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CROSS CURVATURE FLOW ON LOCALLY HOMOGENEOUS
THREE-MANIFOLDS (II)∗

XIAODONG CAO† AND LAURENT SALOFF-COSTE‡

Abstract. In this paper, we study the positive cross curvature flow on locally homogeneous
3-manifolds. We describe the long time behavior of these flows. We combine this with earlier results
concerning the asymptotic behavior of the negative cross curvature flow to describe the two sided
behavior of maximal solutions of the cross curvature flow on locally homogeneous 3-manifolds. We
show that, typically, the positive cross curvature flow on locally homogeneous 3-manifold produce
an Heisenberg type sub-Riemannian geometry.
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1. Introduction.

1.1. Evolution equations on homogeneous manifolds. Hamilton’s Ricci
flow ([Ham82]) is the best known example of a geometric evolution equation. One of
the aims of such flows is to obtain metrics with special properties (in the case of the
Ricci flow, Einstein metrics). Special cases arise when the metric is invariant under
a group of transformations and this property is preserved by the flow. In particular,
if the group of isometries of the original Riemannian structure is transitive, then the
geometric evolution equation reduces to an ODE in the tangent space of an arbitrary
fixed origin. The Ricci flow on locally homogeneous 3-manifolds was analyzed in [IJ92]
and on some homogeneous 4-manifolds in [IJL06].

The cross curvature flow, or (XCF), was introduced by Chow and Hamilton
[CH04] and depends on the choice of a sign (see Section 1.3 below) leading to two
flows: (+XCF) and (-XCF). Chow and Hamilton conjectured that for any compact
3-manifold that admits a metric with negative sectional curvature, the normalized
positive cross curvature flow, started at such a metric, exists for all time and con-
verges to a hyperbolic metric. In [CNSC08], we study the asymptotic behavior of
the negative cross curvature flow (-XCF) on homogeneous 3-manifolds. In this pa-
per, we complement the results of [CNSC08] by studying the asymptotic behavior of
the positive cross curvature flow, or (+XCF), on homogeneous 3-manifolds. In the
homogeneous case, the local existence is not an issue and the negative and positive
cross curvature flows can be seen as the same basic flow (say, (-XCF)) run either in
the forward or backward direction. Putting together the results of [CNSC08] and of
this paper, we will thus describe both the forward and backward asymptotic behav-
iors of the maximal solution of (-XCF) through any given metric g0 on any locally
homogeneous 3-manifold.

Although we will give much more precise statements, the spirit of the main results
proved in this paper is captured in the following theorem.

Theorem 1.1. Let (M, g0) be a complete locally homogeneous 3-manifold (com-
pact or not), with the property that the minimal isometry group acting on the universal

∗Received December 11, 2008; accepted for publication October 9, 2009.
†Department of Mathematics, Cornell University, Ithaca, NY 14853, USA (cao@math.cornell.

edu). Research partially supported by the Jeffrey Sean Lehman Fund from Cornell University.
‡Department of Mathematics, Cornell University, Ithaca, NY 14853, USA (lsc@math.cornell.edu).

Research partially supported by NSF grant no. # DMS 0603886.

421



422 X. CAO AND L. SALOFF-COSTE

cover is unimodular. Let gb(t), t ∈ [0, Tb) be the maximal solution of the positive cross
curvature flow (+XCF) with initial metric g0. Let d(t) denote the distance function
on (M, gb(t)). Assume that g0 is generic among all locally homogeneous metrics on
M . Then

• either Tb = ∞ and gb(t) = eλtg0 for some λ ∈ R (i.e., the cross curvature
tensor of g0 is equal to λg0),

• or Tb < ∞ and there exists a function r(t) : [0, Tb) → (0,∞) such that the
metric spaces (M, r(t)d(t)) converge uniformly to a sub-Riemannian metric
space (M,d(T )) whose tangent cone at any m ∈ M is the Heisenberg group
H3 equipped with its natural sub-Riemannian metric.

For a closed 3-dimensional Riemannian manifold (M, g0) that is locally homoge-
neous, there are 9 possibilities for the universal cover. They can be labelled by the
minimal isometry group that acts transitively:

(a) H(3) (H(n) denotes the isometry group of hyperbolic n-space); SO(3) × R;
H(2) × R;

(b) R3; SU(2); SL(2,R); Heisenberg; E(1, 1) = Sol (the group of isometry of plane
with a flat Lorentz metric); E(2) (the group of isometries of the Euclidean
plane). This is called the Bianchi case in [IJ92].

In this paper, we prove Theorem 1.1 in all cases except for manifolds covered by
˜SL(2,R) (the SL(2,R) case). In the SL(2,R) case, we only prove a slightly weaker

result (see Theorem 6.12). To obtain a proof of Theorem 1.1 in the SL(2,R) case, one
actually needs some additional information. This additional information is obtained
in [CGSC09] by using a different type of argument. See the comment at the end of
the proof of Theorem 6.12.

Remark 1.1. The first case only occurs for homogeneous 3-manifolds covered
by R3, H3, S2 × R and H2 × R. Moreover, in those cases, gb(t) = eλtg0 for any
homogeneous g0.

We find it quite striking that the asymptotic behavior of (+XCF), i.e., the back-
ward behavior of (-XCF), is essentially the same in all cases, for generic homogeneous
metrics. In a companion paper [CSC09], we show that the same “universal” behavior
holds for the backward Ricci flow on homogeneous 3-manifolds. This contrast with
the very different behavior observed in the forward direction. See [IJ92, CNSC08] and
the various more precise statements given below.

1.2. The cross curvature tensor on 3-manifolds. On a 3-dimensional Rie-
mannian manifold (M, g), let Rc be the Ricci tensor and R be the scalar curva-
ture. The Einstein tensor is defined by E = Rc − 1

2Rg. Its local components are
Eij = Rij − 1

2Rgij . Raising the indices, define P ij = gikgjlRkl − 1
2Rg

ij , where gij

is the inverse of gij . Let Vij be the inverse of P ij (if it exists). The cross curvature
tensor is (see [CH04])

hij =

(
detP kl

det gkl

)
Vij .

Assume that computations are done in an orthonormal frame where the Ricci ten-
sor, and thus also the cross curvature tensor, is diagonal. If the principal sectional
curvatures are k1, k2, k3 (ki = Kjkjk , circularly) so that Rii = kj + kl, circularly, then

(1.1) hii = kjkl.

Notice that this definition works even when some of the sectional curvatures vanish.



XCF ON LOCALLY HOMOGENEOUS 3-MANIFOLDS (II) 423

1.3. The cross curvature flows. In [CH04], Chow and Hamilton define the
cross curvature flow on 3-manifolds starting from a metric with either positive sec-
tional curvature or negative sectional curvature. More precisely, if ǫ = ±1 is the
sectional curvature sign (assumed to be well defined) of the metric g0, the cross cur-
vature flow starting from g0 is the solution of

{
∂
∂tg = −2ǫh
g(0) = g0.

In these circunstances, the local existence of the flow was proved in [Buc06].
Locally homogeneous manifolds seldom have sectional curvatures that are all of

the same sign. In dimension 3, positive sectional curvature is only possible on locally
homogeneous manifolds covered by the sphere SU(2). Negative sectional curvature
occurs only on hyperbolic 3-manifolds. All other locally homogeneous closed Rie-
mannian 3-manifolds are either flat or have some positive sectional curvature [Mil76,
Theorem 1.6]. Thus the definition above is not really practical for our purpose as far
as a choice of sign is concerned and it is natural to investigate both the positive and
the negative cross curvature flows defined by

(+XCF)

{
∂
∂tg = 2h
g(0) = g0.

and

(−XCF)

{
∂
∂tg = −2h
g(0) = g0.

In fact, starting from a initial metric g0 on a locally homogeneous 3-manifold, let
gf (t), t ∈ [0, Tf) be the maximal forward solution of the (-XCF), and gb(t), t ∈ [0, Tb)
be the maximal forward solution of the (+XCF). Now, for t ∈ I = (−Tb, Tf), set

g(t) =

{
gf (t) for t ∈ [0, Tf)
gb(−t) for t ∈ (−Tb, 0].

It is easy to see that, by construction, g(t), t ∈ I, is a maximal solution of (-XCF)
passing through g0 at time t = 0. One of the goals of our study is to describe the
behavior of these maximal solutions in the forward and backward directions. The
forward direction is treated in [CNSC08] and the present paper is devoted to the
backward direction which, of course, is the same as the forward direction for (+XCF).

1.4. Normalizations. Let g(t), t ∈ I, be a maximal solution of the (-XCF). By

renormalization of g(t), we mean a family g̃(t̃), t̃ ∈ Ĩ , obtained by a change of scale in
space and a change of time, that is

g̃(t̃) = ψ(t)g(t), t̃ =

∫ t

0

ψ2(s)ds.

Set ψ̃(t̃) = ψ(t), then we have

∂g̃

∂t̃
= −2h̃+

(
d

dt̃
ln ψ̃

)
g̃,

where h̃ is the cross curvature tensor of g̃.
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On compact manifolds, it is customary to take d
dt lnψ = 2

3h, where h =
R

tr(h)dµR
dµ

is the average of the trace of the cross curvature because the volume of the metric
g̃ is then constant. In this paper, we will consider some different normalizations, for
instance, keeping the diameter constant. Moreover, we will not worry about the time
change associated above with a re-scaling by ψ. Given a solution g of (-XCF), we will
be interested in finding re-scaling ḡ(t) = φ(t)g(t) such that the asymptotic behavior
of the metric space (M, ḡ(t)) is described by a model having the largest possible
dimension (i.e., minimum collapse). Although making this precise could possibly
involve some difficulties in general, in our specific examples, what it means will be
quite obvious.

1.5. Convergence of metric spaces. We refer the reader to [BBI01] for an
introduction to and more details on the notions discussed briefly in this section. We
start with the most basic (and naive) notion of convergence: the uniform convergence
of a family of metric spaces (X, dt), t ∈ (0, T ), towards a metric space (X, dT ) when
all metric structures are defined on the same topological space X . By definition,
this uniform convergence (which we will encounter frequently below), is simply the
convergence of the functions dt to dT on X×X , uniformly on compact sets, as t tends
to T .

Example 1.1. Let gt, t ∈ (0, T ], be Riemannian metrics on a manifold M ,
equipped with an auxiliary Riemannian metric g0. Let dt be the corresponding dis-
tance functions on M . Assume that there is a Riemannian metric gT on M such that
for any compact K ⊂M ,

(1.2) lim
t→T

max
x∈K

max
u∈Tx:g0(u,u)≤1

|gt(u, u) − gT (u, u)| = 0.

Then the distance dt converge uniformly on compact sets to dT .

The Lipschitz distance between two metric spaces is the infimum of ln dil(f) +
ln dil(f−1) where f is a bi-lipschitz homeomorphism between X and Y and

(1.3) dil(f) = sup
x,x′∈X

{dY (f(x), f(x′))/dX(x, x′)}.

Example 1.2. Let M and gt, t ∈ [0, T ] be as in Example 1.1. If (1.2) holds and
M is compact then the Lipschitz distance between (M,dt) and (M,dT ) tends to zero.
If M is not compact, this is not necessarily the case because Lipschitz convergence
implies some global control. However, if one assumes instead that

(1.4) lim
t→T

max
x∈M

max
u∈Tx:g0(u,u)≤1

|gt(u, u) − gT (u, u)| = 0

then the Lipschitz distance between (M,dt) and (M,dT ) tends to zero.

Recall that for two subsets A,B of a metric space Z,

dZ
H(A,B) = inf{ǫ > 0 : A ⊂ Bǫ and B ⊂ Aǫ}

where Aǫ is the ǫ-neighborhood of A in Z. The Hausdorff distance between two metric
spaces X,Y is the infimum of the numbers dZ

H(f(X), g(Y )) for all metric spaces Z and
all isometric embeddings f, g of X,Y into Z. Finally, a sequence of pointed metric
spaces (Xn, pn) converges in the Gromov-Hausdorff sense to a pointed metric space
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(X, p) if, for every r, ǫ > 0, there is a map f : BXn(pn, r) → X (not necessarily
continuous) such that f(pn) = p, dis(f) < ǫ, BX(p, r − ǫ) ⊂ [f(BXn(, pn, r))]ǫ. Here,
if f is a map from X to Y , dis(f) = supx,x′∈X |dY (f(x), f(x′)) − dX(x, x′)|. For
length spaces (and we will deal only with length spaces), this is equivalent to say that
the balls BXn(pn, r) converge in the Gromov-Hausdorff sense to B(p, r), for all each
r > 0.

Example 1.3. Convergence in the Gromov-Hausdorff sense allows for dimen-
sional collapse. For instance, the pointed cylinder (R × S1, (0, 0), dt), dt being the
distance associated with gt = (dx)2 + t−1(dθ)2 converges in the Gromov-Hausdorff
sense as t tends to infinity to (R, 0) equipped with its usual metric.

Note that the metric spaces (R2, (0, 0), dt), dt associated with gt = (dx)2 +
t−1(dy)2, are all isometric and thus indistinguishable in terms of the Lipschitz or
Gromov-Hausdorff distances.

Example 1.4. [Tangent cones] Given a pointed metric space (X, d, p), we call
tangent cone at p, any pointed metric space (X0, d0, p0) which appears as a Gromov-
Hausdorff limit of (a subsequence of) the family of pointed metric spaces (X, td, p), t
tending to 0. For any pointed Riemannian n-manifold (M, g, p), the tangent cone at
p exists, is unique, and equals the Euclidean n-space.

1.6. Locally homogeneous 3-manifolds. By classical arguments, the study of
the Ricci or cross curvature flow on a locally homogeneous manifold reduces essentially
to the study of the same flow on the universal cover. In dimension 3 there are 9
possibilities for the universal cover, four of which are essentially trivial as far as the
cross curvature flow is concerned. These four easy cases are : R3 (flat metrics), H3

(hyperbolic metric), S2 × R and H2 × R. See [CNSC08]. In the remaining 5 cases
the universal cover is itself a group that act transitively on the manifold. This paper

focusses on these five cases which are: SU(2), ˜SL(2,R); Heisenberg; E(1, 1) = Sol (the

group of isometry of plane with a flat Lorentz metric); Ẽ(2) (the universal cover of
the group of isometries of the Euclidean plane). See [IJ92] or [CNSC08] for a more
detailed discussion.

Assume that g is a 3-dimensional real Lie unimodular algebra equipped with an
oriented Euclidean structure. According to J. Milnor, [Mil76], there exists a (posi-
tively oriented) orthonormal basis (e1, e2, e3) and reals λ1, λ2, λ3 such that the bracket
operation of the Lie algebra has the form

[ei, ej] = λkek (circularly in i, j, k).

Milnor shows that such a basis diagonalizes the Ricci tensor and thus also the cross
curvature tensor. If fi = ajakei with nonzero ai, aj , ak ∈ R, then [fi, fj] = λka

2
kfk

(circularly in i, j, k). Using the choice of orientation, we may assume that at most
one of the λi is negative and then, the Lie algebra structure is entirely determined by
the signs (in {−1, 0,+1}) of λ1, λ2, λ3 as follows:

+ + + SU(2)
+ + − SL(2,R)
+ + 0 E(2) (Euclidean motions in 2D)
+ 0 − E(1, 1) (also called Sol)
+ 0 0 Heisenberg group
0 0 0 R3
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In each case, let ǫ = (ǫ1, ǫ2, ǫ3) ∈ {−1, 0,+1}3 be the corresponding choice of signs.
Then, given ǫ and an Euclidean metric g0 on the corresponding Lie algebra, we can
choose a basis f1, f2, f3 (with fi collinear to ei above) such that

(1.5) [fi, fj] = 2ǫkfk (circularly in i, j, k).

We call (fi)
3
1 a Milnor frame for g0. The metric, the Ricci tensor and the cross curva-

ture tensor are all diagonalized in this basis and this property is obviously maintained
throughout either the Ricci flow or cross curvature flow. If we let (f i)31 be the dual
frame of (fi)

3
1, the metric g0 has the form

(1.6) g0 = A0f
1 ⊗ f1 +B0f

2 ⊗ f2 + C0f
3 ⊗ f3.

Assuming existence of the flow g(t) starting from g0, under either the Ricci flow or
the cross curvature flow (positive or negative), the original frame (fi)

3
1 stays a Milnor

frame for g(t) along the flow and g(t) has the form

(1.7) g(t) = A(t)f1 ⊗ f1 +B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3.

It follows that these flows reduce to ODEs in (A,B,C). Given a flow, the explicit
form of the ODE depends on the underlying Lie algebra structure. With the help of
the curvature computations done by Milnor in [Mil76], one can find the explicit form
of the equations for each Lie algebra structure. The Ricci flow case was treated in
[IJ92]. The computations of the ODEs corresponding to the cross curvature flow are
presented in [CNSC08] and will be used below to study the asymptotic behavior of
(+XCF).

1.7. Sub-Riemannian Geometry. The notion of sub-Riemannian geometry
can be described from several equivalent but different viewpoints. The simplest is
perhaps to start with a family of smooth vector fields X = {Xi, i ∈ {1, . . . , k}} on
a manifold M with the property that these fields, together with their brackets of all
orders, span the tangent space at each point of M . This is often called Hörmander’s
condition (Hörmander proved that the associated sum of squares L =

∑
X2

i is hy-
poellitic). Given a family X , one defines a distance on M as follows. A vector u in the

tangent space Tx at x is subunit if u =
∑k

1 aiXi(x) with
∑ |ai|2 ≤ 1. An absolutely

continuous curve γ : [0, T ] →M is subunit if γ̇(t) is subunit for each t ∈ [0, T ] (in par-
ticular, this means that γ̇(t) belongs to the span of X at γ(t), i.e., is horizontal). The
distance dX (x, y) is the infimum of T such that there exists an absolutely continuous
subunit curve γ : [0, T ] →M with γ(0) = x and γ(T ) = y.

Another equivalent definition starts with a distribution H , that is to say, a sub-
bundle of the tangent bundle, together with a fiber inner product on this sub-bundle.
This easily leads to the notion of length of a horizontal curve (i.e., a curve that stays
tangent to the sub-bundle). In this case, the Hörmander condition is expressed using
a local frame for H .

A third equivalent definition is based on the choice of a symmetric non-negative
(0, 2)-tensor Q (a possibly degenerate inner product on the co-tangent bundle). This
defines a sub-bundle of the tangent bundle by setting

Hx = {u ∈ Tx : sup
α:Q(α,α)≤1

α(u) <∞}

and induces an inner product onHx in the obvious way. Again, Hörmander’s condition
can be expressed using a local frame for H . The link between the first presentation
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and the third is simply that, given a Hörmander family X ,

(1.8) Q(α, α) =

k∑

1

|α(Xi)|2.

The most basic result of sub-Riemannian geometry is that, assuming Hörmander’s
condition, the associated sub-Riemannian distance defines the original topology of the
manifold M . See Chow’s theorem in [Mon02, Ch. 2]. More generally, we refer the
reader to [Mon02] for a detailed introduction to sub-Riemannian geometry.

Most relevant to the present paper is the fact that sub-Riemannian metrics can
easily appear as limit of Riemannian metrics as explain in the following example.

Example 1.5. Let M be a manifold, equipped with a family of Riemannian
metric gt, t ∈ [0, T ) (we will use g0 as a reference metric here). For each t ∈ [0, T ), we
let dt be the corresponding distance function. Each gt induces a symmetric positive
definite (0, 2)-tensor Qt. Now, the existence of a Riemannian metric gT such that

lim
t→T

max
x∈K

max
u∈Tx:

g0(u,u)≤1

|gt(u, u) − gT (u, u)| = 0

is obviously equivalent to the the existence of a symmetric positive definite (0, 2)-
tensor QT such that

lim
t→T

max
x∈K

max
u∈T ′

x:

Q0(u,u)≤1

|Qt(u, u) −QT (u, u)| = 0.

However, in general, it is well possible that there exists a symmetric non-negative
(0, 2)-tensor QT such that

lim
t→T

max
x∈K

max
u∈T ′

x:

Q0(u,u)≤1

|Qt(u, u) −QT (u, u)| = 0

even if the metrics gt do not have a well defined finite limit. In that case, if the
limiting (0, 2)-tensor QT turns out to satisfy Hörmander’s condition then the metric
space (M,dt) converges uniformly on compact sets to the sub-Riemannian metric
space (M,dT ) where dT is the sub-Riemannian distance function associated with QT .
See, e.g., [JSC87].

The case of left-invariant sub-Riemannian structures on Lie groups is somewhat
simpler than the general case and extremely natural. Recall that the Lie algebra g of
a connected Lie group G can be identify with the space of left-invariant vector fields
equipped with the bracket operation. A left-invariant sub-Riemannian structure on
G is simply a family X = {X1, . . . , Xk} of left-invariant vector fields which generates
the Lie algebra. The associated left-invariant quadratic form on the cotangent bundle
is given by (1.8). We briefly illustrate this case by examples of sub-Riemannian
geometries on the Heisenberg group and on SU(2).

Example 1.6. The Heisenberg group H3 is R3 equipped with the multiplication

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 1
2 (xy′ − yx′)).

It is easy to see that the left-invariant vector fields equal to d/dx, d/dy and d/dz at
(0, 0, 0) are

X = d/dx− (y/2)d/dz, Y = d/dy + (x/2)d/dz and Z = d/dz.
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Moreover, Z = [X,Y ] and [X,Z] = [Y, Z] = 0. The “canonical” sub-Riemannian
structure on H3 is associated with the (minimal) Hörmander family {X,Y }. This
structure is particularly adapted to H3 because it is homogeneous with respect to the
natural dilations δs(p) = (sx, sy, s2z), p = (x, y, z), that commutes with the group
law. Namely, if d(p, p′) is the sub-Riemannian distance associated with the family
{X,Y }, we have

d(δs(p), δs(p
′)) = sd(p, p′), p, p′ ∈ H3.

No left-invariant Riemannian metrics can have this property. There is an exact ex-
pression for the sub-Riemannian distance on H3 (this is one of the very few cases of
sub-Riemannian geometry where such an exact formula exists). To connect with the
notation introduced in our discussion of Milnor frame on 3-dimensional Lie groups,
observe that f1 = Z/2, f2 = X , f3 = Y is a Milnor frame for the left-invariant metric
on H3 given at the origin by g0 = dx2 + dy2 + dz2. The sub-Riemannian structure on
H3 discussed above can be described as

Q = f2 ⊗ f2 + f3 ⊗ f3.

Note that this can be viewed as the limit of any family of Riemannian metrics

gt = A(t)f1 ⊗ f1 +B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈ [0, T )

such that limT B = limT C = 1 and limT A = ∞. Indeed, in this case,

Qt = A(t)−1f1 ⊗ f1 +B(t)−1f2 ⊗ f2 + C(t)−1f3 ⊗ f3, t ∈ [0, T )

which obviously tends to Q (uniformly!). Note that the existence of the dilations
δs, s > 0, imply immediately that the tangent cone at the identity element e of the
pointed sub-Riemannian metric space (H3, Q, e) is that space itself.

Example 1.7. The group SU(2) is the group of matrices
{(

a b
−b̄ ā

)
: a, b ∈ C, |a|2 + |b|2 = 1

}

which can also be identified with the 3-sphere S3. Its Lie algebra can be identified
with

su(2) =

{(
iα β
−β̄ iα

)
: α ∈ R, β ∈ C

}
.

Let g0 be any left-invariant Riemannian metric on SU(2) and f1, f2, f3 be a Milnor
frame as defined earlier. Computation of the sectional curvatures (see below) show
that (f1, f2, f3) is always an orthonormal frame for the standard round sphere metric
on SU(2) ≃ S3. Since [fi, fj] = 2fk circularly, we can pick any two of these vectors,
say f2, f3, and consider the sub-Riemannian metrics

Qb,c = bf2 ⊗ f2 + cf3 ⊗ f3

where b, c are fixed positive constants. These obviously appears as limits of Rie-
mannian metrics as in the case of the Heisenberg group discussed above. The tangent
cone of SU(2) equipped with one of this sub-Riemannian metric is, at any fixed point,
the Heisenberg group equipped with its canonical sub-Riemannian structure discussed
above. For a discussion of this example and relation to the Hopf fibration, see [Mon02].



XCF ON LOCALLY HOMOGENEOUS 3-MANIFOLDS (II) 429

2. The cross curvature flow on the Heisenberg group. Given a metric g0
on the Heisenberg group (or on a 3 manifold of Heisenberg type), we fix a Milnor
frame {fi}3

1 such that

[f2, f3] = 2f1, [f3, f1] = 0, [f1, f2] = 0

and (1.6)-(1.7) hold. Using [Mil76], the sectional curvatures are:

K(f2 ∧ f3) = − 3A

BC
, K(f3 ∧ f1) = K(f1 ∧ f2) =

A

BC
.

and the scalar curvature is R = −2A/BC. The ODE for (+XCF) is given by

(2.1)





dA

dt
=2

A3

B2C2
,

dB

dt
= − 6

A2

BC2
,

dC

dt
= − 6

A2

B2C
.

This case is very simple and admits a completely explicit solution. Since the com-
putations for (+XCF) are essentially the same as for (-XCF), we refer the reader to
[CNSC08] for details and simply write down the explicit maximal solution of (-XCF)
passing through g0 at t = 0.

Theorem 2.1. Given A0, B0, C0 > 0 and R0 = 2A0/(B0C0), set

T0 = Tb = 1/(7R2
0).

The maximal solution of (-XCF) through g0 at t = 0 is defined on (−T0,∞) and given
by






A(t) = A0(1 + t/T0)
− 1

14

B(t) = B0(1 + t/T0)
3
14

C(t) = C0(1 + t/T0)
3
14 .

The sectional curvatures are given by

− 1
3K(f2 ∧ f3) = K(f1 ∧ f2) = K(f3 ∧ f1) =

A0

B0C0
(1 + t/T0)

− 1
2 .

From the view point of the positive cross curvature flow (+XCF), this theorem
indicates that (+XCF) on the Heisenberg group develops a singularity at the finite
time T0 = B2

0C
2
0/(28A2

0). This singularity is of a type that is different from the
singularities usually observed in geometric flows which are dimensional collapses such
as pancake and cigar degeneracies.

Theorem 2.1 clearly indicates that it is natural to re-scale the metric g(t) by a
factor of ψ(t) = (1 + t/T0)

−3/14 (we will ignore the corresponding change of time

t̃ =
∫ t

0 ψ(s)2ds but note that the backward blow-up time stays finite anyhow). Ac-
cordingly, we set

ḡ(t) = (1 + t/T0)
−3/14g(t).
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Theorem 2.2. Let M be a complete locally homogeneous 3-manifolds of Heisen-
berg type with initial homogeneous metric g0 and associated Milnor frame (f1, f2, f3).
Let ḡ be as defined above.

1. If M is compact, as t tends to infinity, the metric space (M, g(t)) converges in
the Gromov-Hausdorff sense to R2 with a flat metric (the sectional curvature
tends to 0). If M = H3, as t tends to infinity, the pointed metric space
(H3, e, g(t)) converges in the Gromov-Hausdorff sense to R3 with a flat metric.

2. As t tends to −T0, the metric space (M, ḡ(t)) converges uniformly to the
sub-Riemannian metric space (M,B−1

0 f2 ⊗ f2 + C−1
0 f3 ⊗ f3).

Remark 2.1. In the first statement, the direction that collapses is that of the
center, i.e., f1. It follows that to have Gromov-Hausdorff convergence to a flat R2,
it suffices to assume that M is of the form H3/Γ where Γ is a discrete subgroup of
H3 with non-trivial intersection with the center. If Γ has trivial intersection with the
center thenM = H3/Γ is not compact and converges in the pointed Gromov-Hausdorff
sense to a flat R3.

Remark 2.2. In the second statement, the identity map Id is, in fact, a bi-
Lipschitz map between (M, ḡ(t)) and (M,B−1

0 f2⊗f2+C−1
0 f3⊗f3) and dil(Id) defined

at (1.3) tends to 0 as t tends to −T0.

Remark 2.3. Let et
i be the unit vector for the metric g(t) positively collinear to

fi. It is useful to look at the evolution of the Lie algebra structure viewed from the
perspective of the metric g(t). Namely, we have

[et
2, e

t
3] =

√
A(t)/B(t)C(t)et

1, [et
1, e

t
2] = [et

3, e
t
1] = 0.

As t tends to ∞, A(t)/B(t)C(t) tends to 0 and the non-trivial nilpotent structure
converges to the trivial abelian structure on R3. This is geometrically significant here
since the exponential map yields global coordinates.

3. The cross curvature flow on SU(2). Given a metric g0 on SU(2), we fix
a Milnor frame such that [fi, fj ] = 2fk. For any metric g = Af1 ⊗ f1 + Bf2 ⊗ f2 +
Cf3 ⊗ f3, the sectional curvatures are (see, e.g., [CK04, pg. 12]

K(f2 ∧ f3) =
(B − C)2

ABC
− 3A

BC
+

2

B
+

2

C
,

K(f3 ∧ f1) =
(C − A)2

ABC
− 3B

CA
+

2

A
+

2

C
,

K(f1 ∧ f2) =
(A− B)2

ABC
− 3C

AB
+

2

A
+

2

B
.

Together with the results obtained in [CNSC08], the asymptotic behavior that will
be proved in this section (see Theorem 3.8 below) give the following full description
of the asymptotic behavior of the solution of the negative cross curvature flow passing
through a metric g0 at time 0.

Theorem 3.1. Let g(t) = A(t)f1⊗f1 +B(t)f2⊗f2+C(t)f3⊗f3, t ∈ (−Tb, Tf),
be a maximal solution of the negative cross curvature flow (-XCF) on SU(2). Assume
that A0 ≥ B0 ≥ C0 and set

ḡ(t) =
B0

B(t)
g(t).
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• The time Tf is finite. When t→ Tf , (SU(2), ḡ(t)) converges uniformly to the
round sphere S3√

B0
.

• If A0 = B0 = C0, then Tb = ∞, Tf = B2
0/4, B(t) =

√
B2

0 − 4t and ḡ(t) = g0
(a round metric) for all t ∈ (−∞, Tf ) .

• If A0 = B0 > C0 (the Berger sphere case), then Tb = ∞ and, as t → −∞,
(SU(2), ḡ(t)) converges in the Gromov-Hausdorff sense to a two-dimensional
round sphere (the sectional curvatures of ḡ(t) containing f3 tends to 0 whereas
the one corresponding to f1 ∧ f2 tends to 4/B0).

• If A0 > B0 ≥ C0 then Tb is finite. As t → −Tb, (SU(2), ḡ(t)) converges
uniformly to a sub-Riemannian metric space (SU(2), bf2⊗ f2 + cf3⊗ f3) with
b = B−1

0 and c ∈ [B−1
0 ,∞) (if B0 > C0 then b > c).

Proof. Theorem 3 of [CNSC08] gives Tf ∈ (0,∞) and the asymptotic A,B,C ∼
2
√
T − t as t tends to Tf . The first statement follows. The other statements are

consequences of Theorem 3.8 below.

Remark 3.1. If one think about the global behavior of the two-sided maximal
flow lines of the cross curvature flow in a given Milnor frame on SU(2) in terms of the
value taken at time 0, (A0, B0, C0), in the first octant of R3, one should distinguish 6
regions, each corresponding to a strict order of the type A > B > C. These regions
are preserved by the flow and separated by planes of the type A = B corresponding
to Berger sphere metrics. These planes are preserved by the flow. The intersection
of these planes is the line A = B = C corresponding to round metrics. This line is
also preserved by the flow. In the forward direction, the flow lines all approach the
line A = B = C, towards the point (0, 0, 0). In the backward direction, in each of
the 6 open regions, the largest component tends to infinity whereas the two smaller
components have finite distinct limits. On the plane A = B, in the backward direction,
A = B tends to infinity and C has a finite limit.

This section is devoted to the proof of the result that concern the behavior at
−Tb. For the rest of this section, we only consider forward solutions of (+XCF).

From the sectional curvatures given above, we easily obtain the ODEs correspond-
ing to the positive cross curvature flow (+XCF), namely,

(3.1)





dA

dt
=2

AY Z

(ABC)2
,

dB

dt
=2

BZX

(ABC)2
,

dC

dt
=2

CXY

(ABC)2
,

where

X =3A2 − (B − C)2 − 2AB − 2AC,

Y =3B2 − (A− C)2 − 2AB − 2BC,

Z =3C2 − (A−B)2 − 2BC − 2AC.
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Recall from [CNSC08], that we have

d ln(A/B)

dt
=

8Z

(ABC)2
(B −A)(A+B − C),(3.2)

d ln(A/C)

dt
=

8Y

(ABC)2
(A− C)(B − C −A),(3.3)

d ln(B/C)

dt
=

8X

(ABC)2
(B − C)(A−B − C),(3.4)

and

d(A−B)

dt
=

2Z

(ABC)2
(B −A)[A2 +A(6B − 2C) + (B − C)2],(3.5)

d(B − C)

dt
=

2X

(ABC)2
(C −B)[(A −B − C)2 + 4BC],(3.6)

d(A− C)

dt
=

2Y

(ABC)2
(C −A)((A −B)2 + 6AC − 2BC + C2).(3.7)

Without loss of generality we may assume that A0 ≥ B0 ≥ C0 and it is easy to see
from (3.5) and (3.6) that A ≥ B ≥ C is preserved along the flow. As a consequence,
we have

Y = (B −A)(A+B + 2B − 2C) − C2 ≤ −C2 < 0,

Z = −(A−B)2 + 3C2 − 2AC − 2BC ≤ −C2 < 0,

and this implies the following Lemma.

Lemma 3.2. Assume that A0 ≥ B0 ≥ C0. Then A, A/B, A/C, A−B and A−C
are all nondecreasing along (+XCF).

We will consider three cases.
Case 1: A0 = B0 = C0.
In this case, which is the round sphere, A(t) = B(t) = C(t) =

√
A2

0 + 4t, and the
solution exists for all time t.

Case 2: A0 = B0 > C0.
In this case, A = B > C as long as the solution exist. The equations simplify to






dA

dt
=2

4AC − 3C2

A3
,

dC

dt
=2

C3

A4
.

Clearly, A and C are increasing. Since A d
dtA < 8, the solution exists for all time

t ∈ [0,∞).

Lemma 3.3. Assume A0 = B0 > C0. Then

lim
t→∞

A(t) = ∞ and lim
t→∞

C(t) = C∞ <∞.

Moreover, as t→ ∞,

A(t) ∼ (24C∞t)
1/3 and C(t) − C∞ ∼ −2−33−1/3C5/3

∞ t−1/3.
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Proof. Assume that lim∞A = η <∞. Since A/C is nondecreasing, we have

d

dt
ln(A/C) =

8C(A− C)

A4
≥ η > 0

and thus ln(A/C) > ηt. This is a contradiction.
Now assume that lim∞C = ∞. We first show that

lim
∞
A/C = ∞.

Indeed, if not, we must have

d

dt
ln(A/C) ∼ η/A2,

for some η > 0. Hence
∫ ∞
0

1
A2 <∞. But we also have

d

dt
lnC =

2C2

A4
∼ η

1

A2
.

This contradicts the assumption that lim∞C = ∞. So lim∞A/C = ∞ as desired.
We have

d

dt
ln(A/C4) =

2C(4A− 7C)

A4
.

Hence A/C4 has a positive lower bound, say η2 > 0. Now since

d

dt

1

A1/2
∼ −4

C

A7/2
,

we have
∫ ∞
0

C
A7/2 <∞. However

d

dt
C = 2

C2

A1/2
× C

A7/2

and lim∞C = ∞. It follows that

∫ ∞

0

C

A7/2
>

1

η

∫ ∞

0

C2

√
A

C

A7/2
= ∞.

This is a contradiction and we have proved that lim∞C <∞.
Now set lim∞ C = C∞. Then we easily check that A(t) ∼ (24C∞t)

1/3, and

C(t) − C∞ ∼ −2−33−1/3C
5/3
∞ t−1/3.

Case 3: A0 > B0 ≥ C0.
By Lemma 3.2, the condition A0 > B0 implies that A > B as long as the solution

exits. Assume further that A0 ≥ 2B0. Again, by Lemma 3.2, we have A ≥ 2B as long
as the solution exists.

Lemma 3.4. Assume that A0 ≥ 2B0. Then B/C is nondecreasing. Furthermore
B, C and B − C are non-increasing.

Proof. As A ≥ 2B, we have X > 0 and A−B − C > 0. The desired conclusions
thus follow from (3.4), (3.6) and (3.1).
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Lemma 3.5. Assume A0 ≥ 2B0. There exists a T <∞, such that limt→T C(t) =
0, limt→T B(t) = 0 and limt→T A(t) = ∞.

Proof. As A ≥ 2B, we have

(3.8)
3

4
A2 < X < 3A2.

It follows that

− d

dt
B = 2

B|Z|X
A2B2C2

>
3

2B
,

or

− d

dt
B2 > 3.

Hence the solution can only exist up to some finite time T , i.e., there exists T < ∞,
such that either limT C = 0 or limT A = ∞.

Claim 3.1. If limt→T C(t) = 0, then limt→T B(t) = 0 and limt→T A(t) = ∞.

To prove the claim, suppose limT C = 0, limT B = B(T ) > 0 and limT A =
A(T ) <∞. Since

d

dt
C = 2

CXY

A2B2C2
,

and

0 < lim
T

X |Y |
A2B2

= lim
T

X

A2

(A−B)(A + 3B − 2C)

B2
= η1 <∞,

we have

− d

dt
C2 ∼ 4η1,

and thus C2(t) ∼ 4η(T − t). As t→ T , |Z| ∼ (A−B)2 has a positive finite limit. By
(3.8), X also has a positive finite limit. Hence

− d

dt
B2 =

4|Z|X
A2C2

∼ η2
T − t

.

This contradicts limT B = B(T ) > 0.
Now, we either have limT B = 0 or limT A = ∞ and, in particular, limT

A
B = ∞.

Further, as t→ T , we have

X ∼ 3A2, Y ∼ −A2, and Z ∼ −A2.

Assume that limT B(t) = B(T ) > 0. Observe that

− d

dt
ln(B − C) =

2X

A2B2C2
[(A−B − C)2 + 4BC] ∼ 6A2

B2C2
,

hence
∫ T

0

A2

B2C2
<∞.



XCF ON LOCALLY HOMOGENEOUS 3-MANIFOLDS (II) 435

But we also have

d

dt
lnA =

2Y Z

A2B2C2
∼ 2A2

B2C2
.

As limT A = ∞, this is a contradiction. It follows that we must have limT B = 0. A
similar argument show that limT A = ∞. This finishes the proof of the claim 3.1.

To finish the proof of Lemma 3.5, it suffices to rule out the case limT C > 0.
Assume limT C = C(T ) > 0, then limT B = B(T ) > 0 and limT A = ∞. So, as
t→ T , we have X ∼ 3A2, Y ∼ −A2 and Z ∼ −A2. Hence

d

dt
A =

2AY Z

A2B2C2
∼ ηA3

with η = 2/(B(T )C(T ))2. It follows that

A(t) ∼ 1√
2η(T − t)

.

We also have

d

dt
B2 ∼ −12

A2

C(T )2
∼ −3B(T )2

T − t
.

This contradicts B(T ) > 0 and thus, we must have limT C = 0 as desired.

Lemma 3.6. Assume A0 ≥ 2B0. As t → T , there exist positive finite constants
η1, η2 and η3 such that

(3.9)






A ∼η1(T − t)−
1
14 ,

B ∼η2(T − t)
3
14 ,

C ∼η3(T − t)
3
14 .

Proof. As a first step in the proof of this lemma we show the following.

Claim 3.2. As t→ T , we have limt→T
B
C = η ∈ [1,∞).

We have





dA

dt
∼2

A3

(BC)2
,

dB

dt
∼− 6

A2

BC2
,

dC

dt
∼− 6

A2

B2C
.

Moreover, by (3.4), there exists η1 ∈ (0,∞) such that

d

dt
ln(B/C) =

8X

A2BC2

B − C

B
(A−B − C) ∼ η1

A

BC2
.

Here we used that 1 − C
B is increasing under the flow. We also have − d

dtB ∼ 6 A2

BC2 ,

so
∫ T

0
A2

BC2 < ∞. As A ≥ A0 this implies that
∫ T

0
A

BC2 < ∞. Hence limT
B
C = η < ∞

as claimed.
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Claim 3.3. As t → T , we have limt→T A
3B = η1 and limt→T A

3C = η2 with
η1, η2 ∈ (0,∞).

To prove this claim, we compute

d

dt
(AαB) =

2AαBZ

A2B2C2
(X + αY ).

In particular, if α = 3,

d

dt
(A3B) =

8A3BZ

A2B2C2
[2B2 − C2 −BC +AC − 2AB] > 0.

In general,

X+αY = (3−α)A2−(B−C)2−2AB−2AC+3αB2−αC2+2αAC−2αAB−2αBC.

In particular, if α 6= 3, then as t→ T ,

X + αY ∼ (3 − α)A2.

For α = 2, we see that d
dt(A

2B) < 0 for t close to T because Z < 0. Hence A2B
is bounded from above. Now, Claim 3.2 and the above formula yields

d

dt
(A3B) ∼ 8(2 − 1/η)

A4

C2
.

Since d
dtB ∼ −6 A2

BC2 , and limB = 0, we have
∫ T

0
A2

BC2 <∞. As A2B is bounded from

above and A4/C2 = (A2B) ×A2/(BC2), it follows that
∫ T

0
A4

C2 <∞. Hence

lim
T
A3B = η1 ∈ (0,∞).

As limB/C = η, this also yields limT A
3C = η1/η as claimed.

Now using Claim 3.3 and (3.9), we obtain

dA

dt
∼ 2η−2

1 η−2
2 A15.

Hence,






A ∼η3(T − t)−
1
14 ,

B ∼η4(T − t)
3
14 ,

C ∼η5(T − t)
3
14 .

In order to finish the study of the behavior of (+XCF) on SU(2), we are left to
show that if A0 > B0 ≥ C0 then there exists a time t0 ≥ 0 such that A(t0) ≥ 2B(t0).
We start with the following lemma.

Lemma 3.7. If there exist a time t0 such that X(t0) > 0, then for all time t ≥ t0,
we have

X

A2
≥ X(t0)

A(t0)
= η > 0.
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Moreover, there exists a time t′0 such that A(t′0) ≥ 2B(t′0).

Proof. We first show that X
A2 > 0 for t > t0. Let t1 > t0 be the first time such

that X(t1) = 0 (if it exists). Recall that B
A and C

A are decreasing. Moreover, for all
t ∈ [t0, t1), we have

d

dt
ln(B − C) = − 2X

A2B2C2
[(A −B − C)2 + 4BC] < 0,

hence B−C
A is decreasing as well on this interval. Since

X

A2
= 3 − (B − C)2

A2
− 2B

A
− 2C

A
,

X/A2 is increasing on [t0, t1). This contradicts X(t1) = 0, hence we have X
A2 > 0, for

all t > t0. When X is positive, B − C is decreasing and thus X/A2 is increasing. It
follows that X

A2 > η > 0.
Now, assume that for all time t > t0, A(t) < 2B(t). Since A is increasing and B

and C are decreasing, we have A(t0) ≤ A(t) < 2B(t) ≤ 2B(t0) <∞, for t > t0. Since

− d

dt
B =

2B|Z|X
A2B2C2

≥ η′

B
,

for some η′ > 0, the solution can only exist up to some finite time T < ∞. This
means that limT C = 0. Since limT A = A(T ) and limT B = B(T ) are positive and
finite, as t→ T , there is η1 > 0 such that

d

dt
C2 ∼ −η1.

Hence C ∼
√
η1(T − t). This implies

d

dt
B2 ∼ − η2

T − t
.

This contradicts the fact that B2 ≥ 0.
Our final task is to show that it is not possible that A < 2B and X ≤ 0 for all

t. To this end, assume that A < 2B and X ≤ 0 on the interval [0, T ) on which the
solution exists (T might be ∞). Then A, B, A/B and C are all non-decreasing on
[0, T ). We claim that

sup
[0,T )

{B/C} = η <∞.

Otherwise, since B < A and B/A is non-increasing, we have

lim sup
t→T

X

A2
= lim

t→T
(3 − 2B

A
− B2

A2
+

−C2 + 2BC − 2AC

A2
) > 0,

which contradicts X ≤ 0.
Hence we have A < 2B < 2ηC. Observe that Y, Z are negative and

|Y | = A2 + C2 − 2AC + 2AB + 2BC − 3B2 < A2 + C2 + 2AB + 2BC < 11B2,
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and

|Z| = A2 +B2 − 2AB + 2BC + 2AC − 3C2 < A2 +B2 + 2BC + 2AC < η1C
2,

for some η1 ∈ (0,∞). It follows that

d

dt
A =

2AY Z

A2B2C2
< η2

1

A
,

for some η2 ∈ (0,∞). This implies that T = ∞, i.e., the solution exists for all time.
We also have

|X | = B2 + C2 + 2AB + 2AC − 2BC − 3A2 < 6A2.

Hence

d

dt
B =

2BZX

A2B2C2
< η3

1

B
,

for some η3 ∈ (0,∞) and B2 ≤ B2
0 + 2η3t. Now, since

d

dt
ln(A/B) =

8|Z|
A2B2C2

(A−B)(A +B − C) ≥ 8

B2
(1 − B

A
) ≥ η4

B2
,

we have

ln(A/B) − ln(A0/B0) ≥ η4

∫ t

0

1

B2
≥ η4

∫ t

0

ds

B2
0 + 2η3s

.

The right hand side goes to ∞ as t→ ∞, while we have

lim
t→∞

ln(A/B) ≤ ln 2.

This is the desired contradiction. The conclusion is that, if A0 > B0 ≥ C0 then there
must exists a time t0, such that A(t0) ≥ 2B(t0).

Theorem 3.8. On SU(2), for the positive cross curvature flow (+XCF) and any
choice of initial data A0 ≥ B0 ≥ C0 > 0, we have:

• If A0 = B0 = C0, then the solution exists for all time t, and we have

A(t) = B(t) = C(t) =
√
A2

0 + 4t.

• If A0 = B0 > C0, then the solution exists for all time t and limt→∞ C(t) =
C∞ ∈ (0,∞). Moreover, as t tends to ∞, we have

A(t) = B(t) ∼ (24C∞t)
1/3, C(t) − C∞ ∼ −2−33−1/3C5/3

∞ t−1/3.

• if A0 > B0 ≥ C0, then there exists a finite time T > 0, such that the solution
exists on [0, T ) and, as t→ T ,

A ∼ η1(T − t)−
1
14 , B ∼ η2(T − t)

3
14 , and C ∼ η3(T − t)

3
14 ,

for some finite positive constants η1, η2, η3.
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4. The cross curvature flow on E(1, 1) (Sol geometry). A model for the
geometry E(1, 1) is the group R ⋉ R2 where the action of R on R2 is given by(
ex 0
0 e−x

)
. This group is sometimes called Sol. In other words, Sol is R3 with the

multiplication law

(x, y, z) · (x′, y′, z′) = (x+ x′, y + exy′, z + e−xz′).

If we denote byX,Y, Z the left-invariant vector fields equal to ∂/∂x, ∂/∂y and ∂/∂z at
(0, 0, 0) then X = ∂/∂x, Y = ex∂/∂y and Z = e−x∂/∂z. Hence, [Y, Z] = 0, [X,Y ] =
Y , [X,Z] = −Z. For any left-invariant metric equal to a(dx)2 + b(dy)2 + c(dz)2 at
(0, 0, 0), a Milnor frame is f1 = Y + Z, f2 = 2X , f3 = Y − Z. Conversely, given a
metric g0 and a Milnor frame for that metric, we can define elements X,Y, Z of the
Lie algebra by X = (1/2)f2, Y = (1/2)(f1 + f3) and Z = (1/2)(f1 − f3). In the
coordinate system induced by the exponential map and the basis X,Y, Z, the group
law has the form given above. It is useful to observe that, for any r > 0, the metrics

g = af1 ⊗ f1 + bf2 ⊗ f2 + cf3 ⊗ f3 and g = raf1 ⊗ f1 + bf2 ⊗ f2 + rcf3 ⊗ f3

yields isometric manifolds, the isometry being induced by the Lie algebra isomorphism
f1 7→ √

rf1, f2 7→ f2, f3 7→ √
rf3 and its inverse.

For later purpose, we introduce the manifold

E0(1, 1) = E(1, 1)/X

where X stands for the copy of the integers {(k, 0, 0) : k ∈ Z} sitting in E(1, 1). Any
left-invariant metric on E(1, 1) induces a locally homogeneous Riemannian structure
on E0(1, 1). Moreover, the remark made above concerning isometric structures on
E(1, 1) is also valid for E0(1, 1). We will be particularly interested in those metric gβ,
β > 0, of the form

(4.1) gβ = βf2 ⊗ f2 + f1 ⊗ f1 + f3 ⊗ f3.

Given a left-invariant metric g0, we fix a Milnor frame {fi}3
1 such that

[f2, f3] = 2f1, [f3, f1] = 0, [f1, f2] = −2f3.

The sectional curvatures are:

K(f2 ∧ f3) =
(A− C)2 − 4A2

ABC
,

K(f3 ∧ f1) =
(A+ C)2

ABC
,

K(f1 ∧ f2) =
(A− C)2 − 4C2

ABC
.

We first state the theorem describing the forward and backward asymptotic behaviors
of (-XCF) on E(1, 1). Because of the symmetry between f1 and f3, one can assume
that A ≥ C.
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Theorem 4.1. Let g(t) = A(t)f1⊗f1 +B(t)f2⊗f2+C(t)f3⊗f3, t ∈ (−Tb, Tf),
be a maximal solution of the negative cross curvature flow (-XCF) on a complete locally
homogeneous manifold of type E(1, 1). Assume that A0 ≥ C0 and set

ḡ(t) =
B0

B(t)
g(t).

• The time Tf is finite. If M is compact, as t→ Tf , the metric space (M, ḡ(t))
converges in the Gromov-Hausdorff sense to (E0(1, 1), gβ) with gβ as in (4.1)
for some β > 0. If M = E(1, 1), then the metric space (E(1, 1), ḡ(t)) con-
verges in the Gromov-Hausdorff sense to (E(1, 1), gβ) for some β > 0.

• If A0 = C0, then Tb = ∞ and A(t) = C(t) = A0B0/B(t), B(t) =
√
B2

0 − 64t.
If M is compact, as t → −Tb = −∞, the metric space (M, ḡ(t)) (resp.
(M, g(t))) converges in the Gromov-Hausdorff sense to a circle (resp. to a
line).

• If A0 > C0, then Tb < ∞ and, as t → −Tb, the metric space (M, ḡ(t))
converges uniformly to the sub-Riemannian metric space (M, bf2⊗ f2 + cf3⊗
f3) with b, c ∈ (0,∞).

Proof. Theorem 2 from [CNSC08] gives that Tf is finite and A,C ∼ E1/
√
Tf − t,

A − C ∼ E2

√
Tf − t, B ∼

√
64(Tf − t), as t tends to Tf . The desired convergence

follows. For the behavior when t tends to −Tb, see Theorem 4.5 below.
The rest of this section is devoted to the asymptotic behavior of the flow (∗XCF)

on E(1, 1). From the sectional curvature given above, we obtain the equations

(4.2)





dA

dt
=

2AY Z

(ABC)2

dB

dt
=

2BZX

(ABC)2

dC

dt
=

2CXY

(ABC)2

where

X =(A+ C)(3A− C),

Y = − (A+ C)2,

Z = − (A+ C)(A− 3C).

First, consider the case when A0 = C0. Then A(t) = C(t) as long as the solution
exists and

dB

dt
=

32

B
.

Hence B =
√
B2

0 + 64t. It follows that

d lnA

dt
= − 32

B2
0 + 64t

,

which gives

A(t) = C(t) =
A0B0√
B2

0 + 64t
.
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Second, we assume that A0 6= C0. Because of the symmetry between f1 and f3,
we may assume without loss of generality that A0 > C0. It immediately follows that
C is decreasing.

Lemma 4.2. Assume that A0 > C0. Then C is decreasing, A − C, A/C and
A− 3C are increasing as long as the solution exists. In particular, we have A > C.

Proof. Observe that

d(A− C)

dt
= 2

(A+ C)4

(ABC)2
(A− C),

d ln(A/C)

dt
= 8

(A+ C)3

(ABC)2
(A− C),

d(A− 3C)

dt
= 2

(A+ C)3

(ABC)2
(A2 + 6AC − 3C2).

The stated results follow.

Lemma 4.3. Assume that A0 > 3C0. Then A is increasing, B is decreasing.
Moreover, there exists a finite time T such that

lim
t→T

A(t) = ∞, lim
t→T

B(t) = 0, lim
t→T

C(t) = 0.

Proof. The previous lemma shows that A/C > A0/C0 > 3 as long as the solution
exists. The monotonicity of A and B immediately follows. Further, we have

−B d

dt
B = 2

(3A− C)(A − 3C)(A+ C)2

A2C2
> 4(1 − 3C

A
)(1 +

A

C
)2 > η.

This implies that the solution can only exist up to some finite time T . As

d

dt
ln(B/C) =

8(A+ C)2(3A− C)

A2B2C
> 0,

B/C is increasing. Hence if limt→T B(t) = 0, then limt→T C(t) = 0 as well.
Assume that we have limT A = A(T ) < ∞ and limT B = B(T ) > 0. Then we

must have limT C = 0 (otherwise, the solution could be extended past T ). As

d

dt
C2 =

4XY

(AB)2
,

it then follows that C(t)2 ∼ η1(T − t), for some positive finite η1. This implies

d

dt
A =

2AY Z

(ABC)2
∼ η2
T − t

and thus A→ ∞. This is a contradiction.
Assume next that limT A = A(T ) <∞ and limT B = 0. Then limT C = 0 and

B2 d

dt
C2 = −4(A+ C)3(3A− C)

A2
∼ −12A2,

C2 d

dt
B2 =

4(3A− C)(3C −A)(A + C)2

A2
∼ −12A2.
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Hence

d

dt
(B2C2) ∼ −24A2

and B2C2 ∼ η3(T − t) with η3 ∈ (0,∞). Plugging this into the formula for d
dtA shows

that A→ ∞, which is a contradiction.
This shows that, as stated in Lemma 4.3 limT A = ∞. To see that limT B = 0,

we compute

(4.3)
d

dt
(AαB) =

2AαBZ

A2B2C2
(X + αY ).

If 0 < α < 3, then as t→ T ,

X + αY = (A+ C)[(3 − α)A − (1 + α)C] > 0.

As Z is negative, this implies that d
dtA

αB < 0. Thus AαB is decreasing. Since
A→ ∞, we also have B → 0 and thus C → 0.

Lemma 4.4. Assume that A0 > 3C0 and let T be as in Lemma 4.3. Then there
are positive finite constants ηi, i = 1, 2, 3 such that, as t tends to T ,

A ∼ η1(T − t)−
1
14 , B ∼ η2(T − t)

3
14 , C ∼ η3(T − t)

3
14 .

Proof. Taking α = 3 in (4.3) yields

d

dt
(A3B) =

2AZ

BC2
(3Y +X) = −8AZ

BC
(A+ C) > 0.

Similarly,

d

dt
(A3C) =

2AY

B2C
(3Z +X) = −16A

B2
(A+ C)3 < 0.

Now, the technique used in the proof of Claim 3.3 shows that

lim
t→T

A3B <∞ and lim
t→T

A3C > 0.

As t tends to T , this yields

dA

dt
∼ η1A

15,
dB

dt
∼ −η2B− 11

3 ,
dC

dt
∼ −η3C− 11

3 ,

for positive finite ηi, i = 1, 2, 3. The asymptotic stated in Lemma 4.4 follows.
We are left with the task to rule out the possibility that C < A ≤ 3C as long as

the solution exists. Assume that C < A ≤ 3C. Then A and C are decreasing and B
is increasing. Since we have

B
d

dt
B = 2

(3A− C)(3C −A)(A + C)2

(AC)2
< η,

we have

B ≤
√
B2

0 + 2ηt.
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It follows that

d

dt
ln(A/C) = 8

(A+ C)3

A2C

1

B2
(
A

C
− 1) >

η

B2
0 + 2ηt

.

As ln(A/C) ≤ ln 3, the solution can only exist up to some finite time T , i.e., there
exist T <∞, such that limt→T A(t) = limt→T C(t) = 0. Hence limt→T (A−C)(t) = 0.
This contradicts the fact that A− C is increasing. It follows that there must exist a
finite time t0, such that A(t0) > 3C(t0). We have proved the following theorem.

Theorem 4.5. On E(1, 1), for any given initial data A0, B0, C0 > 0 with A0 ≥
C0, the positive cross curvature flow behaves as follows.

• If A0 = C0, then the solution of (+XCF) exists on [0,∞) and is given by

A(t) = C(t) =
A0B0√
B2

0 + 64t
, B(t) =

√
B2

0 + 64t.

• If A0 > C0, then there exists a positive finite time Tb such that the solution
of (+XCF) exists on [0, Tb). Moreover, as t→ Tb,

A ∼ η1(T − t)−
1
14 , B ∼ η2(T − t)

3
14 , and C ∼ η3(T − t)

3
14

with η1, η2, η3 ∈ (0,∞).

5. The cross curvature flow on E(2). Recall that a realization of Ẽ(2) is

R2 ⋊R where the action of R on R2 is by rotation. Namely, Ẽ(2) is R3 equipped with
the product

(x, y, z) · (x′, y′, z′) = (x+ x′ cos z + y′ sin z, y + x′ cos z − y′ sin z, z + z′).

Note that the left-invariant metrics on Ẽ(2) equal to a[(dx)2 + (dy)2] + c(dz)2 at the
identity element are actually flat metrics on R3.

Given a left-invariant metric g0, we fix a Milnor frame {fi}3
1 such that

[f2, f3] = 2f1, [f3, f1] = 2f2, [f1, f2] = 0.

These relations imply that, in the global coordinate introduce above, f1, f2 are in the
span of ∂/∂x, ∂/∂y whereas f3 contains a ∂/∂z component.

The sectional curvatures are:

K(f2 ∧ f3) =
1

ABC
(B −A)(B + 3A),

K(f3 ∧ f1) =
1

ABC
(A−B)(A+ 3B),

K(f1 ∧ f2) =
1

ABC
(A−B)2.

As in previous sections, we first state a theorem that describes both the forward
and backward behavior of the negative cross curvature flow on E(2). The forward
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behavior was studied in [CNSC08, sect. 6]. The backward behavior is studied below
in the form of the forward behavior of the positive cross curvature flow. Because of
the symmetry between f1 and f2 we can assume that A0 ≥ B0.

Theorem 5.1. Let g(t) = A(t)f1⊗f1 +B(t)f2⊗f2+C(t)f3⊗f3, t ∈ (−Tb, Tf),
be a maximal solution of the negative cross curvature flow on a complete locally ho-
mogeneous manifold of type E(2). Set

ḡ(t) =
C0

C(t)
g(t).

• Assume that A0 = B0. Then Tb = Tf = ∞, A(t) = B(t) = A0 and C(t) = C0

for all t. In fact, as a Riemannian manifold, (Ẽ(2), g) is R3 equipped with a
flat metric.

• Assume that A0 > B0. Then Tf = ∞ and Tb <∞.

– If M = Ẽ(2), as t tends to Tf = ∞, (Ẽ(2), g(t)) converges in the
Gromov-Hausdorff sense to R3 (the sectional curvatures go to zero). If
M is compact, (M, g(t)) does not converge to a metric space as t tends
to infinity but (M, ḡ(t)) converge in the Gromov-Hausdorff sense to a
circle.

– In all cases, as t tends to −Tb, (M, ḡ(t)) converges uniformly to the sub-
Riemannian metric space (E(2), bf2⊗f2+cf3⊗f3) for some b, c ∈ (0,∞).

Proof. The first case is trivial. When A0 > B0, the results in the forward direction
follow from Theorem 5 of [CNSC08] which gives Tf = ∞ and A ∼ E1 + E2t

−1/6,
B ∼ E1 − E2t

−1/6 and C ∼ (8
√

6E2/E1)t
1/3, as t tends to infinity.

The result in the backward direction follow from Theorem 5.4 below.

Remark 5.1. For t > 0, in the orthonormal frame (et
i)1

3 on (Ẽ(2), g(t)), with et
i

positively collinear to fi, we have [et
2, e

t
3] ∼ δt−1/6et

1, [et
3, e

t
1] ∼ δt−1/6et

2, [et
1, e

t
2] = 0

for some δ > 0. In other words, the group structure viewed in this frame tends to the
abelian structure of R3. This is similar to what happens on the Heisenberg group.
Compare Remark 2.3.

The rest of this section is devoted to the study of the positive cross curvature
(+XCF) on E(2). Hence g(t) = A(t)f1 ⊗ f1 +B(t)f2 ⊗ f2 +C(t)f3 ⊗ f3 is a solution
of (+XCF) and thus A,B,C satisfy the following equations

(5.1)





dA

dt
=

2AY Z

(ABC)2
,

dB

dt
=

2BZX

(ABC)2
,

dC

dt
=

2CXY

(ABC)2
,

where

X =(A−B)(3A+B),

Y =(B −A)(3B +A),

Z = − (A−B)2.
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If A0 = B0, then A = A0, B = B0 and C = C0. The geometry stays flat all time.
Without loss of generality, we assume that A0 > B0. Then A is increasing, while B
and C are decreasing.

Lemma 5.2. Assume A0 > B0. Then there is a finite time T such that the
solution exists on [0, T ) and

lim
t→T

A(t) = ∞, lim
t→T

B(t) = 0 and lim
t→T

C(t) = 0.

Proof. Notice that

X > ηA2, |Y | > ηA2 and |Z| > ηA2

for some constant η ∈ (0,∞). Hence

− d

dt
C >

2η2A4

A2B2C
> η1 > 0.

It follows that the solution exists up to some finite time T ∈ (0,∞). Next

d

dt
ln(AB) =

2Z

A2B2C2
(X + Y ) =

−4(A− B)4

A2B2C2
< 0,

hence AB is decreasing. Similarly,

d

dt
ln(AC) =

2Y

A2B2C2
(X + Z) < 0,

so AC is also decreasing.
We first show that limT C = 0. Assume not. Then limT C = C(T ) ∈ (0,∞).

Since AC is decreasing, we get limT A = A(T ) <∞ while limT B = 0. As t → T , we
have

X ∼ 3A2, Y ∼ −A2, Z ∼ −A2,

hence

d

dt
B2 =

4ZX

A2C2
∼ −η

for some positive fine η. It follows that B ∼
√
η(T − t) and

d

dt
A =

2AY Z

(ABC)2
∼ η

T − t
,

for a different η ∈ (0,∞). This shows that A(t) ∼ −η ln(T − t) → ∞ as t→ T , which
is a contradiction.

Next we show that limT A = ∞. Assume that we have limT A = A(T ) < ∞. If
further more we have limT B = B(T ) > 0 then, since

d

dt
C2 =

4XY

(AB)2
∼ −η,

and thus C(t)2 ∼ η(T − t), just as above, we can show that A → ∞, this is a
contradiction.
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If we have limT B = 0, then

B2 d

dt
C2 =

4XY

A2
∼ −12A(T )2,

and

C2 d

dt
B2 =

4XZ

A2
∼ −12A(T )2.

Hence d
dt(B

2C2) ∼ −24A(T )2 and thus B2C2 ∼ 24A(T )2(T − t). This again leads to
A→ ∞, which is a contradiction. This proves that limT A = ∞.

Since AB is decreasing, so we have proved that limT A = ∞ and limT B =
limT C = 0.

Lemma 5.3. Assume that A0 > B0. Then there are constants η1, η2, η3 ∈ (0,∞)
such that

A ∼ η1(T − t)−
1
14 , B ∼ η2(T − t)

3
14 , C ∼ η3(T − t)

3
14 .

Proof. As

d

dt
(A3B) = −16AZ

C2
(A−B) > 0 and

d

dt
(A3C) =

8AY

BC
(A−B) < 0,

it follows that A3B is increasing and A3C decreasing. We also have

d

dt
(A2B) =

2A2BZ

A2B2C2
(X + 2Y ).

As t → T , X + 2Y = (A− B)(A− 5B) > 0. This implies that A2B is bounded from
above. Using the same technique as in the proof of Claim 3.3, we obtain that there
exists η ∈ (0,∞) such that limT A

3B = η. Finally, observe that

d

dt
ln(A3C) ∼ −8

A

BC2
and

d

dt
B ∼ −6

A2

BC2
.

Since B > 0 and limT A = ∞, it follows that
∫ T

A/(BC2) ≤
∫ T

A2/(BC2) < ∞.
Hence limT A

3C = η′ ∈ (0,∞). These asymptotic behaviors of A3B and A3C imply
that

dA

dt
∼ ηA15,

dB

dt
∼ −ηB− 11

3 ,
dC

dt
∼ −ηC− 11

3 .

The desired asymptotic results follow.

Theorem 5.4. Let g(t) be the solution of (+XCF) on E(2) with given initial
data A0, B0, C0 > 0 in a Milnor frame f1, f2, f3 as above.

• Assume that A0 = B0. Then g(t) = g0 = A0f
1⊗ f1 +A0f

2⊗ f2 +C0f
3⊗ f3.

• If A0 > B0, then there exists a finite time T > 0, such that g(t) exists on
[0, T ) and, as t→ T ,

A ∼ η1(T − t)−
1
14 , B ∼ η2(T − t)

3
14 , and C ∼ η3(T − t)

3
14

for some constants η1, η2, η3 ∈ (0,∞).
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6. The cross curvature flow on SL(2,R). Given a left-invariant metric g0 on
SL(2,R), we fix a Milnor frame {fi}3

1 such that

[f2, f3] = −2f1, [f3, f1] = 2f2, [f1, f2] = 2f3

and

g0 = A0f
1 ⊗ f1 +B0f

2 ⊗ f2 + C0f
3 ⊗ f3.

The sectional curvatures are

K(f2 ∧ f3) =
1

ABC
(−3A2 +B2 + C2 − 2BC − 2AC − 2AB),

K(f3 ∧ f1) =
1

ABC
(−3B2 +A2 + C2 + 2BC + 2AC − 2AB),

K(f1 ∧ f2) =
1

ABC
(−3C2 +A2 +B2 + 2BC − 2AC + 2AB).

Recall that the Lie algebra sl(2,R) of SL(2,R) can be realized as the space of two
by two real matrices with trace 0. A basis of this space is

W =

(
0 −1
1 0

)
, H =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
.

These satisfy

[H,V ] = −2W, [W,H ] = 2V, [V,W ] = 2H.

This means that (W,V,H) can be taken as a concrete representation of the above
Milnor basis (f1, f2, f3). In particular, f1 corresponds to rotation in SL(2,R). Note
further that exchanging f2, f3 and replacing f1 by −f1 produce another Milnor basis.
This explains the B,C symmetry of the formulas above.

As for the other cases, the forward behavior of (XCF) was studied in [CNSC08,
sect. 5]. However, in the SL(2,R) case, the description of this forward asymptotic
behavior in terms of convergence of metric spaces becomes quite intricate and we will
only make some simple remarks. The reader can consult [Gli08] for a careful analysis
using groupoid techniques.

The backward behavior is studied below in the form of the forward behavior of
the positive cross curvature flow. Because of the symmetry between f2 and f3 noted
above, we can assume that B0 ≥ C0.

Theorem 6.1. Let g(t) = A(t)f1⊗f1 +B(t)f2⊗f2+C(t)f3⊗f3, t ∈ (−Tb, Tf),
be a maximal solution of the negative cross curvature flow on a complete locally ho-
mogeneous manifold of type SL(2,R). Then Tb <∞ whereas Tf = ∞ if B0 = C0 and
Tf <∞ otherwise. Assume that B0 ≥ C0 and set

Q = {(a, b, c) ∈ R3 : a > 0, b ≥ c > 0}

and

ḡ(t) =
C0

C(t)
g(t).

There is a partition of Q into subsets S0, Q1, Q2 with Q1, Q2 connected and, as t tends
to −Tb:
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1. If (A0, B0, C0) ∈ Q1, (M, g(t)) converges uniformly to the sub-Riemannian
metric space (M, bf2 ⊗ f2 + cf3 ⊗ f3) for some b, c ∈ (0,∞).

2. If (A0, B0, C0) ∈ Q2, (M, g(t)) converges uniformly to the sub-Riemannian
metric space (M,af1 ⊗ f1 + cf3 ⊗ f3) for some a, c ∈ (0,∞).

3. If (A(t), B(t), C(t)) ∈ S0 for all t ∈ (−Tb, 0] then A(t) tends to 0 whereas
B(t) and C(t) converge towards the same finite constant. If M is compact,
(M, g(t)) converges in the Gromov-Hausdorff sense to a compact surface of
constant negative curvature.

Remark 6.1. In the forward direction, if B0 = C0 and M is compact then
(M, g(t)) converges in the Gromov-Hausdorff sense to a compact surface of constant
negative sectional curvature. See [CNSC08] and [Gli08].

Remark 6.2. The cases (1)-(2) of Theorem 6.1 are somewhat symmetric. Case
(1) occurs when A0 is large compared to B0 − C0. Case (2) occurs when A0 is small
compared to B0 − C0. Case (3) is of a completely different nature and it is not even
entirely clear, a priori, that it occurs at all. In a forthcoming work [CGSC09], we will
show that Q1 ∪Q2 is a dense open set and that S0 is an hypersurface separating Q1

from Q2. This however requires different techniques that those used in this paper.

The rest of this section is devoted to the proof of Theorem 6.1. A much more
precise statement is given in Theorem 6.12. As in earlier sections, we focus on the
forward behavior of solutions of (+XCF). Using the sectional curvatures given above,
writing

g = Af1 ⊗ f1 +Bf2 ⊗ f2 + Cf3 ⊗ f3

for the solution of the flow (+XCF) with initial data g0, A,B,C satisfy the equations

(6.1)





dA

dt
=

2AF2F3

(ABC)2
,

dB

dt
=

2BF3F1

(ABC)2
,

dC

dt
=

2CF1F2

(ABC)2
,

where

F1 = − 3A2 +B2 + C2 − 2BC − 2AC − 2AB,

F2 = − 3B2 +A2 + C2 + 2BC + 2AC − 2AB,

F3 = − 3C2 +A2 +B2 + 2BC − 2AC + 2AB.

Without loss of generality we may assume that B0 ≥ C0. Then B ≥ C as long as
a solution exists and

F3 = (B − C)(2A+B + 3C) +A2 ≥ A2 > 0.

Observe also that F1 + F2 < 0 so at least one of the quantities F1, F2 is negative.
Let a = A/B and c = C/B.
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Lemma 6.2. Suppose that a0 = A0/B0 and c0 = C0/B0 satisfy

(6.2) a > 1 − c+ 2
√

1 − c

Then a and c satisfy (6.2) as long as a solution exists. Moreover, in this case, (6.2)
is equivalent to F2 > 0 and thus implies that F1 < 0.

Proof. As in [CNSC08, Sect. 5, Lemma 2], we have

F2 = (A− (B − C + 2
√

(B − C)B))(A − (B − C − 2
√

(B − C)B)).

Since B−C−2
√

(B − C)B ≤ 0, it follows that (6.2) is equivalent to F2 > 0. Observe
that

dA

dt

∣∣∣∣
F2=0

= 0,
dB

dt

∣∣∣∣
F2=0

< 0 and
dC

dt

∣∣∣∣
F2=0

= 0.

It follows that

(6.3)
dF2

dt

∣∣∣∣
F2=0

> 0.

To prove that F2(t) > 0 we argue by contradiction. Suppose t0 is the first time such
that F2(t0) = 0. Since F2(0) > 0, we know that d

dtF2(t0) ≤ 0, which contradicts (6.3).
Therefore F2(t) > 0, which is equivalent to (6.2). This completes the proof of the
lemma.

The next lemma is very similar to the previous one and we omit the proof.

Lemma 6.3. Suppose that a0 = A0/B0 and c0 = C0/B0 satisfy

(6.4) a <
1

3
(2

√
1 − c+ c2 − 1 − c).

Then a and c satisfy and (6.4) as long as a solution exists. Moreover, (6.4) is equiv-
alent to F1 > 0 and thus implies F2 < 0.

Observe that, if at any time t0, the solution satisfies either (6.2) or (6.4) then
that inequality will be satisfied at all later time. We will consider three cases: The
case where (6.2) is satisfied (at time t = 0 or, in fact at a later time), the case where
(6.4) is satisfied (at time t = 0 or, in fact at a later time), and the remaining case
where neither (6.2) nor (6.4) is satisfied as long as the solution exists.

Case 1: Inequality (6.2) is satisfied. Recall that this is equivalent to say
that F2 > 0. Moreover, we must have F1 < 0.

Lemma 6.4. Assume that B ≥ C and (6.2) holds. Then A is increasing, B and
C are decreasing and A + C ≥ B. Furthermore a, c and F2/B

2 are non-decreasing
and |F1| > 3A2.

Proof. The monotonicity of A, B and C follows from the fact that F2 > 0 which
also easily imply A+ C ≥ B. Further

(6.5)
d ln(A/B)

dt
=

8(A+B)

(ABC)2
F3(A+ C −B),

and

(6.6)
d ln(C/B)

dt
=

8(B − C)

(ABC)2
(A+B + C)|F1|,
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are non-negative. As

F2

B2
= (

A+ C

B
− 1)2 + 4

C

B
− 4,

and

|F1| = 3A2 + 2(A+ C)B + 2AC −B2 − C2.

The lemma follows.

Lemma 6.5. Assume that B ≥ C and (6.2) is satisfied. Then there exists a finite
time T such that

lim
t→T

A(t) = ∞, lim
t→T

B(t) = lim
t→T

C(t) = 0.

Moreover, there exists η0 ∈ (0,∞) such that limT B/C = η0.

Proof. By Lemma 6.4, there exists η ∈ (0,∞) such that

(6.7)
d

dt
C2 = −4

|F1|
A2

× F2

B2
< −12η.

Hence there exists a finite time T such that the flow exists only up to T and either
limT C = 0 or limT A = ∞.

Observe that C/B ≤ 1 is non-decreasing. Hence limT B/C ∈ (0,∞). We first
show that limT C = 0, which implies that limT B = 0. Otherwise we have limT A = ∞
and limT C = C(T ) > 0. Note that limT B = B(T ) ≥ C(T ) > 0. Since

d

dt
A =

2

A
× F2

B2
× F3

C2
,

and F2 ∼ F3 ∼ A2 as t→ T , there exists a constant η > 0, such that

d

dt
(A−2) ∼ −1

η
.

Hence

A2 ∼ η

T − t
.

As |F1| ∼ 3A2,

d

dt
C2 = −4

|F1|
A2

F2

B2
∼ − 12η

B(T )2
× 1

T − t
.

This contradicts the fact that C is decreasing with C(T ) > 0.
Next, we prove that limT A = ∞. Observe that, for any α > 0, we have

(6.8)
d

dt
(AαB) =

2AαBF3

(ABC)2
(αF2 + F1),

and

(6.9) αF2+F1 = (α−3)A2+(1−3α)B2+(1+α)C2+2(α−1)(B+A)C−2(1+α)AB.
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If α > 3, then limT (αF2 +F1) > 0 and thus AαB increasing. As limT B = 0, it follows
that limT A = ∞, as desired.

Lemma 6.6. Assume that B ≥ C and (6.2) holds. There are constants η1, η2, η3 ∈
(0,∞) such that, as t tends to T ,

A(t) ∼ η1(T − t)−1/14, B(t) ∼ η2(T − t)3/14 and C(t) ∼ η3(T − t)3/14.

Proof. For α = 3, (αF2 + F1) = −4[(B −C)(A+ 2B +C) +AB] < 0. By (6.8) it
follows that A3B is decreasing. Further,

d

dt
ln(A3B) = −8

F3

(ABC)2
[(B − C)(A + 2B + C) +AB] ∼ −8

A

B2C2
(2B − C)

and

(6.10)
d

dt
B ∼ −6

A2

BC2
as t→ T.

As B > 0, we must have

∫ T A2

BC2
<∞.

It follows that
∫ T A

B2C2
(2B − C) < 2

∫ T A

BC2
<

∫ T A2

BC2
<∞.

Hence there exists η ∈ (0,∞) such that limT A
3B = η. Now, as t tends T ,

d

dt
A ∼ η

A5

A2B2C2
∼ ηA15.

The asymptotic for A follows as well as those for B and C.
Case 2: Inequality (6.4) is satisfied. This is equivalent to F1 > 0 and implies

that F2 < 0. Since B ≥ C and F1 > 0, we have A+C < B. Since F3 > 0, we have A
is decreasing, B is increasing and C is decreasing, hence both a and c are decreasing.
Further,

F1

B2
= 1 +

C2

B2
− 3

A2

B2
− 2

C

B
− 2

A

B

C

B
− 2

A

B
= (1 − c)2 − 3a2 − 2ac− 2a.

Since both a > 0 and c > 0 are decreasing, F1

B2 is increasing, hence as long as the
solution exists, we have

F1

B2
≥ F1(0)

B2
0

> 0.

We also have

|F2| = 3B2 −A2 − C2 − 2BC − 2AC + 2AB ≥ 2B2 − 2BC + 2AB > 4A2.

Hence there exists η ∈ (0,∞) such that

− d

dt
C2 = 4

F1

B2

F2

A2
> η.
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This implies that the solution can only exist up to some finite time T at which at
least one of the following must happen: limT A = 0, limT C = 0 or limT B = ∞.

Lemma 6.7. Assume that B ≥ C and (6.4) holds. Then there exists T ∈ (0,∞)
such that the solution exists on [0, T ) and

lim
t→T

A(t) = lim
t→T

C(t) = 0 and lim
t→T

B(t) = ∞.

Further, there exists η0 ∈ (0,∞) such that limT C/A = η0.

Proof. As

(6.11)
d

dt
ln(C/A) = 8

F2

A2B2C2
(C +A)(C −A−B) > 0,

C/A is increasing. Hence, if limC = 0, then we must have limA = 0.
We first show that limt→T

B
C = ∞, i.e., limt→T c = 0. Indeed, if limT C = 0,

since B is increasing, and the desired result follows. If limT C = C(T ) > 0, it suffices
to show that limB = ∞. Assume instead that limT B = B(T ) < ∞. Then we must
have limT A = 0 and, as t→ T ,

F2 ∼ −3B2 + C2 + 2BC and F3 ∼ −3C2 +B2 + 2BC.

Hence there exists η ∈ (0,∞) such that

d

dt
A2 ∼ −4

(B − C)2(B + 3C)(3B + C)

B2C2
∼ η.

It follows that A2 ∼ η(T − t) as t tends to T . Also, as t tends to T ,

F1 ∼ (B − C)2,

so

d

dt
C ∼ −2

1

η(T − t)

(B − C)3(3B + C)

B2C2
∼ − η′

T − t
,

for some η′ ∈ (0,∞). This contradicts the fact that C > 0. So limT B = ∞ and
limT B/C = ∞.

Next we show that limT C = 0 (limT A = 0 follows). If not, we have limT C =
C(T ) > 0 and this implies that limT B = ∞. Then, since A is decreasing, we have

F1 ∼ B2, F2 ∼ −3B2 and F3 ∼ B2.

So

d

dt
lnB ∼ 2

C(T )2
B2

A2
and

d

dt
C ∼ − 6

C(T )

B2

A2
.

Since limT B = ∞, we must have
∫ T B2

A2 = ∞. This contradicts the fact that C > 0.
So we have limT C = 0 as desired.

By (6.8)-(6.9), if α < 1
3 and t is close enough to T , AαB is increasing, but

limA = 0, so limB = ∞.
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Finally, we prove that limT
C
A ∈ (0,∞). We already know from (6.11) that C/A

is increasing. On the one hand, we have

d

dt
ln
C

A
∼ 24B

A2C2
(A+ C) ≤ η

B2

A2C

for some η ∈ (0,∞). On the other hand,

− d

dt
C ∼ 6

B2

A2C
.

Hence
∫ T B2

A2C
<∞.

It follows that ln C
A is bounded from above.

Lemma 6.8. Assume that B ≥ C and (6.4) holds. There are constants η1, η2, η3 ∈
(0,∞) such that, as t tends to T ,

A(t) ∼ η1(T − t)3/14, B(t) ∼ η2(T − t)−1/14 and C(t) ∼ η3(T − t)3/14.

Proof. We first show that limT A
1
3B ∈ (0,∞). By (6.8)-(6.9) with α = 1

3 , we
have

d

dt
(A

1
3B) =

2A
1
3BF3

(ABC)2
(
1

3
F2 + F1) ∼ −8

3

A
1
3BF3

A2B2C2
(BC + 2AB) < 0,

for t close enough to T , so we only need to show that limT A
1
3B > 0. We have

d

dt
ln(A

1
3B) ∼ −8

3

F3

A2B2C2
(BC + 2AB) ∼ −η B

A2C
,

for some constant η ∈ (0,∞) (here, we use that limT C/A ∈ (0,∞)). Further,

d

dt
A =

2AF2F3

(ABC)2
∼ −6

B2

AC2
.

Since A is bounded, we must have
∫ T B2

AC2 < ∞. Hence
∫ T B

A2C < ∞ as well. This

implies limT A
1
3B = η > 0 as desired. It follows that AB3 and CB3 have positive

finite limits as t tends to T and we can proceed as in case 1 to obtain the asymptotic
of A, B and C when t tends to T .

Case 3: Neither (6.2) nor (6.4) are ever satisfied along the flow Assume
the solution exists on the interval [0, T ) (T can be ∞ here). The third case is the case
when

(6.12) ∀ t ∈ [0, T ),
1

3

(
2
√

1 − c+ c2 − 1 − c
)
≤ a ≤ 1 − c+ 2

√
1 − c.

Recall that (6.2) is equivalent to F2 > 0 and (6.4) is equivalent to F1 > 0. Hence we
have F1, F2 ≤ 0. Since F1 + F2 < 0, at least one of them is strictly negative in this
case. We first notice that F3 ≥ A2 > 0. It follows that A and B are non-increasing,
and C is non-decreasing. So we have

C0 ≤ C ≤ B ≤ B0

and B,C have finite positive limits when t tends to T .

Lemma 6.9. Assume B ≥ C.
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• If a0 = A0/B0, c0 = C0/B0 satisfy

(6.13) a ≥ 1 − c.

then this inequality is satisfied for all t ∈ [0, T ) and there exists a time t1 ∈
[0, T ) such that (6.2) holds for all t ∈ (t1, T ).

• If (6.12) holds then, for all t ∈ [0, T ), A+ C < B, that is, a < 1 − c.

Proof. Observe that for any c ∈ [0, 1],

1 − c ≥ (1 − c)2

2
√

1 − c+ c2 + 1 + c
=

1

3
(2

√
1 − c+ c2 − 1 − c).

By Lemma 6.3, this shows that a ≥ 1 − c implies F1 ≤ 0. Assume that A + C ≥ B
at some time t. Then, at that time, (6.5) and (6.6) show that d

dt ln(A/B) ≥ 0 and
d
dt ln(C/B) ≥ 0. This proves that the inequality a ≥ 1 − c is preserved by the flow.

Assume now that (6.12) holds. Then both B and C are monotone and have
positive finite limits as t tends to T . If there exists a time t0 such that a ≥ 1 − c at
time t0, then a = A/B is non-decreasing for t ≥ t0. This means that the solution
must exist for all time, i.e., T = ∞. However,

|F1| = 3A2 − (B − C)2 + 2AC + 2AB ≥ 2A(A+B + C),

so d
dtB < −η with η a positive constant. This contradicts T = ∞ and thus shows

that A+ C < B, for all t ∈ [0, T ).
Finally, since a ≥ 1 − c is preserved, implies F1 ≥ 0, and is incompatible with

(6.13), it follows that if a0 ≥ 1− c0 then there exists t1 such that F2 > 0, that is (6.2)
holds (it then holds for all t > t1 by Lemma 6.2).

Lemma 6.10. Assume B ≥ C and (6.12). Then we have

lim
t→T

A(t) = 0 and lim
t→T

B(t) = lim
t→T

C(t) = k ∈ (0,∞).

Proof. Observe that F2 + F3 = 2(A + B − C)(A − B + C) < 0. It follows that
|F2| > F3 ≥ A2. If limT A = A(T ) > 0 then we must have T = ∞. However,
d
dtA < −η with η a positive constant so the solution can only exist up to some finite
time, a contradiction. This shows that limT A = 0. Since 0 ≤ B − C ≤ A, we also
have limT (B − C) = 0.

Lemma 6.11. Assume B ≥ C and (6.12). Then T <∞, and

lim
t→T

2kA

(B − C)2
= 1.

Proof. First we observe that the inequality 4AB ≥ (B − C)2 follows easily from
the fact that

a ≥ 1

3
(2

√
1 − c+ c2 − 1 − c) =

(1 − c)2

2
√

1 − c+ c2 + 1 + c
.

For any positive number α, we have

d

dt
lnA =

2

A2B2C2
F2F3 and

d

dt
ln(B − C) =

2

A2B2C2
F1Y.
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It follows that

(6.14)
d

dt
ln

A

(B − C)α
=

2

A2B2C2
(F2F3 − αF1Y ),

where Y = A2 + B2 + C2 + 6BC + 2AB + 2AC. Since B − C > A and limT A = 0,
as t tends to T , we have

F2 = −(2A+ C + 3B)(B − C) + A2 = −4k(B − C) +O((B − C)2),

F3 = (B − C)(B + 3C + 2A) + A2 = 4k(B − C) +O((B − C)2),

−F1 = 2AB + 2AC − (B − C)2 + 3A2 = 4kA− (B − C)2 +O(A(B − C)),

and

Y = 8k2 +O((B − C)).

In this estimates, we have used the fact that 0 ≤ k − C, B − k ≤ B − C. This yields

(6.15) F2F3 −αF1Y = 8αk2[4kA− (1 + (2/α))(B−C)2] +O[A(B−C)+ (B−C)3].

We first show that for any ǫ > 0 there exists t0 such that

∀ t ∈ [t0, T ),
4kA

(B − C)2
≥ 2 − ǫ.

Otherwise, there exists ǫ > 0 such that for any t0 there exists t1 ∈ (t0, T ) such that
4kA/(B − C)2

∣∣
t=t1

< 2− ǫ. Taking t0 large enough, α = 2 in (6.14) and using (6.15),

it follows that we must have 4kA/(B − C)2 < 2 − ǫ for all t ∈ [t1, T ). Now, taking
α = 2+δ(ǫ) in (6.14), we obtain that A/(B−C)2+δ(ǫ) is decreasing if 2−ǫ < 1+ 2

2+δ(ǫ) .

This contradicts the fact that A/(B − C)2 ≥ 1/4B.
Now, as t tends to T ,

|F1| = 2AC + 2AB − (B − C)2 + 3A2 ≥ kA.

Hence, there exists η ∈ (0,∞) such that

d

dt
C =

2

B2C2

|F1|
A

× |F2|
A

> η.

As C is bounded from above by B0, this implies T <∞.
Next we show that there exists t0 ∈ ([0, T ) such that

∀ t ∈ [t0, T ),
kA

(B − C)2
< 1.

Otherwise, for any t0 there exists t1 ∈ (t0, T ) such that kA/(B − C)2
∣∣
t=t1

≥ 1. Using

(6.14)-(6.15), it is easy to see the kA/(B−C)2 ≥ 1 for all t ∈ [t1, T ). Now take α = 1
in (6.14)-(6.15) to see that A/(B − C) is increasing on (t2, T ) for some t2 ∈ (t1, T ).
It follows that there exists η ∈ (0,∞) such that

− d

dt
lnA ∼ η

(B − C)2

A2
< η.
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As T <∞, this contradicts limT A = 0.
We now show that for any ǫ > 0 there exists t0 such that

∀ t ∈ [t0, T ),
4kA

(B − C)2
≤ 2 + ǫ.

Otherwise, there exists ǫ > 0 such that for any t0 there exists t1 ∈ (t0, T ) such that
4kA/(B − C)2

∣∣
t=t1

> 2 + ǫ. Taking t0 large enough, α = 2 in (6.14) and using

(6.15), it follows that we must have 4kA/(B − C)2 > 2 + ǫ for all t ∈ [t1, T ). Now
using α = 2 − δ(ǫ) in (6.14)-(6.15), we find that A/(B −C)2−δ(ǫ) is non-decreasing if
2 + ǫ > 1 + 2

2−δ(ǫ) . This contradicts A/(B − C)2 ≤ 3/4k.

Using 2kA ∼ (B − C)2 in the original ODEs (6.1), we easily find the asymptotic
behaviors of A,B and C. Namely, as t→ T , we have

A ∼ 64

k
(T − t), B ∼ k + 4

√
2
√
T − t and C ∼ k − 4

√
2
√
T − t.

Putting together the different cases yields the following statement.

Theorem 6.12. Let g(t) be the solution of (+XCF) on SL(2,R) with given initial
data A0, B0, C0 > 0, B0 ≥ C0, in a Milnor frame f1, f2, f3. Then there exists a finite
positive time Tb such that g(t) exists for all t ∈ [0, Tb). Moreover, we have:

1. If there is a time t such that A ≥ B − C then there are constant ηi ∈ (0,∞)
such that, as t→ Tb,

A ∼ η1(Tb − t)−
1
14 , B ∼ η2(Tb − t)

3
14 , and C ∼ η3(Tb − t)

3
14 .

2. If there is a time t such that A < 1
3 (2

√
B2 −BC + C2 − B − C) then there

are constant ηi ∈ (0,∞) such that, as t→ Tb,

A ∼ η1(Tb − t)
3
14 , B ∼ η2(Tb − t)−

1
14 , and C ∼ η3(Tb − t)

3
14 .

3. If for all t, 1
3 (2

√
B2 −BC + C2 −B − C) ≤ A < B − C, then as t→ Tb,

A ∼ 64

C(Tb)
(Tb−t), B ∼ C(Tb)+4

√
2(Tb − t), and C ∼ C(Tb)−4

√
2(Tb − t)

with C(Tb) ∈ (0,∞).

Remark 6.3. A priori, the statement above does not imply that the case when

1

3
(2

√
B2 −BC + C2 −B − C) ≤ A < B − C

holds for all t ∈ [0, T ) really occurs since it is possible that no solutions satisfy
1
3 (2

√
B2 −BC + C2 −B − C) ≤ A < B − C for all t ∈ [0, Tb). In [CGSC09], we will

show by different techniques that this case really occurs but only for initial condition
on an hypersurface. See the discussion below.

Remark 6.4. In case (3), we have

lim
t→Tb

K(f2 ∧ f3) = − 2

C(Tb)
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and the two other sectional curvatures vanish. If M is compact, then there is collapse
in the f1 direction.

It is quite clear that Theorem 6.12 implies Theorem 6.1 and give a more precise
and technical description of the asymptotic behavior of (+XCF) on SL(2,R). More
precisely, the initial condition space

Q = {(a, b, c) ∈ R3 : a > 0, b ≥ c > 0}

can be partitioned into Q = Q1 ∪Q2 ∪ S0 with

{(a, b, c) ∈ Q : a ≥ b− c} ⊂ Q1,

{(a, b, c) ∈ Q : 3a < 2
√
b2 − bc+ c2 − (b+ c)} ⊂ Q2,

and

S0 ⊂ {(a, b, c) ∈ Q : (2
√
b2 − bc+ c2 − (b+ c)) ≤ 3a < 3(b− c)}.

By Theorem 6.12(1)-(2), for initial condition in Q1 (resp. Q2) the distance function
associated to the metric g = (C0/C(t))g(t) clearly converges uniformly on compact
sets to the distance function associated with a sub-Riemannian structure of the form
γ2f2 ⊗ f2 + γ3f3 ⊗ f3 (resp. γ1f1 ⊗ f1 + γ3f3 ⊗ f3). In fact, as stated in Theorem
6.12, it suffices that g(t) enters the region Q1 or Q2 at some time t ≥ 0. Hence, we
can define Q1 (resp. Q2) to be the set of initial conditions in Q such that g(t) enters
{a ≥ b − c} (resp. {3a < 2

√
b2 − bc+ c2 − (b + c)}) and S0 = Q \ (Q1 ∪Q2). From

this discussion it seems very plausible that S0 is simply a hypersurface separating Q1

and Q2. However, we have not been able to prove this by arguments similar to those
used above. In [CGSC09], we prove that S0 is indeed a surface separating the open
sets Q1, Q2 by reducing the ODEs to a two dimensional one and using the fact that
the orbit structure of 2-dimensional ODEs can be understood much better than in
higher dimension.
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