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PALINDROMIC BRAIDS∗

FLORIAN DELOUP† , DAVID GARBER‡ , SHMUEL KAPLAN§ , AND MINA TEICHER§

Abstract. The braid group Bn, endowed with Artin’s presentation, admits an antiautomor-
phism Bn → Bn, such that v 7→ v is defined by reading braids in reverse order (from right to left
instead of left to right). We prove that the map Bn → Bn, v 7→ vv is injective. We also give some
consequences arising due to this injectivity.
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1. Introduction. Let n ≥ 2. Any free group Fn−1 on n − 1 generators
σ1, . . . , σn−1 supports the antiautomorphism rev : w 7→ w defined by

σα1

i1
· · ·σαr

ir
7→ σαr

ir
· · ·σα1

i1
,

which reverses the order of the word w with respect to the prescribed set of generators.
It follows that any group G presented by generators and relations admits such an
antiautomorphism rev. The elements of G which are order-reversing invariant are
called palindromic. In this paper, we consider palindromic elements of Artin’s braid
group Bn, equipped with Artin’s presentation, which will be called palindromic braids.
Artin’s presentation of the braid group Bn consists of n − 1 generators σ1, . . . , σn−1

and relations

(1) σiσj = σjσi for |i − j| ≥ 2,

(2) σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2.

We distinguish between two equivalence relations on the elements of the braid
group. For two braid words a, b, we write a = b to denote that a and b represent the
same element in the group, and a ≡ b to denote that a and b are actually the same
element written letter by letter (i.e., a ≡ b means that a and b are equal in the free
group using only the generators of the braid group, with no relations).

Palindromic braids have a particularly nice geometric interpretation. Given a
geometric braid β, denote by ̂β its closure into a link inside a fixed solid torus D2×S1.
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The solid torus admits the involution:

inv : D2 × S1 → D2 × S1, (reit, θ) 7→ (re−it,−θ),

whose set of fixed points consists of two segments (t ≡ 0 (mod π) and θ ≡ 0 (mod
π)), which is the intersection of the axis of the 180o rotation with the solid torus.

Observe that r̂ev(β) is nothing else than inv(̂β) with the opposite orientation. In

particular, if a braid β ∈ Bn is palindromic, then ̂β coincides with inv(̂β) with the
opposite orientation.

We prove the following rigidity result for palindromic braids:

Theorem 1.1. Let β ∈ Bn be a palindromic braid such that

(3) β = vv

for some braid v ∈ Bn. Then the decomposition (3) is unique. Equivalently, let β = vv
and β′ = v′v′ be two words in Artin’s generators σ1, . . . , σn−1. Then, β = β′ in Bn if
and only if v = v′ in Bn.

Of course one implication is obvious. Only the “only if” part of the statement
deserves a proof.

Remark 1.2. Note that Theorem 1.1 cannot be generalized into the case of
palindromic braid words of odd length. For example the two equal words σ1σ2σ1 =
σ2σ1σ2 are of the form wτw and vσv, however σ1 = w 6= v = σ2. Moreover, not
all palindromic braids of even length are of the form (3). For example, σ1σ3 = σ3σ1

however, σ1 6= σ3.

After this work was finished, F. Deloup communicated to us an alternative proof
for Theorem 1.1, which is presented in [2], and is derived from the properties of the
Dehornoy ordering of braids. The construction of the latter is a long process that
requires rather sophisticated methods. In this paper we give an elementary proof,
based on Garside normal form and its variant as developed by Jacquemard.

The paper is organized as follows. In Section 2, we give some preliminaries about
the braid group and introduce the Jacquemard algorithm. In Section 3, we prove
Theorem 1.1.

2. Preliminaries and the Jacquemard Algorithm. This section is devoted
to the building blocks we use in order to prove Theorem 1.1. Mainly, this section is
intended to fix notations and recall some of the algorithms we use in this paper (for
more information, see [1]).

The monoid B+
n of positive braids consists of braids which admit a word repre-

sentative which does not contain σ−1
i , 1 ≤ i ≤ n − 1.

Among positive braids, we can consider those whose number of crossings between
any two strands is less or equal to 1: they form the subset S+

n ⊂ B+
n of positive

permutation braids .
There is a canonical epimorphism Bn → Sn. The image of a braid γ is the

permutation associated to γ. In particular, it is known that S+
n is in canonical bijection

with the symmetric group Sn, which justifies the name of positive permutation braids
(the inverse map Sn → S+

n can be defined as follows: take an element in Sn, write
it as a minimal length word in the standard generators (i, i + 1) of Sn, then replace
each instance of (i, i + 1) by the generator σi of Bn).
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Note that in a permutation braid, each pair of strands crosses at most once. There
is only one positive braid ∆ ∈ B+

n in which any pair of strings crosses exactly once. It
corresponds geometrically to a generalized half-twist which consists of all the strands
1, . . . , n, and is called the Garside element. ∆ is given by the formula:

(4) ∆ = (σ1σ2 · · ·σn−1) (σ1σ2 · · ·σn−2) · · · (σ1σ2) σ1.

A basic result asserts that the center of Bn is generated by ∆2. Abelianization of
Bn yields a canonical homomorphism Bn → Z which, when restricted to B+

n , coincides
with word length with respect to Artin generators. We denote by |β| the length of
β ∈ B+

n ; we have |σi| = 1 where 1 ≤ i ≤ n − 1 and the trivial braid e is the only
positive braid such that |e| = 0.

We recall the algorithm given by Jacquemard [5], which manipulates a positive
braid word w ∈ B+

n in order to write it using a given leading letter σi. The output of
the algorithm is an equivalent positive braid word σiw

′ = w or an indication that no
w′ exists such that equality holds.

The basic nature of the algorithm is greedy. It starts by asking whether w ≡ σiw
′

and stops if it does. If not, it looks for σi inside w. In case σi is not one of the letters
of w, the algorithm returns false which indicates the non-existence of w′ ∈ B+

n such
that σiw

′ = w.
When the algorithm found the leftmost σi it works in two steps:
1. Switch σi with its left neighbor σj as long as |i − j| ≥ 2. If σi becomes the

first letter of the word, we are done. However, in case that |i − j| = 1, the
word is of the form w = w0σjσiw1, and so in order to move σi to the left one
must use the triple relation (2) between σjσi and the leftmost letter of w1. If
this is the case, the algorithm goes to Step (2).

2. The algorithm calls itself recursively with the word w1 and the letter σj .
Upon success of the recursive call, the word looks like w = w0σjσiσjw

′
1 and

therefore, we activate Relation (2) on σjσiσj resulting with w = w0σiσjσiw
′
1,

and return to Step (1). However, if the recursive call fails to extract σj to
the left of w1 the algorithm returns false.

The algorithm terminates since after each iteration, either the length of the word
is smaller, or the length remains the same but the position of σi, as counted from the
left, is reduced.

Note that for a permutation braid γ ∈ S+
n , the condition that σi can be extracted

on the left in B+
n is equivalent to that the length of σiγ is one less than that of γ,

considered as permutations in Sn. It is also equivalent to the geometric condition
that the i-th strand and the (i + 1)-th strand (counted from the left) crosses in γ.

To finish this section, we recall another result on the decomposition of braids, due
to Garside [4] and later refined by Thurston [6], and by Elrifai and Morton [3].

Definition 2.1. We say that a product α1 · · ·αr satisfies Thurston’s condition
if each αi is a nontrivial positive permutation braid, and for any 1 ≤ i ≤ r − 1 we
have that any j such that αi+1 = σjγi+1 also satisfies αi = γiσj where γi, γi+1 ∈ S+

n .

Proposition 2.2 (Left-canonical form of a braid). Given any braid β ∈ Bn,
there exists a unique decomposition

(5) β = ∆kα1 · · ·αr,

where αi ∈ S+
n , α1 6= ∆ and the product α1 · · ·αr satisfies Thurston’s condition. The

αi are called canonical factors.
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3. Proof of Theorem 1.1. Our first step consists of looking at the behavior of
∆ and permutation braids under the antiautomorphism rev.

Lemma 3.1. The following properties hold:
(1) ∆ = ∆
(2) The set of permutation braids is invariant under rev : w 7→ w.
(3) v−1 = v−1 for all v ∈ Bn.

We now identify the basic problem. Let β = ∆kα1 · · ·αr be the left-canonical
form for a braid β ∈ Bn. We cannot assume that the decomposition v = α1 · · ·αr

remains in left-canonical form when viewed in vv. Indeed, after multiplying on the
right by the reversed braid, the product α1 · · ·αr (viewed in vv) may cease to satisfy
Thurston’s condition. A simple example is provided by

α1 = σ1σ3, α2 = σ3.

Both α1 and α2 are positive permutation braids and the product γ = α1α2 satisfies
Thurston’s condition. However, when we write β = α1α2α2α1 in left-canonical form,
we find:

β = σ3σ1
︸︷︷︸

α1

σ3σ1
︸︷︷︸

α′

2

σ3
︸︷︷︸

α′′

2

σ3
︸︷︷︸

α′′

1

,

so that the second canonical factor α′
2 does not coincide with α2.

We start by proving Theorem 1.1 for positive braids.

3.1. Proof of Theorem 1.1 for positive braid words. We start by proving
the following lemma:

Lemma 3.2. Let v, w′ be positive braid words and let σ = σi for some i. Suppose
vv = σw′w′σ and let vv ≡ w0 = w1 = · · · = wk ≡ σv′ be a sequence of positive braid
words such that each wi+1 is the outcome of the activation of one relation out of the
relations in the semigroup B+

n on wi according to Jacquemard’s algorithm. Then, all
relations are performed only within the first half of the word wi which implies they all
involve only letters from v.

Proof. Notice that since vv = σw′w′σ, the success of the Jacquemard’s algorithm
is guaranteed. Hence we know that σ is one of the letters of v. Now, we need to prove
that in each step of Jacquemard’s algorithm that uses a relation, it occurs in the first
half of the word vv.

For Step (1) of the algorithm, this is obvious: all relations involve σ and left
neighbors of σ; since σ is in v, all relations occur inside v. Moreover, relations can be
activated mirror-like on v as well; Hence, we maintain the palindromic structure of
the word. This implies that when we need to move to Step (2) of the algorithm, we
have

vv = v1τσv2v = v1τσv2v2στv1,

where τ and σ do not commute, and σ is not in v1.
If this is the case, the algorithm calls itself recursively using v2v = v2v2στv1

and τ , trying to extract τ to the left, first by looking for the leftmost τ letter in
v2v = v2v2στv1.
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Assume by contradiction that τ is not a letter of v2 (hence is not a letter of v2).
Then the leftmost τ letter in v2v = v2v2στv1 appears to the right of σ and to the
left of v1. In order to extract this τ to the left of v2, we need to activate another
recursive call of the algorithm on v1 with the letter σ (since in our case σ and τ do
not commute and we have to use Step (2) of the algorithm). But, σ is not in v1 (since
it is not in v1). Therefore, σ cannot be extracted to the left of v1. This implies that
Jacquemard’s algorithm failed, and this is a contradiction.

If τ is found within v2 and during the process of extracting it to the left we do not
encounter the need to use letters from the right half of vv we are finished. Therefore,
assume by contradiction that at some point in the process we encounter a relation
involving a letter of v. Again, since until this step all relations were activated only in
the left half of the word their mirror image can be activated on the right half of the
word, so the palindromic structure of the word is preserved.

Suppose that we performed k recursive steps of the algorithm. Then, our word
looks like:

vv = v1τ1σv2τ2τ1v3τ3τ2 · · · vk−1τk−1τk−2vkτkτk−1vk+1 ·

vk+1τk−1τkvkτk−2τk−1vk−1 · · · τ2τ3v3τ1τ2v2στ1v1,

where τi and τi+1 are two non-commuting letters, σ does not commute with τ1 and
is not a letter of v1. Moreover, τi is not a letter of vi+1 for any 1 ≤ i ≤ k.

Now, in this recursion step, we have called the algorithm with the letter τk and
the word vk+1vk+1τk−1τkvkτk−2τk−1vk−1 · · · τ2τ3v3τ1τ2v2στ1v1. However, since τk is
not a letter of vk+1 and of vk+1, the leftmost τk in this recursion call is to the right
of τk−1 and to the left of vk. Since τk−1 does not commute with τk, another recursion
call is needed with the letter τk−1 and the word vkτk−2τk−1vk−1 · · · τ2τ3v3τ1τ2v2στ1v1.
Again, τk−1 is not a letter of vk hence the leftmost τk−1 in this recursion call is to
the right of τk−2 and to the left of vk−1. Similarly τk−2 does not commute with τk−1,
so we continue k − 3 recursion calls until we reach a recursion call with the letter
τ1 and the word v2στ1v1. Since τ1 is not a letter in v2, the leftmost τ1 in this call
is to the right of σ and to the left of v1. This implies that another recursion call is
needed in order to extract the letter σ from the word v1. However, this contradicts
the hypothesis on v1.

This concludes the proof of all cases, hence all relations are activated inside the
left half of the word vv as claimed.

Now we are ready to prove the theorem for positive braid words.

Theorem 3.3. Let β, β′ ∈ B+
n be two palindromic positive braid words of even

length such that β = vv and β′ = ww for some braids v, w ∈ B+
n . Then, β = β′ in

Bn if and only if v = w in Bn.

Proof. The ’if’ part is obvious. We prove that vv = ww implies v = w by
induction on the length l = |w| of w. Assume that w ≡ σw′ where w′ ∈ B+

n , i.e., σ is
the first letter in w. Then, ww = σw′w′σ. This means that vv can be written such
that its first letter is σ, that is, vv = σv′ for some v′ ∈ B+

n .
By the embedding theorem of Garside [4] it follows that there is a sequence of

words vv ≡ w0 = w1 = · · · = wk ≡ σv′, such that each wi+1 is obtained from wi by
activating one relation out of the relations in the semigroup B+

n .
One possible sequence is the one which uses the relations suggested by the algo-

rithm of Jacquemard given in [5], where we pick v′ to be the braid word produced by
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Jacquemard’s algorithm (not necessarily w′w′σ). Now, Lemma 3.2 shows that every
relation used in the sequence is fully contained in v (the left half of the word), and
does not affect v. Therefore, it is possible to activate all relations described in the
sequence in a mirror-like image on v and get ww = σw′w′σ = vv = σv′ = σv′′v′′σ,
where v = σv′′.

However, if this is the case w′w′ = v′′v′′ where |w′w′| = |v′′v′′| = l−2. Therefore,
by the induction hypothesis we have w′ = v′′ which implies that w = σw′ = σv′′ = v.

Next, we use the above, and give the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1 for the general case. Suppose vv = ww for two
braid words v and w. Write v and w in left-canonical form as v = ∆kα1 · · ·αr and
w = ∆jβ1 · · ·βp. Without loss of generality, j ≤ k (otherwise interchange v and w).
Multiply the equality vv = ww on both the left and right by ∆−j to obtain:

∆k−jα1 · · ·αrαr · · ·α1∆
k−j = β1 · · ·βpβp · · ·β1.

These are two equal positive braid words and have the form v′v′ = w′w′, where
v′ = ∆k−jα1 · · ·αr and w′ = β1 · · ·βp respectively. Therefore, Theorem 3.3 applies
and we conclude that v = w.

As a consequence, we obtain the following corollaries:

Corollary 3.4. Let β = xx ∈ B+
n be a positive palindromic braid of even

length, and let the left-canonical form of x be α1 · · ·αr such that α1 6= ∆. Then, the
left-canonical form of xx is β1 · · ·βp where β1 6= ∆.

Proof. Otherwise because the process of Jacquemard’s algorithm may be used to
transform the word α1 · · ·αrαr · · ·α1 into its left-canonical form, and since it extracts
letters to the left only from the first half of the word, we might have

β = α1 · · ·αrαr · · ·α1 = ∆γ1 · · ·γqγq · · ·γ1∆,

which means, by Theorem 3.3, that α1 · · ·αr = ∆γ1 · · · γq. By the uniqueness of the
left-canonical normal form, we deduce that α1 = ∆, which is a contradiction.

We still have to rule out the possibility that x is a proper initial segment of ∆,
such that xx = ∆z, where z ∈ B+

n . Since the signed crossing number of two strands
is invariant under the braid relations, and these crossing numbers in ∆ are 1 for each
pair of strands, and 0 or 1 in x (where at least one 0 exists, since x is a proper initial
segment of ∆). Hence, in z = ∆−1xx there is at least one −1, which contradicts the
positivity of z.

We may generalize Corollary 3.4:

Corollary 3.5. Let v ∈ B+
n be a positive braid, and let n(v) denote the number

of leading permutation braids which are ∆ when v is written in its left-canonical form.
Then, for β = vv, we have n(vv) = 2n(v).

Proof. Since v is written in left-canonical form as ∆n(v)α1 · · ·αr where α1 6= ∆,
we have that β = ∆n(v)α1 · · ·αrαr · · ·α1∆

n(v). Note that since ∆ almost commutes
with any permutation braid, we may write

β = ∆2n(v)α′
1 · · ·α

′
rα

′
r · · ·α

′
1,

where α′
i = αi if n(v) is even and α′

i is obtained from αi by replacing each σj by
σn−j in case that n(v) is odd. In any of the cases, the product α′

1 · · ·α
′
r keeps its

left-canonical form. Hence, by Corollary 3.4, we get that n(vv) = 2n(v).
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