2, II.4.6].

All this leads to:

I.2.2 Second reduction. Let W := Spec(S), find W ′, some iterated blowing
up of W , where x ∈W ′, the center of the restriction of µ in W ′, verifies:

ω(x) < ω(x0).

The problem is reduced to a problem of monomialization modulo p-powers in a
smooth variety: the problem is more difficult, but the dimension of the ambient space
drops of one.

I.2.3 Permissible centers. Now we forget X0 and we work in W , E is a
normal crossing divisor in W . We do not write here the definitions [CP2, chapter 1,
II.5] of the permissible centers for ω. We just recall that, if Y , a closed subset of
W is permissible at x for ω, then it is smooth at x and locally normal crossing with
E, furthermore, closed points are permissible. Bad news: permissible centers
are not necessarily contained in the locus where ω is maximal. We have the
following propositions.

I.2.3.1 Proposition. If Y is irreducible of generic point ξ and permissible at x
for ω, then ω(ξ) > ω(x)− 1.

I.2.3.2 Transformation laws. Let Y be as above and π : X ′ → X ′ be the
blowing up cenetred at Y . Then J(f ′, E′) is the weak transform of J(f, E, Y ) (defined
below), where f ′ is the strict transform of f and E′ the total transform of E.

I.2.3.3 Jacobian adapted to Y . Let

D(E) := {D ∈ Derk0
OW | D(I(E)) ⊂ I(E)},

D(E, Y ) := {D ∈ D(E) | D(I(Y )) ⊂ I(Y )}.

Then
J(f, E, Y ) := H(x)−1(D(f), D ∈ D(E ,Y).

I.2.3.4 Example. In the case where Y = x and E=div(u1u2), k0 = k, we get

D(E, Y ) = (
u1∂

∂u1
,
u2∂

∂u2
,M

∂

∂u3
).
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I.2.3.5 Proposition. With notations as above, if x′ ∈W ′ is above x, then

ω(x′) 6 ω(x).

II. No maximal contact for (HS, ω). It is very well known that there is no
maximal contact for the Hilbert-samuel function in characteristic p > 0 (see section
III).

Optimist people may think that there may be maximal contact for the couple
(HS, ω) where HS is the Hilbert-Samuel function. This is wrong. The following
example shows that there cannot exist in X a surface Σ such that the Hilbert-
Samuel function the strict transforms of Σ is constant at the points xi above x with
(HS(x0), ω(x0)) = (HS(xi), ω(xi)), here HS(x) is just the local multiplicity which is
equal to p.

II.1. Example in dimension 3. (joint work with O. Piltant). With the
notations of I.2. We have a singularity in dimension 3 of equation:

h = Xp + ua
1u

b
2(vp

e
+ (u2 − u1)p

e
up+2
1 + extra).

extra ∈ S = k[u1, u2, v], of very big order, E = div(u1u2), a + b = 0 mod p, ab 6= 0
mod p, p 6= 2. We suppose k = k0 algebraically closed.

Computations give:

H(x0) = ua
1u

b
2, J(E) = (vp

e

) mod M1+pe

, ω(xo) = pe.

We blow up along the origin.
We take as new origin the point x1 of parameters

(X/u1, u1, w := (u2 − u1)/u1, v/u1)

that we note (X,u1, w, v), using an usual convention.
We get

h1 = Xp + ua+b−p
1 (w + 1)b(vp

e

+ wpe

up+2
1 + uA

1 extra
′)

where h1 is the strict transform of h, A ∈ N, A very big. The reader sees that the set
of points x′ above x0 with (HS(x0), ω(x0)) = (HS(x′), ω(x′)) is exactly Proj(X,V ),
where V :=inx0(v), this implies that, if Σ exists, its directrix [CJS,1.20] at x0 is
V(X,V ).

We change one variable: let Y := X + u
a+b−p

p

1 , then

h1 = Y p + ua+b−p
1 (γvp

e

w + wpe

up+2
1 + uA

1 extra
′),

E1 = div(u1), h(x1) = ua+b−p
1 , J(E1) = (vp

e
, wpe

up+2
1 ) mod (uA

1 ), ω(x′) = pe.

We go on: we look at the sequences of blowing ups centered at closed points
on the strict transform of (Y, v, w). We use the usual convention i.e. we note the
parameters of xi+1 (Y, u1, v, w) instead of (Y/ui

1, u1, v/ui
1, w/u

i
1).
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We get at x2:

h2 = Xp + u
1 mod(p)
1 (w + 1)b(vp

e

w + wpe

up+1
1 + uA

1 extra2)

E2 = div(u1), h(x2) = u
1 mod(p)
1 , J(E2) = (vp

e
, wpe

up+1
1 ) mod (uA

1 ), ω(x′) = pe.

We get at xp+3:

hp+3 = Xp + u
2 mod(p)
1 (w + 1)b(vp

e

w + wpe

+ uA
1 extra3)

Ep+3div(u1), h(x3) = u
2 mod(p)
1 , J(E3) = (vp

e

, wpe

) mod (uA
1 ), ω(x′) = pe.

Things are looking well: the initial part of J(Ep+3) is (vp
e

, wpe

), the directrix of
the ideal J(Ep+3) has dimension 1: the equations are v = w = 0, the dimension was
2 for J(Ei), i < p + 3, the equation was v = 0.

We get at xp+4:

hp+4 = Xp + u
2 mod(p)
1 (w + 1)b(vp

e
wu1 + wpe

+ uA
1 extra4)

Ep+4 = div(u1), h(x4) = u
2 mod(p)
1 , J(E4) = (vp

e

u1, wpe

) mod (uA
1 ), ω(x′) = pe.

The initial part of J(Ep+4) is (wpe

), the directrix of the ideal J(Ep+4) has di-
mension 2: the equation is w = 0.

We get at xp+3+N :

hp+3+N = Xp + u
2 mod(p)
1 (w + 1)b(vp

e

wuN
1 + wpe

+ uA
1 extrap+3+N )

Ep+3+N = div(u1), h(xp+3+N ) = u
2 mod(p)
1 ,

J(Ep+3+N ) = (vp
e

uN
1 , wpe

) mod (uA
1 ), ω(x′) = pe.

The initial part of J(Ep+3+N ) is (wpe

), the directrix of the ideal J(Ep+3+N ) has
dimension 2: the equation is w = 0.

Let us blow up along xp+3+N : it is easily seen that the set of points x′ above
xp+3+N with (HS(x0), ω(x0)) = (HS(x′), ω(x′)) is exactly Proj(X,W ), where W :=
inxp+3+N (w), this implies that, if Σ exists, the directrix of its strict transform
Σp+3+N at xp+3+N is V(X,W ). This is impossible, by [CJS, 12.1, 12.3, 13.3], its
ideal should be (X,V ) mod (U1).

II.2. Conclusion. This kills the hope to have a maximal contact in “Giraud’s
sense” for (HS, ω), i.e. to find a surface Σ such that the strict drop of its local
Hilbert-Samuel function would imply a strict drop of some invariant of the original
singularity.

The question is: define another invariant, finer than (HS, ω) such that, for this
invariant, you get a maximal contact in “Giraud’s sense”... For the moment, there is
no answer.

III. No maximal contact along a valuation. (joint work with U. Jannsen
and S. Saito). As there is no generalization of ω to cases other than the inseparable
case or the Artin-Schreier case, we may be interested in a notion of maximal contact
“along a valuation”.
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III.1. Recall of the algorithm, dimension 2, hypersurface case. We follow
Hironaka in [CGO, appendix]. X is a singular surface embedded in a 3-dimensional
smooth k-variety Z, k is an algebraic closed field of characteristic p > 0. We suppose
that the worse HS-stratum is a finite union of closed points, in this case the worse
HS-stratum is the locus of maximal multiplicity µ(x), we call it HS(X)

The algorithm is: blow up the locus of multiplicity > µ(x). This will stop.

More precisely, in an open neighbourhood U ⊂ X of x ∈ HS(X), you blow up
X,Z along x:

X1 ⊂ Z1 −→ X ⊂ Z.

One can show that there are three different cases [CJS, section 2].
(i) Either there is no point in X1 near to x (no point with same multiplicity): STOP,
the maximum multiplicity dropped strictly above x.
(ii) Either there are a finite number of closed points in X1 near to x, then above U ,
blow up X1, Z1 along these points:

X2 ⊂ Z2 −→ X1 ⊂ Z1.

(iii) Or the set of points in X1 near to x is a projective line D1 then above U , blow
up X1, Z1 along D1:

X2 ⊂ Z2 −→ X1 ⊂ Z1,

either there is no point in X2 near to x, either there are a finite number of closed
points in X2 near to x or the set of points in X2 near to x is a projective line D2

which projects isomorphically on D1, then above U , blow up X2, Z2 along D2.
In the latter case, above U , the algorithm creates a “fundamental sequence” [CJS,

section 5], i.e. a finite sequence of blowing ups

Xm ⊂ Zm −→ Xm−1 ⊂ Zm−1 −→ · · ·X2 ⊂ Z2 −→ X1 ⊂ Z1 −→ X ⊂ Z,

where the center of the blowing up Xi ⊂ Zi −→ Xi−1 ⊂ Zi−1 is a projective line Di−1

which projects isomorphically on D1, 2 6 i 6 m and either there is no point in Xm

near to x, or there are a finite number of closed points in Xm near to x.

III.2 Maximal contact along a valuation. The example given in [CJS, section
15] shows that there is no maximal contact in positive characteristic. What is new
in this paper is that there is no maximal contact along a valuation. Let us recall the
definition of maximal contact [CJS, section 15].

III.2.1 Definition: hypersurface of maximal contact. Let Z be an excellent
regular scheme and X ⊂ Z be a closed subscheme.

A closed subscheme W ⊂ Z is called to have maximal contact with X at x ∈ X
if the following conditions are satisfied:
(i) x ∈W .
(ii) Take any sequence of permissible blowups (the Hilbert-Samuel function is constant
along the regular center Dn, n > 0):

(1)

Z = Z0

π1

← Z1

π2

← Z2 ← . . .← Zn−1

πn

← Zn ← · · ·

∪ ∪ ∪ ∪ ∪

X = X0

π1

← X1

π2

← X2 ← . . .← Xn−1

πn

← Xn ← · · ·
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where for any n > 0

(2)

Zn+1 = BlDn
(Zn)

πn+1

← Zn

∪ ∪

Xn+1 = BlDn
(Xn)

πn+1

← Xn

and Dn ⊂ Xn is permissible. Assume that there exists a sequence of points xn ∈ Dn

(n = 0, 1, . . .) such that x0 = x and xn is near to xn−1 for all n > 1 (this means
HS(xn−1) = HS(xn) for all n > 1). Then Dn ⊂Wn for all n > 0, where Wn is strict
transform W in Zn.

Some optimist people asked us:
“Your definition of maximal contact is weaker than Hironaka’s, but still too

strong, for the uniformization problem, you just need the definition below. Have
you an example where there is no maximal contact along a valuation?”

We found one just before Kyoto conference, in the surface-hypersurface case which
is perfectly understood now ([HH], [CJS], [C2], [C3]).

III.2.2 Definition: maximal contact along a valuation. In the definition
above suppose X is a projective variety over a field k, let ν be a k-valuation, then on
each Xn, ν has a center xn.

We say that a closed subscheme Wν ⊂ Z has maximal contact with X along ν if,
for the sequence (1) where xn is the center of ν in Zn for all n > 0, then xn ∈ Wn for
all n > 0, where Wn is strict transform Wν in Zn.

Indeed if for any k-valuation ν there could exist a smooth Wν satisfying III.2.2,
life would be much easier (as says the guru Abhyankar) in desingularization theory:
the uniformization problem should be solved.

III.2.3 The example.
p = 3

No exceptional divisor E, E = ∅, take

f := y3 + u2
2[(u

3
1 − u2

2)(u3
1 + u2

2)
3 + uN

1 ], N 6= 0 mod (p), N >> 0.

Let us recall some definitions.

III.2.3.1 Hironaka’s polyhedrons. [H1] or [CJS, section 7] In the case where

f = ym +
∑

i,a,b,a+b>i,06i6m

λi,a,bym−iua
1u

b
2, λi,a,b ∈ k,

∆(f, u, y) is the convex hull spanned by {(ai ,
b
i ), λi,a,b 6= 0}+ R>0

2. Hironaka defines
∆(f, u) as:

∆(f, u) = ∩y,inM(f)=Y m∆(f, u, y).

III.2.3.2 Notations. δ(f, u, t) =inf{a + b, (a, b) ∈ ∆(f, u, t)}, δ(f, u) =inf{a +
b, (a, b) ∈ ∆(f, u)}.
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We write sometimes δ(x) instead of δ(f, u) where x is the point of parameters
(y, u1, u2), indeed, one can prove that δ(f, u) does not depend on (u1, u2).

In our example, we get

δ(x) = 3 + 1/3

III.2.3.3 ǫ(x). With the notations and hypotheses of III.2.3.1, assume that
there is an exceptional divisor E with components smooth and orthogonal to y = 0,
then assume that

E ⊂ div(u1u2),

(we say E has “new components”), we define A1 =inf{a|(a, b) ∈ ∆(f, u)}, mutatis
mutandis, we define A2. Then

ǫ(x) := δ(x)−
∑

div(ui)⊂E

Ai.

In our example, E = ∅, we get

ǫ(x) = δ(x) = 3 + 1/3

III.2.3.4 Change of ǫ(x). In the example, to avoid useless denominators, we
will replace ǫ(x) by 3ǫ(x) that we still denote by ǫ(x). From now on:

ǫ(x) = 10.

III.2.3.5. In the example, x is isolated in the HS-stratum.

Indeed

∂f

∂u1
= uN−1

1 u2
2.

So, if a curve is contained in the Hs-stratum at the beginning, uN−1
1 u2

2 has order at
least 2 along this curve which is contained in div(u1) or div(u2)
(i) if it is contained in div(u2), as f = y3 mod (u2), the only possibility is the curve
V(y, u2) which does not fit
(ii) if it is contained in div(u1), it should be V(z, u1) with y3 + u10

2 ∈ (z, u1)3

∂y3 + u10
2

∂u1
= u9

2 ∈ (z, u1)2

so z = u2, which does not fit.

III.2.3.6 Let us start Hironaka’s algorithm. We blow up along the origin
and take the point x1 above of parameters

y/u1, u1, u2/u1 ǫ(x1) = 6

y(1)
3

+ u7
1u

(1)
2

2
[(u1 − u

(1)
2

2
)(u1 + u

(1)
2

2
)3 + uN−8

1 ]
The exceptional divisor is div(u1) “new component”. Following Hironaka, we

make the “fundamental sequence”: we get the point x3 above of parameters

(y(3), u
(3)
1 , u

(3)
2 ) := (y(1)/u2

1, u1, u
(1)
2 ),
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f3 := y(3)
3

+ u
(3)
1 u

(3)
2

2
[(u

(3)
1 − u

(3)
2

2
)(u

(3)
1 + u

(3)
2

2
)3 + u

(3)
1

N−8
] ǫ(x3) = 6

We make again the “fundamental sequence”: we first blow up along x3, we look
at the point x4 above of parameters

(y(4), u
(4)
1 , u

(4)
2 ) := (y(3)/u

(3)
2 , u

(3)
1 /u

(3)
2 , u

(3)
2 )

f4 := y(4)
3

+ u
(4)
1 u

(4)
2

4
[(u

(4)
2 − u

(4)
2 )(u

(4)
2 + u

(4)
2 )3 + u

(4)
1

N−8
u
(4)
2

N−13
], ǫ(x4) = 4

div(u
(4)
1 u

(4)
2 ) is the exceptional divisor, both components are “new”: we end this

second “fundamental sequence” we look at the point x5 above of parameters

(y(5), u
(5)
1 , u

(5)
2 ) := (y(4)/u

(4)
2 , u

(4)
1 , u

(4)
2 )

f5 := y(5)
3

+ u
(5)
1 u

(5)
2 [(u

(5)
1 − u

(5)
2 )(u

(5)
1 + u

(5)
2 )3 + u

(5)
1

N−8
u
(5)
2

N−12
], ǫ(x5) = 4.

Following the algorithm, we blow up along the origin, above at the point of
parameters

z := y(5)/u
(5)
1 , v1 := u

(5)
1 , v := u

(5)
2 /u

(5)
1 +1, let us see that the ǫ-invariant increases

strictly: ǫ(x6) = 5 (kangaroo point as defined by H. Hauser [HH]).

III.2.3.7 Surprising computation. Exercise for the reader: compute ω(x5)
and ω(x6) (cf. I.2). The main point is that z3+v31(v−1)[(v+1)v3+v2N−24

1 (v−1)N−12]
and (2, 1) a solvable vertex of ∆(f, z, v1, v).

Let us solve it.

f = z3 + v31 [(v2 − 1)v3 + vN−12
1 (v − 1)N−11]

w := z − v21v.

This gives
f = w3 + v31 [v5 + vN−12

1 (v − 1)N−11]

As N 6= 0 mod (3), ∆(f, w, v1, v) has two non solvable vertices (non integer coordi-
nates)

(1, 5/3), (N/3− 4, 0),

div(v1) is the new component: ǫ(x6) = 5 > ǫ(x5) = 4.

III.2.3.8 No maximal contact on this example. I claim that, in this example,
if we end the fundamental sequence at x6 and add another fundamental sequence, there
will be a point x9 ∈ X9 such that there exists no t = y − γ, γ ∈ k[[u1, u2]] such that
the xi are on the strict transform of div(t), 0 6 i 6 8. One can see that it implies that
there is no smooth hypersurface W ⊂ Z such that the xi are on the strict transform
of W ⊂ Z. We define x7 as the point on the strict transform of div(v) in the bu
along x6. These points x, x1,....,x8,x9 are near to each other: there is a valuation
ν of the function field whose center on Xi is xi, 0 6 i 6 9: there is no maximal
contact ALONG THE VALUATION ν. So no hope of maximal contact, even for the
uniformization problem or Hironaka’s game.

Suppose a smooth hypersurface Wν ⊂ Z has maximal contact along ν, let us call
t = 0 its equation in a neighbourhood of x. For short, we write W instead of Wν

III.2.4 Proposition. [CJS, section 15] Suppose x = x0 isolated in its HS-
stratum, then if there exists a smooth hypersurface t = 0 such that along a fundamental
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sequence starting at x = x0 the xj , j > 0 (resp. j > i) are on the strict transform of
div(t), then

t = y − γ, γ ∈ k[[u1, u2]], ⌊δ(f, u, t)⌋ = ⌊δ(f, u)⌋.

As δ(x) = 3 + 1/3, by III.2.4, γ ∈ (u1, u2)3.

γ = P3(u1, u2) + P4(u1, u2) + ρ, ρ ∈ (u1, u2)5,

Pi(u1, u2) ∈ k[u1, u2], homogeneous of degree i or = 0, i = 3, 4.

f := t3 + u2
2[(u

3
1 − u2

2)(u3
1 + u2

2)
3 + uN

1 ] + P 3
3 + P 3

4 + ρ3.

f1 = t(1)
3
+u7

1u
(1)
2

2
[(u1−u

(1)
2

2
)(u1+u

(1)
2

2
)3+uN−8

1 ]+u9
1P3(1, u

(1)
2 )3+u9

1P4(1, u
(1)
2 )3

+u12
1 ρ′.

f3 := t(3)
3

+ u
(3)
1 u

(3)
2

2
[(u

(3)
1 − u

(3)
2

2
)(u

(3)
1 + u

(3)
2

2
)3 + u

(3)
1

N−8
] + P3(1, u

(3)
2 )3 +

u
(3)
1

3
P4(1, u

(3)
2 )3 + u

(3)
1

6
ρ′3,

δ(x3) = 2 + 1/3, so by III.2.4, P3(1, u
(3)
2 ) ∈ (u

(3)
2 )2, let us denote P3(1, u

(3)
2 ) =

au
(3)
2

2
+ bu

(3)
2

3
, a, b ∈ k.

f4 := t(4)
3

+ u
(4)
1 u

(4)
2

4
[(u

(4)
2 − u

(4)
2 )(u

(4)
2 + u

(4)
2 )3 + u

(4)
2

N−8
u
(4)
2

N−13
] + a3u

(4)
2

3
+

b3u
(4)
2

6
+ u

(4)
1

3
P4(1, u

(4)
2 )3 + u

(4)
1

6
u
(4)
2

3
ρ′′3.

As V(y(4), u
(4)
2 ) is permissible, it is contained in div(t(4)), so V(y(4), u

(4)
2 ) =

V (t(4), u
(4)
2 )

P4(1, u
(4)
2 ) = λu

(4)
2 + cu

(4)
2

2
+ du

(4)
2

3
+ eu

(4)
2

4
, λ, c, d, e ∈ k.

f5 := t(5)
3

+u
(5)
1 u

(5)
2 [(u

(5)
1 −u

(5)
2 )(u

(5)
1 +u

(5)
2 )3 +u

(5)
1

N−8
u
(5)
2

N−12
]+a3 + b3u

(5)
2

3
+

u
(5)
1

3
(λ3 + c3u

(5)
2

3
+ d3u

(5)
2

6
+ e3u

(5)
2

9
) + u

(5)
1

9
ρ′′3,

δ(f5, u) = 2, by III.2.4,

a = b = λ = 0, ρ′ not invertible.

f7 := t(6)
3

+ v13(v − 1)[(v + 1)v3 + vN−12
1 (v − 1)N−12] + v13(c3(v − 1)3 + d3(v −

1)6v13 + e3(v − 1)9v16) + v16 × something

f7 = w3 + v31 [v5 + vN−12
1 (v − 1)N−11].

δ(x7) = 2 + 2/3.

We end the fundamental sequence, we get

f8 = t3 + (v − 1)[(v + 1)v3 + vN−12
1 (v − 1)N−12] + c3(v − 1)3 + d3(v − 1)6v13 +

e3(v − 1)9v16 + v13 × something

f8 = w3 + v5 + vN−12
1 (v − 1)N−11
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δ(x8) = 5/3, c = 0, else there is no point on the strict transform of div(t) and x8 is,
furthermore by III.2.4,

d = 0.

We go on: we blow up x8 and we look at the near point x9 on the strict transform of
v = 0.

f9 = w3 + u2v5 + uN−15(uv − 1)N−11

As x9 is supposed to be on the strict transform of div(t),

something is not invertible.

f9 = t3+(uv−1)[(uv+1)v3+uN−15(v−1)N−12]+e3(uv−1)9u3+u3×something′,
something′ is invertible or divisible by u3.

In any case, as δ(x8) = 7/3 > 2, the monomial (uv − 1)(uv + 1)v3 gives a
contradiction with III.2.4.
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21.
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