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EMBEDDED CONSTANT MEAN CURVATURE HYPERSURFACES

ON SPHERES∗

OSCAR M. PERDOMO†

Abstract. Let m ≥ 2 and n ≥ 2 be any pair of integers. In this paper we prove that if H

lies between cot( π
m

) and bm,n = (m2−2)
√

n−1

n
√

m2−1
, there exists a non isoparametric, compact embedded

hypersurface in Sn+1 with constant mean curvature H that admits O(n) × Zm in its group of
isometries. These hypersurfaces therefore have exactly 2 principal curvatures. When m = 2 and H is
close to the boundary value 0 = cot(π

2
), such a hypersurface looks like two very close n-dimensional

spheres with two catenoid necks attached, similar to constructions made by Kapouleas. When m > 2
and H is close to cot( π

m
), it looks like a necklace made out of m spheres with m + 1 catenoid necks

attached, similar to constructions made by Butscher and Pacard. In general, when H is close to
bm,n the hypersurface is close to an isoparametric hypersurface with the same mean curvature. For
hyperbolic spaces we prove that every H ≥ 0 can be realized as the mean curvature of an embedded
CMC hypersurface in Hn+1. Moreover we prove that when H > 1 this hypersurface admits O(n)×Z

in its group of isometries. As a corollary of the properties we prove for these hypersurfaces, we
construct, for any n ≥ 6, non-isoparametric compact minimal hypersurfaces in Sn+1 whose cones
in Rn+2 are stable. Also, we prove that the stability index of every non-isoparametric minimal
hypersurface with two principal curvatures in Sn+1 exceeds n + 3.
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1. Introduction. Minimal hypersurfaces of spheres that have exactly two prin-
cipal curvatures at each point were initially studied by Otsuki in [14]. He reduced
the problem of classifying them, to that of solving an ODE, and the problem of de-
ciding about their compactness, to the problem of studying an integral that relates
periods of two functions involved in the immersions that he found. For surfaces in
R3, Delaunay in 1841 [6] showed that if one rolls a conic section on a line in a plane
and then rotates about that line the trace of a focus, one obtains a CMC surface of
revolution. CMC stands for constant mean curvature. This rolling construction was
generalized for the case of CMC hypersurfaces in Rn+1 by Hsiang and Yu in the early
eighties [10], [11] and for CMC hypersurfaces in the hyperbolic space and the sphere
by Sterling in 1987 [21].

After Oksuki’s paper in 1970, several properties for a CMC hypersurface M ⊂
Sn+1 with exactly two principal curvatures were proved in [7], [4], [17], [22], [9], [1],
[2], [23], [24], [25], and [13] among others.

For the case n = 2, we give explicit trigonometric formulas for immersions of CMC
hypersurfaces in S3. A gallery of pictures of the stereographic projection of some of
these surfaces, made by Schmitt, can be found in the GANG (Geometry Analysis
Numerics Graphics, University of Massachusetts) web page. These surfaces are called
unduloidal tori in S3 with m-lobes because all of them have Zm, for some m, in their
group of symmetries. In this paper we will prove that this symmetry property holds
in every dimension and we will also prove that for every positive integer m, if H lies
between
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an,m = cot
π

m
and bn,m =

(m2 − 2)
√

n − 1

n
√

m2 − 1

then, there exists an embedded non-isoparametric unduloidal n-dimensional hyper-
surface in Sn+1 with m-lobes and constant mean curvature H . Some previous results
on the problem of determining which values of H can be realized as mean curvatures
of CMC embedded hypersurfaces on n dimensional spheres were found by Otsuki [15]
and Furuya [8]. They showed that H = 0 can not be the mean curvature of a non
isoparametric minimal embedded hypersurface in Sn+1 with two principal curvatures.
Later on, Leite and Brito in [3], showed that small positive values of H can be real-
ized as non isoparametric values for CMC hypersurfaces in Sn+1 with two principal
curvatures. This result by Leiti and Brito can be considered as the first step toward
the solution of the problem considered in our paper: Given m ≥ 2, say exactly which
values of H allow to embed a compact hypersurface with mean curvature H , and
O(n − 2) × Zm symmetry into Sn. I would like to point out that a big part of our
paper is the understanding of a formula given by an integral. In the particular case
when H = 0, this integral was studied by Furuya in 1971 and by Otsuki in 1972 and,
in the general case, this integral was studied by Brito and Leite in 1990.

Lemma (4.1) and its corollary (4.2) play an important role in the main result and
they are responsible for the explicit bounds an,m and bn,m for H given above. The
Lemma and techniques developed in this paper can be used to obtain similar results
for hypersurfaces with two principal curvatures with generalized mean curvature Hk

constant were Hk is the Hth symmetric function of the principal curvatures. A few
weeks after the results of this paper were posted on the ArXiv, Cheng, Li and Wei
obtained similar result for hypersurfaces with constant fourth mean curvature H4 on
spheres [5]. Similar results were also obtained by the author for hypersurfaces on
space forms [18] and [19].

Since the formulas obtained for the CMC immersions of the sphere are very ex-
plicit, it is not difficult to generalize them to obtain similar results in Euclidean spaces
and hyperbolic spaces. See sections (6.2) and (6.1).

As a consequence of the symmetries proven for all compact constant mean cur-
vatures in Sn+1 with two principal curvatures everywhere, we proved that all such
examples with H = 0 have stability index greater than n + 3. There is a conjecture
stating that the only minimal hypersurfaces in Sn+1 with stability index n + 3 are
the isoparametric ones with two principal curvatures. Some partial results for this
conjecture were proven in [16]. Also, since it is not difficult to prove that the square
of the norm of the second fundamental form of these examples can be chosen to be as
close as we want from those of the isoparametric examples, we point out that some
of Otsuki’s minimal hypersurfaces produce examples of non isoparametric compact
stable minimal truncated cones in Rn+2 for n ≥ 6. Recall that these examples are
not embedded. Stable embedded minimal cones in Rn+2 for some values n were
constructed by Hsiang and Sterling in [12].

The author would like to express his gratitude to Professor Bruce Solomon for
discussing the hypersurfaces with him and pointing out the similarity to Delaunay’s
surfaces and to the referees for many valuable suggestions. This work was partially
supported by a CCSU research grant.

2. Preliminaries. Let M be an n-dimensional hypersurface of the (n + 1)-
dimensional unit sphere Sn+1 ⊂ Rn+2. Let ν : M → Sn+1 be a Gauss map and
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Ap : TpM → TpM the shape operator. Notice that

Ap(v) = −∇̄vν for all v ∈ TpM

where ∇̄ is the Euclidean connection in Rn+2. We will denote by ||A||2 the square of
the norm of the shape operator.

If X , Y and Z are vector fields on M , ∇XY represents the Levi-Civita connec-
tion on M with respect to the metric induced by Sn+1 and [X, Y ] = ∇XY − ∇Y X

represents the Lie bracket, then the curvature tensor on M is defined by

R(X, Y )Z = ∇Y ∇XZ −∇X∇Y Z + ∇[X,Y ]Z(2.1)

and the covariant derivative of A is defined by

DA(X, Y, Z) = Z〈A(X), Y 〉 − 〈A(∇ZX), Y 〉 − 〈A(X),∇ZY 〉(2.2)

the Gauss equation is given by

R(X, Y )Z = 〈X, Z〉Y − 〈Y, Z〉X + 〈A(X), Z〉A(Y ) − 〈A(Y ), Z〉A(X)(2.3)

and the Codazzi equations are given by

DA(X, Y, Z) = DA(Z, Y, X).(2.4)

Let us denote by κ1, . . . , κn the principal curvatures of M and, by

H =
κ1 + · · · + κn

n
the mean curvature of M . We will assume that M has exactly

two principal curvatures everywhere and that H is a constant function on M . Since
it is known that M has to be isoparametric in the case that the multiplicities of both
principal curvatures are greater than 1, [14], we will assume that

κ1 = · · · = κn−1 = λ, κn = µ and (n − 1)λ + µ = nH.

By changing ν by −ν if necessary we can assume without loss of generality that
λ−µ > 0. Recall that this hypersurface does not have umbilical points because we are
assuming it has exactly two principal curvatures everywhere. Let {e1, . . . , en} denote
a locally defined orthonormal frame such that

A(ei) = λei for i = 1, . . . , n − 1 and A(en) = µen.(2.5)

The next Theorem is well known [14]. For completeness sake and partly to prepare
for the deduction of other formulas, we give a proof here.

Theorem 2.1. If M ⊂ Sn+1 is a CMC hypersurface with two principal curvatures
and dimension greater than 2, and {e1, . . . , en} is a locally defined orthonormal frame
such that (2.5) holds, then
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v(λ) = 0 for any v ∈ Span{e1, . . . , en−1}

∇ven =
en(λ)

µ − λ
v for any v ∈ Span{e1, . . . , en−1}

∇en
en = 0

1 + λµ = en(
en(λ)

λ − µ
) − (

en(λ)

λ − µ
)2

[ei, ej] ∈ Span{e1, . . . , en−1} for any i, j ∈ {1, . . . , n − 1}.

Proof. For any i, j ∈ {1, . . . , n − 1} with i 6= j (here we are using the fact that
the dimension of M is greater than 2) and any k ∈ {1, . . . , n}, we have that,

DA(ei, ej , ek) = ek〈A(ei), ej 〉 − 〈A(∇ek
ei), ej 〉 − 〈A(ei),∇ek

ej 〉
= ek(λ〈 ei, ej 〉) − 〈∇ek

ei, A(ej) 〉 − λ〈 ei,∇ek
ej 〉

= ek(0) − λ〈∇ek
ei, ej 〉 − λ〈 ei,∇ek

ej 〉
= 0 − λek(〈 ei, ej 〉)
= 0.

On the other hand,

DA(ei, ei, ej) = ej〈A(ei), ei 〉 − 〈A(∇ej
ei), ei 〉 − 〈A(ei),∇ej

ei 〉
= ej(λ) − λej(〈 ei, ei 〉)
= ej(λ).

By the Codazzi equation (2.4), we now get ej(λ) = 0, for all j ∈ {1, . . . , n − 1},
and therefore v(λ) = 0 for any v ∈ Span{e1, . . . , en−1}. Now,

DA(ei, en, ej) = ej〈A(ei), en 〉 − 〈A(∇ej
ei), en 〉 − 〈A(ei),∇ej

en 〉
= ej(λ〈 ei, en 〉) − 〈∇ej

ei, A(en) 〉 − λ〈 ei,∇ej
en 〉

= ej(0) − µ〈∇ej
ei, en 〉 − λ〈 ei,∇ej

en 〉 + (λ〈∇ej
ei, en 〉 − λ〈∇ej

ei, en 〉)
= (λ − µ)〈∇ej

ei, en 〉 − λ ej(〈 ei, en 〉)
= (µ − λ)〈 ei,∇ej

en 〉.

Since µ − λ > 0, using the Codazzi equations we get

〈 ei,∇ej
en 〉 = 0 for any i, j ∈ {1, . . . , n − 1} with i 6= j.(2.6)

Now, for any i ∈ {1, . . . , n−1}, using computations like those above we can prove

DA(ei, ei, en) = en(λ) = DA(ei, en, ei) = (µ − λ)〈 ei,∇ei
en 〉

and
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DA(en, en, ei) = ei(µ) = 0 = DA(ei, en, en) = (µ − λ)〈 ei,∇en
en 〉.

Therefore,

〈 ei,∇ei
en 〉 =

en(λ)

µ − λ
and 〈 ei,∇en

en 〉 = 0 for any i ∈ {1, . . . , n − 1}.(2.7)

Since en is a unit vector field, we have that 〈∇ek
en, en 〉 = 0 for any k. From the

equations (2.6 ) and (2.7 ) we conclude that

∇ven =
en(λ)

µ − λ
v for any v ∈ Span{e1, . . . , en−1} and ∇en

en = 0.

Noticing that for any i, j ∈ {1, . . . , n− 1} with i 6= j, using equation (2.6), we see
that

〈 [ei, ej], en 〉 = 〈∇ei
ej −∇ej

ei, en 〉 = 〈 ei,∇ej
en 〉 − 〈 ej,∇ei

en 〉 = 0.

Therefore [ei, ej] ∈ Span{e1, . . . , en−1}. Finally we will use Gauss equation to
prove the differential equation on λ. First we point out that, using equation (2.7),
we can prove 〈 [en, e1], en 〉 = 0 and therefore [en, e1] ∈ Span{e1, . . . , en−1}. By the
Gauss equation we then get,

1 + λµ = 〈R(en, e1)en, e1 〉
= 〈∇e1∇en

en −∇en
∇e1en + ∇[en,e1]en, e1 〉

= 〈 0 −∇en
(
en(λ)

µ − λ
e1) +

en(λ)

µ − λ
[en, e1] , e1〉

= −en(
en(λ)

µ − λ
) +

en(λ)

µ − λ
〈∇en

e1 −∇e1en, e1 〉

= −en(
en(λ)

µ − λ
) − (

en(λ)

µ − λ
)2

= en(
en(λ)

λ − µ
) − (

en(λ)

λ − µ
)2.

3. Construction of the examples. Maintaining the notation of the previous
section, we now prove a series of identities and results that make it easier to state and
prove the theorem that defines the examples at the end of this section.

3.1. The function w and its solution along a line of curvature. Since
(n − 1)λ + µ = nH , we have

λ − µ = λ − (nH − (n − 1)λ) = n(λ − H) = nw−n where w = (λ − H)−
1
n .(3.1)

Recall that we are assuming that λ − µ is always positive, so w is a smooth
differentiable function. By the definition of w in (3.1) we have
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en(w) = − 1

n
(λ − H)−

n+1
n en(λ) = − 1

n
wn+1 en(λ) = −w

en(λ)

λ − µ
.(3.2)

Using w, the second order differential equation in Theorem (2.1) can be written
as

en

( en(w)

w

)

+
( en(w)

w

)2
+ 1 + λµ = 0(3.3)

and if we write λ and µ in terms of w we get

en

( en(w)

w

)

+
( en(w)

w

)2 − (n − 1)

w2n
− (n − 2)H

wn
+ H2 + 1 = 0.(3.4)

Deriving the previous equation, we have used the following identities,

λ = w−n + H and µ = H − (n − 1)w−n.(3.5)

From Equation (3.2) we now get

en(λ) = −(λ − µ)
en(w)

w
.(3.6)

This allows us to write one of the equations in Theorem (2.1) as

∇̄ven =
en(w)

w
v for any v ∈ Span{e1, . . . , en−1}.(3.7)

Notice that equation (3.4) reduces to

en(en(w))

w
− (n − 1)

w2n
− (n − 2)H

wn
+ H2 + 1 = 0(3.8)

and therefore multiplying by 2wen(w) we see that there exists a constant C such that,

(en(w))2 + w2−2n + (1 + H2)w2 + 2Hw2−n = C.(3.9)

The equation above plays an important role in the constructions of immersions
with CMC in Sn and it was also proven by Wei in [24]. Let x : M → Rn+2 denote
the position vector, viewed as a map, and by ∇̄ the Euclidean connection on Rn+1.
Using the equations in Theorem (2.1) and the fact that ∇̄vx = v, 〈x, ν(x) 〉 = 0 and
〈 ν(x), ν(x) 〉 = 1, we get that

∇̄en
en = −x + µν(3.10)

∇̄en
ν = −µen(3.11)

∇̄en
x = en.(3.12)

Fix a point p0 ∈ M , and let us denote by γ(u) the only geodesic in M such that
γ(0) = p0 and γ′(0) = en(p0). Since ∇en

en vanishes, then γ(u) = en(γ(u)). Notice
that γ(u) is also a line of curvature. Let g(u) = w(γ(u)). Equation (3.9) implies that



EMBEDDED CMC HYPERSURFACES ON SPHERES 79

(g′)2 + g2−2n + (1 + H2)g2 + 2Hg2−n = C(3.13)

or equivalently,

gn−1 g′
√

Cg2n−2 − 1 − (1 + H2)g2n − 2Hgn
= ±1.(3.14)

It is clear that the constant C must be positive and moreover, in order to solve
this equation we need to consider a constant C such that the polynomial

ξ(s) = Cs2n−2 − 1 − (1 + H2)s2n − 2Hsn(3.15)

is positive on a interval (t1, t2) with 0 < t1 < t2 and ξ(t1) = 0 = ξ(t2). Notice that
for every H we may pick a C such that ξ is positive on an interval because ξ is a
polynomial of even degree with negative leading coefficient, ξ(0) = −1, and if C is big
enough, this polynomial takes positive values for positive values of s. Let us assume
that t1 and t2 are as above and also that ξ′(t1) and ξ′(t2) are not zero, so that the
following formula for G is well defined on [t1, t2]:

G(s) =

∫ s

t1

tn−1

√

Ct2n−2 − 1 − (1 + H2)t2n − 2Htn
dt for t1 ≤ s ≤ t2.

Let T = 2G(t2). Since G′(s) > 0 for s ∈ (t1, t2), G has an inverse. Denoting it by
F : [0, T

2 ] → [t1, t2], a direct verification shows that the T -periodic function given by

g(u) = F (u) for 0 ≤ u ≤ T

2
and g(u) = F (T − u) for

T

2
≤ u ≤ T

solves equation (3.14).

3.2. The vector field η . Now define the following vector field along M

η = −en(w)

w
en + λ ν − x.

It has the following properties

1. 〈η, η〉 = (
en(w)

w
)2 + λ2 + 1 =

C

w2
, which follows from Equation (3.9) and the

definition of λ in terms of w, (3.5).

2. ∇̄en
η = −en(w)

w
η. This crucial fact makes all the constructions work in this

section. The equation follows from Equations (3.10), (3.11) and (3.12 ) and
the first and second differential equations for the function w, especially, Equa-
tion (3.3) and Equation (3.6).

3. For any i ∈ {1, . . . , n− 1}, ∇̄ei
(x + w2

C
η) vanishes. The proof of this identity

is similar, and additionally, uses the Equation (3.7).

4. 〈x +
w2

C
η, x +

w2

C
η〉 = 1 − w2

C
.
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3.3. Vector fields that lie on a plane . Now that we have computed g(u) =
w(γ(u)), we can better understand the geodesic γ. The equations (3.10), (3.11) and
(3.12 ) imply that

X(u) = en(γ(u)), Y (u) = ν(γ(u)) and Z(u) = γ(u)

satisfy an ordinary linear differential equation in the variable u with periodic coeffi-
cients (notice that µ(γ(u)) is a function of g(u)). By the existence and uniqueness
theorem of ordinary differential equations, the solutions X(u), Y (u) and Z(u) must
lie in the three dimensional space

Γp0 = Span{en(p0), ν(p0), p0}.(3.16)

For the sake of simplicity, we will consider the T -periodic function r : R → R

defined by

r(u) =
g(u)√

C
.

It is not difficult to check that r satisfies the equations

r′′

r
+ 1 + λµ = 0, (r′)2 + r2 (1 + λ2) = 1, λ′ = −(λ − µ)

r′

r
.(3.17)

In the previous equations we are abusing notation with the name of the functions
λ and µ. Here and whenever the context dictates it, they will also denote the functions
λ(γ(u)) and µ(γ(u)) respectively. To construct our examples, the function 1−r2 needs
to be positive. We can achieve this by assuming H ≥ 0 because that will imply λ > 0,
and therefore r < 1.

Define the following vector fields along γ

B1(u) = η(γ(u)) = −r′

r
X + λY − Z

B2(u) = − rr′√
1 − r2

X +
r2λ√
1 − r2

Y +
√

1 − r2Z

B3(u) =
rλ√

1 − r2
X +

r′√
1 − r2

Y.

Using the equations in section (3.2), Equations (3.10), (3.11) and (3.12 ) giving
the derivative of the vector fields X , Y and Z, and Equation (3.17), we can check the
following properties.

1. B1(u), B2(u) and B3(u) lie on the three dimensional subspace Γp0 .

2.

B′
1 = −r′

r
B1.

3.

〈B1, B2〉 = 0, 〈B1, B3〉 = 0 and 〈B2, B3〉 = 0.
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4.

〈B2, B2〉 = 1, 〈B3, B3〉 = 1 and 〈B1, B1〉 =
1

r2
.

5. From the previous items we get that

B′
2 = hB3 and B′

3 = −hB2 for some function h : R → R.

These equations hold because

〈B′
2, B1〉 = −〈B′

1, B2〉 =
r′

r
〈B1, B2〉 = 0 likewise 〈B′

3, B1〉 = 0.

6. From the previous item we get that the vectors B2 and B3 lie in a two
dimensional subspace.

7. We have

〈B′
3, Z〉 = − rλ√

1 − r2
and 〈B2, Z〉 =

√

1 − r2.

Therefore the function h in the previous item is given by rλ
1−r2 . It follows

that,

B′
2 =

rλ

1 − r2
B3 and B′

3 = − rλ

1 − r2
B2.

The fact that h does not change sign when λ > 0, in particular when H ≥ 0,
will help us prove that for some choices of C the hypersurface M is embedded.

8. If we assume without loss of generality that

1

|B1(0)| B1(0) = (0, . . . , 1, 0, 0), B2(0) = (0, . . . , 0, 1, 0)

and B3(0) = (0, . . . , 0, 0, 1)

then,

B1(u) =
1

r
(0, . . . 0, 1, 0, 0)

B2(u) = sin(θ(u))(0, . . . 0, 0, 1) + cos(θ(u))(0, . . . , 0, 1, 0)

B3(u) = cos(θ(u))(0, . . . 0, 0, 1)− sin(θ(u))(0, . . . , 0, 1, 0)

where θ : R → R is given by

θ(u) =

∫ u

0

r(s)λ(s)

1 − r2(s)
ds.

9. If

K = K(H, n, C) = θ(T ) =

∫ T

0

r(s)λ(s)

1 − r2(s)
ds = 2

∫ T
2

0

r(s)λ(s)

1 − r2(s)
ds

then, for any positive integer m and any u ∈ [mT, (m + 1)T ] we have

θ(u) = mK + θ(u − mT ).

This property is a consequence of the existence and uniqueness theorem for
differential equation and will be used to prove the invariance of M under
some rotations.
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10. If q(u) = γ(u) + r2(u)η(γ(u)), then

〈q, q〉 = 1 − r2 and B2 =
q

|q| i.e q =
√

1 − r2 B2.

3.4. A classification of constant mean curvature hypersurfaces in

spheres with two principal curvatures . We are ready to define the examples of
constant mean curvature hypersurfaces on Sn+1 when n ≥ 2. Here is the theorem:

Theorem 3.1. Let n be an integer greater than 1 and let H be a non-negative
real number.

1. Let gC : R → R be a T -periodic solution of the equation (3.13) associated
with this H and a positive constant C. If λ, r, θ : R → R are defined by

r =
gC√
C

, λ = H + g−n
C and θ(u) =

∫ u

0

r(s)λ(s)

1 − r2(s)
ds

then, the map φ : Sn−1 × R → Sn+1 given by

φ(y, u) = ( r(u) y,
√

1 − r(u)2 cos(θ(u)),
√

1 − r(u)2 sin(θ(u)) )(3.18)

is an immersion with constant mean curvature H.
2. If K(H, n, C) = 2

∫ T
2

0
r(u)λ(u)
1−r2(u) du = 2π

k
for some positive integer k, then, the

image of the immersion φ is an embedded compact hypersurface in Sn+1.
More generally, if K(H, n, C) = 2kπ

m
for a pair (k, m) of integers, then, the

image of φ is a compact hypersurface in Sn+1.
3. Let n be an integer greater than 2, and let M ⊂ Sn+1 be a connected compact

hypersurface with two principal curvatures λ with multiplicity n−1, and µ with
multiplicity 1. If λ−µ is positive and the mean curvature H = (n−1)λ+µ is
a non-negative constant, then, up to a rigid motion of the sphere, M can be
written as an immersion of the form (3.18). Moreover, M contains O(n)×Zm

in its isometry group, where m is the positive integer such that K(H, n, C) =
2kπ
m

, with k and m relatively prime.

Proof. Defining B1 and B2 as before we have that

φ(y, u) = r(u)(y, 0, 0) +
√

1 − r(u)2B2(u).

A direct verification shows

∂φ

∂u
= r′ (y, 0, 0)− r r′√

1 − r2
B2 +

λ r√
1 − r2

B3.

We have 〈∂φ
∂u

, ∂φ
∂u

〉 = 1 and that the tangent space of the immersion at (y, u) is
given by

Tφ(y,u) = {(v, 0, 0) + s
∂φ

∂u
: 〈v, y〉 = 0 and s ∈ R}.



EMBEDDED CMC HYPERSURFACES ON SPHERES 83

A direct verification shows that the map

ν(y, u) = −r(u)λ(u) (y, 0, 0) +
r2(u)λ(u)
√

1 − r2(u)
B2(u) +

r′(u)
√

1 − r2(u)
B3(u)

satisfies 〈ν, ν〉 = 1, 〈ν, ∂φ
∂u

〉 = 0, and for any v ∈ Rn with 〈v, y〉 = 0 we have
〈ν, (v, 0, 0)〉 = 0. It then follows that ν is a Gauss map of the immersion φ. The
fact that φ has constant mean curvature H follows because for any unit vector v in
Rn perpendicular to y, we have

β(t) = (r cos(t)y + r sin(t)v, 0, 0) +
√

1 − r2 B2 = φ(cos(t)y + r sin(t)v, u)

satisfies that β(0) = φ(y, u), β′(0) = rv and

dν(β(t))

dt

∣

∣

t=0
= dν(rv) = −rλ v.

Therefore, the tangent vectors of the form (v, 0, 0) are principal directions with
principal curvature λ and multiplicity n − 1. Now, since 〈∂φ

∂u
, (v, 0, 0)〉 = 0, we have

that ∂φ
∂u

defines a principal direction, i.e. we must have that ∂ν
∂u

is a multiple of ∂φ
∂u

.
A direct verification shows that if we define µ : R → R by µ(u) = nH − (n− 1)λ(u),
then,

〈∂ν

∂u
, y〉 = −λ′ r − λr′ = (λ − µ)r′ − λ r′ = −µ r′ = −(nH − (n − 1)λ)r′.

We also have that 〈∂φ
∂u

, y〉 = r′, therefore,

∂ν

∂u
= dν(

∂φ

∂u
) = −µ

∂φ

∂u
= −(nH − (n − 1)λ)

∂φ

∂u
.

It follows that the other principal curvature is nH − (n−1)λ. Therefore φ defines
an immersion with constant mean curvature H , which proves the first item in the
Theorem.

In order to prove the second item, we notice that if K(H, n, C) = 2π
k

for some
positive k, θ(kT ) = 2π, which makes the image of φ compact. It is also embedded
because φ is one-to-one for values of u between 0 and kT as we can easily check using
the fact that whenever H ≥ 0, the function θ is strictly increasing. Recall that under
these circumstances θ(0) = 0 and θ(kT ) = 2π. The proof of the other statement in
this item is similar.

Let us prove the next item. For n > 2, consider a minimal hypersurface M with
the properties of the statement. We will use the notation we used in the preliminaries,
in particular the function w : M → R is defined by the relation (λ − µ) = nwn. We
will also assume that B1(0), B2(0) and B3(0) are chosen as before. By Theorem (2.1)
we get that the distribution Span{e1, . . . , en−1} is completely integrable. Let us fix a
point p0 in M and define the geodesic γ : R → M , and the functions r : R → R as
before and let us denote by Mu ⊂ M the (n− 1)-dimensional integral submanifold of
M of this distribution that passes through γ(u). We define the vector field η on M

as before. Recall that B1(u) = η(γ(u)). Fixing a value u, let us define the maps
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ρu, ζu : Mu → Rn+2 by ρu(x) = x +
w2(x)

C
η and ζu(x) = ν(x) + λ(x)x.

Using the equations in section (3.2) we find that the maps ρu and ζu are constant.
Therefore,

ρu(x) = x +
w2(x)

C
η = γ(u) + r2(u)B1 =

√

1 − r2B2.

Notice that for every x ∈ Mu, we have

|x − ρu(x)|2 = |Z(u) −
√

1 − r2B2(u)|2 = r2(u).

Therefore Mu is contained in a sphere with center in
√

1 − r2B2 and radius r.
We have that the vectors e1, . . . , en−1 are perpendicular to the vectors

ρu(x) =
√

1 − r2(u)B2(u) and ζu(x) = Y (u) + λ(u)Z(u).

Since 〈Y (u) + λ(u)Z(u), B1(u)〉 = 0, 〈Y (u) + λ(u)Z(u), B2(u)〉 = λr2
√

1−r2 and

〈Y (u) + λ(u)Z(u), B3(u)〉 = r′
√

1−r2
, we get that

ζu(x) =
λr2

√
1 − r2

B2 +
r′√

1 − r2
B3.

It follows that, anytime r′(u) 6= 0, all tangent vectors of Mu must lie in the n-
dimensional space perpendicular to the two dimensional space spanned by B1(u) and
B2(u). Since this two dimensional space is independent of u, we conclude that every
point x ∈ Mu, satisfies that

x − ρu(x) = r(u)(y, 0, 0) where |y|2 = 1

or equivalently,

x = r(u) (y, 0, 0) + ρu(x) = r(u)(y, 0, 0) +
√

1 − r(u)2B2(u).

Since the set of points where r′ is discrete, we conclude that the expression for the
points x ∈ Mu holds true for all u. The theorem then follows because the manifold
M is connected.

The property on the group of isometries of the manifold follows because we can
write M as the image of the map

φ(y, u) = ( r(u) y,
√

1 − r(u)2 cos(θ(u)),
√

1 − r(u)2 sin(θ(u)) ).(3.19)

The group O(n) acts isometrically on M because any isometry in Rn+2 that fixes
the origin and the last two entries of Rn+2 leaves our manifold M invariant. The
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group Zm includes in the isometry group because the closed curve given by the last
two entries is built by joining m pieces of the the curve

α(u) = (
√

1 − r(u)2 cos(θ(u)),
√

1 − r(u)2 sin(θ(u))) 0 ≤ u ≤ K(H, n, C) =
2kπ

m
.

This last statement is true by the the following observation already pointed out
in the previous section.

For any positive integer j and u ∈ [jT, (j+1)T ] we have that θ(u) = jK+θ(u−jT ).

Corollary 3.2. If M is one of the compact examples in the previous theorem
with H = 0, then, the stability index, i.e, the number of negative eigenvalues of the
operator J(f) = −∆f − nf − ||A||2 f is greater than n + 3.

Proof. Theorem (3.1.1) in [16] states that if M ⊂ Sn+1 is a compact minimal
hypersurface different from a Clifford torus with the property that for any non-zero
vector v ∈ Rn+2 there exists an (n + 2) × (n + 2) orthogonal matrix B such that
B(M) = M and B(v) 6= v, then the stability index of M is greater than n + 3.
Let M be one of the examples from the previous theorem. Since M is compact,
M is left invariant by the orthogonal matrices in the group O(n) × Zm where m

satisfies that K(0, n, C) = 2kπ
m

, with k and m relatively prime. Independently, Otsuki
in [15] and Furuya in [8] showed that M can not be embedded by showing that
π < K(0, n, C) < 2π, these inequalities also implies that m ≥ 2. Since for any non-
zero vector v ∈ Rn+2, there exists a matrix B ∈ O(n)×Zm such that B(v) 6= v, then,
the stability index of M must be greater than n + 3.

4. Embedded hypersurface with CMC in Sn+1. In this section we will
study the existence of compact examples in Sn+1 by studying the values K(H, n, C).
The key for this is the following.

Lemma 4.1. Let f : (−δ, δ) → R be a smooth function such that f(0) = f ′(0) = 0
and f ′′(0) = −2a < 0. For positive values of c close to 0, let t(c) be the first positive
root of the function f(t) + c. Then

lim
c→0+

∫ t(c)

0

dt
√

f(t) + c
=

π

2
√

a
.

Proof. For any b > a let us define the function h(t) = f ′(t) + 2bt. Since h′(0) =
2(b− a) > 0 there exists a positive ǫ such that h′(t) > 0 for all t ∈ [0, ǫ]. Now for any
c such that t(c) < ǫ, the function

g(t) = f(t) + c − (bt(c)2 − bt2)

satisfies that g(t(c)) = 0 and g′(t) = h(t) > 0. Therefore, g(t) < 0 for any t ∈ [0, t(c)].
By the definition of g(t) we get that

0 < f(t) + c < bt(c)2 − bt2 for all t ∈ [0, t(c))

and therefore
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π

2
√

b
=

∫ t(c)

0

dt
√

bt(c)2 − bt2
<

∫ t(c)

0

dt
√

f(t) + c
.

Likewise, for any b < a, the same argument shows

∫ t(c)

0

dt
√

f(t) + c
<

∫ t(c)

0

dt
√

bt(c)2 − bt2
=

π

2
√

b
.

Since b 6= a can be chosen arbitrarily close to a, we obtain the lemma.

Corollary 4.2. Let ǫ and δ be positive real numbers and let f : (t0− ǫ, t0 + ǫ) →
R and g : (−δ, δ)×(t0−ǫ, t0+ǫ) → R be smooth functions such that f(t0) = f ′(t0) = 0
and f ′′(t0) = −2a < 0. If for any small c > 0, t1(c) < t0 < t2(c) are such that
f(t1(c)) + c = 0 = f(t2(c))) + c, then

lim
c→0+

∫ t2(c)

t1(c)

g(c, t) dt
√

f(t) + c
=

g(0, t0)π√
a

.

This lemma allows us to prove our main theorem:

Theorem 4.3. For any n ≥ 2 and any H ∈ (0, 2
√

n−1

n
√

3
) there exists a non-

isoparametric compact embedded hypersurface in Sn+1 with constant mean curvature
H. More generally, for any integer m > 1 and H between

cot
π

m
and

(m2 − 2)
√

(n − 1)

n
√

m2 − 1

there exists a non isoparametric compact embedded hypersurface in Sn+1 with constant
mean curvature H whose isometry group contains O(n) × Zm.

Proof. We will consider only positive values for H . Here we will use the explicit
solution for the ODE (3.13) given in section (3.1). Let us rewrite that ODE as

(g′)2 = q(g) where q(v) = C − v2−2n − (1 + H2)v2 − 2Hv2−n.

We already pointed out in section (3.1) that for some values of C, the function q

has positive values between two positive roots of q, denoted by t1 and t2. Let us be
more precise and give an expression for how big C needs to be. A direct verification
shows that

q′(v) = −2(1 + H2)v − (2 − 2n)v1−2n − 2H(2 − n)v1−n

and that the only positive root of q′ is

v0 = (

√

H2n2 + 4(n − 1) + (n − 2)H

2 + 2H2
)

1
n .(4.1)
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Therefore, for positive values of v, the function q increases from 0 to v0 and decreases
for values greater than v0. A direct computation shows that q(v0) = C − c0 where,

c0 = n (2 + 2H2)
n−2

n
2 + nH2 + H

√

H2n2 + 4(n − 1)
(

(n − 2)H +
√

H2n2 + 4(n − 1)
)

2n−2
n

.(4.2)

Therefore, whenever C > c0 we will have exactly two positive roots of the function
q(v) that we will denote by t1(C) and t2(C) to emphasize its dependence on C. A
direct computation shows that q′′(v0) = −2a where

a = 2n(1 + H2)
4(n − 1) + H2 n2 + H (n − 2)

√

4(n − 1) + H2n2

(H(n − 2) +
√

4(n − 1) + H2n2 )2
.

Using the notation and results of section (3.3), we get

K(H, n, C) = 2

∫ T
2

0

r(s)λ(s)

1 − r2(s)
ds(4.3)

Since r(s) = g(s)√
C

and λ(s) = H + g(s)−n we have

K(H, n, C) = 2

∫ T
2

0

√
Cg(s)(H + g−n(s))

c − g2(s)
ds.

Since g(0) = t1(C) and g(T
2 ) = t2(C), by making the substitution t = g(s) we get

K(H, n, C) = 2

∫ t2(c)

t1(c)

√
Ct(H + t−n)

c − t2
1

√

q(t)
dt.

Since a > 0 we can apply Corollary (4.2) to the get that

lim
C→c

+
0

K(H, n, C) = π

√

2 − 2nH
√

4(n − 1) + H2n2
.

It can be verified that this bound is the same bound we found for the case n = 2.
In order to analyze the limit of the function K(H, n, C) when C → ∞ we return

to the expression (4.3) and we make the substitution t = r(s) to obtain

K(H, n, C) = 2

∫

t2(C)
√

C

t1(C)
√

C

t(H + C−n
2 t−n)

(1 − t2)
√

1 − t2(1 + (H + C−n
2 t−n)2)

dt.

In this case we have used (3.17) to change the ds to dt. Notice that the limit values
t1(C)√

C
and t2(C)√

C
can also be characterized as the only positive roots of the function

q̃ = 1 − t2(1 + (H + C− n
2 t−n)2) = 1 − (1 + H2)t2 − C−nt2−2n − 2HC−n

2 t2−n
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because of the relation q(v) = Cq̃( v√
C

). Since for every positive C we have that

limt→0+ q̃(t) = −∞, q̃( 1√
1+H2

) < 0 and for every positive ǫ < 1√
1+H2

we have

lim
C→∞

q̃(ǫ) > 0 and lim
c→∞

q̃(
1√

1 + H2
− ǫ) > 0,

we conclude that the only two positive roots of q̃ converge to 0 and to 1√
1+H2

when

C → ∞. Therefore,

lim
C→∞

K(H, n, C) = 2

∫ 1√
1+H2

0

Ht

(1 − t2)
√

1 − (1 + H2)t2
dt = 2arccot(H).

Therefore, for any fixed H > 0, the function K(H, n, C) takes all the values
between

a1(H) = 2arccot(H) and a2,n(H) = π

√

2 − 2nH
√

4(n − 1) + H2n2
.

The functions a1(H) and a2,n(H) are decreasing. Moreover, we have that for any
y <

√
2

a2,n(
2 (2 − y2)

√
n − 1

n y
√

4 − y2
) = π y.

Therefore, replacing y by 2
m

in the expression above, we obtain that for values of
H between

cot
π

m
and

(m2 − 2)
√

(n − 1)

n
√

m2 − 1

the number 2π
m

lies between a1(H) and a2,n(H), and therefore, for some constant
C, we will have that K(H, n, C) = 2π

m
. Applying Theorem 3.1 concludes the proof.

Notice that when m = 2 these two bounds are 0 and 2
√

n−1

n
√

3
.

Let us finish this section with a remark already pointed out by Otsuki in ([14]).

Lemma 4.4. For any integer n ≥ 2 and any ǫ > 0 there exist compact non-
isoparametric minimal hypersurfaces in Sn+1 such that n − ǫ ≤ ||A||2(p) ≤ n + ǫ for
all p ∈ M .

Proof. This is a consequence of the fact that the expression for v0 in Equation
(4.1) reduces to (n− 1)

1
2n when H = 0 and the fact that by picking C close to c0, the

roots t1(C) and t2(C) of the function q are as close as v0 as we want. Since the range
of the function g move from t1(C) to t2(C), we can make the values of g to move as

close of (n − 1)
1
2n as we want. When H = 0, we have that

λ = g−n µ = −(n−1)g−n and ||A||2 = (n−1)g−2n+(n−1)2g−2n = n(n−1)g−2n.
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Therefore, we can make ||A||2 as close n as we want. By density of the rational
numbers and the continuity of the function K(H, n, C), we can choose C so that
K(H, n, C) is of the form 2kπ

m
for some pair of integers m and k. This last condition

guarantees the compactness of the profile curve and therefore the compactness of the
hypersurface.

5. Non isoparametric stable cones in Sn+1. For any compact minimal hy-
persurface M ⊂ Sn+1, let us define the operator L1 and the number λ1 as follows,

L1(f) = −∆f − ||A||2f and λ1 = first eigenvalue of L1.

Moreover, let us denote by CM = {tm : t ∈ [0, 1], m ∈ M } the cone over M . We
will say that CM is stable if every variation of CM , which holds M fixed, increases
area.

In ([20], Lemma 6.1.6) Simons proved that if λ1 + (n−1
2 )2 > 0 then CM is stable.

We will prove that for any n ≥ 6, the cone over some non isoparametric examples
studied in this paper for H = 0, i.e, the cone over some of the Otsuki’s examples, are
stable. More precisely we have,

Theorem 5.1. For any n ≥ 6, there are non-isoparametric compact hypersurfaces
in Sn+1 bounding stable minimal cones.

Proof. A direct verification shows that

(
n − 1

2
)2 ≥ n +

1

4
for all n ≥ 6.

Using Lemma (4.4), let us consider a non isoparametric compact minimal hy-
persurface M such that ||A||2 ≤ n + 1

8 . We have that the first eigenvalue λ1 of the
operator L1 is greater than −n − 1

8 because

λ1 = inf {
∫

M
(−∆f − ||A||2 f)f

∫

M
f2

: f is smooth and

∫

M

f2 6= 0}

and we have that,

∫

M
(−∆f − ||A||2 f)f

∫

M
f2

=

∫

M
|∇f |2

∫

M
f2

−
∫

M
||A||2 f2

∫

M
f2

≥ −(n +
1

8
).

Therefore, we get that

λ1 + (
n − 1

2
)2 ≥ −(n +

1

8
) + n +

1

4
=

1

8
> 0

which implies, by Simons’ result, that the cone over M is stable.

6. Some explicit solutions. In this section we will pick some arbitrary values
of H to explicitly show the embedding, the graph of the profile curves, and the
stereographic projections of some examples of surfaces with CMC in S3.

A direct computation shows that the solution of the equation (3.13) when n = 2
is given by



90 O. M. PERDOMO

g(t) =

√

(C − 2H) +
√
−4 + C2 − 4CH sin(2

√
1 + H2 t )

2(1 + H2))
.

From the expression for g we get that its period T is π√
1+H2

. Since n = 2, the

condition on C to get solutions of the ODE (3.13) reduces to C > 2(H +
√

1 + H2).
We can get surfaces associated with m = 2 if we take H between 0 and 1√

3
≃

0.57735 and we can surfaces associated with m = 3 if we take H between 1√
3

and
7

4
√

2
≃ 1.23744. Once we have picked the value for H in the right range, in order to

get the embedded surface, we need to solve the equation

K(H, 2, C) =

∫ π√
1+H2

0

√
C g(t)(H + g(t)−2)

C − g(t)2
dt =

2π

m
.

Finally, when we have the H and the C, the profile curve is given by

(

√

1 − g2(t)

C
cos(θ(t)),

√

1 − g2(t)

C
sin(θ(t)) )

where θ(t) =

∫ t

0

√
C g(τ)(H + g−2(τ))

C − g2(τ)
dτ

and the embedding is given by

(
g(t)√

C
cos(u),

g(t)√
C

sin(u),

√

1 − g2(t)

C
cos(θ(t)),

√

1 − g2(t)

C
sin(θ(t)) )

0 ≤ u < 2π 0 ≤ t < m
π√

1 + H2

Here are some graphics,

Fig. 6.1. Profile curve for m = 2, H = 0.1, in this case C = 41.28796038772471
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Fig. 6.2. Profile curve for m = 2, H = 0.3, in this case C = 9.129645968138256

Fig. 6.3. Profile curve for m = 2, H = 0.57, in this case C = 3.5313222039296357
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Fig. 6.4. Profile curve for m = 2, H = 0.001, H = 0.1, H = 0.3, H = 0.57.

Fig. 6.5. Stereographic projection for the surface with CMC H = 0.1
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Fig. 6.6. Stereographic projection of half the surface with CMC H = 0.1

Fig. 6.7. Stereographic projection one of the two catenoid necks of the surface with CMC H = 0.1
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Fig. 6.8. Stereographic projection of the surface with CMC H = 0.3 and m = 2

Fig. 6.9. Stereographic projection of the surface with CMC H = 0.57 and m = 2
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Fig. 6.10. Profile curve for m = 3 and H = 0.5774, in this case C = 346879.6632142387

Fig. 6.11. Profile curve for m = 3 and H = 0.6, in this case C = 365.3705636110441
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Fig. 6.12. Profile curve for m = 3 and H = 0.8, in this case C = 22.320379289179478

Fig. 6.13. Profile curve for m = 3 and H = 1.0, in this case C = 9.908469426660892
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Fig. 6.14. Profile curve for m = 3 and H = 1.2, in this case C = 6.084010495710457

Fig. 6.15. Profile curve for m = 3 and H = 1.237, in this case C = 5.6615177218839605
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Fig. 6.16. Profile curve for m = 3, H = 0.5774, H = 0.6, H = 0.7, H = 0.8, H = 1.0 H =
1.1 H = 1.2, H = 1.22 H = 1.237.
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Fig. 6.17. Stereographic projection of a surface with CMC H = 0.5774 and m = 3
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Fig. 6.18. Stereographic projection of a surface with CMC H = 0.8 and m = 3
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Fig. 6.19. Stereographic projection of a surface with CMC H = 1.2 and m = 3
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Fig. 6.20. Stereographic projection of a surface with CMC H = 1.2 and m = 4
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6.1. Embedded solutions in hyperbolic spaces. Here we show that the
theorem above can be adapted to hyperbolic spaces. In this case we get the embedded
hypersurfaces without much effort since Hyperbolic space is not compact. We will
use the following model for hyperbolic space:

Hn+1 = { x ∈ Rn+2 : x2
1 + · · · + x2

n+1 − x2
n+2 = −1 }.

The following notation will only be used in this subsection. For any pair of vectors
v = (v1, . . . , vn+2) and w = (w1, . . . , wn+2), 〈v, w〉 = v1w1 + vn+1wn+1 − vn+2wn+2.

Theorem 6.1. Let gC,H : R → R be a positive solution of the equation

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C(6.1)

associated with a non negative H and a positive constant C. If µ, λ, r, θ : R → R and
are defined by

r =
gC,H√

C
, λ = H + g−n

C,H , µ = nH − (n − 1)λ = H − (n − 1)g−n
C,H

and θ(u) =

∫ u

0

r(s)λ(s)

1 + r2(s)
ds

then, the map φ : Sn−1 × R → Hn+1 given by

φ(y, u) = ( r(u) y,
√

1 + r(u)2 sinh(θ(u)),
√

1 + r(u)2 cosh(θ(u)) )(6.2)

defines an embedded hypersurface in Hn+1 with constant mean curvature H. More-
over, if H2 > 1, the embedded manifold defined by (6.2) admits O(n)×Z in its group
of isometries, where Z is the group of integers.

Remark. Arguments similar to those in section (3.1) show that it is not difficult
to find positive values C that lead to positive solutions of the equation (6.1) in terms
of the inverse of a function defined by an integral.

Proof. A direct computation shows the following identities,

(r′)2 + λ2 r2 = 1 + r2, and λr′ + rλ′ = µr′.

Let us define

B2(u) = (0, . . . , 0, sinh(θ(u)), cosh(θ(u)))

and B3(u) = (0, . . . , 0, cosh(θ(u)), sinh(θ(u))).

Notice that 〈B2, B2〉 = −1, 〈B3, B3〉 = 1, 〈B2, B3〉 = 0, B′
2 = rλ

1+r2 B3 and

B′
3 = rλ

1+r2 B2, moreover, the map φ can be written as

φ = r(y, 0, 0) +
√

1 + r2 B2.

A direct verification shows that 〈φ, φ〉 = −1 and that
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∂φ

∂u
= r′ (y, 0, 0) +

rr′√
1 + r2

B2 +
rλ√

1 + r2
B3

is a unit vector, i.e, 〈∂φ
∂u

, ∂φ
∂u

〉 = 1. The tangent space of the immersion at (y, u) is
given by

Tφ(y,u) = {(v, 0, 0) + s
∂φ

∂u
: 〈v, y〉 = 0 and s ∈ R}.

A direct verification shows that the map

ν = −rλ (y, 0, 0) − r2 λ√
1 + r2

B2 +
r′√

1 + r2
B3

satisfies that 〈ν, ν〉 = 1, 〈ν, ∂φ
∂u

〉 = 0 and for any v ∈ Rn with 〈v, y〉 = 0 we have that
〈ν, (v, 0, 0)〉 = 0. It then follows that ν is a Gauss map of the immersion φ. The fact
that the immersion φ has constant mean curvature H follows because for any unit
vector v in Rn perpendicular to y, we have that

β(t) = (r cos(t)y + r sin(t)v, 0, 0) +
√

1 + r2 B2 = φ(cos(t)y + r sin(t)v, u)

satisfies that β(0) = φ(y, u), β′(0) = rv and

dν(β(t))

dt

∣

∣

t=0
= dν(rv) = −rλ v.

Therefore, the tangent vectors of the form (v, 0, 0) are principal directions with
principal curvature λ and multiplicity n − 1. Now, since 〈 ∂ν

∂u
, (v, 0, 0)〉 = 0, we have

that ∂φ
∂u

defines a principal direction, i.e. we must have that ∂ν
∂u

is a multiple of ∂φ
∂u

.
A direct verification shows that,

〈∂ν

∂u
, y〉 = −λ′ r − λr′ = −µ r′ = −(nH − (n − 1)λ)r′.

We also have that 〈∂φ
∂u

, y〉 = r′, therefore,

∂ν

∂u
= dν(

∂φ

∂u
) = −µ

∂φ

∂u
= −(nH − (n − 1)λ)

∂φ

∂u
.

It follows that the other principal curvature is nH − (n − 1)λ. Therefore φ

defines an immersion with constant mean curvature H , this proves the first item in
the Theorem. This immersion is embedded because the immersion φ is one to one
as we can easily check using the fact that whenever H ≥ 0, the function θ is strictly
increasing. In order to prove the condition on the isometries of the immersion when
H > 1 we notice first that the ODE (6.1) can be written as

(g′)2 = g2−2n q(g) where q(v) = Cv2n−2 − (H2 − 1)v2n − 2Hvn − 1.
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Since q(0) = −1 and the leading coefficient of q is negative under the assumption
that H > 1, then by the arguments used in section (3.1) we conclude that a positive
solution g of (6.1) must be periodic, moreover the values of g must move from two
positive roots t1 and t2. Now if T is the period of g and we define

K =

∫ T

0

r(u)λ(u)

1 + r2(u)
du.

We then have:

For any integer j and u ∈ [jT, (j + 1)T ] we have that θ(u) = jK + θ(u − jT ).

Using the equation above we get that the immersion φ is invariant under the
group generated by hyperbolic rotations of the angle K in the xn+1-xn+2 plane. This
concludes the theorem.

6.2. Solutions in Euclidean spaces. In this section we point out that the
same kind of theorem can be adapted to Euclidean spaces. In this case we get the
Delaunay hypersurfaces.

Theorem 6.2. Let gC,H : R → R be a positive solution of the equation

(g′)2 + g2−2n + H2 g2 + 2Hg2−n = C(6.3)

associated with a real number H and a positive constant C. If µ, λ, r, R : R → R and
are defined by

r =
gC,H√

C
, λ = H + g−n

C,H , µ = nH − (n − 1)λ = H − (n − 1)g−n
C,H

and R(u) =

∫ u

0

r(s)λ(s)ds

then, the map φ : Sn−1 × R → Rn+1 given by

φ(y, u) = ( r(u) y, R(u))(6.4)

defines an immersed hypersurface in Rn+1 with constant mean curvature H. More-
over, if H ≥ 0, the manifold defined by (6.4) is embedded. We also have that when
n > 2, up to rigid motions they are the only non isoparametric CMC hypersurfaces
with exactly two principal curvatures.

Proof. A direct computation shows the following identities,

(r′)2 + λ2 r2 = 1, and λr′ + rλ′ = µr′.

In this case we have that the map

ν(y, u) = (−r(u)λ(u) y, r′(u))
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is a Gauss map of the immersion. A direct computation shows that indeed this immer-
sion has constant mean curvature H . The fact that the immersion is an embedding
when H ≥ 0 follows from the fact that λ > 0 in this case and therefore the function R

is strictly increasing. For the last part of the theorem we will use the same notation
used in the previous sections, and in particular we define the functions w, λ on the
whole manifold as before, and we extend the function r to the manifold by defining
it as r = w√

c
, we will also assume that γ will denote a geodesic defined by the vector

field en. We have that,
1. the vector λ ren + en(r) ν is a unit constant vector on the whole manifold, we

can assume that this vector is the vector (0, . . . , 0, 1)
2. The vector η = −en(r) en + λ r ν is constant along a geodesic γ, i.e, we can

prove that ∇̄en
η vanishes. We also have that η is a unit vector perpendicular

to the vector defined in the previous item.
3. From the last items we can solve for en in terms of the vectors (0, . . . , 0, 1)

and η along a geodesic γ, and then, integrate in order to get the one of this
geodesics. Using the differential equation for r at the beginning of the proof,
we get that en = λ r(0, . . . , 0, 1) − en(r)η

4. Similar to the case of Sn, we can show that ∇ven = en(r)
r

en for every v ∈
Span{e1, . . . , en−1}. Therefore, the vector field x + rη is independent of the
integral submanifolds of the distribution Span{e1, . . . , en−1}.

5. The previous considerations and the fact that the vectors e1, . . . en−1 are
perpendicular to the vector η and (0, . . . , 0, 1) imply that the integral sub-
manifolds of the distribution Span{e1, . . . , en−1} are spheres with center at
x + rη and radius r. Notice that ||x − (x + rη)|| = r.

6. If we fix a point p0 and we define the geodesic γ(u) as before, then, without
loss of generality we may assume that η(p0) = (0, . . . , 0, 1, 0) = η(u) and
therefore, we can also assume by doing a translation, if necessary, that

γ(u) =

∫ u

0

en(u) =

∫ u

0

(0, . . . , 0,−r′(u), λ(u) r(u)) = (0, . . . ,−r(u), R(u))

Where R(u) =
∫ u

0
λ(t) r(t)dt. The theorem follows by noticing that the

center of the integral submanifolds take the form γ(u) + r(u)η(γ(u)) =
(0, . . . , 0, R(u))

In the case n = 2 we can find explicit solutions. For any positive C > 4H , they
look like,

φ(u, v) = ( r(u) cos(v), r(u) sin(v), R(u))

where,

R(u) =

∫ u

0

C +
√

C(C − 4H) cos(2Hy)
√

2C

√

C − 2H +
√

C(C − 4H) cos(2Hy)
dy

and r(u) =

√

C − 2H +
√

C(C − 4H) cos(2Hu)
√

2
√

CH
.

Here there is the graph of a non embedded Delaunay surface,
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Fig. 6.21. Half rotation of a non embedded Delaunay surface with CMC H = −1, here C = 2
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