RIGIDITY OF CYLINDERS WITHOUT CONJUGATE POINTS*

HENRIK KOEHLER ${ }^{\dagger}$

Abstract

During the last decades, several investigations were concerned with rigidity statements for manifolds without conjugate points (some results can be found in the references). Based on an idea by E.Hopf [H], K.Burns and G.Knieper proved in [BK] that cylinders without conjugate points and with a lower sectional curvature bound must be flat if the length of the shortest loop at every point is globally bounded.

The present article reduces the last condition to a limit for the asymptotic growth of loop-length as the basepoint approaches the ends of the cylinder (Thm. 18). Along the way, the shape of cylinders without conjugate points is characterized: The loop-length must be strictly monotone increasing to both ends outside a - possibly empty - tube consisting of closed geodesics (Thm. 10).

Key words. Global Riemannian geometry, rigidity results, curvature bounds

AMS subject classifications. $53 \mathrm{C} 21,53 \mathrm{C} 24$

1. Preliminaries.

1.1. Conjugate points, Riccati equation. Let M be a smooth, complete surface with a Riemannian metric \langle,$\rangle and sectional curvature K$; furthermore $T M$ the tangent bundle and $\pi: T M \rightarrow M$ the footpoint-projection, \widetilde{M} the universal Riemannian covering of M and $\widetilde{\pi}: \widetilde{M} \rightarrow M$ the projection.

Given $X \subseteq M$ note by $S X:=\{v \in T M \mid \pi(v) \in X ;\|v\|=1\}$ the unit vectors with footpoint in X; let λ for every p denote the Lebesgue-measure on $S_{p} M, \mu=v o l_{M} \times \lambda$ the Liouville-measure on $S M$ and $g^{t}: S M \rightarrow S M,\left.v \mapsto \frac{d}{d s}\right|_{s=t} \exp _{\pi(v)}(s v)$ the geodesic flow at time t.

For $v \in S M$ regard the geodesic $\gamma_{v}(t):=\exp _{\pi(v)}(t v)$, parameterized by arclength, with sectional curvature $K(t):=K\left(\gamma_{v}(t)\right)$; the Jacobi equation related to γ_{v} is then

$$
\begin{equation*}
y^{\prime \prime}(t)+K(t) y(t)=0 . \tag{v}
\end{equation*}
$$

Definition 1. M is called without conjugate points, if for any $v \in S M$, every non-trivial solution of $\left(J_{v}\right)$ vanishes once at most.

If M is a surface without conjugate points, then for all $v \in S M, s \in \mathbb{R}$ there exists a solution $y(v, s, t)$ of $\left(J_{v}\right)$ with boundary values $y(v, s, 0)=1$ and $y(v, s, s)=0$. The next theorem characterizes this property (for the 3rd part, see $[\mathrm{H}]$).

Theorem 2. The following criteria are equivalent:

1. M has no conjugate points;
2. any two geodesics in \widetilde{M} can intersect once at most, in particular all geodesics in \widetilde{M} are minimal;
3. the stable resp. unstable solutions of $\left(J_{v}\right)$, defined by
$y_{-}(v, t):=\lim _{s \rightarrow \infty} y(v, s, t)$ and $y_{+}(v, t):=\lim _{s \rightarrow-\infty} y(v, s, t)$ respectively, exist $\forall v \in S M$ on the entire \mathbb{R}.
[^0]The Riccati equation related to γ_{v} is

$$
\begin{equation*}
u^{\prime}(t)+u^{2}(t)+K(t)=0 \tag{v}
\end{equation*}
$$

it is obtained from $\left(J_{v}\right)$ by transformation $u=y^{\prime} / y$. In general, the zero locus of y must be excepted. In absence of conjugate points $y_{ \pm}>0$, and $u_{-}(v, t):=\frac{y_{-}^{\prime}(v, t)}{y_{-}(v, t)}$ and $u_{+}(v, t):=\frac{y_{+}^{\prime}(v, t)}{y_{+}(v, t)}$ solve $\left(R_{v}\right)$ on \mathbb{R} for every $v \in S M$. Set $U(v):=u_{+}(v, 0)$.
1.2. Comparison theorems. The existence of a lower curvature boundary allows us to compare M with surfaces of constant curvature:

Proposition 3. Suppose M is free of conjugate points and $K \geq-b^{2}$ for some $b>0$. For $A, B, C \in M$ let $\triangle \subset M$ denote the triangle with vertices A, B, C, whereas the edges are minimal geodesic segments. If M^{\prime} is the plane with constant curvature $K^{\prime}=-b^{2}$ and $\triangle^{\prime} \subset M^{\prime}$ is the geodesic triangle spanned by $A^{\prime}, B^{\prime}, C^{\prime}$, and if $d^{\prime}\left(A^{\prime}, C^{\prime}\right)=d(A, C), d^{\prime}\left(A^{\prime}, B^{\prime}\right)=d(A, B)$ and $\angle\left(C^{\prime} A^{\prime} B^{\prime}\right)=\angle(C A B)$, then $d^{\prime}\left(B^{\prime}, C^{\prime}\right) \geq d(B, C)$.

Proof. This is an application of a triangle-comparison-theorem.
Lemma 4. For $v \in S M, b>0$ and $r<s$ let $K(t) \geq-b^{2} \forall t \in[r, s]$. If y is a solution of $\left(J_{v}\right)$ with $0<y(t) \forall t \in[r, s]$, then $y(t) \leq y(r) \cosh (b(t-r))+$ $y^{\prime}(r) \sinh (b(t-r)) / b$ and $\frac{y^{\prime}(t)}{y(t)}<b \operatorname{coth}(b(t-r))$ hold for all $t \in[r, s]$.

Proof. Set $z(t):=y(r) \cosh (b(t-r))+y^{\prime}(r) \sinh (b(t-r)) / b$ and $w(t):=y^{\prime}(t) z(t)-$ $y(t) z^{\prime}(t)$; remark, that z cannot vanish twice and $w(r)=0$. Also set $\hat{s}:=\sup \{t \in$ $[r, s] \mid z(t)>0\}$; then for all $t \in[r, \hat{s}]$

$$
\begin{array}{rlrl}
& & w^{\prime}(t) & =y^{\prime \prime}(t) z(t)-y(t) z^{\prime \prime}(t)=\left(-K(t)-b^{2}\right) y(t) z(t) \leq 0 \\
\Rightarrow \quad & w(t) & =\int_{r}^{t} w^{\prime}(u) d u \leq 0 \quad \Rightarrow \quad \frac{w(t)}{y(t) z(t)}=\frac{y^{\prime}(t)}{y(t)}-\frac{z^{\prime}(t)}{z(t)} \leq 0 \\
\Rightarrow & y(t) & =y(r) \exp \left(\int_{r}^{t} \frac{y^{\prime}(u) d u}{y(u)}\right) \leq y(r) \exp \left(\int_{r}^{t} \frac{z^{\prime}(u) d u}{z(u)}\right)=z(t) .
\end{array}
$$

Therefore $\hat{s}=s$, as otherwise $0<y(\hat{s}) \leq z(\hat{s})=0$. The second inequality now results from

$$
\frac{y^{\prime}(t)}{y(t)} \leq \frac{z^{\prime}(t)}{z(t)}=\frac{b y(r) \sinh (b(t-r))+y^{\prime}(r) \cosh (b(t-r))}{y(r) \cosh (b(t-r))+y^{\prime}(r) \sinh (b(t-r)) / b}<b \operatorname{coth}(b(t-r))
$$

Using a similar method, Hopf $[\mathrm{H}]$ showed:
Corollary 5. Let M be free of conjugate points, then U is μ-measurable. If in addition there is a $b>0$ with $K \geq-b^{2}$, then $|U| \leq b$.

The flatness-condition is mainly based on [BK], Lem. 1.3:
Lemma 6. Let M without conjugate points and Q a compact subset of M with ∂Q piecewise smooth. Then

$$
\int_{S Q} U^{2}(v) d \mu(v) \leq-2 \pi \int_{Q} K(p) d \operatorname{vol}_{M}(p)+2 \int_{\partial Q} \int_{S_{p} M}|U(v)| d \lambda(v) d L(p)
$$

2. Cylinders.

2.1. Geodesic loops \& closed geodesics. Consider a smooth cylinder C (i.e. a complete surface diffeomorphic to $\mathbb{R} \times S^{1}$) equipped with a Riemannian metric $\langle\cdot, \cdot\rangle$ without conjugate points and curvature K. Denote by $\widetilde{C} \simeq \mathbb{R}^{2}$ the universal Riemannian covering for C. The fundamental group is $\pi_{1}(C) \simeq \mathbb{Z}$; let $\varphi: \widetilde{C} \rightarrow \widetilde{C}$ be a generator of the deck transformation group of C.

Definition 7.

1. For $l>0$, an arclength-parameterized geodesic segment $c:[0, l] \rightarrow C$ with $c(0)=c(l)$ is called geodesic loop with basepoint $c(0)$.
2. If further $c^{\prime}(0)=c^{\prime}(l)$ (and so $\left.c(t+l)=c(t) \forall t\right), c$ is a closed geodesic.

Remark that closed geodesics cannot have transversal self-intersections: If $c(u)=$ $c(v)$ for some $u<v \in[0, l]$ and $\widetilde{c}: \mathbb{R} \rightarrow \widetilde{C}$ denotes a lift of c, there would be $m, z \in \mathbb{Z} \backslash\{0\}$ such that $\varphi^{z} \widetilde{c}(t)=\widetilde{c}(t+l) \forall t$ and $\widetilde{c}(v)=\varphi^{m} \widetilde{c}(u)$

$$
\begin{aligned}
& \Rightarrow \widetilde{c}(v+n l)=\varphi^{n z} \widetilde{c}(v)=\varphi^{n z+m} \widetilde{c}(u)=\varphi^{m} \widetilde{c}(u+n l) \forall n \in \mathbb{Z} \\
& \Rightarrow \widetilde{c}(t+v-u)=\varphi^{m} \widetilde{c}(t) \forall t \in \mathbb{R}
\end{aligned}
$$

by Thm. 2; hence $c(t+v-u)=c(t) \forall t$. Therefore we may always assume closed geodesics to be simple, for l should be the (least) period of c.

Proposition 8. A geodesic loop is a closed geodesic, iff it has minimal length in the set of non-contractible loops in C.

Proof. Take $c:[0 ; l] \rightarrow C$ to be a simple geodesic loop of length l. If c is minimal, $c^{\prime}(l)=c^{\prime}(0)$; as it could be shortened by variation if it would contain a vertex at $c(0)$.

On the other hand, if c is a closed geodesic, let $\sigma: \mathbb{R} \rightarrow \widetilde{C}$ be a lift; w.l.o.g. suppose $\sigma(l)=\varphi \sigma(0)$. Also take an arbitrary non-contractible loop $a:[0 ; \lambda] \rightarrow C$ of length λ with a lift $\alpha:[0 ; \lambda] \rightarrow \widetilde{C}$. Then $\alpha(\lambda)=\varphi^{z} \alpha(0)$ for some $z \in \mathbb{Z} \backslash\{0\}$.

As φ operates isometrically on \widetilde{C}, the triangle-inequality implies

$$
\begin{aligned}
n l|z| & =d(\sigma(0), \sigma(n z l)) \\
& \leq d(\sigma(0), \alpha(0))+d\left(\varphi^{n z} \alpha(0), \varphi^{n z} \sigma(0)\right)+\sum_{j=0}^{n-1} d\left(\varphi^{j z} \alpha(0), \varphi^{(j+1) z} \alpha(0)\right) \\
& =2 d(\sigma(0), \alpha(0))+\sum_{j=0}^{n-1} d\left(\varphi^{j} \alpha(0), \varphi^{j} \alpha(\lambda)\right) \\
& =2 d(\sigma(0), \alpha(0))+n d(\alpha(0), \alpha(\lambda)) \leq 2 d(\sigma(0), \alpha(0))+n \lambda \quad \forall n \in \mathbb{N}
\end{aligned}
$$

which proves $\lambda \geq|z| l \geq l$ as $n \rightarrow \infty$.
Let $\gamma: \mathbb{R} \rightarrow C$ be an arclength-parameterized geodesic s.th. $C \backslash \gamma$ is simplyconnected, with γ_{1} a lift to \widetilde{C} and $\gamma_{2}=\varphi \gamma_{1} . \gamma_{1}$ and γ_{2} cannot intersect, because then γ would contain self-intersections and $C \backslash \gamma$ could not be connected.

Set $l(s):=d\left(\gamma_{1}(s), \gamma_{2}(s)\right)$ and denote by σ_{s} the arclength-parameterized geodesic through $\sigma_{s}(0)=\gamma_{1}(s)$ and $\sigma_{s}(l(s))=\gamma_{2}(s)$ and by $c_{s}:=\widetilde{\pi} \circ \sigma_{s}$ the projection of σ_{s} onto C; then $c_{s} \mid[0 ; l(s)]$ is a geodesic loop with basepoint $\gamma(s)$.

Let $\alpha_{s}:=\angle\left(\sigma_{s}^{\prime}(0), \gamma_{1}^{\prime}(s)\right)$ and $\beta_{s}:=\angle\left(\gamma_{2}^{\prime}(s),-\sigma_{s}^{\prime}(l(s))\right)$ denote the angles between γ_{1} resp. γ_{2} and σ_{s}; obviously $0<\alpha_{s}, \beta_{s}<\pi \quad \forall s \in \mathbb{R}$.

Fig. 1. Geodesic loops and their liftings

For each interval $I=[q, r]$ or $I=] q, r[\subseteq \mathbb{R}$ with $-\infty \leq q \leq r \leq \infty$ define $G I:=\left\{c_{s}(t) \mid s \in I, t \in[0 ; l(s)]\right\} \subseteq C$.

For fixed s consider the geodesic variation

$$
H:] s-\varepsilon, s+\varepsilon\left[\times[0 ; l(s)] \rightarrow \widetilde{C}, H(r, t)=\sigma_{r}(t l(r) / l(s))\right.
$$

The related Jacobi-vectorfield is $Y_{s}(t):=\left.\frac{\partial}{\partial r}\right|_{r=s} H(r, t)$, and its normal component $y_{s}(t):=\left\|Y_{s}(t)-\left\langle Y_{s}(t), \sigma_{s}^{\prime}(t)\right\rangle \sigma_{s}^{\prime}(t)\right\| . y_{s}$ is strictly positive since it could vanish at most for a single $t \in[0, l(s)]$ - while $y_{s}(0)=\sin \alpha_{s}(t)>0$ and $y_{s}(l(s))=\sin \beta_{s}(t)>0$.

The 1 st variation formula claims

$$
l^{\prime}(s)=\left.\left\langle Y_{s}(t), \sigma_{s}^{\prime}(t)\right\rangle\right|_{0} ^{l(s)}=-\cos \beta_{s}-\cos \alpha_{s}=-2 \cos \frac{\alpha_{s}-\beta_{s}}{2} \cos \frac{\alpha_{s}+\beta_{s}}{2}
$$

Remark 9. Because of $-\pi<\alpha_{s}-\beta_{s}<\pi$, the following holds: $l^{\prime}(s)=0 \Leftrightarrow \alpha_{s}+\beta_{s}=\pi \Leftrightarrow c_{s}^{\prime}(l(s))=c_{s}^{\prime}(0) \Leftrightarrow c_{s}$ is a closed geodesic.

Theorem 10. There exist $-\infty \leq q \leq r \leq \infty$, such that all geodesic loops in $G[q, r]$ are closed geodesics of constant length $l \equiv l(q)$, and $l^{\prime}(s)>0$ for $\left.s \in\right] r, \infty[$ and $l^{\prime}(s)<0$ for $\left.s \in\right]-\infty, q[$.

Proof. Since $C \backslash \gamma$ is contractible, every closed geodesic must be intersected by γ in some point and is thus a loop to this basepoint.

If there don't exist any closed geodesics, l^{\prime} has the same sign everywhere according to Rem. 9 ; in this case set $q=r= \pm \infty$ depending on whether $l^{\prime}<0$ or $l^{\prime}>0$.

In the other case, take c_{a} and c_{b} to be closed geodesics for some $a \leq b$. Due to Prop. $8, l(a) \leq l(b) \leq l(a) \Rightarrow l(a)=l(b)$.

Furthermore $l \geq l(a)$ on the entire \mathbb{R}; let $m \in[a, b]$ be a maximum locus for l on $[a, b]$. Then $l^{\prime}(m)=0$, i.e. c_{m} is a closed geodesic. Thus the same argument states
$l(m)=l(a)$, so l must be constant on $[a, b]$. As $l^{\prime} \equiv 0$ on $[a, b]$, all geodesic loops $G\{s\}$ with $s \in[a, b]$ are closed geodesics.

The claim now follows by setting $q:=\inf \left\{s \in \mathbb{R} \mid l^{\prime}(s)=0\right\}$ and $r:=\sup \{s \in$ $\left.\mathbb{R} \mid l^{\prime}(s)=0\right\}$.

FIg. 2. Two types of cylinders: with and without closed geodesics

Remark 11. Thm. 10 provides a classification of cylinders without conjugate points in types with resp. without closed geodesics.

To simplify the notation, mainly in section 2.3 , assume that the choice of the parameterization for γ complies with either of these conditions:

1. If C possesses closed geodesics, c_{0} shall be one of them. This effects $l^{\prime} \leq 0$ on \mathbb{R}_{-}and $l^{\prime} \geq 0$ on \mathbb{R}_{+}.
2. If C doesn't contain closed geodesics, suppose that $l^{\prime}>0$ everywhere.

2.2. An integral inequality for U^{2}.

Lemma 12.

1. The geodesic γ can be chosen minimal in C.
2. If $\liminf _{s \rightarrow \pm \infty} l(s) /|s|<2$ then $G \mathbb{R}=C$.

Proof. The 1st claim is proved in [BK], p. 630. For the 2nd part, suppose that there exists some $p \in C \backslash G \mathbb{R}$ with lift $\widetilde{p} \in \widetilde{C}$, which is w.l.o.g. situated in the half-strip between $\gamma_{1}\left|\mathbb{R}_{+}, \gamma_{2}\right| \mathbb{R}_{+}$and σ_{0}. Let ψ_{1} and $\psi_{2} \subset \widetilde{C}$ be the geodesic segments from \widetilde{p} to $\gamma_{1}(0)$ and $\gamma_{2}(0)$ respectively. σ_{s} varies continuously in s, thus (as it does near $s=0$) for every $s \geq 0$ it intersects ψ_{1} in some point $p_{1}(s)$ and ψ_{2} in another point $p_{2}(s)$.

The triangle-inequality states

$$
\begin{aligned}
2 s & =d\left(\gamma_{1}(0), \gamma_{1}(s)\right)+d\left(\gamma_{2}(0), \gamma_{2}(s)\right) \\
& \leq d\left(\gamma_{1}(0), p_{1}(s)\right)+d\left(p_{1}(s), \gamma_{1}(s)\right)+d\left(\gamma_{2}(0), p_{2}(s)\right)+d\left(p_{2}(s), \gamma_{2}(s)\right) \\
& \leq L\left(\psi_{1}\right)+L\left(\psi_{2}\right)+l(s) \\
\Rightarrow 2 & \leq \liminf _{s \rightarrow \infty} l(s) / s
\end{aligned}
$$

- the 2nd claim is just the negation.

Remark 13. For every $s \in \mathbb{R}, t \in[0, l(s)], y_{s}(t)$ is the density of the Riemannian volume with respect to the product measure of the length on c_{s} and that on γ.

To prove this, set $\partial_{s}(s, t):=\frac{\partial}{\partial s} \sigma_{s}(t)$ and $\partial_{t}(s, t):=\frac{\partial}{\partial t} \sigma_{s}(t)=\sigma_{s}^{\prime}(t)$. Using $\left\|\sigma_{s}^{\prime}(t)\right\| \equiv 1$ and $\frac{\partial}{\partial s} \sigma_{s}(t)=Y_{s}(t)-\sigma_{s}^{\prime}(t) l^{\prime}(s) t / l(s)$ compute

$$
\begin{aligned}
\frac{d^{2} \operatorname{vol}_{C}(s, t)}{d s d t} & =\sqrt{\operatorname{det}\left(\begin{array}{cc}
\left\langle\partial_{s}, \partial_{s}\right\rangle & \left\langle\partial_{s}, \partial_{t}\right\rangle \\
\left\langle\partial_{t}, \partial_{s}\right\rangle & \left\langle\partial_{t}, \partial_{t}\right\rangle
\end{array}\right)(s, t)} \\
& =\left\|\partial_{s}(s, t)-\left\langle\partial_{s}(s, t), \sigma_{s}^{\prime}(t)\right\rangle \sigma_{s}^{\prime}(t)\right\| \\
& =\left\|Y_{s}(t)-\left\langle Y_{s}(t), \sigma_{s}^{\prime}(t)\right\rangle \sigma_{s}^{\prime}(t)\right\|=y_{s}(t) .
\end{aligned}
$$

In the sequel, abbreviate

$$
V(s):=\int_{0}^{l(s)} \int_{S c_{s}(t)} U^{2}(v) d \lambda(v) y_{s}(t) d t \geq 0
$$

Lemma 14. For fixed $q<r \in \mathbb{R}$,

$$
\left(\int_{q}^{r} V(s) d s\right)^{2} \leq 32 \pi\left(V(q) \int_{0}^{l(q)} \frac{d t}{y_{q}(t)}+V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}\right)+8 \pi^{2}\left(\alpha_{r}+\beta_{r}-\alpha_{q}-\beta_{q}\right)^{2}
$$

Proof. Lem. 6 gives

$$
\begin{align*}
\int_{S G[q, r]} U^{2}(v) d \mu(v) \leq & -2 \pi \int_{G[q, r]} K(p) d v o l_{C}(p)+2 \int_{0}^{l(q)} \int_{S c_{q}(t)}|U(v)| d \lambda(v) d t \\
& +2 \int_{0}^{l(r)} \int_{S c_{r}(t)}|U(v)| d \lambda(v) d t \tag{1}
\end{align*}
$$

wherein the curvature-integral is

$$
\begin{equation*}
\int_{G[q, r]} K(p) d \operatorname{vol}_{C}(p)=\alpha_{q}+\beta_{q}-\alpha_{r}-\beta_{r} \tag{2}
\end{equation*}
$$

due to Gauss-Bonnet. Applying the Cauchy-Schwarz-inequality twice, the other integrals can be estimated by

$$
\begin{align*}
\left(\int_{0}^{l(s)} \int_{S c_{s}(t)}|U(v)| d \lambda(v) d t\right)^{2} & \leq \int_{0}^{l(s)}\left(\int_{S c_{s}(t)}|U(v)| d \lambda(v)\right)^{2} y_{s}(t) d t \int_{0}^{l(s)} \frac{d t}{y_{s}(t)} \\
& \leq \int_{0}^{l(s)} 2 \pi \int_{S c_{s}(t)} U^{2}(v) d \lambda(v) y_{s}(t) d t \int_{0}^{l(s)} \frac{d t}{y_{s}(t)} \\
& =2 \pi V(s) \int_{0}^{l(s)} \frac{d t}{y_{s}(t)} \tag{3}
\end{align*}
$$

On the other hand, Rem. 13 allows to write

$$
\begin{equation*}
\int_{S G[q, r]} U^{2}(v) d \mu(v)=\int_{q}^{r} \int_{0}^{l(s)} \int_{S c_{s}(t)} U^{2}(v) d \lambda(v) y_{s}(t) d t d s=\int_{q}^{r} V(s) d s \tag{4}
\end{equation*}
$$

The ineqs. (1) to (4) gather to

$$
\begin{align*}
\int_{q}^{r} V(s) d s \leq & \sqrt{8 \pi V(q) \int_{0}^{l(q)} \frac{d t}{y_{q}(t)}}+\sqrt{8 \pi V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}} \tag{5}\\
& +2 \pi\left(\alpha_{r}+\beta_{r}-\alpha_{q}-\beta_{q}\right) .
\end{align*}
$$

Since $0 \leq(\sqrt{a}-\sqrt{c})^{2} \Rightarrow a+c+2 \sqrt{a c} \leq 2 a+2 c \Rightarrow \sqrt{a}+\sqrt{c} \leq \sqrt{2(a+c)}$ for arbitrary $a, c \geq 0$ the right-hand side of (5) can be estimated again by

$$
\begin{aligned}
& \sqrt{8 \pi V(q) \int_{0}^{l(q)} \frac{d t}{y_{q}(t)}}+\sqrt{8 \pi V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}}+2 \pi\left(\alpha_{r}+\beta_{r}-\alpha_{q}-\beta_{q}\right) \\
\leq & \sqrt{16 \pi V(q) \int_{0}^{l(q)} \frac{d t}{y_{q}(t)}+16 \pi V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}+2 \pi\left(\alpha_{r}+\beta_{r}-\alpha_{q}-\beta_{q}\right)} \\
\leq & \sqrt{32 \pi V(q) \int_{0}^{l(q)} \frac{d t}{y_{q}(t)}+32 \pi V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}+8 \pi^{2}\left(\alpha_{r}+\beta_{r}-\alpha_{q}-\beta_{q}\right)^{2}},
\end{aligned}
$$

which leads to the claimed inequality.
2.3. Flatness condition in case of bounded curvature. During this section, suppose that $K>-b^{2}$ for some $b>0$ and that γ is minimal (cf. Lem. 12).

Lemma 15. $\left|\cos \alpha_{s}\right|,\left|\cos \beta_{s}\right| \leq \tanh (b l(s) / 2) \quad \forall s \in \mathbb{R}$.
Proof. For every r, the geodesic segment from $\gamma_{2}(s)=\sigma_{s}(l(s))$ to $\gamma_{1}(s+r)$ is longer than $d_{C}(\gamma(s), \gamma(s+r))=r$, because it is a lift of a geodesic segment in C between $\gamma(s)$ and $\gamma(s+r)$, and γ is minimal.

In a plane of constant curvature $-b^{2}$, consider a geodesic triangle, where two edges, one of length $l(s)$ and one of length r, span an angle of α_{s}. The length of the edge on the opposite side shall be a. Comparing this triangle with the geodesic triangle in \widetilde{C} with vertices $\gamma_{1}(s), \gamma_{1}(s+r)$ and $\gamma_{2}(s)$, Prop. 3 implies $a \geq d\left(\gamma_{2}(s), \gamma_{1}(s+r)\right)>r$.

Hence the hyperbolic cosine-theorem holds for any $r>0$

$$
\begin{aligned}
\cos \alpha_{s} & =\frac{\cosh (b l(s)) \cosh (b r)-\cosh (b a)}{\sinh (b l(s)) \sinh (b r)}<\frac{(\cosh (b l(s))-1) \cosh (b r)}{\sinh (b l(s)) \sinh (b r)} \\
\Rightarrow \quad \cos \alpha_{s} & \leq \frac{\cosh (b l(s))-1}{\sinh (b l(s))}=\tanh (b l(s) / 2)
\end{aligned}
$$

as $r \rightarrow \infty$. The same estimation, applied to β_{s} and the opponent angles $\pi-\alpha_{s}, \pi-\beta_{s}$ proves the claim.

Corollary 16. $\int_{0}^{l(s)} d t / y_{s}(t)<\frac{\pi}{b} \cosh ^{2}(b l(s) / 2) \quad \forall s \in \mathbb{R}$.
Proof. First, claim

$$
y_{s}(t) \geq x_{s}(t):=\frac{\cosh (b(t-l(s) / 2))}{\cosh ^{2}(b l(s) / 2)} \quad \forall s \in \mathbb{R}, t \in[0, l(s)]
$$

In accordance with Lem. 15,

$$
y_{s}(0)=\sin \alpha_{s}=\sqrt{1-\cos ^{2} \alpha_{s}} \geq \sqrt{1-\tanh ^{2} \frac{b l(s)}{2}}=\frac{1}{\cosh (b l(s) / 2)}=x_{s}(0)
$$

$\forall s \in \mathbb{R}$ and as well $y_{s}(l(s)) \geq 1 / \cosh (b l(s) / 2)=x_{s}(l(s))$ (cf. [BK] Lem. 2.4). Fix $0<\delta<1$ and assume that there are s, t s.th. $y_{s}(t)<\delta x_{s}(t)$. Then define $\tau:=\inf \{t \in$ $\left.[0, l(s)] \mid y_{s}(t)<\delta x_{s}(t)\right\}$; obviously $\tau>0, y_{s}(\tau)=\delta x_{s}(\tau)$ and $y_{s}^{\prime}(\tau) \leq \delta x_{s}^{\prime}(\tau)$. As $y_{s}>0$ on $[0, l(s)]$, by Lem. 4 get for $\tau \leq t \leq l(s)$

$$
\begin{aligned}
y_{s}(t) & \leq y_{s}(\tau) \cosh (b(t-\tau))+y_{s}^{\prime}(\tau) \frac{\sinh (b(t-\tau))}{b} \\
& \leq \delta x_{s}(\tau) \cosh (b(t-\tau))+\delta x_{s}^{\prime}(\tau) \frac{\sinh (b(t-\tau))}{b}=\delta x_{s}(t)
\end{aligned}
$$

- where the last equality refers to the fact, that both sides solve the Jacobi equation with $K \equiv-b^{2}$ and coincide in τ in their values and 1st derivatives.

But that leads to the contradiction $y_{s}(l(s)) \leq \delta x_{s}(l(s))<x_{s}(l(s)) \leq y_{s}(l(s))$, which shows $y_{s} \geq \delta x_{s}$. Since δ can be chosen arbitrarily, $y_{s} \geq \sup _{\delta<1} \delta x_{s}=x_{s}$.

Thus

$$
\begin{aligned}
\int_{0}^{l(s)} \frac{d t}{y_{s}(t)} & \leq \int_{0}^{l(s)} \frac{\cosh ^{2}(b l(s) / 2) d t}{\cosh (b(t-l(s) / 2))}=\int_{-l(s) / 2}^{l(s) / 2} \frac{\cosh ^{2}(b l(s) / 2) d t}{\cosh (b t)} \\
& =\cosh ^{2} \frac{b l(s)}{2} \int_{-l(s) / 2}^{l(s) / 2} \frac{2 \mathrm{e}^{b t} d t}{\mathrm{e}^{2 b t}+1}=\cosh ^{2} \frac{b l(s)}{2} \int_{\mathrm{e}^{-b l(s) / 2}}^{\mathrm{e}^{b l(s) / 2}} \frac{2 d x}{b\left(x^{2}+1\right)} \\
& =\left.\cosh ^{2}(b l(s) / 2) \frac{2 \arctan \left(\mathrm{e}^{b t}\right)}{b}\right|_{-l(s) / 2} ^{l(s) / 2}<\frac{\pi}{b} \cosh ^{2}(b l(s) / 2)
\end{aligned}
$$

Lemma 17.

$$
\int_{-\infty}^{\infty} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)}<\frac{2 \pi^{2}}{b}
$$

Proof. Since $\left|\alpha_{s}-\beta_{s}\right|<\pi$, the 1st variation formula acquires the form

$$
\frac{l^{\prime}(s)}{2 \cos \left(\left(\alpha_{s}-\beta_{s}\right) / 2\right)}=-\cos \frac{\alpha_{s}+\beta_{s}}{2}=\sin \frac{\alpha_{s}+\beta_{s}-\pi}{2} \quad \forall s \in \mathbb{R}
$$

Here, $\cos \frac{\alpha_{s}-\beta_{s}}{2}$ becomes minimal, when $\left|\alpha_{s}-\beta_{s}\right|$ is maximal; meanwhile due to Lem. $15 \arccos \tanh (b l(s) / 2) \leq \alpha_{s}, \beta_{s} \leq \pi-\operatorname{arccostanh}(b l(s) / 2)$ and so

$$
\begin{aligned}
\cos \frac{\alpha_{s}-\beta_{s}}{2} & \geq \cos \frac{\pi-2 \arccos \tanh (b l(s) / 2)}{2}=\sin \arccos \tanh (b l(s) / 2) \\
& =\sqrt{1-\tanh ^{2}(b l(s) / 2)}=1 / \cosh (b l(s) / 2)
\end{aligned}
$$

Now if $l^{\prime} \geq 0$ on $[q, r]$ then

$$
\begin{aligned}
0 \leq \alpha_{s}+\beta_{s}-\pi & \leq \pi \sin \frac{\alpha_{s}+\beta_{s}-\pi}{2}=\frac{\pi l^{\prime}(s)}{2 \cos \left(\left(\alpha_{s}-\beta_{s}\right) / 2\right)} \\
& \leq \frac{\pi l^{\prime}(s) \cosh (b l(s) / 2)}{2} \quad \forall q \leq s \leq r \\
\Rightarrow \quad \int_{q}^{r} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)} & \leq \int_{q}^{r} \frac{\pi l^{\prime}(s) d s}{2 \cosh (b l(s) / 2)}=\int_{l(q)}^{l(r)} \frac{\pi d l}{2 \cosh (b l / 2)} \\
& =\left.\frac{2 \pi \arctan \mathrm{e}^{b l(s) / 2}}{b}\right|_{q} ^{r}
\end{aligned}
$$

just as computed in the proof of Cor. 16. In case that $l^{\prime} \leq 0$ on $[q, r]$, deduce analogously

$$
\begin{aligned}
0 \geq \alpha_{s}+\beta_{s}-\pi \geq \pi \sin \frac{\alpha_{s}+\beta_{s}-\pi}{2} \geq \frac{\pi l^{\prime}(s) \cosh (b l(s) / 2)}{2} \\
\Rightarrow \quad \int_{q}^{r} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)} \leq \int_{q}^{r} \frac{-\pi l^{\prime}(s) d s}{2 \cosh (b l(s) / 2)}=\left.\frac{-2 \pi \arctan \mathrm{e}^{b l(s) / 2}}{b}\right|_{q} ^{r}
\end{aligned}
$$

In light of Rem. 11,

$$
\int_{-\infty}^{\infty} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)} \leq\left.\frac{2 \pi \arctan \mathrm{e}^{b l(s) / 2}}{b}\right|_{0} ^{\infty}-\left.\frac{2 \pi \arctan \mathrm{e}^{b l(s) / 2}}{b}\right|_{-\infty} ^{0}<\frac{2 \pi^{2}}{b}
$$

if C contains closed geodesics; while for cylinders without closed geodesics even

$$
\int_{-\infty}^{\infty} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)} \leq\left.\frac{2 \pi \arctan \mathrm{e}^{b l(s) / 2}}{b}\right|_{-\infty} ^{\infty}<\frac{\pi^{2}}{b}
$$

holds.
ThEOREM 18. Let C be a cylinder free of conjugate points and $K \geq-b^{2}$. If $\lim \sup _{s \rightarrow \pm \infty} \frac{l(s)}{\ln |s|}<1 / b$, then C is flat.

Proof. For $r \geq 0$ define $L(r):=\max (l(r), l(-r))$ and $W(r):=\int_{-r}^{r} V(s) d s$. Using Cor. 16, Lem. 14 states

$$
\begin{aligned}
W^{2}(r) & \leq 32 \pi\left(V(-r) \int_{0}^{l(-r)} \frac{d t}{y_{-r}(t)}+V(r) \int_{0}^{l(r)} \frac{d t}{y_{r}(t)}\right)+8 \pi^{2}\left(\alpha_{r}+\beta_{r}-\alpha_{-r}-\beta_{-r}\right)^{2} \\
& \leq \frac{32 \pi^{2} \cosh ^{2}(b L(r) / 2)}{b}(V(-r)+V(r))+8 \pi^{2}\left(\alpha_{r}+\beta_{r}-\alpha_{-r}-\beta_{-r}\right)^{2}
\end{aligned}
$$

The triangle-inequality yields

$$
\begin{aligned}
\left(\alpha_{r}+\beta_{r}-\alpha_{-r}-\beta_{-r}\right)^{2} & \leq 2 \pi\left|\alpha_{r}+\beta_{r}-\alpha_{-r}-\beta_{-r}\right| \\
& \leq 2 \pi\left(\left|\alpha_{r}+\beta_{r}-\pi\right|+\left|\alpha_{-r}+\beta_{-r}-\pi\right|\right) \\
& \leq 2 \pi\left(\frac{\left|\alpha_{r}+\beta_{r}-\pi\right|}{\cosh ^{2}(b l(r) / 2)}+\frac{\left|\alpha_{-r}+\beta_{-r}-\pi\right|}{\cosh ^{2}(b l(-r) / 2)}\right) \cosh ^{2} \frac{b L(r)}{2}
\end{aligned}
$$

- which together with $V(-r)+V(r)=W^{\prime}(r)$ implies

$$
W^{2}(r) \leq \frac{32 \pi^{2}}{b}\left(W^{\prime}(r)+\frac{b \pi\left|\alpha_{r}+\beta_{r}-\pi\right|}{2 \cosh ^{2}(b l(r) / 2)}+\frac{b \pi\left|\alpha_{-r}+\beta_{-r}-\pi\right|}{2 \cosh ^{2}(b l(-r) / 2)}\right) \cosh ^{2} \frac{b L(r)}{2}
$$

Now assume that $W(R)>0$ for some $R>0$ - so by the monotonicity of W also $W(r)>0 \forall r \geq R$. Then

$$
\frac{W^{\prime}(r)}{W^{2}(r)} \geq \frac{b}{32 \pi^{2} \cosh ^{2}(b L(r) / 2)}-\frac{b \pi}{2 W^{2}(r)}\left(\frac{\left|\alpha_{r}+\beta_{r}-\pi\right|}{\cosh ^{2}(b l(r) / 2)}+\frac{\left|\alpha_{-r}+\beta_{-r}-\pi\right|}{\cosh ^{2}(b l(-r) / 2)}\right)
$$

for all $r \geq R$; and integration leads to (cf. [BK], Lem 3.12)

$$
\begin{aligned}
\frac{1}{W(R)} \geq & \left.\frac{-1}{W(r)}\right|_{R} ^{\infty}=\int_{R}^{\infty} \frac{W^{\prime}(r) d r}{W^{2}(r)} \\
\geq & \int_{R}^{\infty} \frac{b d r}{32 \pi^{2} \cosh ^{2}(b L(r) / 2)} \\
& -\frac{b \pi}{2 W^{2}(R)} \int_{R}^{\infty}\left(\frac{\left|\alpha_{r}+\beta_{r}-\pi\right|}{\cosh ^{2}(b l(r) / 2)}+\frac{\left|\alpha_{-r}+\beta_{-r}-\pi\right|}{\cosh ^{2}(b l(-r) / 2)}\right) d r \\
\geq & \int_{R}^{\infty} \frac{b d r}{32 \pi^{2} \cosh ^{2}(b L(r) / 2)}-\frac{b \pi}{2 W^{2}(R)} \int_{-\infty}^{\infty} \frac{\left|\alpha_{s}+\beta_{s}-\pi\right| d s}{\cosh ^{2}(b l(s) / 2)} \\
> & \int_{R}^{\infty} \frac{b d r}{32 \pi^{2} \cosh ^{2}(b L(r) / 2)}-\frac{\pi^{3}}{W^{2}(R)}
\end{aligned}
$$

according Lem. 17.
But by the assumption, $b L(r)<\ln r$ for $r>R, R$ sufficiently large, so

$$
\int_{R}^{\infty} \frac{d r}{\cosh ^{2}(b L(r) / 2)}>\int_{R}^{\infty} \frac{4 d r}{\mathrm{e}^{b L(r)}+3} \geq \int_{R}^{\infty} \frac{4 d r}{r+3}=\infty
$$

- a contradiction. So $W \equiv 0$. Using Lem. 12, this proves

$$
\int_{S C} U^{2}(v) d \mu(v)=\int_{-\infty}^{\infty} V(s) d s=\limsup _{r \rightarrow \infty} W(r)=0
$$

Hence $U=0 \mu$-a.e. and therefore $K \equiv 0$ by Riccati equation, as K is continuous.

REFERENCES

[B] K. Burns, The flat strip theorem fails for surfaces with no conjugate points, Proc. Amer. Math. Soc., 115 (1992), pp. 199-206.
[BBB] W. Ballmann, M. Brin and K. Burns, On surfaces with no conjugate points, J. Differential Geometry, 25 (1987), pp. 249-273.
[BI] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat Geom. Funct. Anal., 4 (1995), pp. 259-269.
[BK] K. Burns and G. Knieper, Rigidity of surfaces with no conjugate points, J. Differential Geometry, 34 (1991), pp. 623-650.
[CK] C. B. Croke and B. Kleiner, A rigidity theorem for manifolds without conjugate points, Ergod. Th. Dyn. Sys., 18 (1998), pp. 813-829.
[Gr] L. W. Green, Surfaces without conjugate points, Trans. Amer. Math. Soc., 76 (1954), pp. 529-546.
[Gu] R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), pp. 185-201.
[H] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci., 34 (1948), pp. 4751.
[I] N. InNAmi, Euclidean metric and flat metric outside a compact set, Proc. Amer. Math. Soc., 105 (1989), pp. 701-705.
[MZ] S. Mendonca and D. Zhou, Maximal ergodic theorems and applications to Riemannian geometry, Isr. J. Math., 139 (2004), pp. 319-335.

[^0]: *Received October 26, 2006; accepted for publication March 29, 2007.
 ${ }^{\dagger}$ Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany (henrik. koehler@rub.de).

