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COMPLEX PRODUCT MANIFOLDS AND BOUNDS OF

CURVATURE
∗

LUEN-FAI TAM† AND CHENGJIE YU‡

Abstract. Let M = X × Y be the product of two complex manifolds of positive dimension.
In this paper, we prove that there is no complete Kähler metric g on M such that: either (i) the
holomorphic bisectional curvature of g is bounded by a negative constant and the Ricci curvature is
bounded below by −C(1 + r2) where r is the distance from a fixed point; or (ii) g has nonpositive
sectional curvature and the holomorphic bisectional curvature is bounded above by −B(1 + r2)−δ

and the Ricci curvature is bounded below by −A(1+r2)γ where A, B, γ, δ are positive constants with
γ + 2δ < 1. These are generalizations of some previous results, in particular the result of Seshadri
and Zheng [8].
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1. Introduction. In [8], Seshadri and Zheng proved the following result:

Theorem 1.1. Let M = X × Y be the product of two complex manifolds of
positive dimension. Then M does not admit any complete Hermitian metric with
bounded torsion and holomorphic bisectional curvature bounded between two negative
constants.

In particular, there is no complete Kähler metric on M with holomorphic bisec-
tional curvature bounded between two negative constants. For earlier results in this
direction see [11, 15, 16, 7]. The result of Seshadri-Zheng has been generalized by
Tosatti [10] to almost-Hermitian manifolds.

On the other hand, there is an open question whether the assumption on the
lower bound of the curvature can be removed. In fact, it is an open question raised by
N. Mok (see [8]) whether the bidisc admit a complete Kähler metric with holomorphic
bisectional curvature bounded from above by -1.

In this work, by using a local version of the generalized Schwartz lemma of Yau [14]
and an Omori-Yau type maximum principle of Takegoshi [9], we prove the following:

Theorem 1.2. Let M = Xm × Y n be the product of two complex manifolds
of positive dimension. Then, there is no complete Kähler metric on M with Ricci
curvature ≥ −A(1 + r)2 and holomorphic bisectional curvature ≤ −B, where A and
B are some some positive constants, and r(x, y) = d(o, (x, y)) is the distance of (x, y)
and a fixed point o ∈ M .

On the other hand, Seshadri [7] has constructed a complete Kähler metric on Cn

with negative curvature. It seems that the assumption on the upper bound of the
curvature in Theorem 1.1 is necessary. However, one can also relax the upper bound
of the curvature as follows:
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Theorem 1.3. Let M = Xm × Y n be the product of two complex manifolds
of positive dimension. Then, there is no complete Kähler metric on M with Ricci
curvature ≥ −A(1 + r2)γ , holomorphic bisectional curvature ≤ −B(1 + r2)−δ, and
nonpositive sectional curvature, where γ ≥ 0, δ > 0 such that γ + 2δ < 1, A, B are
some positive constants, and r(x, y) = d(o, (x, y)) is the distance of (x, y) and a fixed
point o ∈ M .

Our method relies on a simple observation. Suppose there is a Hermitian metric
g with negative holomorphic bisectional curvature on M = X ×Y . Let q be any fixed
point in Y . Then the holomorphic vector bundle V over Xq := X × {q}, with fibre

V(x,q) = T 1,0
q Y ⊂ T 1,0

(x,q)M = T 1,0
x X ⊕T 1,0

q Y , as a subbundle of T 1,0M |Xq
, is negative.

However, V = T
(1,0)
q Y ×Xq is a trivial vector bundle, and hence have nonzero global

holomorphic sections. Hence the question reduces to the question on the existence of
nontrivial global holomorphic sections on the negative vector bundle V . When X is
compact, then one can conclude easily that this is impossible (See Kobayashi-Wu [6]).
Hence X × Y does not have a Kähler metric with negative holomorphic bisectional
curvature. This result was first proved by Zheng [16] using different method, and was
first proved by Yang [12] under the stronger assumption that g is Kähler. Here the
metric is not even assumed to be complete.

When X is noncompact and curvature bounds are relaxed, we can only have
vanishing theorem with some restriction on the growth of the global section. Con-
trolling the growth of the global section can be done by a local version of Schwartz
lemma. Moreover, we need some geometric condition on Xq, for example the valid-
ity of Omori-Yau type maximum principle on Xq. This is guaranteed by a volume
estimate of Xq and a theorem of Takegoshi [9].

The paper is organized as follows: In section 2, we will prove Theorem 1.2 and in
section 3 we will prove Theorem 1.3.

2. Proof of Theorem 1.2. Before we prove the theorem, we need several lem-
mas. First, we have the following local version of the Schwartz lemma by Yau [14].
See also [2, Theorem 2.1].

Lemma 2.1. Let (Mm, g) and (Nn, h) be two complete Kähler manifolds with
Kähler forms ωg and ωh respectively. Let f be a holomorphic map from M to N .
Let o ∈ M and let R > 0. Suppose the Ricci curvature of Bo(2R) is bounded from
below by −K and the holomorphic bisectional curvature at every point in f(Bo(2R))
is bounded above by −B where K and B are positive constant. Then on Bo(R),

(2.1) f∗ωh ≤ C ·
K + R−2

(

1 + K
1
2 R coth(K

1
2 R)

)

B
ωg

for some positive constant C depending only on m.

Proof. Let u = ‖∂f‖2 which is half the energy density of f . It is clear that
f∗ωh ≤ ‖∂f‖2ωg. u satisfies the following inequality on Bo(2R): (See [4], [14])

(2.2)
1

2
∆u ≥ −Ku + Bu2.

Let η ≥ 0 be a smooth function on R such that (1) η(t) = 1 for t ≤ 1, (2) η(t) = 0

for t ≥ 2, (3) −C1 ≤ η′/η
1
2 ≤ 0 for all t ∈ R, and (4) |η′′(t)| ≤ C1 for all t ∈ R for

some absolute constant C1 > 0. Let φ = η(r/R).
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Suppose φu attains maximum at x̄ ∈ Bo(2R). We can assume that φ(x̄) > 0
otherwise u(x̄) = 0 for any x ∈ Bo(R) and we are done. Using an argument of Calabi
as in [3], we may assume that φu is smooth at x̄. Then, we have (1) ∇(φu)(x̄) = 0
which implies that at x̄, ∇u = −uφ−1∇φ, (2) ∆(φu)(x̄) ≤ 0. Hence at x̄, we have:

0 ≥∆(φu)

=φ∆u + 2〈∇φ,∇u〉 + u∆φ

=φ∆u + 2〈∇φ,−uφ−1∇φ〉 + u∆φ

=φ∆u − 2uR−2

∣

∣

∣

∣

(η′)2

η

∣

∣

∣

∣

+ u
(

R−1η′∆r + R−2η′′
)

≥φ(−2Ku + 2Bu2) − C2R
−2

(

1 + K
1
2 R coth(K

1
2 R)

)

u,

(2.3)

where C2 is a positive constant depending only on m. Here we have used (2.2), the
properties of η and the Laplacian comparison [5]. Hence

2B(φu)2(x̄) ≤
[

2K + C2R
−2

(

1 + K
1
2 R coth(K

1
2 R)

)]

(φu)(x̄),

and so

sup
Bo(R)

u ≤ sup
Bo(2R)

φu = (φu)(x̄) ≤
2K + C2R

−2
(

1 + K
1
2 R coth(K

1
2 R)

)

2B
.

From this the lemma follows.
Before we state the next lemma, let us introduce some notations. Let M = X×Y

and let o = (p, q) ∈ X × Y be a fixed point. For any x ∈ X , let Yx = {x} × Y with
induced metric denoted as gx and for any y ∈ Y , let Xy = X × {y} with induced
metric denoted as gy.

Lemma 2.2. Let M , X, Y as in Theorem 1.2. Suppose there is a complete
Kähler metric on M with Ricci curvature bounded from below by −A(1 + r)2 and
with holomorphic bisectional curvature bounded from above by −B where A and B are

positive constants. Let o = (p, q) ∈ X × Y be a fixed point. Let V
Xq

p (r) be the volume
of the geodesic ball of radius r with center at p with respect to the induced metric gq.
Then

V
Xq

p (r) ≤ C1 exp(C2r
2)

for some constants C1 and C2 independent of r.

Proof. Let x0 ∈ X be any point. Consider the projection π′′
x0

: X × Y → Yx0

such that π′′
x0

(x, y) = (x0, y). Note that the holomorphic bisectional curvature of Yx0

is still bounded above by −B. By Lemma 2.1, there is a constant C1 independent of
x0 such that

(2.4) (π′′
x0

)∗(gx0)|(x,y) ≤ C1 (1 + r(x, y))2 g|(x,y)

for all (x, y). Similarly, if we choose C1 large enough, we also have:

(2.5) (π′
y0

)∗(gy0)|(x,y) ≤ C1 (1 + r(x, y))
2
g|(x,y)

for any y0 ∈ Y , and (x, y) ∈ M where π′
y0

is the projection from M onto Xy0
.
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Let γ be any smooth curve in Yp with length less than 1 from (p, q). Then by
(2.4), there exists C′

1 > 0 such that for any (x, q) ∈ Xq, the length L(π′′
x ◦ γ) satisfies:

L(π′′
x ◦ γ) ≤ C′

1L(γ).

Hence there is ρ > 0 such that for R > 1 if Bp(ρ) is the geodesic ball in Yp with radius
ρ and center at (p, q), then πx(Bp(ρ)) ⊂ Bo(2R) for all (x, q) ∈ Bo(R).

On the other hand, by (2.5), the Jacobian J(π′
q) of π′

q at (x, y) satisfies:

(2.6) J(π′
q)(x, y) ≤ C2 (1 + r(x, y))

2m

for some constant C2 for all (x, y).
Now, let R > 1 be any constant. Let dVx be the volume element of Yx and dVy

be the volume element of Xy. By the co-area formula (see [1]), we have

Vo(2R) =

∫

M

χBo(2R)dVg

=

∫

Xq

∫

y∈Yx

χBo(2R)|J(π′
q)|

−1(x, y)dVxdVq

≥C−1
2 (1 + R)−2m

∫

(x,q)∈Bo(R)

∫

π′′

x (Bp(ρ))

dVxdVq

≥C3(1 + R)−2m(1 + R)−2nV p(ρ)V q(R)

(2.7)

for some constant C3 > 0 for all R by (2.4). Here V p(ρ) is the volume of Bp(ρ) in Yp

and V q(R) is the volume of the geodesic ball in Xq with radius R and center at (p, q).
By volume comparison, we have Vo(2R) ≤ exp(C(1 + R)2) for some constant C.

From this and (2.7), the result follows.
We also need the following result of Takegoshi [9, Theorem 1.1]:

Theorem 2.1. Let M be a complete noncompact Riemannian manifold. Suppose
there is a smooth function f such that S = {f > δ} is nonempty for some δ > 0 and
on S

∆f ≥
Cf1+a

(1 + r)b

for some positive constants C, a and 0 ≤ b < 2 where r is the distance function from
some fixed point. Then the volume V (r) of the geodesic ball with radius r satisfies:

lim inf
r→∞

log V (r)

r2−b
= ∞.

Proof of Theorem 1.2. We proceed by contradiction. Let g be a complete Kähler
metric on M satisfying the assumptions.

Suppose o = (p, q) ∈ M . Let u be vector in T 1,0
p,q (M) = T 1,0

p (X) × T 1,0
q (Y ) such

that u ∈ {0} × T 1,0
q (Y ) and such that guū(p, q) = 1. Let

f(x) = f(x, q) = ‖(π′′
x)∗(u)‖2.

Then f is a function on Xq. By (2.4)

(2.8) f(x) ≤ C1(1 + r(p, q))2guū(p, q) = C1guū(p, q).
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Hence, f is a positive bounded function.

Let (z1, z2, · · · , zm, zm+1, · · · , zn+m) be a holomorphic coordinate of M at (x, q)
such that (1) (z1, z2, · · · , zm) is a normal coordinate of Xq at x and (2) gab̄(x, q) = δab,
m + 1 ≤ a, b ≤ m + n. Then, by identifying (πx)∗(u) with u, we have

∆Xq
f(x) =2

m
∑

i=1

∂i∂īguū(x, q)

=2

m
∑

i=1

(−Ruūīi + gb̄a∂igub̄∂īgaū)(x, q)

= − 2

m
∑

i=1

Ruūīi(x, q) + 2

m
∑

i=1

n+m
∑

b=1

|∂igub̄|
2(x, q)

≥2mBguū(x, q)

=2mBf(x).

(2.9)

Combining this with (2.8), we have

∆Xq
f ≥

2mB

C1
f2.

By Lemma 2.2 and Theorem 2.1, we have a contradiction because f > 0.

3. Proof of Theorem 1.3. In order to prove the second main result, we need
the following lemma. We will use the notations as in the previous section.

Lemma 3.1. Let M = Xm × Y n be the product of two simply connected complex
manifolds with positive dimension. Suppose that g is a complete Kähler metric on
M with Ricci curvature ≥ −A(1 + r2)γ, holomorphic bisectional curvature ≤ −B(1 +
r2)−δ, and nonpositive sectional curvature, where γ ≥ 0, δ > 0 such that γ + 2δ < 1,
A, B are some positive constants, and r = r(x, y) is the distance of (x, y) ∈ X × Y
and a fixed point o ∈ M . Then, there is a positive constant C depending only on
m, n, γ, δ, A and B, such that for any x0 ∈ X,

(3.1) (π′′
x0

)∗(gx0)|(x,y) ≤ C(1 + r2(x, y))γ(1 + r2(x0, y))δg|(x,y)

for any (x, y) ∈ M .

Proof. For any point x0 ∈ X , let u = ‖∂π′′
x0
‖2. Then as before, by [4], [14], we

have:

(3.2) ∆u(x, y) ≥ −2A(1 + r2(x, y))γu(x, y) + 2B(1 + r2(x0, y))−δu(x, y)2.

Let v(x, y) = r2(x0, y). Since M is simply connected and has nonpositive curvature,
r2(x, y) and v are both smooth functions. In the following α, β range from m + 1 to
m + n. For (x, y) ∈ M , let z1, z2, · · · , zm be holomorphic coordinates of x in X and
zm+1, · · · , zm+n be holomorphic coordinates of y in Y such that (1) gαβ̄(x, y) = δαβ ,
m + 1 ≤ α, β ≤ m + n and (2) gαβ̄(x0, y) = λαδαβ . Here (zm+1, · · · , zm+n) is
also considered as holomorphic coordinates of Yx0

because π′′
x0

is a biholomorphism
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between Yx and Yx0
. Then u(x, y) = gβ̄α(x, y)gαβ̄(x0, y). Then

‖∇v(x, y)‖2(x, y)

=2gb̄a(x, y)va(x, y)vb̄(x, y)

=2gβ̄α(x, y)vα(x, y)vβ̄(x, y)

=2u(x, y)gβ̄α(x0, y)vα(x, y)vβ̄(x, y)

≤4u(x, y)v(x, y)

(3.3)

where we have used the fact that the |∇r(x, y)| = 1 and r(x0, y) = r(x, y)|Yx0
. On

the other hand, since r2 is convex, we have

∆v(x, y)

=2gb̄a(x, y)vab̄(x, y)

=2gβ̄α(x, y)vαβ̄(x0, y)

=2
∑

α

vαᾱ(x0, y)

≤2u(x, y)
∑

α

λ−1
α vαᾱ(x0, y) (since vαᾱ > 0)

=u(x, y)∆Yx0
v(x0, y)

≤u(x, y)(∆r2)(x0, y) (since r2 is convex)

≤C1u(x, y)(1 + v(x, y))
γ+1

2

(3.4)

for some constant C1 by the Laplacian comparison [5] and the assumption on the
Ricci curvature of M . Here and below Ci will denote constants depending only on
m, n, γ, δ, A, B. Let

w(x, y) = u(x, y)(C2 + v(x, y))−δ

where C2 > 1 is a constant to be determined later. Then,

∆w =(C2 + v)−δ∆u − 2δ(C2 + v)−1−δ〈∇u,∇v〉

− uδ(C2 + v)−1−δ∆v + uδ(δ + 1)(C2 + v)−2−δ|∇v|2

≥
(

2B − δC1 (C2 + v)
γ
2
+δ− 1

2

)

w2 − 2A(1 + r2)γw − 2δ(C2 + v)−1〈∇w,∇v〉

≥
(

2B − δC1C
γ
2
+δ− 1

2

2

)

w2 − 2A(1 + r2)γw − 4δ|∇w|w
1
2

(3.5)

where we have used (3.3), (3.4), (3.2) and that C2 > 1 and γ +2δ < 1. Hence we may
choose C2 > 0 large enough, so that

(3.6) ∆w ≥ C3w
2 − 2A(1 + r2)γw − 4δ|∇w|w

1
2

for some C3 > 0. Then one can proceed as in the proof of Lemma 2.1 to conclude
that (3.1) is true.

Proof of Theorem 1.3. First observe that we may assume M is simply connected
because the distance function in the universal cover of M is greater than or equal
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to the distance function in M . Suppose there is a complete Kähler metric g on M
satisfying the curvature assumptions.

Let o = (p, q). As in the proof of Theorem 1.2, let u be a vector in T 1,0
p,q (M) =

T 1,0
p (X) × T 1,0

q (Y ) such that u ∈ {0} × T 1,0
q (Y ) and such that guū(p, q) = 1. Let

f(x) = f(x, q) = ‖(π′′
x)∗(u)‖2.

Then f(x) is a function on Xq. By the same computation as in (2.9),

(3.7) ∆Xq
f(x) ≥ 2mB(1 + r2(x, q))−δf(x).

By Lemma 3.1, we have

0 < f(x) =‖(π′′
x)∗(u)‖2

=(π′′
x)∗(gx)(u, ū)

≤C1(1 + r2(p, q))γ(1 + r2(x, q))δg(u, ū)

=C1(1 + r2(x, q))δ ,

(3.8)

where C1 is a constant independent of x. We may proceed as in the proof of Theorem
1.2 to estimate the volume growth of Xq and use Theorem 2.1 to finish the proof.
However, since the curvature of M is nonpositive, we may proceed in a simpler way.

Let h(x) = log f(x) − 2δ log(C2 + r2(x, q)) where C2 > 1 is some constant to be
determined. By (3.8), h achieves its maximum at some point (x̄, q) ∈ Xq. Then at
(x̄, q)

(3.9) ∇Xq
log f(x̄) = 2δ∇Xq

log(C2 + r2(x̄, q)) and ∆Xq
h ≤ 0.

Since r2 is convex, we have |∇Xq
r(x, q)| ≤ 1 and ∆Xq

r2(x, q) ≤ ∆r2(x, q) ≤ C3(1 +

r2(x, q))
1+γ
2 for some constant C3 independent of x. Let r = r(x̄, q), then at (x̄, q),

using (3.7) and the fact that γ + 2δ < 1, we have

0 ≥∆Xq
h(x̄)

=f−1∆Xq
f − (2δ)2|∇Xq

log(C2 + r2(x̄, q))|2 − 2δ(C2 + r2)−1∆Xq
r2(x̄, q)

+ 2δ|∇Xq
log(C2 + r2(x̄, q))|2

≥2mB(1 + r2)−δ − 2δC3(C2 + r2)
−1+γ

2

>2(C2 + r2)−δ
(

mB − δC3(C2 + r2)
−1+γ+2δ

2

)

>2(C2 + r2)−δ

(

mB − δC3C
−1+γ+2δ

2

2

)

>0,

(3.10)

if we chose C2 > 1 large enough, such that δC3C
− 1−γ−2δ

2

2 < mB. This can be done
because γ + 2δ < 1. Hence we have a contradiction. This completes the proof of the
theorem.

Remark 3.1. Letting γ = 0 in Theorem 1.3, we know that there is no complete
Kähler metric on X × Y with Ricci curvature bounded from below and holomorphic
bisectional curvature ≤ −A(1 + r2)−δ for any δ < 1

2 . We may ask the problem if 1
2 is

the optimal power.
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In [5], Greene-Wu proved that if a Hermitian manifold M has holomorphic sec-
tional curvature ≤ −A(1 + r2)−1, then M is hyperbolic in the sense of Kobayashi-
Royden. Note that Cn is not hyperbolic in the sense of Kobayashi-Royden. So, there
is no Hermitian metric on Cn with holomorphic sectional curvature ≤ −A(1 + r2)−1.
On the other hand, the example given by Seshadri [7] has holomorphic bisectional cur-
vature ≤ −A[(1 + r2) log(2 + r)]−1. Therefore the optimal power must be in [1/2,1].
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