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A REFINEMENT OF STEIN FACTORIZATION AND
DEFORMATIONS OF SURJECTIVE MORPHISMS∗

STEFAN KEBEKUS† AND THOMAS PETERNELL‡

Abstract. This paper is concerned with a refinement of the Stein factorization, and with
applications to the study of deformations of morphisms. We show that every surjective morphism
f : X → Y between normal projective varieties factors canonically via a finite cover of Y that is éale
in codimension one. This “maximally étale factorization” satisfies a strong functorial property.

It turns out that the maximally étale factorization is stable under deformations, and naturally
decomposes an étale cover of the Hom-scheme into a torus and into deformations that are relative
with respect to the rationally connected quotient of the target Y . In particular, we show that all
deformations of f respect the rationally connected quotient of Y .
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1. Introduction and statement of results. Throughout this paper, we con-
sider surjective morphisms between algebraic varieties and their deformations. To fix
notation, we use the following assumption.

Assumption 1.1. f : X → Y will always denote a surjective holomorphic map
between normal complex-projective varieties.

The main method that we introduce is a refinement of the Stein factorization: we
show that f factors canonically via a finite cover of Y that is étale in codimension
one. This “maximally étale factorization” satisfies a strong functorial property which
is defined in Section 1.1 below and turns out to be stable under deformations of f .

We employ the maximally étale factorization for a study of the deformation space
Hom(X, Y ) and show that an étale cover of the Hom-scheme naturally decomposes into
a torus and into deformations that are relative with respect to the maximally rationally
connected fibration of the target Y . In particular, we show that all deformations of
f respect the rationally connected quotient of Y .

These result are summarized and properly formulated below.

1.1. The maximally étale factorization. Under the Assumptions 1.1, sup-
pose that there exists a factorization f ,

(1.1.1) X α
//
f

))
Z

β
// Y

where β is finite and étale in codimension 1, i.e. étale outside a set of codimension
≥ 2.
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366 S. KEBEKUS AND T. PETERNELL

Definition 1.2. We say that a factorization f = β ◦α as in (1.1.1) is maximally
étale if the following universal property holds: for any factorization f = β′ ◦α′, where
β′ : Z ′ → Y is finite and étale in codimension 1, there exists a morphism γ : Z → Z ′

such that such that the following diagram commutes:

X α
//
f

))
Z

γ

��

β
// Y

X
α′

//

f

55Z ′ β′
// Y

Remark 1.3. It follows immediately from the definition that a maximally étale
factorization of a given morphism f is unique up to isomorphism if it exists. Theo-
rem 4.1 describes the uniqueness in more detail.

The existence of the maximally étale factorization is established by the following
theorem, which we prove in Section 3.

Theorem 1.4. Let f : X → Y be a surjective morphism between normal projec-
tive varieties. Then there exists a maximally étale factorization.

We will later in Section 4 describe the maximally étale factorization in terms of
the positivity of the push-forward sheaf f∗(OX).

Remark 1.5. We have already remarked that the maximally étale factorization
yields a natural refinement of the Stein factorization. More precisely, we can say that
a surjection f : X → Y of normal projective varieties decomposes as follows.

X conn. fibers
//

f

,,W finite
// Z max. étale

// Y

1.2. Stability of the factorization under deformations. Let f = α ◦ β, as
in Diagram (1.1.1) denote the Stein factorization. If f ′ : X → Y is any deformation
of f , it is a classical fact that f ′ again factors via β —see Section 2.1 for brief review.
We will show that a similar, and somewhat stronger, property also holds for the
maximally étale factorization. To formulate this stability result precisely, we introduce
the following notation.

Notation 1.6. If g : A → B is any morphism between projective varieties, let
Homg(A,B) ⊂ Hom(A,B) be the connected component that contains g.

The stability result is then formulated as follows.

Theorem 1.7. In the setup of Theorem 1.4, let f = β ◦α be the maximally étale
factorization as in Diagram (1.1.1). Then the natural morphism between the reduced
Hom-spaces,

η : Homα(X, Z)red → Homf (X, Y )red
α′ 7→ β ◦ α′
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is proper and surjective. The induced morphism η̃ between the normalizations is étale.
If f ′ ∈ Homf (X, Y ) is any deformation of f , then f ′ factors via Z, and has Z as
maximally étale factorization.

We prove Theorem 1.7 in Section 5.

1.3. Decomposition of the Hom-scheme. We recall the main result of
[HKP06], where deformations of morphisms with non-uniruled targets were studied.
Using the language of Section 1.1, this is formulated as follows.

Theorem 1.8 ([HKP06, thm. 1.2]). Under the Assumptions 1.1, suppose that Y
is not covered by rational curves. If

X α
//
f

))
Z

β
// Y

denotes the maximally étale factorization, and if Aut0(Z) is the maximal connected
subgroup of the automorphism group of Z, then Aut0(Z) is an Abelian variety, and
the natural morphism

Aut0(Z)
/

Aut(Z/Y ) ∩Aut0(Z) → Homf (X, Y )

is an isomorphism of schemes.
In particular, all deformations of surjective morphisms X → Y are unobstructed,

and the associated components of Homf (X, Y ) are smooth Abelian varieties.

At the other extreme, if Y is rationally connected, partial descriptions of the Hom-
scheme are known —the results of [HM03, thm. 1] and [HM04, thm. 3] assert that
whenever Y is a Fano manifolds of Picard-number 1 whose variety of minimal rational
tangents is finite, or not linear, then all deformations of f come from automorphisms
of Y . This covers all examples of Fano manifolds of Picard-number one that one
encounters in practice.

If Y is covered by rational curves, but not rationally connected, we consider the
maximally rationally connected fibration qY : Y 99K QY which is explained in more
detail in Section 2.2. Using the maximally étale factorization, we will show that
an étale cover of H̃omf (X, Y ), the normalization of the space Homf (X, Y ), can be
decomposed into a torus and a space of deformations that are relative with respect
qY . We recall the notion of a relative deformation first.

Notation 1.9. We call the subvariety

Hf
vert := {f ′ ∈ Homf (X, Y )red | qY ◦ f ′ = qY ◦ f}

the “space of relative deformations of f over qY ”.

The following theorem will then be shown in Section 7.

Theorem 1.10. Under the Assumption 1.1, let

X α
//
f

))
Z

β
// Y

be the maximally étale factorization, and T ⊂ Aut0(Z) a maximal compact Abelian
subgroup. Then the following holds:
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(1.10.1) There exists a normal variety H̃ and an étale morphism

T × H̃ → H̃omf (X, Y )

that maps {e} × H̃ to the preimage of Hf
vert.

(1.10.2) If Y is smooth or if f is itself maximally étale, then {e} × H̃ surjects onto
the preimage of Hf

vert.

In the setup of Theorem 1.10, it need not be true that Aut0(Z) is itself an Abelian
variety. The existence of a maximal compact Abelian subgroup T ⊂ Aut0(Z) is briefly
discussed in Fact 6.1 on page 379 below.

Remark 1.11. The assertion of Theorem 1.10 is weaker than Theorem 1.8 in the
sense that it does not make any statement about the scheme-structure of Homf (X, Y ).
The reason is that the maximal rationally connected fibration qY need not be a mor-
phism, and that there is no good deformation space for rational maps between fixed
varieties. Theorem 1.10 can certainly be straightened if one assumes additionally that
qY is regular.

Acknowledgments. The authors would like to thank Ivo Radloff and Eckhard
Viehweg for a number of discussions. It was in these discussion that the notion of
“maximally étale” evolved.

2. Known Facts. The proofs of our main results rely on a number of facts
scattered throughout the literature. For the reader’s convenience, we have gathered
these here.

2.1. Stability of Stein factorization under deformation. Consider the
Stein factorization of f ,

(2.0.1) X
g: conn. fibers

//
f

,,W0
h: finite

// Y .

We will later need to know that any deformation of f still has g : X → W0 as Stein
factorization. While this is probably well-understood, we were unable to find a good
reference for the universal properties of Stein factorization, and include a full proof.

Proposition 2.1 (Stability of Stein factorization under deformation). The
canonical composition morphism

ν : Homh(W0, Y ) → Homf (X, Y )
h′ 7→ h′ ◦ g

is bijective. In particular, the morphism between the normalized Hom-schemes is
isomorphic.

The proof of Proposition 2.1, which we give below, makes use of the following
two lemmas, which assert that a deformation of a morphism with connected fibers
does not change the fibers, and that a surjective morphism between normal spaces is
determined up to isomorphism by its set-theoretical fibers.

Lemma 2.2 (Invariance of fibers under deformation). Let T be a smooth curve
and (ft)t∈T : X → Y be a family of surjective morphisms between projective varieties.
Assume that for all t ∈ T , the map ft has connected fibers. Then the set-theoretical
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fibers of ft are independent of t. More precisely, for all x ∈ X and all s, t ∈ T , we
have

f−1
t ft(x) = f−1

s fs(x).

Proof. Choose an ample line bundle L ∈ Pic(X). Observe that two points x, y ∈
X are contained in the same ft-fiber if and only if there exists a curve C ⊂ X that
contains both x and y, and satisfies c1(f∗t (L)).C = 0. Likewise, x and y are in the
same fs-fiber if and only if there is a curve C ⊂ X with x, y ∈ C and c1(f∗s (L)).C = 0.

On the other hand, since ft and fs are homotopic, the Chern classes of the pull-
back bundles agree,

c1(f∗t (L)) = c1(f∗s (L)).

This shows the claim.

Lemma 2.3. Let f1 : X → W1 and f2 : X → W2 be two surjective morphisms
between normal spaces. If for all x ∈ X the set-theoretical fibers of f1 and f2 agree,
i.e. if f−1

1 (f1(x)) = f−1
2 (f2(x)), then there exists a commutative diagram as follows.

X
f1

��

f2

��
W1

oo
φ: isomorphic

// W2

Proof. The morphisms f1, f2 give rise to a morphism from ι : X → W1 × W2,
ι(x) = (f1(x), f2(x)), and we obtain a commutative diagram as follows.

X
f1

��

f2

��
ι

��
W1 W1 ×W2 p2

//
p1

oo W2

The assumptions that the fibers of f1 and f2 agree implies that the restrictions pi|ι(X)

of the morphisms p1 and p2 to the image ι(X) are bijective. Since we are working over
C, Zariski’s main theorem then implies that the restrictions p1|ι(X) and p2|ι(X) are
even isomorphic. We can therefore view ι(X) as the graph of an invertible morphism
φ := p2|ι(X) ◦ (p1|ι(X))−1, which yields the claim.

Proof of Proposition 2.1. The injectivity of ν is obvious because g is surjective.
Since Homf (X, Y ) is connected, to prove surjectivity, it suffices to show that any
morphism γf : T → Homf (X, Y ) from a smooth irreducible curve T can be lifted to
a curve γh : T → Homh(W0, Y ) such that γf = ν ◦ γh.

To this end, let

F : X × T → Y × T
(x, t) 7→ (ft(x), t)

be the proper product morphism of the universal map and the identity, and consider
the Stein factorization

(2.3.1) X × T
G: conn. fibers

//

F

++
W

H: finite
// Y × T .
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Lemma 2.2 on the invariance of fibers implies that the morphisms g× IdT : X ×T →
W0 × T and G have the same fibers. Lemma 2.3 then asserts that there exists an
isomorphism φ such that the factorization (2.3.1) extends to a commutative diagram
as follows.

(2.3.2) X × T

g×IdT ,,

G: conn. fibers
//

F

++
W

H: finite
// Y × T

pY // Y

W0 × T

φ

OO

We use Diagram (2.3.2) to define the morphism γh : T → Homh(W0, Y ) by

γh(t) : W0 → Y
w 7→ pY (H(φ(w, t)))

It follows then from the commutativity of Diagram (2.3.2) that γf = ν ◦ γh. This
proves Proposition 2.1.

2.2. The rational quotient. Recall from [Kol96, chap. IV] or [Deb01, sec. 4]
that an irreducible projective variety X is rationally connected if any two sufficiently
general points can be joined by a single rational curve. Moreover X is rationally chain
connected if two general points can be joined by a connected chain of rational curves.

Remark 2.4. If X is smooth, then X is rationally connected if and only if X is
rationally chain connected [Kol96]. If X is singular, this need no longer be true. For
instance, if X is the cone over an elliptic curve, then X is of course rationally chain
connected, but not rationally connected.

One of the most important features of uniruled varieties is the existence of a
rationally connected quotient, introduced by Campana and Kollár-Miyaoka-Mori.

Definition 2.5. Let V be a normal variety and rV : V 99K RV a dominant
rational map to a normal variety. The map rV is called a maximal rationally chain
connected fibration, if for all very general points v ∈ V , the closure of the fiber through
v,

R(v) := r−1
V (rV (v)),

is the largest rationally chain connected subvariety of V that contains v.

The existence of a maximal rationally chain connected fibration is established by
Campana (even in the Kähler case) and Kollár-Miyaoka-Mori, see [Kol96] and [Deb01].
Campana uses the notation “rational quotient”.

Fact 2.6. Let V be a normal projective variety. Then there exists a maximal
rationally chain connected fibration rV : V 99K RV , with the additional property
that the quotient map rV is almost holomorphic, i.e. there exists a dense open subset
V 0 ⊂ V such that the restriction rV |V 0 is a proper morphism.

Notice that Kollár-Miyaoka-Mori [Kol96] and Debarre [Deb01] already put the
property to be almost holomorphic into the definition of a maximal rationally chain
connected fibration. We include this into the next notion.
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We will need to consider a different variant of a rational quotient coming from the
fact that for singular varieties rational connectedness and rational chain connectedness
do not coincide.

Definition 2.7. Let V be a normal variety and qV : V 99K QV a dominant ra-
tional map to a normal variety. The map qV is called a maximal rationally connected
fibration, if for all very general points v ∈ V , the closure of the fiber through v,

R(v) := q−1
V (qV (v)),

is the largest rationally connected subvariety of V that contains v.

Proposition 2.8. If V is a normal projective variety, then there exists a maximal
rationally connected fibration qV : V 99K QV .

Proof. Let η : Ṽ → V be a desingularization, and rṼ : Ṽ 99K RṼ a maximal
rationally chain connected fibration. Then set QV = RṼ and qV := rṼ ◦ η−1.

Notice that there is a factorization QV 99K RV . Of course both fibration are
unique up to birational equivalence, so that we speak of “the” maximal rationally
(chain) connected fibration.

Remark 2.9. If V is singular, a maximal rationally connected fibration of V is
not necessarily the maximal rationally chain fibration. E.g., if X is the cone over an
elliptic curve, then the maximal rationally connected fibration maps to the elliptic
curve, whereas the maximal rationally chain connected fibration maps to a point.
Further,the maximal rationally connected fibration cannot not necessarily be taken
to be almost holomorphic.

It is a crucial fact shown by Graber, Harris and Starr that the base of a maximal
rationally chain connected fibration, hence also of a maximal rationally connected
fibration is itself not uniruled.

Fact 2.10 ([GHS03, cor. 1.4]). If qV : V 99K QV is a maximal rationally (chain)
connected fibration, then QV is not uniruled.

The maximal rationally (chain) connected fibration described in the literature is
determined only up to birational equivalence. It is, however, easy to see that there is
a canonical choice.

Proposition 2.11. Let V be a normal projective variety. Then there exists
a canonical maximal rationally (chain) connected fibration qV : V 99K QV , with the
following property: the automorphism group Aut(V ) stabilizes the indeterminacy locus
of qV , and has a natural action on QV such that qV is equivariant wherever it is
defined.

Proof. Let q : V 99K Q be any maximal rationally (chain) fibration. The universal
property of the cycle space than yields a rational map as follows:

q′V : V 99K Chow(V )
v 7→ R(v).

This construction has two important features. For one, observe that the morphism
q′V is independent of the particular choice of the rationally connected quotient q.
Secondly, if x ∈ V is a very general point, and g ∈ Aut(V ) is any automorphism, then
g(R(x)) is again rationally (chain) connected. In particular, we have that g(R(x))) =
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R(g(x)). This already shows that the natural action of Aut(V ) on Chow(V ) stabilizes
the image of q′V and makes q′V equivariant. The proof is thus finished if we let QV be
the normalization of the closure of the image of q′V , and qV : V 99K QV be the lifting
that comes from the universal property of the normalization.

Notation 2.12. For the rest of this paper, if we discuss “the” maximal rationally
(chain) connected fibration of a variety, we always mean the canonic construction given
in Proposition 2.11.

We will later need to consider subsheaves of the tangent sheaf TV that are relative
over the rationally connected quotient wherever this is well-defined.

Definition 2.13. Let V be a normal projective variety, and let qV : V 99K QV

be the rationally connected quotient. Further, suppose that C is a normal variety and
ι : C → V a morphism whose image is not contained in the singular locus of V , and
not contained in the indeterminacy locus of qV . If F ⊂ ι∗(TV ) is a reflexive subsheaf
of the pull-back of the tangent sheaf, we say that F is vertical with respect to the
rationally connected quotient, if F is contained in ι∗(TV |QV

) at the general point of
C.

Likewise, a morphism of reflexive sheaves F → ι∗(TV ) is vertical with respect to
the rationally connected quotient if the double dual of its image is. An infinitesimal
deformation of ι, i.e. an element σ ∈ Hom(ι∗(Ω1

V ),OC), is vertical if the restriction
of σ to general points of C corresponds to a section in ι∗(TV |QV

).

2.3. General curves in projective varieties. We will later need to consider
the Harder-Narasimhan filtration of the tangent sheaf TX . By Mehta-Ramanathan’s
theorem, it suffices to discuss the filtration of the restriction to a general complete
intersection curve, whose definition we recall now.

Definition 2.14. If X is normal, we consider general complete intersection
curves in the sense of Mehta-Ramanathan, C ⊂ X. These are reduced, irreducible
curves of the form C = H1 ∩ · · · ∩Hdim X−1, where the Hi ∈ |mi ·H| are general, the
Li ∈ Pic(X) are ample and the mi ∈ N large enough, so that the Harder-Narasimhan-
Filtration of TX commutes with restriction to C. If the Li are chosen, we also call C
a general complete intersection curve with respect to (L1, . . . , Ldim X−1).

We refer to [Fle84] and [Lan04] for a discussion and an explicit bound for the mi

that appear in Definition 2.14.
If X is a normal variety, qX : X 99K QX the maximal rationally connected fi-

bration and C ⊂ X a general complete intersection curve, then C intersects neither
the singular locus of X, nor the indeterminacy locus of qX . It makes therefore sense
ask if a subsheaf FC ⊂ TX |C is vertical with respect to the rationally connected quo-
tient. The following important criterion is a refinement of Miyaoka’s characterization
of uniruled varieties. It appeared first implicitly in [Kol92, 9.0.3], but see [KST07,
rem. 4.8].

Fact 2.15 ([KST07, cor. 1.4]). Let X be a normal projective variety with max-
imal rationally connected fibration qX : X 99K QX . If C ⊂ X is a general com-
plete intersection curve and FC ⊂ TX |C a locally free and ample subsheaf, then
FC ⊂ TX/QX

|C.
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2.4. Finite morphisms. Let f : X → Y be a surjective, finite morphism be-
tween normal varieties. The push-forward of the structure sheaf f∗(OX) is then a
torsion free sheaf on X, which is locally free where f is flat, i.e. away from the sin-
gularities of X and Y . Much of our argumentation is based on an analysis of the
positivity properties of f∗(OX).

Notation 2.16. Let XSing and YSing denote the singular loci, and set

X0 = X \ (XSing ∪ f−1(YSing))

Y 0 = Y \ (YSing ∪ f(XSing)) = f(X0).

Then codimX \X0 = codim Y \ Y 0 ≥ 2.

Fact 2.17. The trace morphism tr : f∗(OX0) → OY 0 gives rise to a splitting

f∗(OX0) ∼= OY 0 ⊕ E∨f

where E∨f is a locally free sheaf on Y 0. Let Ef be the dual1 of E∨f .

The following result on the positivity of Ef appeared only recently. We have
however learned from E. Viehweg that it is implicitly contained in much older works
of Fujita.

Fact 2.18 ([PS00, Thm. A of the appendix by Lazarsfeld]). Let C ⊂ Y 0 be a
complete curve that is not contained in the branch locus of f . Then Ef |C is a nef
vector bundle on C. It has degree 0 if and only if f is unbranched along C.

Corollary 2.19. If C ⊂ Y is a general complete intersection curve, then
f∗(OX)|C is of degree 0 if and only if f is étale in codimension 1.

As a consequence of the projection formula, f∗f
∗(F) = f∗(OX) ⊗ F , we obtain

that if F is any coherent sheaf on Y , then there is a natural direct sum decomposition

(2.19.1) H0
(
X0, f∗(F)

) ∼= H0
(
Y 0,F

)
⊕HomY 0

(
Ef ,F|Y 0

)
.

Notation 2.20. In the setup of this section, if σ ∈ H0(X, f∗(F)), let σ = σ′f +σ′′f
be the decomposition that is associated with the splitting (2.19.1).

3. Existence of a max. étale factorization, Proof of Theorem 1.4. We
will in this section prove the existence of a maximally étale factorization for surjective
morphisms between normal projective varieties. Since the proof is somewhat long, we
subdivide it into a number of steps. We maintain the notation and the assumptions
of Theorem 1.4 throughout.

The strategy of proof follows [HKP06]: we construct the factorization using a
suitable subsheaf of f∗(OX).

3.1. Reduction to the case of a finite morphism. Using the Stein factor-
ization of the morphism f , we can assume without loss of generality that f is actually
finite.

1The use of the ’dual’ follows historical conventions. We use it to be consistent with the literature
we cite.
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3.2. The Harder-Narasimhan-Filtration. Choose an ample line bundle H ∈
Pic(Y ), and consider the associated Harder-Narasimhan-Filtration of f∗(OX),

(3.0.1) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = f∗(OX).

Lemma 3.1. The degree of F1 with respect to H is zero,

degH(F1) := c1(F1) · c1(H)dim Y−1 = 0.

If G ⊂ f∗(OX) is any coherent subsheaf with degH(G) = 0, then G ⊂ F1.

Proof. Consider the splitting f∗(OX) = OY ⊕ E∗. Since a general complete
intersection curve C ⊂ Y is not contained in the branch locus of f , Lazarsfeld’s
result, Fact 2.18, asserts that E∗|C is an anti-nef vector bundle. This in turn implies
that no subsheaf of f∗(OX) has positive degree. Since OY ⊂ f∗(OX) is a subsheaf of
degH(OY ) = 0, either f∗(OX) is H-semistable and degH f∗(OX) = 0, or the degree
of the maximally destabilizing subsheaf F1 is zero. The first statement thus follows.

The second statement is void if f∗(OX) is semistable (so that F1 = f∗(OX)). We
can thus assume that f∗(OX) is not semistable, and that we are given a coherent
subsheaf G ⊂ f∗(OX) with degH(G) = 0. Consider the image of F1 and G under the
addition map,

+ : F1 ⊕ G → f∗(OX).

The image sheaf again has non-negative degree and must therefore be contained in
the maximally destabilizing subsheaf F1. This proves that G ⊂ F1.

Lemma 3.2. The OY -algebra structure on f∗(OX) induces on F1 the structure
of a sheaf of OY -subalgebras.

Proof. Since F1 is a sheaf of OY -modules which contains OY , it solely remains to
verify that F1 is closed under the multiplication map

m : f∗(OX)⊗ f∗(OX) → f∗(OX).

In other words, we need to check that the associated map

m′ : F1 ⊗F1 → f∗(OX)
/
F1

is constantly zero. Again, if F1 = f∗(OY ), there is nothing to show. Otherwise,
observe that F1 ⊗ F1 is semistable with slope µ(F1 ⊗ F1) = 0 so that f∗(OX)

/
F1

contains a subsheaf G with degH G = 0. By Lemma 3.1 this subsheaf must vanish,
hence m′ = 0.

3.3. Construction of the factorization, end of proof. Since F1 is a co-
herent sheaf of OY -algebras, the morphism f now automatically factorizes via
Z := Specan(F1).

(3.2.1) X α
//
f

))
Z

β
// Y

Since β is proper and affine, it is clear that it must be finite. We will now show that
Z is normal, that β is étale in codimension 1, and that it is indeed maximally étale.
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Lemma 3.3. The intermediate variety Z is normal.

Proof. Let η : Z̃ → Z be the normalization morphism. The universal property of
normalization then yields a further factorization

X
α̃

//
f

++
Z̃ η

// Z
β

// Y .

Accordingly, we obtain a sequences of subsheaves of OY -algebras,

F1 = β∗(OZ) ⊂ (β ◦ η)∗(OZ̃) ⊂ f∗(OX).

Since η is isomorphic away from a proper subset, the quotient Q := (β ◦ η)∗(OZ̃)
/
F1

either vanishes, or is a torsion sheaf. But since F1 is saturated in f∗(OX), the quotient
Q cannot be non-zero torsion. This shows that (β ◦ η)∗(OZ̃) = F1 and therefore
Z = Z̃.

Lemma 3.4. The morphism β is étale in codimension 1.

Proof. By Corollary 2.19, to prove the assertion, it is equivalent to show
deg(β∗(OZ)|C) = 0. Since β∗(OZ) = F1, and since deg(β∗(OZ)|C) = degH(F1),
this follows from the first statement of Lemma 3.1.

Lemma 3.5. The factorization (3.2.1) is maximally étale.

Proof. Let f = β′ ◦ α′ be any factorization via an intermediate variety Z ′ which
is étale in codimension 1 over Y . The push-forward G := β′∗(OZ′) ⊂ f∗(OX) is then a
subsheaf of OY -algebras. If C ⊂ Y is a general complete intersection curve associated
with the polarization H, then G is locally free along C, and Fact 2.18 asserts that
deg(G|C) = 0. In other words, we have that degH(G) = 0, and the second statement
of Lemma 3.1 implies that G ⊂ F1 = β∗(OZ).

This ends the proof of Theorem 1.4.

Remark 3.6. If X and Y are smooth, the maximally étale factorization

(3.6.1) X α
//
f

))
Z

β
// Y .

can more easily be constructed as follows: The subgroup f∗(π1(X)) ⊂ π1(Y ) has finite
index, and therefore determines a finite étale cover g : Ỹ → Y such that f factors via
g. As the map π1(X) → π1(Ỹ ) must necessarily be onto, the factorization via g is
maximal.

4. Characterization of the maximally étale factorization. We will later
need to characterize the maximally étale factorization among all factorizations in
terms of positivity properties of the push-forward sheaf β∗(OZ). The construction of
the maximally étale factorization in the previous section almost immediately yields
the following.

Theorem 4.1. Let f : X → Y be a surjection between normal projective varieties
with maximally étale factorization

(4.1.1) X α
//
f

))
Z

β
// Y .
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Let H ∈ Pic(Y ) be an arbitrary polarization and C ⊂ Y an associated general complete
intersection curve. Then
(4.1.1) the push-forward β∗(OZ) is the maximally destabilizing subsheaf of f∗(OX)

with respect to the polarization H, and Z = Specan(β∗(OZ)), and
(4.1.2) if we set Q := f∗(OX)

/
β∗(OZ), then Q∨|C is an ample vector bundle on C.

Proof. Statement (4.1.1) is a direct corollary to the proof of Theorem 1.4. In fact,
in Section 3, we have chosen one particular polarization H ∈ Pic(Y ), and constructed
Z as the Specan of the maximally destabilizing subsheaf F1 ⊂ f∗(OX). While F1

could a priori depend on the choice of H, the universal property of the maximally étale
factorization shows that it actually does not: if β′ : Z ′ → Y is another maximally
étale factorization, constructed with respect to another polarization H ′, the universal
property of Z yields the inclusion β′∗(OZ′) ⊂ β∗(OZ) = F1. Analogously, we obtain
that F1 ⊂ β′∗(OZ′). This shows statement (4.1.1).

It follows from Fact 2.18 that f∗(OX)∨|C is nef. Since β∗(OZ)|C has degree
0, it is a standard fact that Q∨|C is nef —see [CP91, prop. 1.2(8)]. On the other
side, Lemma 3.1 implies that Q|C has no subsheaf of semi-positive degree. As a
consequence, its dual Q∨|C has no quotient of semi-negative degree. Hartshorne’s
characterization [Har71] of ample vectorbundles then implies that Q∨|C is ample, as
claimed.

Corollary 4.2. In the setup of Theorem 4.1, if H ′ ∈ Pic(Z) is any polarization,
and C ′ ⊂ Z an associated general complete intersection curve, then the dual of the
restriction α∗(OX)

/
OZ

∣∣∣
C′

is an ample vector bundle on C ′.

Proof. It follows from the universal property of the maximally étale factoriza-
tion (4.1.1) that the maximally étale factorization of α : X → Z is the identity on
Z,

X α
//
α

))
Z

Id
// Z .

The claim then follows from Theorem 4.1(4.2.2).

Question 4.3. The Harder-Narasimhan filtration (3.0.1) of f∗(OX) that is dis-
cussed on page 374 obviously depends on the choice of the line bundle H. As we
have seen in Theorem 4.1, it turns out a posteriori that the maximally destabilizing
subsheaf F1 does not depend on H. Are there a priori arguments to see that in our
setup the maximally destabilizing subsheaf is independent of the polarization?

5. Stability under deformations, Proof of Theorem 1.7. Throughout the
present section we maintain the notation and the assumptions of Theorem 1.7. Again
we subdivide the lengthy proof into steps: after a reduction to the case where f is
finite, we prove the surjectivity of the composition morphism η and the étalité of its
lift to the normalizations separately.

5.1. Reduction to the case of a finite morphism. As an immediate conse-
quence of the stability of Stein factorization under deformation, Proposition 2.1, we
can replace X with its Stein factorization. We will therefore assume without loss of
generality for the remainder of the present Section 5 that f is finite.
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5.2. Properness and surjectivity of the composition morphism η. The
proof of surjectivity is technically a little awkward because the connected spaces
Homf (X, Y ) and Homα(X, Z) need not be irreducible. Thus, as a first step, we show
that for any irreducible component of H ⊂ Homf (X, Y ) and any α′ with η(α′) ∈ H,
the component H is the proper image of a suitable component in Homα(X, Z) that
contains α′. Surjectivity and properness are then deduced in Corollaries 5.2 and 5.3
below.

Proposition 5.1. Let f ′ = α′◦β ∈ Homf (X, Y )red be any morphism that factors
via β. Further, let Hf ′ ⊂ Homf (X, Y )red be an irreducible component that contains
f ′. Then there exists a component Hα′ ⊂ Homα(X, Z)red that contains α′ such that
η(Hα′) = Hf ′ and such that the restriction η|Hα′ is proper.

Proof. Let H̃f ′ be the universal cover of a desingularization of Hf ′ , and let
f̃ ′ ∈ H̃f ′ be a point that maps to f ′. Using that f ′ factors via β, we obtain the
following fibered product diagram:

F //

β̃
��

Z

β

étale in codim. 1��
{f̃ ′} ×X //

22

H̃f ′ ×X
µ //

p2

projection
��

Y

X

Claim 5.1.1. The morphism β̃ is also étale in codimension 1.

Proof of Claim 5.1.1. Let R ⊂ Y be the minimal closed set R such that β is
étale away from R. Since étale morphisms are stable under base change, we only need
to show that R̃ := µ−1(R) is of codimension ≥ 2 in H̃f ′ × X. This will be done by
showing that for all g̃ ∈ H̃, the intersection R̃ ∩ ({g̃} ×X) is of codimension ≥ 2 in
{g̃} ×X.

To this end, let g ∈ H be the image of g̃. If we identify {g̃} ×X with X in the
obvious way, it is then clear that

R̃ ∩ ({g̃} ×X) = g−1(R).

Since g is a deformation of the finite, surjective morphism f , g is likewise finite and
surjective, and Claim 5.1.1 follows.

As a next step in the proof of Proposition 5.1, let F 0 be the normalization of the
irreducible component that contains the image of {f̃ ′}×X, and let β̃0 : F 0 → H̃f ′×X
be the obvious restriction.

Claim 5.1.2. The morphism β̃0 is biholomorphic.

Proof of Claim 5.1.2. If x ∈ X is a general point, set

H̃x := p−1
2 (x) and F 0

x := (β̃0)−1(H̃x) ∩ F 0.

By Seidenberg’s theorem [Man82], F 0
x is normal, and the existence of the section

{f̃ ′} ×X ∼= X → F 0 implies that F 0
x is irreducible.
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Since H̃f ′ ×X is normal, Claim 5.1.1 now asserts that β̃0 is étale in codimension
1. Since x is general, this is also true for the restriction

β̃0|F 0
x

: F 0
x → H̃x.

But because H̃x is smooth, Zariski-Nagata’s theorem on the purity of the branch lo-
cus, [Gro71, thm. 3.1], implies that β̃|Fx

must in fact be étale. Since H̃x is simply
connected, it must be isomorphic. Consequence: the finite morphism β̃0 is bimero-
morphic. By the analytic version of Zariski’s main theorem, [Rem94, prop. 14.7], β̃0

is isomorphic. This shows Claim 5.1.2.
To end the proof of Proposition 5.1, observe that Claim 5.1.2 shows the existence

of a morphism F 0 ∼= H̃f ′ × X → Z. The universal property of the Hom-scheme
thus yields a morphism ν : H̃f ′ → Hom(X, Z)red. It follows immediately from the
construction that ν(f ′) = α′. Better still, we obtain a diagram

(5.1.3) H̃f ′

desing. and
univ. cover ����

ν // Hom(X, Z)red

ηssHf ′

This shows that there exists a component Hα′ which contains α′ and surjects onto
Hf ′ . The properness of η|Hα′ follows from Diagram (5.1.3) because η is quasi-finite.
This ends the proof of Proposition 5.1.

Corollary 5.2. Let f ′ = α′ ◦ β ∈ Homf (X, Y )red be any morphism that factors
via β. Further, let Hα′ ⊂ Homα′(X, Z)red be any irreducible component that contains
α′. Then there exists a component Hf ′ ⊂ Homf (X, Y )red that contains f ′ such that
η(Hα′) = Hf ′ and such that the restriction η|Hα′ is proper.

Proof. Choose a morphism α′′ ∈ Hα′ which is not contained in any other compo-
nent of Homα′(X, Z)red. Now apply Proposition 5.1 to f ′′ = α′′◦β and any component
Hf ′′ ⊂ Homf (X, Y )red that contains f ′′.

Corollary 5.3. The morphism η is surjective and proper.

Proof. Since Homf (X, Y ) is connected, surjectivity of η follows from Proposi-
tion 5.1. Since Homα(X, Z) is connected, properness of η follows from Corollary 5.2.

5.3. The max. étale factorization of a deformed morphism. Let f ′ ∈
Homf (X, Y )red be any deformation of f . The surjectivity of η implies that f ′ factor
via Z. Here we will show that f ′ has Z as maximally étale factorization. To this end,
let

(5.3.1) X
α′

//
f ′

))
Z ′

β′
// Y

be the maximally étale factorization of f ′. The universal property from Definition 1.2
then yields a morphism Z ′ → Z. Reversing the roles of f and f ′, we also obtain a
morphism Z → Z ′ which shows that Z and Z ′ are isomorphic.
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5.4. Étalité of η̃. Since surjective and generically injective finite morphisms
between normal spaces are biholomorphic, the following lemma suffices to prove that
for each pair of points in the normalizations, α̃′ ∈ H̃omα(X, Z) and f̃ ′ ∈ H̃omf (X, Y )
with η̃(α̃′) = f̃ ′, the morphism η̃ induces an isomorphism of analytic neighborhoods.
This shows that η̃ is étale and ends the proof of Theorem 1.7.

Lemma 5.4. Let α′ be a point in Homα(X, Z) and f ′ := β ◦ α′. Then there are
open neighborhoods U = U(α′) and V = V (f ′) such that η|U : U → V is bijective.

Proof. Let y ∈ Y be a general point, and Ω = Ω(y) a sufficiently small analytic
neighborhood such that

β−1(Ω) = Ω1,Z ∪ · · · ∪ Ωn,Z and (f ′)−1(Ω) = Ω1,X ∪ · · · ∪ Ωn·m,X

are disjoint unions of open sets which are each isomorphic to Ω. If Ω′ ⊂⊂ Ω is a
relatively compact neighborhood of y, the sets

(Ui)1≤i≤n := {α′′ ∈ Homα(X, Z)red |α′′(Ω′
1,X) ⊂ Ωi,Z}

V := {f ′′ ∈ Homf (X, Y )red | f ′′(Ω′
1,X) ⊂ Ω}

are open, the Ui are disjoint, and η−1(V ) = ∪1≤i≤nUi. Using that β|Ωi,Z
: Ωi,Z → Ω

are biholomorphic, the identity principle then immediately implies that η|Ui
: Ui → V

is injective. Proposition 5.1 implies that for any given number i, Ui is either empty or
surjects onto V . The proof is finished if choose i such that α′ ∈ Ui and set U := Ui.

6. Infinitesimal decomposition of the Hom-scheme. Theorem 1.10 asserts
that a cover of Hom(X, Y ) decomposes into a torus and deformations that are vertical
with respect to the rational quotient. In this section we will show an infinitesimal
version of the decomposition. We believe that this is of independent interest.

Before we formulate the result in Theorem 6.2 below, recall the following standard
fact of algebraic group theory.

Fact 6.1. Let G be an algebraic group. Then there exists a maximal compact
Abelian subgroup, i.e., an Abelian variety T ⊂ G which is a subgroup and such that
no intermediate subgroup T ⊂ S ⊂ G, T 6= S, is an Abelian variety.

A maximal compact Abelian subgroup is unique up to conjugation.

The decomposition result then goes as follows.

Theorem 6.2. Let f : X → Y be a surjective morphism between normal complex-
projective varieties, and

X α
//
f

))
Z

β
// Y

be the maximally étale factorization of f . Then there is a canonical decomposition of
the space of infinitesimal deformations of f ,

THom(X,Z)|f = Hom
(
f∗(Ω1

Y ),OX

)
= a⊕ V,

where a ⊂ H0(Z, TZ) is the Lie algebra of a maximal compact Abelian variety
T ⊂ Aut0(Z) and where V ⊂ Hom

(
f∗(Ω1

Y ),OX

)
is a subspace of the space of infini-

tesimal deformations that are vertical with respect to the maximal rationally connected
fibration of Z.
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Recall that “infinitesimal deformations that are vertical with respect to the max-
imal rationally connected fibration” were defined in Definition 2.13 on page 372.

Remark 6.3. The functoriality of the maximal rationally chain connected
fibration, [Kol96, thm. IV.5.5], implies that an infinitesimal deformation σ ∈
Hom

(
f∗(Ω1

Y ),OX

)
that is vertical with respect to the maximal rationally connected

fibration of Z is also vertical with respect to the maximal rationally connected fibra-
tion of Y .

Corollary 6.4. In the setup of Theorem 6.2, if g ∈ Hom(X, Z)red, then the
tangent space THom(X,Z)red |g is spanned by infinitesimal deformations that vertical with
respect to the maximal rationally connected fibration of Z, and by tangent vectors of
the T -orbit through g.

We prove Theorem 6.2 in the remainder of the present section. As usual, we
subdivide the proof into steps.

6.1. Reduction to the case of a finite morphism. Using Stein factorization
of the morphism f , we can assume without loss of generality that f —and hence α—
are actually finite. In fact, if f is not finite, consider the Stein factorization as in
Diagram (2.0.1) on page 368: f = h ◦ g, where g : X → W0 has connected fibers and
h : W0 → Y is finite. For the reduction, we need to show that the canonical pull-back
morphism

g∗ : Hom(h∗(Ω1
Y ),OW0) → Hom(f∗(Ω1

Y ),OX)

is bijective. Since g is surjective, injectivity is obvious. Concerning surjectivity of this
map, consider an element u ∈ Hom(f∗(Ω1

Y ),OX),

u : f∗(Ω1
Y ) = g∗h∗(Ω1

Y ) → OX .

The composition of the canonical map h∗(Ω1
Y ) → g∗g

∗h∗(Ω1
Y ) and the push-forward

of u,

h∗(Ω1
Y ) −→ g∗g

∗h∗(Ω1
Y )

g∗(u)−−−→ g∗OX = OW0

then yields a morphism v : h∗(Ω1
Y ) → OW0 such that g∗(v) and u agree over the

smooth part of Y , where the pull-back of Ω1
Y is locally free. Since the Hom-sheaves

are torsion free, this implies that u = g∗(v).
In summary, we have shown that a is an isomorphism. The reduction step is then

clear.

6.2. Setup and Notation. For convenience, let XSing, YSing and ZSing denote
the singular loci, and set

X0 := X \ (XSing ∪ α−1(ZSing) ∪ f−1(YSing)) and

Z0 := Z \ (ZSing ∪ α(XSing) ∪ β−1(YSing)).

Then codimX(X \X0) = codimZ(Z\Z0) ≥ 2. The space of infinitesimal deformations
can thus be rewritten as follows.

(6.4.1)

THom(X,Y )|f = Hom(f∗(Ω1
Y ),OX)

= Hom(f∗(Ω1
Y )∨∨,OX) = Hom(f∗(Ω1

Y )|X0,OX0)

= H0(X0, f∗(TY )) = H0(Z0, α∗(TZ))

= H0(Z0, α∗(OX0)⊗ TZ0) = HomZ0(α∗(OX0)∗, TZ0).
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Notation 6.5. If σ ∈ H0(X, f∗(TY )) is any infinitesimal deformation of the
morphism α, let σ̂ ∈ HomZ0(α∗(OX0), TZ0) be the associated morphism.

Lemma 6.6. Let σ be an infinitesimal deformation. Then

σ|X0 ∈ H0
(
X0, α∗ Image(σ̂)

)
.

Proof. The claim immediately follows from the definition of σ̂: if z ∈ Z0 is a
general point, and α−1(z) = {xi|i = 1 . . .m}, then the image of σ̂ at z is spanned by
the tangent vectors Tα(σ(xi))i=1...m.

6.3. Decomposition of the Infinitesimal Deformations. Recall Fact 2.17
which asserts that α∗(OX0) ∼= OZ0 ⊕ E∨α . This, together with the Equations (6.4.1)
yields a decomposition

(6.6.1) Hom(f∗(Ω1
Y ),OX) = H0(Z, TZ)⊕HomZ0(Eα, TZ0)︸ ︷︷ ︸

=:V ′

.

Notation 6.7. If σ ∈ H0(X, f∗(TY )) is any infinitesimal deformation of the
morphism α, let σ̂′ ∈ H0(Z, TZ) and σ̂′′ ∈ HomZ0(Eα, TZ0) be the associated vector
field and morphism, respectively.

6.4. Interpretation of V ′. We will now show that infinitesimal deformations
σ of α, which correspond to elements in V ′ are vertical with respect to the rational
quotient of Z. To this end, choose an ample bundle H ∈ Pic(Z) and let C ⊂ Z be an
associated general complete intersection curve. Fact 2.17 and the characterization of
the maximally étale factorization, Corollary 4.2, then assert that the restriction E∨α |C
is anti-ample. It follows that Eα|C is ample, and so is its image in TZ0 |C under the map
σ̂′′. The refinement of Miyaoka’s characterization of uniruled manifolds, Fact 2.15,
implies that Image(σ̂′′) is then vertical with respect to the rational quotient of Z, and
Lemma 6.6 yields the claim.

6.5. The Abelian variety T and end of the proof of Theorem 6.2 . We
consider the connected algebraic group Aut0(Z). By a classical theorem of Chevalley,
there exists an extension

0 → L → Aut0(Z) → T ′ → 0

where L is linear-algebraic and T ′ an Abelian variety. This sequence is not necessarily
split, but it is known [Lie78, thm. 3.12] that there is a maximal compact Abelian
subgroup T ⊂ Aut0(Z) such that the induced map T → T ′ is étale.

Let a ⊂ H0(Z, TZ) be the subalgebra generated by T and a′ that one generated
by L. This gives a decomposition

H0(Z, TZ) = a⊕ a′.

Since L is linear-algebraic, the closures of its orbits are rationally connected. As a
consequence, L acts trivially on the rational quotient QZ , hence a′ is vertical and we
obtain a decomposition

Hom
(
f∗(Ω1

Y ),OX

)
= a⊕ V

with V := a′ ⊕ V ′ vertical. This ends the proof of Theorem 6.2.
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7. Decomposition of the Hom-scheme, Proof of Theorem 1.10. The
proof of Theorem 1.10, which we give in this section, is the longest and most in-
volved in this paper. Before we start with all the details in Section 7.2 below, we give
a short idea of proof.

7.1. Idea of proof. In Section 7.2 we will quickly reduce to the case where
f is finite. For simplicity, assume further that the maximally rationally connected
fibration qY : Y 99K QY is a morphism and that the maximally étale factorization is
an isomorphism. Let T ⊂ Aut0(Y ) be a maximal compact Abelian subgroup, as in
Fact 6.1 above.

Under these assumptions, the composition morphism

τ : Homf (X, Y ) → Hom(X, QY )
f ′ 7→ qY ◦ f ′

is equivariant with respect to the natural T -action on Homf (X, Y ) and Hom(X, QY ),
respectively. The infinitesimal decomposition of the Hom-scheme, Theorem 6.2, then
asserts that the image of τ contains a dense T -orbit. By properness, the image of τ
will be homogeneous under the T -action.

The standard fact that actions of Abelian varieties on rationally connected vari-
eties are necessarily trivial (note that this is not true for rationally chain connected
varieties!) then implies that T -orbits in Homf (X, Y ) surject finitely onto the image
of τ , better still, that they are étale over the image of τ . This quickly gives the
decomposition.

The main difficulty in the proof of Theorem 1.10 is that qY need not be regular.
Although the space of rational maps X 99K QY can easily be defined as a subscheme of
Hilb(X×QY ), its universal properties are too weak to construct a morphism similar to
τ above —see [Han87, Han88] for a discussion of the complications that already arise
with the space of birational automorphisms. We will need to consider a somewhat
weaker construction instead.

7.2. Reduction to the case of a finite morphism. Using the stability of
Stein factorization under deformation, Proposition 2.1, we can assume without loss
of generality that the morphism f is finite. Throughout, we consider the maximally
étale factorization of f ,

X α
//
f

))
Z

β
// Y,

where β is étale in codimension 1.

7.3. Setup of notation. Before we seriously start the proof of Theorem 1.10,
we need to set up some notation.

Notation 7.1. Let qZ : Z 99K QZ and qY : Y 99K QY be the maximal rationally
connected fibrations and

ν : H̃omf (X, Y ) → Homf (X, Y )red

be the normalization morphism. Let T ⊂ Aut0(Z) be a maximal compact Abelian
subgroup, as discussed in Fact 6.1 above.

Remark 7.2. The group T ⊂ Aut0(Z) naturally acts on Z and on
Homα(X, Z)red. By Proposition 2.11 and the conventions fixed in Notation 2.12,
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the group T acts also on the base of the maximally rationally connected fibration QZ .
With these actions, the maximally rationally connected fibration map qZ : Z 99K QZ

is automatically T -equivariant wherever it is defined.

As a next step, we define subvarieties Hg
vert ⊂ Homα(X, Z) which are the ana-

logues to the fibers of the map τ that was discussed in the introductory Section 7.1
above.

Notation 7.3. If g ∈ Homα(X, Z) is any morphism, define the reduced subvari-
ety

Hg
vert := {h ∈ Homα(X, Z)red | qZ ◦ g = qZ ◦ h}.

As in Notation 1.9, we call Hg
vert the “space of relative deformations of g over qZ”.

Consider the restricted group action morphism

µg : T ×Hg
vert → Homα(X, Z)red

(t, α′) 7→ t ◦ α′

Remark 7.4. If t ∈ T and g ∈ Homα(X, Z)red are any two elements, the
associated vertical deformation spaces of g and t · g differ only by translation in
Homα(X, Z)red. More precisely, we have Ht·g

vert = t ·Hg
vert. This follows trivially from

the equivariance of qZ .

7.4. Study of the restricted action morphism. The spaces Homα(X, Z)red
and Hα

vert are not necessarily proper. We will show now, however, that the restricted
group action map µα is still a proper morphism. This will suffice to prove both parts
of Theorem 1.10.

Proposition 7.5. The restricted action morphism µα : T × Hα
vert →

Homα(X, Z)red is proper and surjective. It becomes étale after passing to the nor-
malization.

Assume for the moment that Proposition 7.5 holds true. We will first show that
this implies Theorem 1.10 and then, in Sections 7.6–7.7 below, prove the proposition.

Proof of Theorem 1.10, Statement (1.10.1). Let µ̃α : T × H̃α
vert → H̃omα(X, Z)

be the étale morphism between the normalizations that is associated with µα. Let

η : Homα(X, Z)red → Homf (X, Y )red

be the proper and surjective composition morphism discussed in Theorem 1.7, and η̃
the associated étale morphism between the normalizations. By Proposition 7.5 and
Theorem 1.7, the composition

µ̂α := η̃ ◦ µ̃α : T × H̃α
vert → H̃omf (X, Y )

is then surjective and étale, and it suffices to show that

(7.5.1) (η ◦ µα)({e} ×Hα
vert) = η(Hα

vert) ⊂ Hf
vert.
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For this, observe that the universal property of the maximally rationally chain con-
nected fibration, [Kol96, IV thm. 5.5], shows the existence of a commutative diagram
of dominant rational maps as follows.

(7.5.2) X α
//

f

**
Z

β
//

qZ

���
�
� Y

qY

���
�
�

QZ
βQ

//___ QY

Equation (7.5.1) then follows by definition of H and Hα
vert.

Proof of Theorem 1.10, Statement (1.10.2). If f is maximally étale, i.e., if β is
isomorphic, the claim follows trivially from the construction.

Now assume that Y is smooth. We will see below that Hα
vert is a connected

component of η−1(Hf
vert). It is, however, generally false that η−1(Hf

vert) = Hα
vert. The

map µ̂α = η̃ ◦ µ̃α does therefore not always satisfy statement (1.10.2) of Theorem 1.10
and needs to be modified accordingly, by adding more components to T × H̃α

vert, one
for each connected component of η−1(Hf

vert). More precisely, we will show that there
exists a finite set TR ⊂ T , such that η−1(Hf

vert) ⊂ Homα(X, Z) is the disjoint union
of copies of Hα

vert that are realized in Homα(Z, Y ) as translates of Hα
vert by elements

of TR under the natural T -action on Homα(Z, Y ), i.e.

(7.5.3) η−1(Hα
vert) =

•⋃
t∈TR

t ·Hα
vert.

We can therefore consider the modified restricted action morphism

µ′α : T × (TR ×Hα
vert) → Homα(X, Z)red(

t1, (t2, α′)
)

7→ t1 ◦ t2 ◦ α′

It is then obvious that the associated morphism µ̃′α between normalizations is étale.
Setting µ := η̃ ◦ µ̃′α then finishes the proof.

It remains to find TR. To this end, we need to introduce the following two
subgroups of T .

Tvert,Z := {t ∈ T | qZ = qZ ◦ t}
Tvert,Y := {t ∈ T |βQ ◦ qZ = βQ ◦ qZ ◦ t}

Claim 7.5.4. The subgroups Tvert,Z and Tvert,Y are both finite.

Proof of the claim. Since Y is smooth, the quotient map qY is almost holomorphic
in the sense discussed in Fact 2.6. The general qY -fiber Yq ⊂ Y is thus smooth,
rationally connected and therefore [Deb01, cor. 4.18] simply connected. Recall that
β is étale in codimension 1, i.e. étale away from a set of codimension ≥ 2. Zariski-
Nagata’s theorem on the purity of the branch locus, [Gro71, thm. 3.1] implies that β is
étale. The preimage β−1(Yq) is then a disjoint union of several copies of the rationally
connected manifold Yq, each a fiber of qZ . This observation has two consequences.

First, the well-known fact that actions of connected, positive-dimensional Abelian
varieties on rationally connected manifolds must necessarily be trivial, [Fuj78,
lem. 5.2], implies that Tvert,Z is discrete, hence finite.
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Second, the observation shows that the dominant rational map βQ defined in
Diagram (7.5.2) is generically finite. This implies that Tvert,Y is finite. Claim 7.5.4 is
thus shown.

To apply Claim 7.5.4, recall from Theorem 1.7 and Proposition 7.5 that any
morphism f ′ ∈ Homf (X, Y )red can be decomposed as f ′ = β ◦ t ◦α′ where α′ ∈ Hα

vert

and t ∈ T . We then have equivalences

f ′ ∈ Hf
vert

⇔ qY ◦ f ′ = qY ◦ f Definition
⇔ qY ◦ β ◦ t ◦ α′ = qY ◦ β ◦ α Diagram 7.5.2
⇔ βQ ◦ qZ ◦ t ◦ α′ = βQ ◦ qZ ◦ α′ since α′ ∈ Hα

vert

⇔ βQ ◦ qZ ◦ t = βQ ◦ qZ because α′ is surjective
⇔ t ∈ Tvert,Y Definition

This already shows that

η−1(Hf
vert) =

⋃
t∈Tvert,Y

t ·Hα
vert.

It follows immediately from the definition that two translates, t1 ·Hα
vert and t2 ·Hα

vert

are equal if and only if t1 · t−1
2 ∈ Tvert,Z , and otherwise disjoint. We can therefore take

TR to be a system of representatives for the finite group quotient Tvert,Y
/
Tvert,Z .

Assuming that Proposition 7.5 holds, this ends the proof of Theorem 1.10.

7.5. Proof of Proposition 7.5, a rational decomposition of the Hom-
scheme. The aim of this section is to construct a rational analogue of the function
τ ′ defined in the introduction. To simplify the notation, we consider the irreducible
components of Homα(X, Z)red separately.

Notation 7.6. Let

Homα(X, Z)red =
⋃
i

Homα(X, Z)i
red

be the decomposition into irreducible components, and let

Hg
vert,i := Hg

vert ∩Homα(X, Z)i
red

be the associated decomposition of the Hg
vert.

By definition of Hg
vert,i, the space Homα(X, Z)i

red is naturally decomposed into a
disjoint union of subvarieties,

(7.6.1) Homα(X, Z)i
red =

•⋃
g∈Homα(X,Z)i

red

Hg
vert,i

where all subvarieties Hg
vert,i are all fibers of the set-theoretic map

τ ′i : Homα(X, Z)i
red → {rational maps X 99K QZ}.

g 7→ qZ ◦ g

We have already discussed in Section 7.1 that it might not be possible to define
a good scheme-structure on the set of rational maps which makes τ ′i a morphism.
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To construct an algebraic substitute for τ ′i , observe that C is uncountable. Equa-
tion (7.6.1) therefore decomposes Homα(X, Z)i

red into uncountable many subvari-
eties. If Homα(X, Z)i

red is a projective compactification of Homα(X, Z)i
red, then

Chow(Homα(X, Z)i
red) has only countably many components. The decomposition

of Homα(X, Z)i
red therefore yields a rational map between varieties

τi : Homα(X, Z)i
red 99K Chow(Homα(X, Z)i

red)
g 7→ closure of Hg

vert,i

that agrees with τ ′i on an open subset.
Although τi is only a rational map, there is a little that we can say about its

infinitesimal structure.

Lemma 7.7. If Homα(X, Z)i
red ⊂ Homα(X, Z)red is any irreducible component

and g ∈ Homα(X, Z)i
red a general point, then the kernel of the tangent morphism

ker(Tτi|g) is exactly the space of vertical infinitesimal deformations.
In particular, the tangent space THomα(X,Z)i

red
|g at g is spanned by the tangent

space to Hg
vert,i, and by the tangent space to the T -orbit through g.

Proof. Define a distribution, i.e. a saturated subsheaf F ⊂ THomα(X,Z)i
red

of OX -
modules, as follows: if h ∈ Homα(X, Z)i

red is a smooth, general point, let

F|h ⊂ THomα(X,Z)i
red
|h ⊂ THomα(X,Z)|h = Hom(h∗(Ω1

Z),OX)

be those elements that are
• tangent to the reduced scheme Homα(X, Z)i

red, and
• vertical with respect to the rational quotient qz : Z 99K QZ .

It is clear that ker(Tτi|g) ⊂ F|g. To show the other inclusion, assume that we
are given a vertical infinitesimal deformation ~v ∈ F|g. In order to prove Lemma 7.7,
we need to show that ~v is tangent to Hg

vert,i. For this, consider a holomorphic arc
γ : ∆ → Homα(X, Z)i

red such that
(7.7.1) γ(0) = g, and the derivatives satisfy
(7.7.2) γ′(0) = ~v, and
(7.7.3) γ′(t) ⊂ γ∗(F), for all t ∈ ∆.
The infinitesimal description of the universal morphism ∆ × X → Z then shows
that the image of γ is entirely contained in Hg

vert,i. It follows that ~v ∈ THg
vert,i

|g =
ker(Tτi|g).

7.6. Proof of Proposition 7.5, properness and surjectivity. With the
preparations from the previous section, we can now prove the first assertion of Propo-
sition 7.5. We show surjectivity first for the restricted action morphism µg̃, where g̃
is a general element.

Lemma 7.8. If Homα(X, Z)i
red ⊂ Homα(X, Z)red is any irreducible component

and g̃ ∈ Homα(X, Z)i
red a general point, then µg̃ surjects onto Homα(X, Z)i

red.

Proof. Lemma 7.7 and the infinitesimal decomposition, Corollary 6.4, together
imply that µg̃ is of maximal rank at g̃ and therefore dominates the component
Homα(X, Z)i

red.
To show that µg̃ is surjects onto Homα(X, Z)i

red, it suffices to show that its image
is closed, i.e. that that the limit of every convergent sequence of points in the image is
again contained in the image. Using the compactness of T , this follows immediately.
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It is now easy to extend the surjectivity result to all g ∈ Homα(X, Z)i
red.

Lemma 7.9. In the setup of Lemma 7.8, if g ∈ Homα(X, Z)i
red is any point, then

µg and µg̃ have the same image in Homα(X, Z)red.

Proof. The surjectivity of µg̃, Lemma 7.8, implies that there exist elements t ∈ T

and ĝ ∈ H g̃
vert,i such that t · ĝ = g. By Remark 7.4, we have Hg

vert = t · H g̃
vert and

therefore

µg = t ◦ µg̃ ◦ (Id, t−1).

This shows the claim.

Corollary 7.10. If g ∈ Homα(X, Z)red is any point, then µg is surjective and
proper. In particular, µα is surjective and proper.

Proof. The surjectivity of µg follows immediately from Lemma 7.9 and the fact
that Homα(X, Z)red is connected by definition.

It remains to show that µg is proper, i.e. that the preimage of any compact set
K ⊂ Homα(X, Z)red is again compact. But again, given a sequence (tn, gn) ⊂ µ−1

g (K),
using that T is compact and the sequence tn · gn has a cumulation point in K, it is
easy to prove that (tn, gn) has a convergent subsequence.

7.7. Proof of Proposition 7.5, étalité. The étalité of µ̃α will be deduced
using the following criterion. Although fairly standard, we found no reference in the
literature and give a quick proof.

Proposition 7.11 (Étalité criterion). Let f : X → Y be a proper, finite mor-
phism between irreducible varieties and assume that Y is normal. If there exists a
number d ∈ N such that for all y ∈ Y , the preimages f−1(y) contains (set-theoretically)
exactly d points, then f is étale.

Proof. Let y ∈ Y be any point and f−1(y) = {x1, . . . , xd}. By [GR84, sect. 2.3] we
can find an analytic neighborhoods U of y and Vi of xi such that f−1(U) = V1∪· · ·∪Vd

and such that the Vi are disjoint. The restrictions f |Vi
: Vi → U must then be

bijective and, by the analytic version of Zariski’s main theorem, [Rem94, prop. 14.7],
biholomorphic. This shows the claim.

Proof of Proposition 7.5. We have already seen in Corollary 7.10 that µα is
proper and surjective. It remains to show that the associated morphism between the
normalizations is étale.

For this, let H̃omα(X, Z)red and H̃α
vert be the normalizations of Homα(X, Z)red

and Hα
vert, respectively. Further, let

µ̃α : T × H̃α
vert → H̃omα(X, Z)red

be the morphism associated with µα. This morphism will then also be proper.
By the étalité criterion, Proposition 7.11, it remains to show that the number of

elements in fibers of µ̃α is constant.
Recall that T acts effectively and freely on Homα(X, Z)red, and therefore freely on

the normalization H̃omα(X, Z)red. If G ⊂ T denotes the ineffectivity of the T -action
on QZ , i.e. the kernel of the natural map T → Aut(QZ), then G acts freely on Hα

vert

and H̃α
vert. Here we need to consider the natural G-action on T × H̃α

vert, where G acts
on the factor T by left multiplication. This action is likewise free.
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Proposition 7.5 is shown if we prove that for any pair (t, g̃) ∈ T × H̃α
vert, the

associated µ̃α-fiber is exactly the G-orbit, i.e.

µ̃−1
α

(
µ̃α(t, g̃)

)
= G · (t, g̃).

The inclusion “⊇” is clear.
For the other inclusion, consider two pairs contained in the same fiber,

(7.11.1) µ̃α(t1, g̃1) = µ̃α(t2, g̃2)

If ν : H̃omα(X, Z)red → Homα(X, Z)red is the normalization morphism, equa-
tion (7.11.1) then implies

ν(g̃1) = t−1
1 t2 · ν(g̃2) = ν(t−1

1 t2 · g̃2)

The assumption g̃1, g̃2 ∈ H̃α
vert, i.e. qZ ◦ ν(g̃1) = qZ ◦ ν(g̃1) = qZ ◦ α then yields that

t−1
1 t2 ∈ G, which ends the proof of Proposition 7.5 and hence of Theorem 1.10.
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