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DISSIPATIVE HYPERBOLIC GEOMETRIC FLOW∗

WEN-RONG DAI† , DE-XING KONG‡ , AND KEFENG LIU§

Abstract. In this paper we introduce a new kind of hyperbolic geometric flows — dissipative
hyperbolic geometric flow. This kind of flow is defined by a system of quasilinear wave equations
with dissipative terms. Some interesting exact solutions are given, in particular, a new concept —
hyperbolic Ricci soliton is introduced and some of its geometric properties are described. We also
establish the short-time existence and uniqueness theorem for the dissipative hyperbolic geometric
flow, and prove the nonlinear stability of the flow defined on the Euclidean space of dimension larger
than 2. Wave character of the evolving metrics and curvatures is illustrated and the nonlinear wave
equations satisfied by the curvatures are derived.
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1. Introduction. Let M be an n-dimensional complete Riemannian manifold
with Riemannian metric gij . The following evolution equation for the metric gij

∂2gij

∂t2
+ 2Rij + Fij

(
g,

∂g

∂t

)
= 0 (1.1)

has been recently introduced and named as general version of hyperbolic geometric
flow by Kong and Liu [11], where Rij is the corresponding Ricci curvature tensor and
Fij is a given smooth symmetric tensor on the Riemannian metric g and its first order
derivative with respect to t. A special but important case is

∂2gij

∂t2
= −2Rij . (1.2)

Usually, we call (1.2) the standard hyperbolic geometric flow or simply hyperbolic
geometric flow. (1.1) and (1.2) are two nonlinear systems of second order partial
differential equations on the metric gij .

For the hyperbolic geometric flow (1.2), some interesting exact solutions have been
constructed by Kong and Liu [11]. Recently, Kong, Liu and Xu [13] have investigated
the evolution of Riemann surfaces under the flow (1.2) and given some results on the
global existence and blowup phenomenon of smooth solutions to the flow equation
(1.2). In our paper [2], we prove the short-time existence for the hyperbolic geometric
flow (1.2) and the nonlinear stability of the Euclidean space with dimension larger
than 4. Moreover, we also study the wave character of the curvatures for the flow (1.2)
and derive the equations satisfied by curvatures including the Riemannian curvature
tensor Rijkl, the Ricci curvature tensor Rij and the scalar curvature R. However, these
evolution equations are quite complicated. In general, the solution of the hyperbolic
geometric flow (1.2) may blowup in a finite time even for smooth initial data.
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Motivated by the well-developed theory of the dissipative hyperbolic equations,
we introduce a new geometric analytical tool — dissipative hyperbolic geometric flow:

∂2gij

∂t2
= −2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
−
(

d + 2gpq ∂gpq

∂t

)
∂gij

∂t
+

1
n− 1

[(
gpq ∂gpq

∂t

)2

+
∂gpq

∂t

∂gpq

∂t

]
gij

(1.3)

where gij(t) stands for a family of Riemannian metrics defined on M , and d is a
positive constant. The derivation of (1.3) is given in Section 6. Here we would like
to point out that the reason that we choose (1.3) as the equation form of dissipative
hyperbolic geometric flow is that, in the case it possesses a simpler equation satisfied
by the scalar curvature. Noting the dissipative property of (1.3), we expect that the
dissipative hyperbolic geometric flow admits a global smooth solution (i.e., a family
of Riemannian metrics) for all t ≥ 0, and the solution (metrics) has some good or
anticipant geometric properties for relatively general initial data in the case that the
dissipative coefficient d is chosen to be suitably large.

In the present paper we will focus on some basic properties enjoyed by the dissi-
pative hyperbolic geometric flow. The first basic property is on the hyperbolic Ricci
soliton. The hyperbolic Ricci soliton is a new concept which we introduce in this
paper. We will prove that there does not exist steady gradient hyperbolic Ricci soli-
ton with initial metric of positive average scalar curvature on n-dimensional compact
manifold (where n ≥ 3). Comparing with the traditional Ricci flow, here we need
the assumption that the initial metric has non-negative average scalar curvature. If
this assumption does not hold, then the question whether there exist steady gradient
hyperbolic Ricci solitons still remains open. See Theorem 3.1 for the detail.

The second fundamental property is the short-time existence and uniqueness the-
orem for the dissipative hyperbolic geometric flow. For compact manifolds, we can
prove that the dissipative hyperbolic geometric flow always admits a unique smooth
solution ( a family of Riemannian metrics) for smooth initial data. See Theorem 4.1.
Notice that the dissipative hyperbolic geometric flow (1.3) is only weakly hyperbolic,

since the symbol of the derivative of E = E(gij)
4
= −2Rij has zero eigenvectors in

the natural coordinates. In order to reduce the nonlinear weakly hyperbolic partial
differential equation (1.3) to a nonlinear symmetric system of strictly hyperbolic par-
tial differential equations, we use harmonic coordinates introduced by DeTurck and
Kazdan [4]. Then by the standard theory of symmetric hyperbolic system, we can
prove the short-time existence and uniqueness theorem 4.1.

The third property is the nonlinear stability. By the global existence theory of
dissipative wave equations, we can prove the global nonlinear stability of the Euclidean
space Rn with n ≥ 3. See Theorem 5.1 for the details. In the proof of nonlinear
stability, the dissipative property of the flow (1.3) play an important role.

The fourth fundamental property is the wave character of the curvatures. Since
the dissipative hyperbolic geometric flow is described by a system of quasilinear wave
equations on the metrics gij(t, x), the wave property of the metric implies the wave
character of the curvatures. The equations will play an important role in the future
study. See Section 6 for the details.

By the way, we would like to point out that, a hyperbolic version of mean cur-
vature flow has been developed in [10] and [12], and some physical discussions of
hyperbolic geometric flow governed by mean curvature can be found in [5] and [8].
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The paper is organized as follows. In Section 2, we introduce the dissipative hy-
perbolic geometric flow equation and give a useful lemma. In order to understand the
basics of the dissipative hyperbolic geometric flow, we construct some exact solutions.
These solutions may be useful in physics. In Section 3, we introduce the steady gradi-
ent hyperbolic Ricci soliton, and prove Theorem 3.1 — one of the main results in this
paper. Section 4 is devoted to the short-time existence and uniqueness of the flow,
while Section 5 is devoted to the global nonlinear stability of the Euclidean space Rn

with n ≥ 3. The wave character of the curvatures is discussed in Section 6, and the
nonlinear wave equations satisfied by the curvatures are also derived in this section.

2. Dissipative hyperbolic geometric flow. The dissipative hyperbolic geo-
metric flow considered here is defined by the equation (1.3), namely,

∂2gij

∂t2
= −2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
−
(

d + 2gpq ∂gpq

∂t

)
∂gij

∂t
+

1
n− 1

[(
gpq ∂gpq

∂t

)2

+
∂gpq

∂t

∂gpq

∂t

]
gij

(2.1)

where gij(t) stands for a family of Riemannian metrics defined on M , and d is a
positive constant. The reason that we choose (2.1) as the equation form of dissipative
hyperbolic geometric flow is as follows: in this case the flow possesses a simpler
equation satisfied by the scalar curvature. See the derivation of (2.1) in Section 6.

We first establish some useful equations from the flow equation (2.1). Let

u(x, t) = gij ∂gij

∂t
, (2.2)

v(x, t) =
∣∣∣∣∂g

∂t

∣∣∣∣2 = gikgjl ∂gij

∂t

∂gkl

∂t
, (2.3)

w(x, t) = gikgjlgpq ∂gip

∂t

∂gjq

∂t

∂gkl

∂t
(2.4)

and denote the matrix

G(x, t) =
(

∂gij

∂t
gjk

)
. (2.5)

Then we have

u(x, t) = trG(x, t), v(x, t) = trG2(x, t), w(x, t) = trG3(x, t), (2.6)
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where trG stands for the trace of the matrix G. Thus by (2.1) we obtain

∂u(x, t)
∂t

=
∂

∂t

(
gij ∂gij

∂t

)
=

∂gij

∂t

∂gij

∂t
+ gij ∂2gij

∂t2

= −gikgjl ∂gij

∂t

∂gkl

∂t
+ gij

[
−2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
− 2gpq ∂gpq

∂t

∂gij

∂t

−d · ∂gij

∂t
+

1
n− 1

((
gpq ∂gpq

∂t

)2

+
(

∂gpq

∂t

∂gpq

∂t

))
gij

]

= −2R− n− 2
n− 1

u2 − du− 1
n− 1

v

(2.7)
and

∂v(x, t)
∂t

= 2
∂gij

∂t
gpq ∂gip

∂t

∂gjq

∂t
+ 2gijgpq ∂2gip

∂t2
∂gjq

∂t

= −2girgjsgpq ∂gip

∂t

∂gjq

∂t

∂grs

∂t
+ 2gijgpq ∂gjq

∂t

[
−2Rip + 2grs ∂gir

∂t

∂gps

∂t

−2
(

grs ∂grs

∂t

)
∂gip

∂t
− d

∂gip

∂t
+

1
n− 1

(
grs ∂grs

∂t

)2

gip

+
1

n− 1

(
∂grs

∂t

∂grs

∂t

)
gip

]
= 2w − 4gikgjl ∂gij

∂t
Rkl −

(
4 +

2
n− 1

)
uv − 2dv +

2
n− 1

u3.

(2.8)

Theorem 2.1. For the dissipative hyperbolic geometric flow (2.1), the quantities
u(x, t), v(x, t) and w(x, t) satisfy the following equations

∂u(x, t)
∂t

= −2R− n− 2
n− 1

u2 − du− 1
n− 1

v (2.9)

and
∂v(x, t)

∂t
= 2w − 4gikgjl ∂gij

∂t
Rkl − (4 +

2
n− 1

)uv − 2dv +
2

n− 1
u3. (2.10)

In order to understand basically the dissipative hyperbolic geometric flow, in what
follows we construct some exact solutions.

Consider the following Cauchy problem

∂2gij

∂t2
= −2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
−
(

d + 2gpq ∂gpq

∂t

)
∂gij

∂t

+
1

n− 1

[(
gpq ∂gpq

∂t

)2

+
∂gpq

∂t

∂gpq

∂t

]
gij ,

gij(x, 0) = g0
ij(x),

∂gij

∂t
(x, 0) = k0

ij(x),

(2.11)
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where g0
ij(x) is a Riemannian metric on the manifold M , and k0

ij(x) is a symmetric
tensor on M .

If we assume that the initial metric g0
ij(x) is Ricci flat, and the initial velocity

k0
ij(x) vanishes, then easily see that gij(x, t) = g0

ij(x) is the unique smooth solution
to the Cauchy problem (2.11).

If we assume that the initial Riemannian metric is Einstein, that is to say,

Rij(x, 0) = λgij(x, 0), ∀ x ∈ M , (2.12)

where λ is a constant. Furthermore, we suppose that

∂gij

∂t
(x, 0) = µgij(x, 0), (2.13)

where µ is an another constant. Let

gij(x, t) = ρ(t)gij(x, 0). (2.14)

By the definition of the Ricci tensor, we have

Rij(x, t) = Rij(x, 0) = λgij(x, 0), ∀ x ∈ M . (2.15)

It follows from (2.13) and (2.14) that

ρ(0) = 1, ρ′(0) = µ. (2.16)

Substituting (2.14) into the evolution equation (2.1) gives the following ODE

ρ′′(t) = −dρ′(t)− 2λ. (2.17)

The solution of (2.17) with the initial data (2.16) reads

ρ(t) = 1− 2λ

d
t−
(

µ

d
+

2λ

d2

)
(e−dt − 1). (2.18)

It follows from (2.18) that

ρ′(t) = −2λ

d
+
(

µ +
2λ

d

)
e−dt. (2.19)

Noting that d > 0, we distinguish the following three cases to discuss:

Case I. λ > 0.
In this case, it follows from (2.18) that

lim
t→+∞

ρ(t) = −∞.

Thus the evolving metric gij(x, t) shrinks homothetically to a point as t approaches
some finite time T .

Case II. λ = 0.
In the present situation, ρ(t) = 1−µ

d (e−dt−1). If µ
d < −1, then the evolving metric

gij(x, t) shrinks homothetically to a point as t approaches the time T
4
= − 1

d ln(1+ d
µ );

If µ
d > −1, then the metric gij(x, t) evolves smoothly and is positive defined for all
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time; If µ
d = −1, the metric gij(x, t) evolves smoothly and is positive defined for all

time, but it shrinks homothetically to a point as t → +∞.

Case III. λ < 0.

In this case, if µ < 0 and ρ(T0) ≤ 0, where T0
4
= − 1

d ln
(

2λ
2λ+dµ

)
, then the evolving

metric gij(x, t) shrinks homothetically to a point as t approaches some finite time not
later than T . Otherwise, gij(x, t) is smooth and positive defined for all time.

Summarizing the above argument leads to the following theorem.

Theorem 2.2. For the Cauchy problem (2.11) of the dissipative hyperbolic geo-
metric flow, suppose that the assumptions (2.12)-(2.13) are satisfied. Then, if one of
the following conditions is satisfied, then the evolving metric gij(x, t) shrinks homo-
thetically to a point as t approaches some finite time:

(a) λ > 0;
(b) λ = 0 and µ < −d;
(c) λ < 0, µ < 0 and ρ

(
1
d ln

(
2λ

2λ+dµ

))
≥ 0.

For the other instances, gij(x, t) are smooth and positive defined for all time. In
addition, if λ = 0 and µ = −d < 0, the metric gij(x, t) evolves smoothly and is
positively defined for all time, but it shrinks homothetically to a point as t → +∞.

3. Hyperbolic Ricci soliton. The theory of soliton solutions plays an impor-
tant role in the study of geometric analysis, in particular in the study of Ricci flow.
In this section we first introduce a new concept — steady hyperbolic Ricci soliton for
the flow (2.1), and then describe its properties.

Definition 3.1. A solution to an evolution equation is called a steady soliton, if
it evolves under a one-parameter subgroup of the symmetry group of the equation; A
solution to the dissipative hyperbolic geometric flow (2.1) is called a steady hyperbolic
Ricci soliton, if it moves by a one-parameter subgroup of the symmetry group of the
equation (2.1).

If ϕt is a one-parameter group of diffeomorphisms generated by a vector field V
on M , then the hyperbolic Ricci soliton is given by

gij(x, t) = ϕ∗t gij(x, 0) = gij(ϕt(x), 0). (3.1)

It implies that

∂

∂t
gij(x, t) = LV gij = gik∇jV

k + gjk∇iV
k , Tij (3.2)

and

∂
∂t2 gij(x, t) = LV LV gij = LV Tij

= Tij;kV k + TkjV
k
;i + TkiV

k
;j

= (gip∇jV
p + gjp∇iV

p);kV k + (gkp∇jV
p + gjp∇kV p)V k

;i

+(gkp∇iV
p + gip∇kV p)V k

;j

= (gip∇k∇jV
p + gjp∇k∇iV

p)V k + gkp(∇iV
k · ∇jV

p +∇jV
k · ∇iV

p)

+gip∇jV
k · ∇kV p + gjp∇iV

k · ∇kV p,
(3.3)
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where LV stands for the Lie derivative with respect to the vector field V . Thus, the
equation (2.1) can be reduced to

(gip∇k∇jV
p + gjp∇k∇iV

p)V k + gkp(∇iV
k · ∇jV

p +∇jV
k · ∇iV

p)
+gip∇jV

k · ∇kV p + gjp∇iV
k · ∇kV p

= −2Rij + 2gpq(gik∇pV
k + gpk∇iV

k)(gjl∇qV
l + gql∇jV

l)
−2gpq(gpk∇qV

k + gqk∇pV
k)(gil∇jV

l + gjl∇iV
l)− d(gik∇jV

k + gjk∇iV
k)

+
1

n− 1
[
gpq(gpk∇qV

k + gqk∇pV
k)
]2

gij

− 1
n− 1

[
gprgqs(gpk∇qV

k + gqk∇pV
k)(grl∇sV

l + gsl∇rV
l)
]
gij . (3.4)

We predigest it into the following

2Rij + (gip∇k∇jV
p + gjp∇k∇iV

p)V k

= 2gpqgikgjl∇pV
k∇qV

l + gik∇jV
l∇lV

k + gjk∇iV
l∇lV

k

−(d + 4∇kV k)(gil∇jV
l + gjl∇iV

l) +
4

n− 1
(∇qV

q)2gij

− 2
n− 1

(
gklg

pq∇pV
k∇qV

l +∇pV
q∇qV

p
)
gij . (3.5)

If the vector field V is the gradient of a function f on M , then the soliton is
called a steady gradient hyperbolic Ricci soliton. In what follows, we consider
the steady gradient hyperbolic Ricci soliton.

For the steady gradient hyperbolic Ricci soliton, the equation (3.5) becomes

2Rij + (gip∇k∇j∇pf + gjp∇k∇i∇pf)∇kf

= 2gpqgikgjl∇p∇kf∇q∇lf + gik∇j∇lf∇l∇kf + gjk∇i∇lf∇l∇kf

−(d + 4∇k∇kf)(gil∇j∇lf + gjl∇i∇lf) +
4

n− 1
(∇q∇qf)2gij

− 2
n− 1

(
gklg

pq∇p∇kf∇q∇lf +∇p∇qf∇q∇pf
)
gij .

That is to say,

Rij +∇k(∇i∇jf)∇kf

= 2gpq∇p∇if∇q∇jf − (d + 44f)∇i∇jf

+
2

n− 1
(4f)2gij −

2
n− 1

(gpqgkl∇p∇kf∇q∇lf)gij . (3.6)

Taking the trace on i and j yields

R +∇k(4f · ∇kf) = − 2
n− 1

|∇2f |2 − n− 3
n− 1

(4f)2 − d · 4f. (3.7)

Thus, the following theorem comes easily from (3.5)-(3.7).

Theorem 3.1. For the dissipative hyperbolic geometric flow, (3.5) and (3.6) are
the evolution equations satisfied by the steady hyperbolic Ricci soliton and the steady
gradient hyperbolic Ricci soliton, respectively. Furthermore, for an n-dimensional
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compact manifold with n ≥ 3, if the average scalar curvature of the initial metric is
non-negative, i.e.,

r(0) ,

∫
M R(x, 0)dV∫

M dV
≥ 0, (3.8)

then for the steady gradient hyperbolic Ricci soliton, the generating function f must
satisfy the condition Hess(f) ≡ 0 on M , i.e., f is a constant and the solution
metric gij(x, t) ≡ gij(x, 0) is Ricci flat for all time t. In reverse, if the initial met-
ric gij(x, 0) is Ricci flat and the function f ≡ constant, then it is obvious that the
steady gradient hyperbolic Ricci soliton generated by f is a solution to the dissipative
hyperbolic geometric flow.

4. Short-time existence and uniqueness. In this section, we reduce the dis-
sipative hyperbolic geometric flow (2.1) to a symmetric hyperbolic system in the
so-called harmonic coordinates (see [4]), then based on this, we prove the short-time
existence and uniqueness theorem for the flow equation (2.1).

Let gij(x, t) be a family of metrics on an n > 1 dimensional manifold M . We
consider the space-time R×M equipped with the following Lorentzian metric

ds2 = −dt2 + gij(x, t)dxidxj . (4.1)

It follows from (3.4) in Dai, Kong and Liu [2] that

∂2gij

∂t2
+ 2Rij =

∂2gij

∂t2
− gkl ∂2gij

∂xk∂xl
+
(

gik
∂Γk

∂xj
+ gjk

∂Γk

∂xi

)
+2gklgpqΓ

p
ikΓq

jl +
∂gij

∂xk
Γk

+
(

gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
, (4.2)

where

Γk , gijΓk
ij . (4.3)

Then the evolution equation (2.1) for the dissipative hyperbolic geometric flow can
be reduced to the following

∂2gij

∂t2
− gkl ∂2gij

∂xk∂xl
= −

(
gik

∂Γk

∂xj
+ gjk

∂Γk

∂xi

)
− 2gklgpqΓ

p
ikΓq

jl −
∂gij

∂xk
Γk

−
(

gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
+2gpq ∂gip

∂t

∂gjq

∂t
− 2gpq ∂gpq

∂t

∂gij

∂t
− d

∂gij

∂t

+
1

n− 1
(gpq ∂gpq

∂t
)2gij +

1
n− 1

(
∂gpq

∂t

∂gpq

∂t
)gij . (4.4)

Similar to [4], we make use of the harmonic coordinates such that, for fixed time
t, it holds that

Γk(x, t) , gijΓk
ij ≡ 0, when x is in an open neighborhood of point p ∈ M . (4.5)
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Then the equation (4.4) can be written as

∂2gij

∂t2
= gkl ∂2gij

∂xk∂xl
+ H̃ij(gkl,

∂gkl

∂t
,
∂gkl

∂xp
), (4.6)

where

H̃ij(gkl,
∂gkl

∂t
,
∂gkl

∂xp
) = −2gklgpqΓ

p
ikΓq

jl −
(

gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
+2gpq ∂gip

∂t

∂gjq

∂t
− 2gpq ∂gpq

∂t

∂gij

∂t
− d

∂gij

∂t

+
1

n− 1
(gpq ∂gpq

∂t
)2gij +

1
n− 1

(
∂gpq

∂t

∂gpq

∂t
)gij (4.7)

are homogenous quadratic with respect to ∂gkl

∂xp and ∂gkl

∂t except the dissipative term
d

∂gij

∂t and rational with respect to gkl with non-zero denominator det(gij) 6= 0. By
introducing the new unknowns gij , hij = ∂gij

∂t , gij,k = ∂gkl

∂xk , the system (4.6) can be
transformed into a system of partial differential equations of first order

∂gij

∂t
= hij ,

gkl ∂gij,k

∂t
= gkl ∂hij

∂xk
,

∂hij

∂t
= gkl ∂gij,k

∂xl
+ H̃ij .

(4.8)

In the C2 class, the system (4.8) is equivalent to (4.6). It is easy to see that (4.8) is
a quasilinear symmetric hyperbolic system, which can be rewritten as

A0(u)
∂u

∂t
= Aj(u)

∂u

∂xj
+ B(u), (4.9)

where u = (gij , gij,k, hij)T is the
1
2
n(n+1)(n+2)-dimensional unknown vector function

and the coefficient matrices A0, Aj , B are given by

A0(u) = A0(gij , gij,k, hij) =



I 0 0 · · · 0 0
0 g11I g12I · · · g1nI 0
0 g21I g22I · · · g2nI 0
... · · ·
0 gn1I gn2I · · · gnnI 0
0 0 0 · · · 0 I


,

Aj(u) = Aj(gkl, gkl,p, hkl) =


0 0 0 · · · 0 0
0 0 0 · · · 0 gj1I
0 0 0 · · · 0 gj2I
· · · · · · · · ·
0 0 0 · · · 0 gjnI
0 g1jI g2jI · · · gnjI 0

 ,
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where 0 is the
(

1
2
n(n + 1)

)
×
(

1
2
n(n + 1)

)
zero matrix, I is the

(
1
2
n(n + 1)

)
×(

1
2
n(n + 1)

)
identity matrix,

B(u) = B(gij , gij,p, hij) =

 hij

0
H̃ij

 ,

in which 0 is the
1
2
n2(n + 1)-dimensional zero vector.

By the theory of the symmetric hyperbolic system ( [6], [7]), we can obtain the
following theorem.

Theorem 4.1. Let (M , g0
ij(x)) be an n-dimensional compact Riemannian man-

ifold. Then there exists a constant η > 0 such that the Cauchy problem (2.11) has a
unique smooth solution gij(x, t) on M × [0, η].

Remark 4.1. Theorem 4.1 can also be proved in a manner similar to that in
DeTurck (see [3], [1], [2]).

5. Nonlinear stability of Euclidean metrics. This section is devoted to the
nonlinear stability of the dissipative hyperbolic geometric flow (2.1) defined on the
Euclidean space with the dimension larger than two.

We consider the following Cauchy problem for the dissipative hyperbolic geometric
flow (2.1),

∂2gij

∂t2
= −2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
−
(

d + 2gpq ∂gpq

∂t

)
∂gij

∂t

+
1

n− 1

[(
gpq ∂gpq

∂t

)2

+
∂gpq

∂t

∂gpq

∂t

]
gij ,

gij(x, 0) = δij + εg0
ij(x),

∂gij

∂t
(x, 0) = εg1

ij(x),

(5.1)

where g0
ij(x) and g1

ij(x) are given symmetric tensors defined on the Euclidean space
Rn.

Theorem 5.1. The flat metric gij = δij on the Euclidean space Rn with n ≥ 3 is
globally nonlinearly stable with respect to the given tensor

(
g0

ij(x), g1
ij(x)

)
∈ C∞0 (Rn)

, i.e., there exists a positive constant ε0 = ε0
(
g0

ij(x), g1
ij(x)

)
> 0 such that, for any

ε ∈ (0, ε0], the initial value problem (4.1) admits a unique smooth solution gij(x, t)
for all time t ≥ 0.

Remark 5.1. For the standard hyperbolic geometric flow (1.2), we can only
obtain the nonlinear stability of the Euclidean space Rn with n ≥ 5 (see [2]). Under
suitable assumptions, similar results are true for general hyperbolic geometric flow
(1.1).

Proof of Theorem 5.1. Let the symmetric tensor hij on Rn defined by

hij(x, t) = gij(x, t)− δij (5.2)
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and δij be the inverse of δij . Then for small h,

Hij , gij − δij = −hij + Oij(h2), (5.3)

where hij = δikδjlhkl and Oij(h2) vanishes to the second order at h = 0. Then the
Cauchy problem (5.1) for the metric gij(x, t) is equivalent to the following initial value
problem for the tensor hij(x, t) in the harmonic coordinates xi around the origin in
Rn


∂2

∂t2
hij(x, t) = (δkl + Hkl)

∂2hij

∂xkxl
+ H̃ij(δkl + hkl,

∂hkl

∂t
,
∂hkl

∂xp
),

t = 0 : hij(x, 0) = εg0
ij(x),

∂hij

∂t
(x, 0) = εg1

ij(x),
(5.4)

where H̃ij(δkl + hkl,
∂hkl

∂t , ∂hkl

∂xp ) is defined in (4.7). Thus, the Cauchy problem (5.4)
can be reduced to the following


∂2

∂t2
hij(x, t)− δkl ∂2hij

∂xkxl
+ d

∂hij

∂t
= H̄ij(δkl + hkl,

∂hkl

∂t
,
∂hkl

∂xp
),

t = 0 : hij(x, 0) = εg0
ij(x),

∂gij

∂t
(x, 0) = εg1

ij(x),
(5.5)

where

H̄ij(δkl + hkl,
∂hkl

∂t
,
∂hkl

∂xp
) = Hkl ∂2hij

∂xkxl
+ d

∂hij

∂t
+ H̃ij(δkl + hkl,

∂hkl

∂t
,
∂hkl

∂xp
). (5.6)
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By the definition (4.7) and (5.2)-(5.3), we have

H̄ij(δkl + hkl,
∂hkl

∂t
,
∂hkl

∂xp
)

= Hkl ∂2hij

∂xkxl

−1
2
(δkl + Hkl)(δpq + hpq)(δpa + Hpa)(δqb + Hqb)

·
(

∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)
−1

2
(δik + hik)(δpr + Hpr)(δqs + Hqs)(δka + Hka)

·
(

∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)(
∂hpq

∂xj

)
−1

2
(δjk + hjk)(δpr + Hpr)(δqs + Hqs)(δka + Hka)

·
(

∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)(
∂hpq

∂xi

)
+2(δpq + Hpq)

∂hip

∂t

∂hjq

∂t
− 2(δpq + Hpq)

∂hpq

∂t

∂hij

∂t

+
1

n− 1

(
(δpq + Hpq)

∂hpq

∂t

)2

(δij + hij)−
1

n− 1
(δpa + Hpa)

· (δqb + Hqb)
∂hpq

∂t

∂hab

∂t
(δij + hij)

= −1
2
δklδab

(
∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)
−1

2
δprδqs

(
∂hir

∂xs
+

∂his

∂xr
− ∂hrs

∂xi

)(
∂hpq

∂xj

)
−1

2
δprδqs

(
∂hjr

∂xs
+

∂hjs

∂xr
− ∂hrs

∂xj

)(
∂hpq

∂xi

)
+2δpq ∂hip

∂t

∂hjq

∂t
− 2δpq ∂hpq

∂t

∂hij

∂t

+
1

n− 1

(
δpq ∂hpq

∂t

)2

δij −
1

n− 1

(
δpaδqb ∂hpq

∂t

∂hab

∂t

)
δij

−hkl ∂2hij

∂xkxl
+ O(||hkl||+ ||Dhkl||)3

= O(||hkl||+ ||Dhkl||+ || ∂
2hij

∂xkxl
||)2 + O(||hkl||+ ||Dhkl||)3, (5.7)

where

Dhkl , (
∂hkl

∂t
,
∂hkl

∂xp
)

and || · || stands for the norm with respect to the flat metric δij .
By the theory of dissipative wave equations (see [14], [15]), we know that, for

sufficiently small ε > 0, the Cauchy problem (5.5), i.e., (5.1), admits a unique smooth
solution for all t ≥ 0 on Rn with n ≥ 3. The proof of Theorem 5.1 is completed.
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6. Wave character of curvatures — Derivation of dissipative hyperbolic
geometric flow. In this section, we will illustrate why we choose (2.1) as the equation
of the dissipative hyperbolic geometric flow. Based on this we derive the nonlinear
wave equations satisfied by the curvatures. The results presented in this section show
the wave character of curvatures.

We first assume that the metrics on a manifold M evolve by the following equation

∂2gij

∂t2
(x, t) = −2Rij(x, t) + Gij(x, t), (6.1)

where

Gij(x, t) = agpq ∂gip

∂t

∂gjq

∂t
+ bgpq ∂gpq

∂t

∂gij

∂t
+ d

∂gij

∂t
+ egpq ∂gpq

∂t
gij+

f(gpq ∂gpq

∂t
)2gij + h

(
∂gpq

∂t

∂gpq

∂t

)
gij (6.2)

and the terms a, b, d, e, f, h are all constants determined below. Then direct
calculation gives

∂2R

∂t2
= gik

(
gjl ∂

2Rijkl

∂t2
+ 2

∂gjl

∂t

∂Rijkl

∂t
+ Rijkl

∂2gjl

∂t2

)
+ 2

∂gik

∂t

∂Rik

∂t
+ Rik

∂2gik

∂t2

= gikgjl ∂
2Rijkl

∂t2
+ 2

∂gjl

∂t
(
∂Rjl

∂t
− ∂gik

∂t
Rijkl) + 2

∂gik

∂t

∂Rik

∂t
+ 2Rik

∂2gik

∂t2

= gikgjl ∂
2Rijkl

∂t2
+ 4

∂gik

∂t

∂Rik

∂t
− 2

∂gjl

∂t

∂gik

∂t
Rijkl

+2Rik

(
−girgks ∂2grs

∂t2
+ 2girgksgpq ∂gpr

∂t

∂gqs

∂t

)
= gikgjl ∂

2Rijkl

∂t2
+ 4

∂gik

∂t

∂Rik

∂t
− 2

∂gjl

∂t

∂gik

∂t
Rijkl+

4girgksgpq ∂gpr

∂t

∂gqs

∂t
Rik + 4|Ric|2 − 2girgksRikGrs, (6.3)

where |Ric|2 = gikgjlRijRkl is the norm of Ricci curvature tensor Ric = Rik. In (6.3),
we have made use of the evolution equation (6.1).

We choose the normal coordinates around a fixed point p on the manifold M such
that Γk

ij(p) = 0. By the computations (5.2)-(5.5) in [2], we get

∂2

∂t2
Rijkl =

1
2

[
∂2

∂xi∂xl

(
∂2gkj

∂t2

)
+

∂2

∂xi∂xj

(
∂2gkl

∂t2

)
− ∂2

∂xi∂xk

(
∂2gjl

∂t2

)]
−1

2

[
∂2

∂xj∂xl

(
∂2gki

∂t2

)
+

∂2

∂xj∂xi

(
∂2gkl

∂t2

)
− ∂2

∂xj∂xk

(
∂2gil

∂t2

)]
+2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
. (6.4)
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Then it follows from (6.1) and (6.4) that

∂2

∂t2
Rijkl =

1
2

[
∂2

∂xi∂xl
(−2Rkj) +

∂2

∂xi∂xj
(−2Rkl)−

∂2

∂xi∂xk
(−2Rjl)

]
−1

2

[
∂2

∂xj∂xl
(−2Rki) +

∂2

∂xj∂xi
(−2Rkl)−

∂2

∂xj∂xk
(−2Ril)

]
+2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
+

1
2

[
∂2

∂xi∂xl
Gkj +

∂2

∂xi∂xj
Gkl −

∂2

∂xi∂xk
Gjl

]
−1

2

[
∂2

∂xj∂xl
Gki +

∂2

∂xj∂xi
Gkl −

∂2

∂xj∂xk
Gil

]
. (6.5)

Similar to Hamilton [9], by Theorem 5.1 in [2] we have

1
2

[
∂2

∂xi∂xl
(−2Rkj) +

∂2

∂xi∂xj
(−2Rkl)−

∂2

∂xi∂xk
(−2Rjl)

]
−1

2

[
∂2

∂xj∂xl
(−2Rki) +

∂2

∂xj∂xi
(−2Rkl)−

∂2

∂xj∂xk
(−2Ril)

]
+2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
= 4Rijkl + 2 (Bijkl −Bijlk −Biljk + Bikjl)
−gpq (RpjklRqi + RipklRqj + RijplRqk + RijkpRql)

+2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
, (6.6)

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with respect to the evolving
metric.

Combining (6.3), (6.5) and (6.6) and referring to the computations in Theorem
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5.3 in [2] leads to

∂2R

∂t2
= ∆R + 2|Ric|2

+2gikgjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gikgjpglq ∂gpq

∂t

∂

∂t
Rijkl

−2gipgkq ∂gpq

∂t

∂Rik

∂t
+ 4Rikgipgrqgsk ∂gpq

∂t

∂grs

∂t

+
1
2
gikgjl

[
∂2

∂xi∂xl
Gkj +

∂2

∂xi∂xj
Gkl −

∂2

∂xi∂xk
Gjl

]
−1

2
gikgjl

[
∂2

∂xj∂xl
Gki +

∂2

∂xj∂xi
Gkl −

∂2

∂xj∂xk
Gil

]
−2girgksRikGrs

= ∆R + 2|Ric|2

+2gikgjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gikgjpglq ∂gpq

∂t

∂

∂t
Rijkl

−2gipgkq ∂gpq

∂t

∂Rik

∂t
+ 4Rikgipgrqgsk ∂gpq

∂t

∂grs

∂t

+gikgjl

(
∂2

∂xi∂xl
Gkj −

∂2

∂xi∂xk
Gjl

)
− 2girgksRikGrs. (6.7)

In the normal coordinates, we have

gikgjl

(
∂2

∂xi∂xl
Gkj −

∂2

∂xi∂xk
Gjl

)
− 2girgksRikGrs

= gikgjl
(
∇i∇lGkj +∇iΓ

p
lkGpj +∇iΓ

p
ljGpk

)
−gikgjl (∇j∇lGki +∇jΓ

p
lkGpi +∇jΓ

p
liGpk)− 2girgksRikGrs

= gikgjl(∇i∇lGkj −∇j∇lGki) + gikgjl∇iΓ
p
lkGpj − gikgjl∇jΓ

p
lkGpi

+gikgjl(∇iΓ
p
lj −∇jΓ

p
li)Gpk − 2girgksRikGrs

= gikgjl(∇i∇lGkj −∇j∇lGki) + gikgjlRp
ijlGpk − 2girgksRikGrs

= gikgjl(∇i∇lGkj −∇j∇lGki)− girgksRikGrs, (6.8)

where we have made use of the following equality in the normal coordinates

Rp
ijl =

∂Γp
lj

∂xi
−

∂Γp
li

∂xj
= ∇iΓ

p
lj −∇jΓ

p
li

and ∇l means the covariant derivative in the direction ∂
∂xl . In the normal coordinates,

we easily obtain

∂

∂t

(
∂2gij

∂xk∂xl

)
=

∂gip

∂t

∂Γp
lj

∂xk
+

∂gjp

∂t

∂Γp
li

∂xk
+ gip

∂

∂t

∂Γp
lj

∂xk
+ gjp

∂

∂t

∂Γp
li

∂xk
.
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This implies that

∇l(
∂gjp

∂t
) =

∂2gjp

∂xl∂t
− Γq

lj

∂gpq

∂t
− Γq

lp

∂gjq

∂t
=

∂2gip

∂xl∂t
,

∇i∇l(
∂gjp

∂t
) =

∂

∂xi
(
∂2gjp

∂xl∂t
− Γq

lj

∂gpq

∂t
− Γq

lp

∂gjq

∂t
)− Γr

il(
∂2gjp

∂xr∂t
− Γq

rj

∂gpq

∂t
− Γq

rp

∂gjq

∂t
)

−Γr
ij(

∂2grp

∂xl∂t
− Γq

lr

∂gpq

∂t
− Γq

lp

∂grq

∂t
)− Γr

ip(
∂2gjr

∂xl∂t
− Γq

lj

∂grq

∂t
− Γq

rl

∂gjq

∂t
)

=
∂

∂t
(

∂2gij

∂xk∂xl
)−

∂Γq
lj

∂xi

∂gpq

∂t
−

∂Γq
lp

∂xi

∂gjq

∂t

= gjr
∂

∂t

∂Γr
lp

∂xi
+ gpr

∂

∂t

∂Γr
lj

∂xi
.

By the direct computations, we have

gikgjl∇i∇l(gpq ∂gjp

∂t

∂gkq

∂t
)− gikgjl∇j∇l(gpq ∂gip

∂t

∂gkq

∂t
)

= gikgjlgpq∇i∇l(
∂gjp

∂t

∂gkq

∂t
)− gikgjlgpq∇j∇l(

∂gip

∂t

∂gkq

∂t
)

=

(
−2

∂gij

∂t

∂Rij

∂t
− 2

∂gij

∂t

∂

∂t

∂Γp
jp

∂xi
− gkl

∂gik

∂t

∂gjl

∂t
Rij

+
∂gik

∂t

∂gjl

∂t
Rijkl − 2gikgjl ∂gip

∂t

∂

∂t

∂Γp
kl

∂xj

)
+gikgjlgpq

(
∂2gjp

∂t∂xi

∂2gkq

∂t∂xl
+

∂2gjp

∂t∂xl

∂2gkq

∂t∂xi
− 2

∂2gip

∂t∂xj

∂2gkq

∂t∂xl

)
. (6.9)

Analogously, we obtain

gikgjl∇i∇l(gpq ∂gpq

∂t

∂gjk

∂t
)− gikgjl∇j∇l(gpq ∂gpq

∂t

∂gik

∂t
)

= gikgjlgpq∇i∇l(
∂gpq

∂t

∂gjk

∂t
)− gikgjlgpq∇j∇l(

∂gpq

∂t

∂gik

∂t
)

= (gpq ∂gpq

∂t
)(

∂R

∂t
− ∂gjl

∂t
Rjl)− 2(gpq ∂gpq

∂t
)gik ∂

∂t

∂Γr
kr

∂xi
− 2

∂gik

∂t

∂

∂t

∂Γr
kr

∂xi

+gikgjlgpq

(
∂2gpq

∂t∂xi

∂2gjk

∂t∂xl
+

∂2gpq

∂t∂xl

∂2gjk

∂t∂xi
− 2

∂2gpq

∂t∂xj

∂2gik

∂t∂xl

)
. (6.10)
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On the other hand, we can easily derive the following equations.

gikgjl∇i∇l(
∂gjk

∂t
)− gikgjl∇j∇l(

∂gik

∂t
)

= gikgjl

(
gjp

∂

∂t

∂Γp
kl

∂xi
+ gkp

∂

∂t

∂Γp
jl

∂xi

)
− gikgjl

(
gip

∂

∂t

∂Γp
kl

∂xj
+ gkp

∂

∂t

∂Γp
il

∂xj

)
= gjl ∂

∂t
Rjl, (6.11)

gikgjl∇i∇l

(
gpq ∂gpq

∂t
gjk

)
− gikgjl∇j∇l

(
gpq ∂gpq

∂t
gik

)
= gikgjlgpqgkj∇i∇l(

∂gpq

∂t
)− gikgjlgpqgik∇j∇l(

∂gpq

∂t
)

= −2(n− 1)gik ∂

∂t

∂Γl
kl

∂xi
, (6.12)

gikgjl∇i∇l

(
(gpq ∂gpq

∂t
)2gjk

)
− gikgjl∇j∇l

(
(gpq ∂gpq

∂t
)2gik

)
= (1− n)gjlgpqgrs∇j∇l

(
∂gpq

∂t

∂grs

∂t

)
= −(n− 1)

[
4(gpq ∂gpq

∂t
)gjl ∂

∂t

∂Γs
ls

∂xj
+ 2gjlgpqgrs ∂2gpq

∂t∂xj

∂2grs

∂t∂xl

]
(6.13)

and

gikgjl∇i∇l(
∂gpq

∂t

∂gpq

∂t
gjk)− gikgjl∇j∇l(

∂gpq

∂t

∂gpq

∂t
gik)

= (n− 1)gjlgprgqs∇j∇l

(
∂gpq

∂t

∂grs

∂t

)
= 4(n− 1)gikgjl ∂gip

∂t

∂

∂t

∂Γp
kl

∂xj
+ 2(n− 1)gjlgpqgrs ∂2gpr

∂t∂xj

∂2gqs

∂t∂xl
. (6.14)
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It follows from (6.7)-(6.14) that

∂2R

∂t2
= ∆R + 2|Ric|2

+
[
4
∂gik

∂t

∂Rik

∂t
− 2

∂gik

∂t

∂gjl

∂t
Rijkl + 4girgksgpq ∂gpr

∂t

∂gqs

∂t
Rik

−2a
∂gik

∂t

∂Rik

∂t
+ a

∂gik

∂t

∂gjl

∂t
Rijkl − 2agirgksgpq ∂gpr

∂t

∂gqs

∂t
Rik

+(bgpq ∂gpq

∂t
+ d)

∂R

∂t
−
(

egpq ∂gpq

∂t
+ f(gpq ∂gpq

∂t
)2 + h

∂gpq

∂t

∂gpq

∂t

)
R

]
+

[
(4(n− 1)h− 2a)gikgjl ∂gip

∂t

∂

∂t

∂Γp
kl

∂xj
− (2a + 2b)

∂gik

∂t

∂

∂t

∂Γp
kp

∂xi

−
(

2bgpq ∂gpq

∂t
+ 2(n− 1)e + 4(n− 1)fgpq ∂gpq

∂t

)
gik ∂

∂t

∂Γp
kp

∂xi

]

+(−2b− 2(n− 1)f − 2) gikgjlgpq ∂2gik

∂t∂xp

∂2gjl

∂t∂xq

+(2b + 8)gikgjlgpq ∂2gik

∂t∂xj

∂2gpl

∂t∂xq
+ (2(n− 1)h− 2a + 6) gikgjlgpq ∂2gij

∂t∂xp

∂2gkl

∂t∂xq

+(a− 8)gikgjlgpq ∂2gij

∂t∂xl

∂2gkp

∂t∂xq
+ (a− 4)gikgjlgpq ∂2gip

∂t∂xj

∂2gkl

∂t∂xq
. (6.15)

In (6.15), if we take

a = 2, b = −2, e = 0, f = − 2b

4(n− 1)
=

1
n− 1

, h =
2a

4(n− 1)
=

1
n− 1

, (6.16)

then we have

∂2R

∂t2
= ∆R + 2|Ric|2 + (d− 2gpq ∂gpq

∂t
)
∂R

∂t
− 1

n− 1

[
(gpq ∂gpq

∂t
)2 +

∂gpq

∂t

∂gpq

∂t

]
R

+
[
4gikgjlgpq ∂2gik

∂t∂xj

∂2gpl

∂t∂xq
+ 4gikgjlgpq ∂2gij

∂t∂xp

∂2gkl

∂t∂xq

−6gikgjlgpq ∂2gij

∂t∂xl

∂2gkp

∂t∂xq
− 2gikgjlgpq ∂2gip

∂t∂xj

∂2gkl

∂t∂xq

]
. (6.17)

In this case, the corresponding evolution equation reads

∂2gij

∂t2
= −2Rij + Gij , (6.18)

where

Gij = 2gpq ∂gip

∂t

∂gjq

∂t
− 2gpq ∂gpq

∂t

∂gij

∂t
+ d

∂gij

∂t
+

1
n− 1

[
(gpq ∂gpq

∂t
)2 + (

∂gpq

∂t

∂gpq

∂t
)
]

gij .

(6.19)
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Taking d = −d̃, we obtain from (6.18) and (6.19) that

∂2gij

∂t2
= −2Rij + 2gpq ∂gip

∂t

∂gjq

∂t
−
(

d̃ + 2gpq ∂gpq

∂t

)
∂gij

∂t
+

1
n− 1

[(
gpq ∂gpq

∂t

)2

+
∂gpq

∂t

∂gpq

∂t

]
gij ,

(6.20)

where d̃ is a positive constant. Denoting d̃ by d in (6.20) gives the evolution equation
(2.1) for the dissipative hyperbolic geometric flow.

Theorem 6.1. If we suppose that the evolution equation of the hyperbolic geo-
metric flow is defined by (6.18)-(6.19) on a manifold M , then the scalar curvature
of the evolving metrics satisfies the nonlinear wave equation (6.17) in the normal
coordinates.

Remark 6.1. If we take a = b = d = e = f = h = 0, i.e., Gij ≡ 0 in (6.1), then
(6.1) is nothing but the standard hyperbolic geometric flow (1.2) (see [11]).

Remark 6.2. For the evolution equation (6.17) of the scalar curvature, the last
term can be written in the covariant form as follow

gikgjlgpq

�
4∇j

∂gik

∂t
∇q

∂gpl

∂t
+ 4∇p

∂gij

∂t
∇q

∂gkl

∂t
− 6∇l

∂gij

∂t
∇q

∂gkp

∂t
− 2∇j

∂gip

∂t
∇q

∂gkl

∂t

�
.
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