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Introduction. Given a variety X over a field k one wants to find a desingular-
ization, which is a proper and birational morphism X ′ → X , where X ′ is a regular
variety and the morphism is an isomorphism over the regular points of X .

If X is embedded in a regular variety W , there is a notion of embedded desingu-
larization and related to this is the notion of log-resolution of ideals in OW .

When the field k has characteristic zero it is well known that the problem of
resolution is solved. The first proof of the existence of resolution of singularities is
due to H. Hironaka in his monumental work [Hir64] (see also [Hir77]).

If characteristic of k is positive the problem of resolution in arbitrary dimension
is still open. See [Hau10] for recent advances and obstructions (see also [Hau03]).

The proof by Hironaka is existential. There are constructive proofs, always in
characteristic zero case, see for instance [VU89], [VU92], [BM97], we refer to [Hau03]
for a complete list of references. Those constructive proofs give rise to algorithmic
resolution of singularities, that allows to perform implementation at the computer
[BS00], [FKP04].

Recently some techniques have appeared in order to try to prove the problem
of resolution of singularities in the positive characteristic case. Rees algebras seem
to be a useful tool in this context. Hironaka in [Hir03] and [Hir05] propose to use
Rees algebras for proving log-resolution of ideals. The advantage of Rees algebras is
that the algebra encodes in one object many ideals which are “equivalent” for the
problem of log-resolution. Also Rees algebras have a good behavior with respect to
integral closure, see for instance [VU08] and [VU07]. On the other hand Kawanoue
and Matsuki [Kaw07], [KM06] use a different object, called idealistic filtration, which
is similar to Rees algebras but with a grading over the real numbers.

In this paper we compare those structures and construct Q-Rees algebras (1.7),
which are algebras with grading over the rational numbers. We will see that Rees
algebras, idealistic filtrations and Q-Rees algebras encode (up to integral closure) the
same information (1.15). One motivation to extend Rees algebras to a Q-grading
comes from the scaling operation (3.15), which is needed in the process of resolution
of singularities. Since we restrict to rational numbers all properties related to integral
closure and finiteness come easily, see 1.6.
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We will use Q-Rees algebras in order to construct log-resolution of ideals in the
characteristic zero case. Along the paper we have specified which constructions and
results are valid in general or only in characteristic zero.

Section 1 is devoted to introduce the several algebras we have mentioned and
to see that they are “equivalent” up to integral closure. In section 2 we extend the
notion of Q-Rees algebra to sheaves and define the order function.

In section 3 we define all operations on algebras: integral closure, radical satu-
ration, differential saturation, scaling and the division by a hypersurface. This last
operation together with the function ord, defined for any Q-Rees algebra, are a key
point in order to construct a resolution algorithm. Except integral closure, all opera-
tions may be expressed easily in terms of generators.

In section 4 we define coefficient algebra and see its properties. The stability by
monoidal transformations 4.2.2 is valid in general, but the “maximal contact” (4.4)
holds only if characteristic of k is zero. We also prove, in this setting, theorem 4.6
which was proved first by W lodarczyk [W lo05]. This theorem ensures that coefficient
algebras do not depend on the choice of “maximal contact”.

Section 5 defines elimination algebras in the most direct way, just to allow com-
putations. See [VU07] for a more detailed discussion on elimination algebras and the
behavior with integral closure. Elimination algebras fail to have a good stability by
monoidal transformations, as illustrates example 5.3. On the other hand, if character-
istic of k is zero, then both coefficient algebra and elimination algebra are isomorphic
5.5 for the étale topology.

Finally in section 6 we construct an algorithm of resolution of Q-Rees algebras
which gives a log-resolution algorithm. We see in 6.9 that we construct the same
resolution for algebras with the same integral closure, see also [EV07].

The authors want to thank H. Kawanoue for useful suggestions. We also want to
thank to O. Villamayor, A. Bravo, A. Benito, M. L. Garćıa Escamilla, J. Schicho, H.
Hauser and D. Panazzolo for several mathematical conversations.

1. Q-Rees algebras. Fix R to be a noetherian ring over a field k. The charac-
teristic of the field k is arbitrary, unless specified.

We consider Rees algebras and extend this notion to a suitable definition of Rees
algebras over rational numbers.

Definition 1.1. [VU08] Let R be a noetherian ring. Consider the graded algebra:

R[T ] =
⊕

n∈N

RT n.

A Rees algebra in R is a graded subalgebra

J =
⊕

n∈N

JnT
n ⊂ R[T ]

such that J0 = R and J is finitely generated as R-algebra.

Equivalently we may define a Rees algebra as a collection of ideals {Jn}n∈N such
that:

1. J0 = R,
2. JmJn ⊂ Jm+n for any m,n ∈ N, and
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3. there exist elements f1, . . . , fr ∈ R and degrees n1, . . . , nr ∈ N, with fi ∈ Jni
,

i = 1, . . . , r, such that for any n ∈ N the ideal Jn is generated (as ideal) by
the set

{fi1 · · · fiℓ | ni1 + · · ·+ niℓ = n}.

We will be interested in considering the equivalence class of Rees algebras up to
integral closure.

Definition 1.2. Two Rees algebras (1.1) J1,J2 ⊂ R[T ] are equivalent if they
have the same integral closure as subrings of R[T ].

1.3. Let J = ⊕nJnT
n be a Rees algebra. For any n ∈ N set the ideal

In =
∑

m≥n

Jm.

It can be checked that I = ⊕nInT
n is a Rees algebra. In fact if {f1T n1 , . . . , frT

nr}
is a set of generators of the algebra J then

{fiT
m | i = 1, . . . , r, 0 ≤ m ≤ ni}

is a set of generators of I. In fact it can be checked that for any n ∈ N

In = 〈fi1 · · · fiℓ | ni1 + · · ·+ niℓ ≥ n〉 .

Note that the Rees algebra I satisfies the following property

(1.3.1) if n1 ≥ n2 then In1 ⊂ In2 .

In fact I is the smallest Rees algebra satisfying (1.3.1) and such that J ⊂ I. On the
other hand we have that J ⊂ I is a finite extension (i.e. the algebras J and I are
equivalent (1.2)). In order to prove the last sentence, it is enough to prove that if
f ∈ Jn and m ≤ n, then fTm is integral over J . We have that

f ∈ Jn =⇒ fm ∈ Jnm =⇒ fn ∈ Jnm

so that the element fTm fulfills the monic equation Zn − (fnT nm) = 0.

So that, up to integral closure, condition (1.3.1) may be added to our definition
of algebras.

Definition 1.4. An N-Rees algebra is a Rees algebra J (1.1) satisfying (1.3.1).
Equivalently, an N-Rees algebra is a collection of ideals {Jn}n∈N such that

1. J0 = R,
2. JmJn ⊂ Jm+n, for any m,n ∈ N,
3. if n ≤ m then Jm ⊂ Jn, and
4. there exist elements f1, . . . , fr and degrees n1, . . . , nr, with fi ∈ Jni

, i =
1, . . . , r, such that for any n ∈ N the ideal Jn is generated (as ideal) by the
set

{fi1 · · · fiℓ | ni1 + · · ·+ niℓ ≥ n}.
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1.5. If R is a regular local ring there is a well-defined notion of order of ideals
J ⊂ R, which can be extended to N-Rees algebras (see 2.4). In general the order will
be a rational number and we will be interested in algebras with order one. Algebras
with order one will allow to define inductive procedures in the process of resolution of
singularities. So that we will need to normalize algebras in order to have order one,
this procedure will be called scaling and it will lead naturally to consider graduation
over the rational numbers.

1.6. Set Q≥0 = {a ∈ Q | a ≥ 0}. We will consider the Q-graded algebra

Gr-Q(R) =
⊕

a∈Q≥0

RT a.

Note that this graded algebra is the limit of the N-graded algebras R[T
1
N ] for N ∈ N

Gr-Q(R) =
⋃

N∈N

R[T
1
N ].

So that every finite set of Gr-Q(R) is included in R[T
1
N ] for N big enough. This

condition will allow us to use properties of Rees algebras for finitely generated sub-
algebras of Gr-Q(R).

Definition 1.7. A Q-Rees algebra over R is a graded subalgebra

J =
⊕

a∈Q≥0

JaT
a ⊂ Gr-Q(R)

such that the collection of ideals {Ja}a∈Q≥0
satisfies the following properties:

1. J0 = R,
2. JaJb ⊂ Ja+b for all a, b ∈ Q≥0,
3. Jb ⊂ Ja if a ≤ b and
4. J is finitely generated, which means that there are elements f1, . . . , fr ∈ R

and degrees a1, . . . , ar ∈ Q≥0, with fi ∈ Jai
, i = 1, . . . , r, such that for any

a ∈ Q≥0 the ideal Ja is generated (as ideal) by the set

{fi1 · · · fiℓ | ai1 + · · ·+ aiℓ ≥ a}.

1.8. With the notation of 1.7, we say that the Q-Rees algebra is generated by
f1T

a1 , . . . , frT
ar .

Note that the Q-Rees algebra J is the smallest algebra satisfying properties (1),
(2) and (3) of 1.7 and containing the elements f1T

a1, . . . , frT
ar .

1.9. Note that the condition of being finitely generated may be expressed as
follows: There are homogeneous elements f1T

a1, . . . , frT
ar ∈ J and there is an integer

N such that
1. aiN is an integer for i = 1, . . . , r,
2. the finite set

{fiT
m
N | m ≤ aiN, i = 1, . . . , r}

generates J ∩R[T
1
N ] as an R-algebra, and
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3. for any a ∈ Q≥0 we have that Ja = J ⌈aN⌉
N

.

Where ⌈a⌉ denotes the smallest integer bigger than or equal to a.
In other words, a Q-Rees algebra J ⊂ Gr-Q(R) is equivalent to an N-Rees algebra

in R[T
1
N ], for big enough N , where we fill rational levels according to the rule Ja =

J ⌈aN⌉
N

, a ∈ Q≥0.

Note also that if J is a Q-Rees algebra and b ∈ Q≥0 then J ∩R[T b] is an N-Rees
algebra in R[T b].

Integral closure will be the criterion to be equivalent for Q-Rees algebras.

Definition 1.10. Two Q-Rees algebras J1 and J2 are equivalent if the Rees
algebras J1 ∩ R[T ] and J2 ∩ R[T ] have the same integral closure in R[T ] (i.e. they
are equivalent (1.2)).

Proposition 1.11. Let J1 and J2 be two Q-Rees algebras in Gr-Q(R). The
following statements are equivalent:

1. J1 and J2 are equivalent Q-Rees algebras (1.10).
2. For some b ∈ Q>0, the algebras J1 ∩ R[T b] and J2 ∩ R[T b] have the same

integral closure in R[T b].
3. For any b ∈ Q>0, the algebras J1 ∩ R[T b] and J2 ∩ R[T b] have the same

integral closure in R[T b].

Proof. It follows from the fact that all the extensions

R[TM ] ⊂ R[T ], R[T ] ⊂ R[T
1
N ], R[T

M
N ] ⊂ R[T

1
N ]

are finite for M,N ∈ N.

1.12. These algebraic structures, Rees algebras (1.1), N-Rees algebras (1.4) and
Q-Rees algebras (1.7) are “equivalent” up to integral closure.

First of all, it follows from 1.3 that Rees algebras (1.1) and N-Rees algebras (1.4)
are equivalent up to integral closure.

For the equivalence of N-Rees algebras and Q-Rees algebras, we check that we
can associate a Q-Rees algebra to every N-Rees algebra and vice-versa.

Fix a ring R, let I = ⊕nInT
n ⊂ R[T ] be an N-Rees algebra. Set I Gr-Q(R) =

J = ⊕aJaT
a ⊂ Gr-Q(R) as follows:

Ja = I⌈a⌉, ∀a ∈ Q≥0 .

It is clear that I Gr-Q(R) is a Q-Rees algebra.
Reciprocally, if J is a Q-Rees algebra then set I = J ∩R[T ], which is an N-Rees

algebra.
Now for an N-Rees algebra I, we have that I = (I Gr-Q(R))∩R[T ]. Reciprocally

if J is a Q-Rees algebra then J and (J ∩ R[T ]) Gr-Q(R) are equivalent Q-Rees
algebras (1.10).

Recently Rees algebras have been used in new approaches to resolution of singu-
larities in positive characteristic, see [Hir03], [Hir05], [VU07], [VU08]. On the other
hand, in [Kaw07] and [KM06] the authors define idealistic filtrations, which are collec-
tions of ideals indexed by real numbers with the same properties as a Q-Rees algebra
(1.7).

Definition 1.13. [Kaw07, 2.1.3.1] An idealistic filtration is a collection of ideals
J = {Ja}a∈R≥0

such that
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1. J0 = R,
2. JaJb ⊂ Ja+b for all a, b ∈ R≥0 and
3. Jb ⊂ Ja if a ≤ b.

We could also denote J = ⊕a∈R≥0
JaT

a.

1.14. The idealistic filtration generated by a subset L ⊂ R×R≥0 is the minimal
idealistic filtration containing the set L. An idealistic filtration is rationally and
finitely generated (r.f.g) if it is generated by a finite set in R ×Q≥0:

{f1T
a1, . . . , frT

ar}, a1, . . . , ar ∈ Q≥0 .

1.15. The three notions: Rees algebras, Q-Rees algebras and rationally and
finitely generated idealistic filtrations are “equivalent” up to integral closure.

This fact can be proved by constructing the Rees algebra corresponding to a
rationally and finitely generated idealistic filtration, see [Kaw07, 2.3.2.1] and [Kaw07,
2.3.2.2].

Alternatively, by 1.12 and 1.3 it is enough to see the equivalence between Q-Rees
algebras and rationally and finitely generated idealistic filtrations. And this follows by
considering Q-Rees algebras and rationally and finitely generated idealistic filtrations
generated by f1T

a1, . . . , frT
ar (1.8 and 1.14).

2. Sheaves. Let W be a smooth scheme over a (perfect) field k.

2.1. A sequence of coherent sheaves of ideals {In}n∈N, In ⊂ OW , defines a sheaf
of graded algebras I = ⊕nInT

n if I0 = OW and ImIn ⊂ Im+n for any m,n ∈ N.
We say that I = ⊕nInT

n is a Rees algebra over W if there is an affine open
covering {Ui}i∈Λ of W such that

I(Ui) =
⊕

n∈N

In(Ui)T
n is a finitely generated OW (Ui)-algebra

for any i ∈ Λ. Or equivalently, I(Ui) is a Rees algebra in the ring OW (Ui)[T ].

Analogously we could define, N-Rees algebras and Q-Rees algebras over W .

Definition 2.2. A Q-Rees algebra over W is denoted by

J =
⊕

a∈Q≥0

JaT
a

where {Ja}a∈Q≥0
is a collection of coherent sheaves of ideals Ja ⊂ OW such that:

1. J0 = OW ,
2. JaJb ⊂ Ja+b for all a, b ∈ Q≥0,
3. Jb ⊂ Ja if a ≤ b and
4. There exist an open covering of W , by affine open sets {Ui}i∈Λ such that
J (Ui) is a Q-Rees algebra in Gr-Q(OW (Ui)).

2.3. Let J be a Q-Rees algebra over W and consider an affine open set U ⊂W

such that J (U) is a Q-Rees algebra in Gr-Q(OW (U)). For any open set V ⊂ U and
for any point ξ ∈ U there are natural maps:

J (U)→ J (V ), J (U)→ Jξ.
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If f1T
a1, . . . , frT

ar ∈ J (U) are generators of J (U) as Q-Rees algebra (1.8) then it is
clear that the images of f1T

a1, . . . , frT
ar in J (V ) (resp. Jξ) are also generators of

the Q-Rees algebra J (V ) (resp. Jξ).

We say that J is the zero algebra at a point ξ if (Ja)ξ = 0 for all a ∈ Q>0. It
follows from definition 2.2 that if (Jb)ξ = 0 for some b ∈ Q>0 then (Ja)ξ = 0 for all
a ∈ Q>0.

Definition 2.4. Let J = ⊕aJaT
a be a Q-Rees algebra over W and let ξ ∈ W

be a point. Assume that J is not the zero algebra at ξ. Define the order of J at ξ:

ord(J )(ξ) = inf
a∈Q>0

ord(Ja)(ξ)

a

where ord(Ja)(ξ) denotes the order of the sheaf of ideals Ja at ξ

ord(Ja)(ξ) = max{n ∈ N | (Ja)ξ ⊂ m
n
ξ }

and mξ ⊂ OW,ξ is the maximal ideal of the local ring OW,ξ.
If J is the zero algebra at ξ we may set ord(J )(ξ) =∞.
We set the singular locus of J as the set

Sing(J ) = {ξ ∈W | ord(J )(ξ) ≥ 1}.

2.5. The order of J at any point ξ is always a rational number and it can be
computed from a finite set of generators. If f1T

a1, . . . , frT
ar ∈ Jξ are generators of

J at ξ then

ord(J )(ξ) = min

{

ord(f1)

a1
, . . . ,

ord(fr)

ar

}

.

It follows that ord(J ) : W → Q≥0 is an upper semicontinuous function. In particular
the singular locus Sing(J ) is a closed set.

2.6. The upper semicontinuous function ord(J ) will stratify Sing(J ) by locally
closed sets and one may focus to the maximum stratum, which is closed.

We say that a Q-Rees algebra J is simple if ord(J )(ξ) = 1 for any ξ ∈ Sing(J ).
We will see that, after a scaling operation (3.15) we may reduce to the simple

case.

3. Operations. A very important concept with Rees algebras is integral closure.
Given a Rees algebra J ⊂ OW [T ], the integral closure J̄ ⊂ OW [T ] of J in OW [T ]
is the Rees algebra generated by all the elements of OW [T ] that are integral over J .
Note that it is well-known that the integral closure is a finitely generated OW -algebra.

There is an open covering of W , such that for any open set U of the covering, an
element fT n ∈ OW (U)[T ] belongs to J̄ if and only if there exist m ∈ N and a monic
polynomial

p(Z) = Zm + a1Z
m−1 + · · ·+ am, with ai ∈ Jin, i = 1, . . . ,m

such that p(f) = 0.
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In fact we have that J is equivalent to another Rees algebra J1 if and only if
J̄1 = J̄ .

We may define the analogous notion for Q-Rees algebras.

Definition 3.1. Let J = ⊕aJaT
a be a Q-Rees algebra and let U be an open

set of W . An element fT a ∈ OW (U)[T ] is integral over J if there exist m ∈ N and a
monic polynomial

p(Z) = Zm + a1Z
m−1 + · · ·+ am, with ai ∈ Jia, i = 1, . . . ,m

such that p(f) = 0 ∈ OW (U).

We set the integral closure J̄ of J as the OW -algebra generated by all fT a

integral over J .

From the definition we can not say that J̄ is a Q-Rees algebra, since the property
of being finitely generated is not clear. However, this fact will follow from radical
saturation. This concept was defined in [Kaw07, 2.1.3.1] and we will see the connection
with [LJT74].

Definition 3.2. [LJT74] Let J = ⊕aJaT
a be a Q-Rees algebra over W . Fix a

point ξ ∈W . For an element f ∈ OW,ξ we set

νJ (f) = sup{a | fT a ∈ J }.

Note that νJ (f) may be infinite if f = 0.

3.3. With the previous notation, for any f ∈ OW,ξ consider the sequence

{

νJ (fn)

n

}∞

n=1

.

Using the same arguments as in [LJT74, 0.2.1] we may prove that this sequence
converges to some value in R ∪ {∞}. So that it makes sense to set

ν̄J (f) = lim
n→∞

νJ (fn)

n
.

Definition 3.4. Let J = ⊕aJaT
a be a Q-Rees algebra over W . An homogeneous

element fT a ∈ OW [T ] is radical over J if ν̄J (f) ≥ a.

The radical saturation of J is the OW -algebra generated by all fT a radical over
J . We denote the radical saturation of J as R(J ).

From the definition, the radical saturation may not be a Q-Rees algebra, since
the condition of being finitely generated is not immediate.

3.5. It can be proved that fT a is radical over J (3.4) if and only if there are
sequences {aℓ}∞ℓ=1 and {nℓ}∞ℓ=1 such that

• aℓ ∈ Q≥0, nℓ ∈ N for all ℓ,
• limℓ→∞ aℓ = a ∈ Q≥0, and
• fnℓT aℓnℓ ∈ J .
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We recall the definition of radical saturation for idealistic filtrations [Kaw07,
2.1.3.1]. An idealistic filtration is said to be radical saturated if:

(radical) fm ∈ Jam, f ∈ R,m ∈ N =⇒ f ∈ Ja

(continuity) f ∈ Jaℓ
, lim

ℓ→∞
aℓ = a =⇒ f ∈ Ja.

It follows that the two concepts: radical saturation of Q-Rees algebras (3.4) and
radical saturation of idealistic filtrations [Kaw07, 2.1.3.1] coincide.

Proposition 3.6. Let J be a Q-Rees algebra over W . The radical saturation
R(J ) is a Q-Rees algebra.

Proof. It follows from 3.5 and [Kaw07, 2.3.2.4] where it is proved that radical
saturation of a r. f. g. idealistic filtration is also a r. f. g. idealistic filtration. In fact
this result also appears in [LJT74, §4]. Both proofs use similar arguments inspired in
[Nag57].

By the equivalence 1.15 we conclude then that R(J ) is finitely generated and
then it is a Q-Rees algebra.

Proposition 3.7. The integral closure J̄ is a Q-Rees algebra. In fact J̄ = R(J ).

Proof. It follows from 3.6 and [Kaw07, 2.3.2.7]. See also [LJT74, §4].
The order function is well defined up to equivalence of Q-Rees algebras.

Proposition 3.8. Let J1 and J2 be two equivalent Q-Rees algebras (1.10). Then
for any ξ ∈W we have ord(J1)(ξ) = ord(J2)(ξ).

Proof. It follows from the fact that ord(J )(ξ) = ord(R(J ))(ξ), for any ξ ∈ W ,
and 3.7.

Another important operation on Q-Rees algebras is differential saturation. This
notion appears also for Rees algebras (see [VU08] and [VU07]) and for idealistic fil-
trations [Kaw07]. See also [Hir03].

Set Diffm
W to be the sheaf of differentials operators of order ≤ m. We will say that

a Q-Rees algebra is differentially saturated if it is stable by the action of differentials,
to be more precise:

Definition 3.9. Let J = ⊕aJaT
a be a Q-Rees algebra. We say that J is

differentially saturated if

Diffm
W (Ja) ⊂ Ja−m, ∀a ∈ Q≥0, ∀m ∈ N, a ≥ m.

If J is any Q-Rees algebra, we denote Diff(J ) to be the minimal Q-Rees algebra,
differentially saturated and containing J .

3.10. The Q-Rees algebra Diff(J ) always exists and it may be computed from
a set of generators of J . If f1T

a1 , . . . , frT
ar is a set of generators of J (U) (for some

suitable open set U), then a set of generators of Diff(J )(U) is

{D(fi)T
ai−ℓi | i = 1, . . . , r, D ∈ Diffℓi

W (U), ℓi ∈ Z≤ai
}.

Note that, since Diffm
W is a locally free sheaf of finite rank, we could consider a

finite set of generators for Diff(J )(U).
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Proposition 3.11. Let J be a Q-Rees algebra. If ξ ∈ Sing(J ) then ord(J )(ξ) =
ord(Diff(J ))(ξ).

If ξ 6∈ Sing(J ) then ord(Diff(J ))(ξ) = 0, or equivalently Diff(J )ξ = Gr-Q(OW ).

Proof. See also [VU08]. For the second fact you can see also [KM06, 1.1.2.1].
First of all assume ξ 6∈ Sing(J ), then there exist a ∈ Q>0 and f ∈ (Ja)ξ such that

ord(f) < a. We may assume that a ∈ N, since for any positive integer m, we have
fm ∈ (Jma)ξ and ord(fm) < ma. Then ord(f) ≤ a− 1 and there exist a differential
operator D ∈ Diffa−1

OW,ξ
such that D(f) ∈ OW,ξ is a unit (or equivalently ord(D(f)) =

0). By definition 3.9 D(f)T ∈ Diff(J )ξ and this implies that Diff(J )ξ = Gr-Q(OW ).
Now assume that ξ ∈ Sing(J ). Set α = ord(J )(ξ). For any f ∈ OW,ξ with

fT a ∈ J , any integer 0 ≤ k ≤ a − 1 and any differential operator D of order k, we
have

ord(D(f))

a− k
≥

ord(f)− k

a− k
≥

ord(f)

a
≥ 1

and we conclude that ord(J )(ξ) = ord(Diff(J ))(ξ). Note that the hypothesis ξ ∈
Sing(J ) is necessary in order to have ord(f) ≥ a in the chain of inequalities above.

Corollary 3.12. Sing(J ) = Sing(Diff(J )).

Definition 3.13. Let J1 and J2 be two Q-Rees algebras over W . We define
J1 ⊙ J2 as the Q-Rees algebra generated by J1 ∪ J2.

3.14. If f1T
a1, . . . , frT

ar are generators of J1 and g1T
b1 , . . . , gsT

bs are genera-
tors of J2 it is clear that

f1T
a1 , . . . , frT

ar , g1T
b1 , . . . , gsT

bs

are generators of J1 ⊙ J2.
The notation ⊙ appeared in [EV07]. The use of ⊙ instead of ⊕ was motivated

since the notation J1 ⊕ J2 could be ambiguous.

Definition 3.15. Given J and b ∈ Q>0 we could do a scaling on the levels of
J as follows:

J b =
⊕

a∈Q≥0

JaT
a
b .

3.16. Note that fT a ∈ J if and only if fT
a
b ∈ J b.

If f1T
a1 , . . . , frT

ar are generators of J then f1T
a1
b , . . . , frT

ar
b are generators of

J b.
Note also that the order of J b is multiplied by b by definition of the order function.

ord(J b)(ξ) = b ord(J )(ξ), ∀ξ ∈W.

Definition 3.17. Let J be a Q-Rees algebra over W and let ℓ ∈ Q≥0. Fix a
(smooth) hypersurface H ⊂W .

We say that I(H)ℓ divides J if Ja ⊂ I(H)⌈aℓ⌉ for any a ∈ Q≥0.
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Note that Ja = I(H)⌈aℓ⌉Ia for some ideal Ia. We set I(H)−ℓJ to be the Q-Rees
algebra generated by {IaT a | a ∈ Q≥0}.

3.18. Note that in general
⊕

a IaT
a is not a Q-Rees algebra since condition (3)

in 1.7 is not always satisfied.

3.19. Let H ⊂ W be a (smooth) hypersurface, denote νH the valuation associ-
ated to the hypersurface H .

If f1T
a1, . . . , frT

ar are generators of J then I(H)ℓ divides J if and only if
νH(fi) ≥ aiℓ for i = 1, . . . , r.

Set ℓH to be the supremum of all ℓ ∈ Q≥0 such that I(H)ℓ divides J . It follows
from the above characterization that

ℓH = min

{

νH(fi)

ai
| i = 1, . . . , r

}

.

3.20. Let J be a Q-Rees algebra, and let C ⊂ Sing(J ) be a smooth and closed
set. Let Π : W ′ → W be the monoidal transformation with center C. The total
transform of J is J ∗ = ⊕aJ

∗
aT

a, where J∗
a is the total transform of Ja. Note that

J ∗ is a Q-Rees algebra. Set H ⊂W ′ to be the exceptional divisor of Π.
Note also that I(H) divides J ∗. The Q-Rees algebra J ′ = I(H)−1J ∗ is called

the transform of J .
Let f1T

a1 , . . . , frT
ar be generators of J . Denote f∗

i the total transform of fi,
via the morphism OW → OW ′ . From the fact C ⊂ Sing(J ) it follows that f∗

i =
x⌈ai⌉gi for some gi ∈ OW ′ and where I(H) = (x). The transform J ′ is generated by
g1T

a1, . . . , grT
r.

3.21. Let E = {H1, . . . , HN} be a set of smooth hypersurfaces in W having
only normal crossings and let J = ⊕aJaT

a be a Q-Rees algebra over W .
For i = 1, . . . , r, set ℓHi

to be the maximum such that I(Hi)
ℓHi divides J (3.19).

Note that for any a ∈ Q≥0

Ja = I(H1)⌈aℓH1⌉ · · · I(HN )⌈aℓHN
⌉Ia

where Ia ⊂ OW is a sheaf of ideals.
Set I = E−1J to be the Q-Rees algebra generated by {IaT a | a ∈ Q≥0}. We will

call E−1J the non monomial part of J with respect to E.

3.22. Consider some point or some affine open set of W . Suppose that
f1T

a1 , . . . , frT
ar are generators of J and I(Hj) = (xj), j = 1, . . . , N . Set ci,j =

νHj
(fi), for i = 1, . . . , r and j = 1, . . . , N . We have

fi = x
ci,1
1 · · ·x

ci,N
N gi

where the equation gi 6∈ (xj) for any j = 1, . . . , N . Set c′i,j = ci,j−⌈aiℓHj
⌉. Note that

c′i,j ≥ 0 since ℓHj
= min{ ci,j

ai
| i = 1, . . . , r}. The Q-Rees algebra E−1J is generated

by

h1T
a1 , . . . , hrT

ar

where

hi = x
c′i,1
1 · · ·x

c′i,N
N gi, i = 1, . . . , r.
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4. Coefficient algebras. For any morphism V → W of smooth varieties we
have the natural morphism of sheaves OW → OV . We may also consider a morphism
Gr-Q(OW )→ Gr-Q(OV ).

Definition 4.1. Fix W a smooth variety of pure dimension and a Q-Rees algebra
J over W . If V ⊂W is a smooth subvariety of pure dimension, we set the coefficient
algebra of J with respect to V as follows

CoeffV (J ) = Diff(J ) Gr-Q(OV ).

4.2. It is well known that the coefficient algebra describes the same singular
locus as J . If V ⊂W is a smooth subvariety of W then

(4.2.1) Sing(J ) ∩ V = Sing(CoeffV (J )).

Moreover, equality 4.2.1 is preserved by transformations. To be more precise, set
A = CoeffV (J ) and consider a sequence of transformations (3.20):

(4.2.2)

W = W0 ←− W1 ←− W2 ←− · · · ←− WN

H1 H2 HN

J = J0 J1 J2 JN
V = V0 ←− V1 ←− V2 ←− · · · ←− VN

A = A0 A1 A2 AN

where for any i = 1, . . . , N ,
• Πi : Wi → Wi−1 is a monoidal transformation with center Ci−1 ⊂

Sing(Ji−1) ∩ Vi−1 ⊂Wi−1,
• Hi ⊂Wi is the exceptional divisor of Πi,
• Ji = I(Hi)

−1J ∗
i−1 is the transform of Ji−1,

• Vi is the strict transform of Vi−1 and
• Ai = I(Hi ∩ Vi)

−1A∗
i−1 is the transform of Ai−1.

Then we have the equality

Sing(JN ) ∩ VN = Sing(AN )

in fact inductively we have

Sing(Ji) ∩ Vi = Sing(Ai), i = 0, . . . , N.

This fact follows from 4.3.

Theorem 4.3. (Giraud) Let J be a Q-Rees algebra over W and W ′ → W be a
monoidal transformation with center C ⊂ Sing(J ).

Set D = Diff(J ) the differential saturation of J . Recall that Sing(J ) = Sing(D)
by 3.12. Denote by J ′ = I(H)−1J ∗ and D′ = I(H)−1D∗ the transforms of J and
D, respectively. Then

J ′ ⊂ D′ ⊂ Diff(J ′).

Proof. See [EV07].
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A key fact for proving resolution of singularities in characteristic zero is the ex-
istence (locally) of hypersurfaces V ⊂ W such that the singular locus of a simple
Q-Rees algebra J (2.6) is included in V .

Theorem 4.4. Assume that characteristic of the ground field k is zero.
Let J be a simple Q-Rees algebra (2.6) over W and ξ ∈ Sing(J ). There is an

open set ξ ∈ U ⊂W and a smooth hypersurface ξ ∈ V ⊂ U such that

(4.4.1) IU (V )T ⊂ Diff(J )|U

where IU (V ) denotes the ideal sheaf defined by V in U .

Proof. See [EV07]. The algebra J is simple, so that there is an equation fT b ∈ J
with ord(f) = b ∈ Z. Since we are in characteristic zero, there is a differential operator
D of order b − 1 such that D(f) has order one. Note that D(f)T ∈ Diff(J ). At a
suitable neighborhood the equation D(f) defines a smooth hypersurface V .

Theorem 4.4 does not hold in positive characteristic case and this is one of the
main obstructions to find a proof in the general case.

4.5. Let J be a simple Q-Rees algebra over W . Assume that there exist a
smooth hypersurface V ⊂ W such that I(V )T ⊂ Diff(J ). It follows from 4.4 that
this assumption may be always satisfied in all open sets of a suitable open covering
of W , over a field of characteristic zero.

Note that I(V )T ⊂ Diff(J ) implies that Sing(J ) ⊂ V . Set A = CoeffV (J ), by
4.2.1 we have Sing(J ) = Sing(A). In fact for a sequence of transformations as in 4.2.2
we have for any i = 1, . . . , N :

• I(Vi)T ⊂ Diff(Ji),
• Sing(Ji) ⊂ Vi and
• Sing(Ji) = Sing(Ai).

Theorem 4.4 allows to choose hypersurfaces V with the property 4.4.1. This is the
inductive argument in the proof of resolution of singularities. We replace the simple
algebra J in W with the algebra CoeffV (J ) in V . But we have to prove that the total
procedure will be independent of the choice of V . This problem was originally solved
by Hironaka, by considering an equivalence relation of objects and proving that the
procedure of resolution depends only on the equivalence class of the algebra J .

An alternative path is the solution given by W lodarczyk [W lo05].

Theorem 4.6. Let J be a simple Q-Rees algebra. Fix a point ξ ∈ Sing(J ).
Assume that V1 and V2 are two smooth hypersurfaces of W , ξ ∈ V1 ∩ V2. Then there
is an étale neighborhood U of ξ in W and an automorphism ϕ : U → U such that

ϕ(Diff(J )|U ) = Diff(J )|U , ϕ(V1) = V2.

Proof. We repeat the proof of [W lo05] in terms of Q-Rees algebras.
Set I(Vi) = (ui) for some ui ∈ OW,ξ, i = 1, 2. There are x2, . . . , xd ∈ OW,ξ such

that u1, x2, . . . , xd and u2, x2, . . . , xd are both regular systems of parameters at OW,ξ.

Consider the automorphism ϕ♯ of ÔW,ξ sending u1 to u2 and fixing x2, . . . , xd.
Note that this automorphism can be lifted to a suitable étale neighborhood. But,
for simplification, we will consider all ideals in the completion ÔW,ξ. Denote Ĵ =

J Gr-Q(ÔW,ξ).

Let fT a ∈ Diff(J )ξ. Consider the image of f in the completion f ∈ ÔW,ξ,
note that f is a power series f = F (u1, x2, . . . , xd), then ϕ♯(F (u1, x2, . . . , xd)) =



264 R. BLANCO AND S. ENCINAS

F (u2, x2, . . . , xd). By assumption uiT ∈ Diff(Ĵ ), i = 1, 2, set h = u2 − u1. We have
F (u2, x2, . . . , xd) = F (u1 + h, x2, . . . , xd) and

F (u1 + h, x2, . . . , xd) =

∞
∑

i=0

hi 1

i!

∂iF

∂ui
1

(u1, x2, . . . , xd).

Now note that hiT i ∈ Diff(Ĵ ) for all i ≥ 0, and FT a ∈ Diff(Ĵ ) implies that
∂iF

∂ui
1

T a−i ∈ Diff(Ĵ ) for 0 ≤ i < a. We conclude ϕ♯(f)T a ∈ Diff(Ĵ ) and then

ϕ♯(f)T a ∈ Diff(J )ξ at a suitable étale neighborhood.

5. Elimination algebras. Villamayor has introduced in the paper [VU07] the
concept of elimination algebra. The coefficient algebra is defined for an inclusion
V ⊂W and the elimination algebra will be defined for a smooth morphism W → V .
In characteristic zero both algebras will encode the same information.

Definition 5.1. Let J be a Q-Rees algebra over W , with pure dimension
d = dim(W ). Let V a regular algebraic variety of pure dimension d−1 and β : W → V

be a smooth morphism.
Consider the natural sheaf homomorphism OV → OW , which induces an homo-

morphism Gr-Q(OV )→ Gr-Q(OW ). The elimination algebra of J in V is

RV (J ) = J ∩Gr-Q(OV ).

The elimination algebra has good properties when the algebra J is simple and
differentially saturated. In fact in [VU07] the elimination algebra is only defined for
simple algebras saturated by the relative differentials with respect to the morphism
β. Note also that in [VU07] the elimination algebra is constructed using a universal
algebra in terms of symmetric polynomials and after it is proved the equivalence with
definition 5.1. Definition as in [VU07] allows to prove properties related to integral
closure.

The following theorem proves that singular locus of elimination algebra and the
original algebra may be identified.

Theorem 5.2. [VU07] Let J be a simple Q-Rees algebra over W , and let β :
W → V be a smooth morphism, dimV = dimW − 1. Assume that J = Diff(J ) then

Sing(RV (J )) = β(Sing(J )).

Moreover, β is 1-1 between the points of Sing(RV (J )) and β(Sing(J )).

Unfortunately the equality in 5.2 does not hold, in general, after monoidal trans-
formation.

Example 5.3. Consider a field k of characteristic two. Set W = Spec(k[x, y, z]),
V = Spec(k[y, z]) and β : W → V the usual projection. Consider the Q-Rees algebra
J generated by (x2 + y2z)T 2. The differential saturation is generated by

(x2 + y2z)T 2, y2T.

The elimination algebra of the differential saturation A = RV (Diff(J )) is generated
by y2T .
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Now consider the blowing-up with center at the origin of W and consider the
affine chart where the ideal of the exceptional divisor is z. The transform J1 of J
is generated by (x2 + y2z)T 2. The transform A1 of the elimination algebra A is
generated by y2zT . Note that Sing(J1) is a line and Sing(A1) is a union of two lines
with

Sing(J1) ⊂ Sing(A1).

If the characteristic of k is zero then equality in theorem 5.2 is stable by monoidal
transformation. In fact, after an étale extension, the coefficient and elimination alge-
bra are isomorphic.

Remark 5.4. Given X a topological space and Y a subspace of X . Remember
that a retraction r : X → Y is a continuous map such that the restriction of r to Y

is the identity map on Y .

Theorem 5.5. Assume that the characteristic of the ground field k is zero.

Let J be a simple Q-Rees algebra. Fix a closed point ξ ∈ Sing(J ). There is
an étale neighborhood of ξ, U in W , a smooth hypersurface V ⊂ U and a retraction
β : U → V such that

CoeffV (J |U ) = RV (Diff(J |U )).

Proof. By theorem 4.4 there is an equation z ∈ OW,ξ of order one and with
zT ∈ Diff(J ). Consider x2, . . . , xd ∈ OW,ξ such that z, x2, . . . , xd is a regular system

of parameters. Set Ĵ = J Gr-Q(ÔW,ξ). We will prove that

Coeff V̂ (Ĵ ) = RV̂ (Diff(Ĵ ))

where V is the hypersurface defined by z = 0. Note that we are considering ÔW,ξ as the
power series ring k′[[z, x2, . . . , xd]] and OV̂ ,ξ as the power series ring k′[[x2, . . . , xd]],

where k′ ⊃ k is the residue field at ξ. The retraction to V̂ corresponds to the inclusion
of those power series rings.

The inclusion RV̂ (Diff(Ĵ )) ⊂ CoeffV̂ (Ĵ ) is now clear.

Assume that fT b ∈ Ĵ . We can express f as

f = a0(x) + a1(x)z + a2(x)z2 + · · ·+ ab−1(x)zb−1 + ab(x, z)zb

where ai(x) ∈ k′[[x2, . . . , xd]], for i = 0, . . . , b − 1 and ab(x, z) ∈ k′[[z, x2, . . . , xd]].
Note that a0(x)T b ∈ CoeffV̂ (Ĵ ).

It is enough to prove that a0(x)T b ∈ Diff(Ĵ ). In fact we will see by descending
induction that ai(x)T b−i ∈ Diff(Ĵ ), for i = 0, . . . , b− 1.

Recall that zT ∈ Diff(Ĵ ) and then

∂b−1f

∂zb−1
= (b− 1)!



ab−1(x) + z

b−1
∑

j=0

(

b

j + 1

)

∂jab(x, z)

∂zj
zj

j!



 =⇒ ab−1(x)T ∈ Diff(Ĵ ).
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Fix i < b − 1, assume that aj(x)T b−j ∈ Diff(Ĵ ) for j = i + 1, . . . , b − 1. It follows
from the expression

∂if

∂zi
= i!



ai(x) +

b−1
∑

j=i+1

(

j

i

)

aj(x)zj−i + zb−i

i
∑

j=0

(

b

i− j

)

∂jab(x, z)

∂zj
zj

j!





that ai(x)T b−i ∈ Diff(Ĵ ), as required.

6. Algorithm of resolution in characteristic zero case. Along this section
we assume that the characteristic of the field k is zero.

We will describe here an algorithm of resolution for Q-Rees algebras. It is inspired
in [EH02].

Definition 6.1. Let J be a Q-Rees algebra over W . Assume that E is a set of
hypersurfaces of W having only normal crossings.

A resolution of J over (W,E) is a sequence of monoidal transformations:

(6.1.1) (W,E) = (W0, E0)←− (W1, E1)←− · · · ←− (WN , EN )

such that, for i = 0, . . . , N − 1
• If Ji is the transform of J in Wi then Wi+1 → Wi is the monoidal transfor-

mation with center Ci ⊂ Sing(Ji),
• Ci has normal crossings with Ei,
• Ei+1 consists of all strict transforms of Ei and the exceptional divisor of
Wi+1 →Wi and
• Sing(JN ) = ∅.

A log-resolution of an ideal J ⊂ OW can be achieved by a resolution of the Q-Rees
algebra generated by JT .

We will construct the sequence 6.1.1 inductively on the number of blowing-ups
and the dimension d of W .

6.2. At every step we will define an upper semicontinuous function c̥
(d)
i : Wi →

Λ where Λ = ((Q≥0 ∪{∞})× Z≥0)N is ordered lexicographically. The function c̥
(d)
i

will depend on the previous steps, say the functions c̥
(d)
0 , . . . , c̥

(d)
i−1.

In fact the situation is local. If ξi ∈ Wi, the definition of the value c̥i(ξi) is
local on the sequence 6.1.1. It depends only on the values of c̥0(ξ0), . . . , c̥i−1(ξi−1),
where ξ0, . . . , ξi−1 are the images of ξi at W0, . . . ,Wi−1, respectively, and on the stalks
J0,ξ0 , . . . ,Ji−1,ξi−1 .

Each center Ci ⊂Wi will be the set of points where the function c̥
(d)
i is maximum:

Ci = Max c̥
(d)
i = {ξ ∈Wi | c̥

(d)
i (ξ) = max c̥

(d)
i }.

Moreover, it can be proved that sequence 6.1.1 together with functions c̥ have the
following properties:

1. Ci = Max c̥
(d)
i ,

2. max c̥
(d)
0 > max c̥

(d)
1 > · · ·max c̥

(d)
N−1 and

3. if ξi ∈ Wi \ Ci then ξi identifies with a point ξi+1 ∈ Wi+1 and c̥
(d)
i (ξi) =

c̥
(d)
i+1(ξi+1).
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6.3. We will require also a stability property with smooth morphisms.
Let J be a Q-Rees algebra over (W,E), let W ′ →W be a smooth morphism. Set

E′ to be the set of hypersurfaces of W ′ obtained by the pullback of E. Set J ′ to be
the Q-Rees algebra obtained also by pullback.

In this situation we have two sequences, say the resolutions of J and J ′.
Denote the resolution of J :

(6.3.1)

(W0, E0) ←− (W1, E1) ←− · · · ←− (WN , EN )
J0 J1 JN

c̥
(d)
0 (J ) c̥

(d)
1 (J )

where c̥
(d)
i (J ) : Wi → Λ, i = 0, . . . , N − 1, are the functions associated to the

resolution of J .
On the other hand denote the resolution of J ′:

(6.3.2)

(W ′
0, E

′
0) ←− (W ′

1, E
′
1) ←− · · · ←− (W ′

N , E′
N ′)

J ′
0 J ′

1 J ′
N ′

c̥
(d′)
0 (J ′) c̥

(d′)
1 (J ′)

where c̥
(d′)
i (J ′) : W ′

i → Λ, i = 0, . . . , N ′ − 1, are the functions associated to the
resolution of J ′.

The stability property says that the sequence 6.3.2 is the pullback, via W ′ →W ,
of the sequence 6.3.1; and functions take the same values

c̥
(d′)
i (J ′)(ξ′) = c̥

(d)
i (J )(ξ)

for any ξ′ ∈ W ′
i and any i = 0, 1, . . . , N ′ − 1. Where ξ′ ∈W ′

i maps to ξ ∈Wi.

6.4. Dimension one case. If dimW = 1, the singular locus J is a finite

number of points in W . We set c̥
(1)
0 = ((ord(J ), 0), (0, 0), . . .). The blowing-up

with center C0 = Max c̥
(1)
0 , W1 → W0 = W , is an isomorphism, but the transform

J1 is a different Q-Rees algebra. Note that J1 = I(C0)−1J ∗ and if ξ ∈ C0 then
ord(J1)(ξ) = ord(J0)(ξ)− 1.

If Sing(J1) 6= ∅ then max c̥
(1)
1 ≥ ((1, 0), (0, 0), . . .). Set c̥

(1)
1 =

((ord(J1), 1), (0, 0), . . .) and continue with this procedure. It is easy to prove that
we obtain a sequence as in 6.1.1 with the required properties in 6.2.

6.5. In what follows we will fix a dimension d > 1 and assume that we have
constructed resolution of Q-Rees algebras over varieties of dimension d − 1. The
constructed procedure satisfies properties in 6.1 and 6.2, and also stability property
6.3 for smooth morphisms of relative dimension zero.

6.6. Initial step. Fix a point ξ0 ∈ Sing(J0). We construct the value c̥
(d)
0 (ξ0)

as follows:
Set ω = ω

(d)
ξ0,0

= ord(J0)(ξ0) and set

Iξ0,0 = J0, Pξ0,0 = I
1
ω

ξ0,0
, Tξ0,0 = Pξ0,0 ⊙ Eξ0,0

where Eξ0,0 is the Q-Rees algebra generated by {I(H)T | H ∈ E0, ξ0 ∈ H}.
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The Q-Rees algebra Pξ0,0 has order one at ξ0. We may consider an open neigh-
borhood of ξ0 such that the algebra Pξ0,0 is simple. By 4.4 we could consider a

more suitable neighborhood U in order to choose a smooth hypersurface W
(d−1)
0 ⊂ U

satisfying 4.4.1. Set J
(d−1)
ξ0,0

= Coeff
W

(d−1)
0

(Tξ0,0).

If J
(d−1)
ξ0,0

= 0 then we set c̥
(d−1)
0 = ((∞, 0), (0, 0), . . .).

If J
(d−1)
ξ0,0

6= 0 then, by induction (6.5), the value c̥
(d−1)
0 (ξ0) associated to J

(d−1)
ξ0,0

and (W
(d−1)
0 , E

(d−1)
0 ) is already defined, where we set E

(d−1)
0 = ∅.

In any case, we may set

c̥
(d)
0 (ξ0) = ((ω

(d)
ξ0,0

, 0), c̥
(d−1)
0 (ξ0))

where the second component is 0 because at the beginning there are no exceptional
divisors. We will define this component in 6.8.1.

The value c̥
(d)
0 (ξ0) is well-defined and does not depend on the choice of the

hypersurface V . This follows from 4.6 and property 6.3 applied to V and smooth
morphisms of relative dimension zero.

With this procedure we define a function c̥
(d)
0 : W0 → Λ. The upper semiconti-

nuity follows by the upper semicontinuity of functions ord and c̥
(d−1)
0 .

The closed set C0 = Max c̥
(d)
0 is smooth by the inductive assumption on the

dimension d− 1.
On the other hand, C0 has only normal crossings with E0 by the definition of T0.

6.7. Step i. Assume now that d = dimW > 1. And suppose that we have
already constructed the first i steps of the sequence 6.1.1.

(6.7.1) (W0, E0)←− (W1, E1)←− · · · ←− (Wi, Ei)

and the functions

c̥
(d)
0 , c̥

(d)
1 , . . . , c̥

(d)
i−1

satisfying properties in 6.1 and 6.2, and also stability property 6.3 for smooth mor-
phisms of relative dimension zero.

For any j = 0, . . . , i− 1, the algebra Jj is the transform of J0 in Wj . We denote
by Ej,0 to be the set of strict transforms of E0 in Wj . Note that Ej,0 ⊂ Ej . We set
the non-monomial part of Jj

(6.7.2) Ij = (Ej \ Ej,0)−1Jj .

For any point ξi ∈ Wi we denote ξj ∈Wj , j = 0, . . . , i− 1 to be the image of ξi in Wj .

By construction the first coordinate of the c̥
(d)
j (ξj) is ω

(d)
ξj ,j

= ord(Ij)(ξj). We
have the chain of inequalities

ω
(d)
ξ0,0
≥ ω

(d)
ξ1,1
≥ · · · ≥ ω

(d)
ξi−1,i−1.

6.8. With the situation as in 6.7 we want to define the function c̥
(d)
i : Wi → Λ.
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Fix a point ξi ∈ Wi. Set Ii = (Ei \ Ei,0)−1Ji to be the non-monomial part and

set ω
(d)
ξi,i

= ord(Ii)(ξi). We have the inequalities

ω
(d)
ξ0,0
≥ ω

(d)
ξ1,1
≥ · · · ≥ ω

(d)
ξi−1,i−1 ≥ ω

(d)
ξi,i

.

First note that if ω
(d)
ξi,i

= 0 then the algebra Ji reduce to a monomial and it is easy to

define c̥
(d)
i (ξi) in order to enlarge 6.7.1 (locally at ξi) to a resolution.

So that we may assume ω
(d)
ξi,i

> 0. Set j0 the minimum index such that

ω
(d)
ξj0 ,j0

= · · · = ω
(d)
ξi−1,i−1 = ω

(d)
ξi,i

.

Denote by Ei,j0 to be the set of strict transforms of Ej0 in Wi, Ei,j0 ⊂ Ei. Define

(6.8.1) nξi,i = #{H ∈ Ei,j0 | ξi ∈ Ei,j0}.

If ω = ω
(d)
ξi,i

we set

Pξi,i = I
1
ω

i ⊙ Ji, Tξi,i = Pxi,i ⊙ Eξi,i

where Eξi,i is the Q-Rees algebra generated by {I(H)T | H ∈ Ei,j0 , ξi ∈ H}.
The order of Pξi,i at ξi is one, so that there is an open neighborhood U where Pξi,i

is simple. By 4.4 we could shrink U and choose a smooth hypersurface W
(d−1)
i ⊂ U

such that I(W
(d−1)
i )T ⊂ Diff(Pξi,i)|U .

Set E
(d−1)
i = Ei \ Ei,j0 and J

(d−1)
i = Coeff

W
(d−1)
i

(Tξi,i).

If J
(d−1)
i = 0 then we set c̥

(d−1)
i (ξi) = ((∞, 0), (0, 0), . . .).

If J
(d−1)
i 6= 0 then by induction hypothesis we may consider the resolution of

J
(d−1)
j0

in W
(d−1)
j0

. And we set

c̥
(d)
i (ξi) = ((w

(d−1)
ξi,i

, nξi,i), c̥
(d−1)
i (ξi)).

The function c̥
(d)
i is upper semicontinuous by construction and the upper semi-

continuity of c̥
(d−1)
i .

In order to prove that the center Ci = Max c̥
(d)
i is smooth, note that

if c̥
(d−1)
i (Ci) = ((∞, 0), (0, 0), . . .) then Ci = W

(d−1)
i . If c̥

(d−1)
i (Ci) 6=

((∞, 0), (0, 0), . . .) then Ci = Max c̥
(d−1)
i and it is smooth by induction hypothe-

sis.

6.9. Given a Q-Rees algebra J we have constructed a sequence 6.1.1 and

functions c̥
(d)
i , i = 0, . . . , N − 1 as in 6.2.

Assume that we have two equivalent Q-Rees algebras J and J ′ (1.10). Then
associated to J and J ′ are two sequences as in 6.1.1, say:

(W,E) = (W0, E0)←− (W1, E1)←− · · · ←− (WN , EN ).(6.9.1)

(W,E) = (W ′
0, E

′
0)←− (W ′

1, E
′
1)←− · · · ←− (W ′

N ′ , E′
N ′).(6.9.2)

We also have functions c̥
(d)
0 , . . . , c̥

(d)
N , associated to J , and c̥′0

(d)
, . . . , c̥′N ′

(d)
, as-

sociated to J ′.
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We claim that both sequences are equal and moreover the functions are equal:

N = N ′ and c̥
(d)
i = c̥′i

(d)
, i = 0, . . . , N − 1.

To prove our claim, it is enough to see that all operations involved are stable by
integral closure:

We may proceed by induction on i = 0, . . . , N − 1. If Jj and J ′
j , j = 0, . . . , i are

equivalent and the sequences in 6.9.1 and 6.9.2 coincide for the first i steps, then

• the algebras Ij and I ′j defined as in 6.7.2 are equivalent,
• the algebras Pξi,i, Tξi,i and P ′

ξi,i
, T ′

ξi,i
defined as in 6.8 are, respectively,

equivalent.

Finally the centers Ci = C′
i coincide and the transforms Ji+1 and J ′

i+1 are equivalent.
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