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RIGIDITY OF CYLINDERS WITHOUT CONJUGATE POINTS∗

HENRIK KOEHLER†

Abstract. During the last decades, several investigations were concerned with rigidity state-
ments for manifolds without conjugate points (some results can be found in the references). Based
on an idea by E.Hopf [H], K.Burns and G.Knieper proved in [BK] that cylinders without conjugate
points and with a lower sectional curvature bound must be flat if the length of the shortest loop at
every point is globally bounded.

The present article reduces the last condition to a limit for the asymptotic growth of loop-length
as the basepoint approaches the ends of the cylinder (Thm. 18). Along the way, the shape of cylinders
without conjugate points is characterized: The loop-length must be strictly monotone increasing to
both ends outside a – possibly empty – tube consisting of closed geodesics (Thm. 10).
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1. Preliminaries.

1.1. Conjugate points, Riccati equation. Let M be a smooth, complete
surface with a Riemannian metric 〈 , 〉 and sectional curvature K; furthermore TM

the tangent bundle and π : TM → M the footpoint-projection, ˜M the universal
Riemannian covering of M and π̃ : ˜M →M the projection.

GivenX ⊆M note by SX := {v ∈ TM | π(v) ∈ X ; ‖v‖ = 1} the unit vectors with
footpoint in X ; let λ for every p denote the Lebesgue-measure on SpM , µ = volM ×λ
the Liouville-measure on SM and gt : SM → SM, v 7→ d

ds

∣

∣

s=t
expπ(v)(sv) the geodesic

flow at time t.

For v ∈ SM regard the geodesic γv(t) := expπ(v)(tv), parameterized by arclength,
with sectional curvature K(t) := K(γv(t)); the Jacobi equation related to γv is then

(Jv) y′′(t) +K(t)y(t) = 0.

Definition 1. M is called without conjugate points, if for any v ∈ SM , every
non-trivial solution of (Jv) vanishes once at most.

If M is a surface without conjugate points, then for all v ∈ SM, s ∈ R there exists
a solution y(v, s, t) of (Jv) with boundary values y(v, s, 0) = 1 and y(v, s, s) = 0. The
next theorem characterizes this property (for the 3rd part, see [H]).

Theorem 2. The following criteria are equivalent:

1. M has no conjugate points;
2. any two geodesics in ˜M can intersect once at most, in particular all geodesics

in ˜M are minimal;
3. the stable resp. unstable solutions of (Jv), defined by

y−(v, t) := lims→∞ y(v, s, t) and y+(v, t) := lims→−∞ y(v, s, t) respectively,
exist ∀ v ∈ SM on the entire R.

∗Received October 26, 2006; accepted for publication March 29, 2007.
†Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany (henrik.

koehler@rub.de).

35



36 H. KOEHLER

The Riccati equation related to γv is

(Rv) u′(t) + u2(t) +K(t) = 0;

it is obtained from (Jv) by transformation u = y′/y. In general, the zero locus of y

must be excepted. In absence of conjugate points y± > 0, and u−(v, t) :=
y′

−

(v,t)

y
−

(v,t) and

u+(v, t) :=
y′

+(v,t)

y+(v,t) solve (Rv) on R for every v ∈ SM . Set U(v) := u+(v, 0).

1.2. Comparison theorems. The existence of a lower curvature boundary al-
lows us to compare M with surfaces of constant curvature:

Proposition 3. Suppose M is free of conjugate points and K ≥ −b2 for some
b > 0. For A,B,C ∈ M let △ ⊂ M denote the triangle with vertices A,B,C,
whereas the edges are minimal geodesic segments. If M ′ is the plane with constant
curvature K ′ = −b2 and △′ ⊂ M ′ is the geodesic triangle spanned by A′, B′, C′,
and if d′(A′, C′) = d(A,C), d′(A′, B′) = d(A,B) and ∠(C′A′B′) = ∠(CAB), then
d′(B′, C′) ≥ d(B,C).

Proof. This is an application of a triangle-comparison-theorem.

Lemma 4. For v ∈ SM , b > 0 and r < s let K(t) ≥ −b2 ∀ t ∈ [r, s]. If
y is a solution of (Jv) with 0 < y(t) ∀ t ∈ [r, s], then y(t) ≤ y(r) cosh(b(t − r)) +

y′(r) sinh(b(t− r))/b and y′(t)
y(t) < b coth(b(t− r)) hold for all t ∈ [r, s].

Proof. Set z(t) := y(r) cosh(b(t−r))+y′(r) sinh(b(t−r))/b and w(t) := y′(t)z(t)−
y(t)z′(t); remark, that z cannot vanish twice and w(r) = 0. Also set ŝ := sup{t ∈
[r, s] | z(t) > 0}; then for all t ∈ [r, ŝ]

w′(t) = y′′(t)z(t) − y(t)z′′(t) = (−K(t) − b2)y(t)z(t) ≤ 0

⇒ w(t) =

∫ t

r

w′(u) du ≤ 0 ⇒
w(t)

y(t)z(t)
=
y′(t)

y(t)
−
z′(t)

z(t)
≤ 0

⇒ y(t) = y(r) exp

(∫ t

r

y′(u) du

y(u)

)

≤ y(r) exp

(∫ t

r

z′(u) du

z(u)

)

= z(t).

Therefore ŝ = s, as otherwise 0 < y(ŝ) ≤ z(ŝ) = 0. The second inequality now results
from

y′(t)

y(t)
≤
z′(t)

z(t)
=

by(r) sinh(b(t− r)) + y′(r) cosh(b(t− r))

y(r) cosh(b(t− r)) + y′(r) sinh(b(t− r))/b
< b coth(b(t− r)).

Using a similar method, Hopf [H] showed:

Corollary 5. Let M be free of conjugate points, then U is µ−measurable. If in
addition there is a b > 0 with K ≥ −b2, then |U | ≤ b.

The flatness-condition is mainly based on [BK], Lem. 1.3:

Lemma 6. Let M without conjugate points and Q a compact subset of M with
∂Q piecewise smooth. Then

∫

SQ

U2(v) dµ(v) ≤ −2π

∫

Q

K(p) d volM (p) + 2

∫

∂Q

∫

SpM

|U(v)| dλ(v) dL(p).
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2. Cylinders.

2.1. Geodesic loops & closed geodesics. Consider a smooth cylinder C (i.e. a
complete surface diffeomorphic to R × S1) equipped with a Riemannian metric 〈· , ·〉

without conjugate points and curvature K. Denote by ˜C ≃ R
2 the universal Rie-

mannian covering for C. The fundamental group is π1(C) ≃ Z; let ϕ : ˜C → ˜C be a
generator of the deck transformation group of C.

Definition 7.

1. For l > 0, an arclength-parameterized geodesic segment c : [0, l] → C with
c(0) = c(l) is called geodesic loop with basepoint c(0).

2. If further c′(0) = c′(l) (and so c(t+ l) = c(t) ∀ t), c is a closed geodesic.

Remark that closed geodesics cannot have transversal self-intersections: If c(u) =

c(v) for some u < v ∈ [0, l] and c̃ : R → ˜C denotes a lift of c, there would be
m, z ∈ Z \ {0} such that ϕz c̃(t) = c̃(t+ l) ∀ t and c̃(v) = ϕmc̃(u)

⇒ c̃(v + nl) = ϕnz c̃(v) = ϕnz+mc̃(u) = ϕmc̃(u+ nl) ∀n ∈ Z

⇒ c̃(t+ v − u) = ϕmc̃(t) ∀ t ∈ R

by Thm. 2; hence c(t + v − u) = c(t) ∀ t. Therefore we may always assume closed
geodesics to be simple, for l should be the (least) period of c.

Proposition 8. A geodesic loop is a closed geodesic, iff it has minimal length in
the set of non-contractible loops in C.

Proof. Take c : [0; l] → C to be a simple geodesic loop of length l. If c is minimal,
c′(l) = c′(0); as it could be shortened by variation if it would contain a vertex at c(0).

On the other hand, if c is a closed geodesic, let σ : R → ˜C be a lift; w.l.o.g. suppose
σ(l) = ϕσ(0). Also take an arbitrary non-contractible loop a : [0;λ] → C of length λ

with a lift α : [0;λ] → ˜C. Then α(λ) = ϕzα(0) for some z ∈ Z \ {0}.

As ϕ operates isometrically on ˜C, the triangle-inequality implies

nl|z| = d(σ(0), σ(nzl))

≤ d(σ(0), α(0)) + d(ϕnzα(0), ϕnzσ(0)) +
n−1
∑

j=0

d(ϕjzα(0), ϕ(j+1)zα(0))

= 2d(σ(0), α(0)) +

n−1
∑

j=0

d(ϕjα(0), ϕjα(λ))

= 2d(σ(0), α(0)) + nd(α(0), α(λ)) ≤ 2d(σ(0), α(0)) + nλ ∀ n ∈ N,

which proves λ ≥ |z|l ≥ l as n→ ∞.

Let γ : R → C be an arclength-parameterized geodesic s.th. C \ γ is simply-

connected, with γ1 a lift to ˜C and γ2 = ϕγ1. γ1 and γ2 cannot intersect, because then
γ would contain self-intersections and C \ γ could not be connected.

Set l(s) := d(γ1(s), γ2(s)) and denote by σs the arclength-parameterized geodesic
through σs(0) = γ1(s) and σs(l(s)) = γ2(s) and by cs := π̃ ◦ σs the projection of σs

onto C; then cs
∣

∣[0; l(s)] is a geodesic loop with basepoint γ(s).
Let αs := ∠(σ′

s(0), γ′1(s)) and βs := ∠(γ′2(s),−σ
′
s(l(s))) denote the angles between

γ1 resp. γ2 and σs; obviously 0 < αs, βs < π ∀ s ∈ R.
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γ1 γ2

σq

σr

˜C

βrαr

-

π̃

γ

cq

cr

G[q, r]

C

Fig. 1. Geodesic loops and their liftings

For each interval I = [q, r] or I = ]q, r[ ⊆ R with −∞ ≤ q ≤ r ≤ ∞ define
GI := {cs(t) | s ∈ I, t ∈ [0; l(s)]} ⊆ C.

For fixed s consider the geodesic variation

H : ]s− ε, s+ ε[ × [0; l(s)] → ˜C, H(r, t) = σr(tl(r)/l(s)).

The related Jacobi-vectorfield is Ys(t) := ∂
∂r

∣

∣

r=s
H(r, t), and its normal component

ys(t) := ‖Ys(t) − 〈Ys(t), σ
′
s(t)〉σ

′
s(t)‖. ys is strictly positive since it could vanish at

most for a single t ∈ [0, l(s)] – while ys(0) = sinαs(t) > 0 and ys(l(s)) = sinβs(t) > 0.
The 1st variation formula claims

l′(s) = 〈Ys(t), σ
′
s(t)〉

∣

∣

∣

l(s)

0
= − cosβs − cosαs = −2 cos

αs − βs

2
cos

αs + βs

2
.

Remark 9. Because of −π < αs − βs < π, the following holds:
l′(s) = 0 ⇔ αs + βs = π ⇔ c′s(l(s)) = c′s(0) ⇔ cs is a closed geodesic.

Theorem 10. There exist −∞ ≤ q ≤ r ≤ ∞, such that all geodesic loops in
G[q, r] are closed geodesics of constant length l ≡ l(q), and l′(s) > 0 for s ∈]r,∞[ and
l′(s) < 0 for s ∈] −∞, q[.

Proof. Since C \ γ is contractible, every closed geodesic must be intersected by γ
in some point and is thus a loop to this basepoint.

If there don’t exist any closed geodesics, l′ has the same sign everywhere according
to Rem. 9; in this case set q = r = ±∞ depending on whether l′ < 0 or l′ > 0.

In the other case, take ca and cb to be closed geodesics for some a ≤ b. Due to
Prop. 8, l(a) ≤ l(b) ≤ l(a) ⇒ l(a) = l(b).

Furthermore l ≥ l(a) on the entire R; let m ∈ [a, b] be a maximum locus for l on
[a, b]. Then l′(m) = 0, i.e. cm is a closed geodesic. Thus the same argument states
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l(m) = l(a), so l must be constant on [a, b]. As l′ ≡ 0 on [a, b], all geodesic loops G{s}
with s ∈ [a, b] are closed geodesics.

The claim now follows by setting q := inf{s ∈ R | l′(s) = 0} and r := sup{s ∈
R | l′(s) = 0}.

Fig. 2. Two types of cylinders: with and without closed geodesics

Remark 11. Thm. 10 provides a classification of cylinders without conjugate
points in types with resp. without closed geodesics.

To simplify the notation, mainly in section 2.3, assume that the choice of the
parameterization for γ complies with either of these conditions:

1. If C possesses closed geodesics, c0 shall be one of them. This effects l′ ≤ 0
on R− and l′ ≥ 0 on R+.

2. If C doesn’t contain closed geodesics, suppose that l′ > 0 everywhere.

2.2. An integral inequality for U2.

Lemma 12.

1. The geodesic γ can be chosen minimal in C.
2. If lim infs→±∞ l(s)/|s| < 2 then GR = C.

Proof. The 1st claim is proved in [BK], p. 630. For the 2nd part, suppose that

there exists some p ∈ C \GR with lift p̃ ∈ ˜C, which is w.l.o.g. situated in the half-strip

between γ1

∣

∣R+, γ2

∣

∣R+ and σ0. Let ψ1 and ψ2 ⊂ ˜C be the geodesic segments from
p̃ to γ1(0) and γ2(0) respectively. σs varies continuously in s, thus (as it does near
s = 0) for every s ≥ 0 it intersects ψ1 in some point p1(s) and ψ2 in another point
p2(s).
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The triangle-inequality states

2s = d(γ1(0), γ1(s)) + d(γ2(0), γ2(s))

≤ d(γ1(0), p1(s)) + d(p1(s), γ1(s)) + d(γ2(0), p2(s)) + d(p2(s), γ2(s))

≤ L(ψ1) + L(ψ2) + l(s)

⇒ 2 ≤ lim inf
s→∞

l(s)/s

– the 2nd claim is just the negation.

Remark 13. For every s ∈ R, t ∈ [0, l(s)], ys(t) is the density of the Riemannian
volume with respect to the product measure of the length on cs and that on γ.

To prove this, set ∂s(s, t) := ∂
∂sσs(t) and ∂t(s, t) := ∂

∂tσs(t) = σ′
s(t). Using

‖σ′
s(t)‖ ≡ 1 and ∂

∂sσs(t) = Ys(t) − σ′
s(t)l

′(s)t/l(s) compute

d2volC(s, t)

ds dt
=

√

det

(

〈∂s, ∂s〉 〈∂s, ∂t〉
〈∂t, ∂s〉 〈∂t, ∂t〉

)

(s, t)

= ‖∂s(s, t) − 〈∂s(s, t), σ
′
s(t)〉σ

′
s(t)‖

= ‖Ys(t) − 〈Ys(t), σ
′
s(t)〉σ

′
s(t)‖ = ys(t).

In the sequel, abbreviate

V (s) :=

∫ l(s)

0

∫

Scs(t)

U2(v) dλ(v) ys(t) dt ≥ 0.

Lemma 14. For fixed q < r ∈ R,

(∫ r

q

V (s) ds

)2

≤ 32π

(

V (q)

∫ l(q)

0

dt

yq(t)
+ V (r)

∫ l(r)

0

dt

yr(t)

)

+ 8π2(αr + βr − αq − βq)
2.

Proof. Lem. 6 gives
∫

SG[q,r]

U2(v) dµ(v) ≤ − 2π

∫

G[q,r]

K(p) d volC(p) + 2

∫ l(q)

0

∫

Scq(t)

|U(v)| dλ(v) dt

+ 2

∫ l(r)

0

∫

Scr(t)

|U(v)| dλ(v) dt, (1)

wherein the curvature-integral is
∫

G[q,r]

K(p) d volC(p) = αq + βq − αr − βr (2)

due to Gauss-Bonnet. Applying the Cauchy-Schwarz-inequality twice, the other inte-
grals can be estimated by
(

∫ l(s)

0

∫

Scs(t)

|U(v)| dλ(v) dt

)2

≤

∫ l(s)

0

(

∫

Scs(t)

|U(v)| dλ(v)

)2

ys(t) dt

∫ l(s)

0

dt

ys(t)

≤

∫ l(s)

0

2π

∫

Scs(t)

U2(v) dλ(v)ys(t) dt

∫ l(s)

0

dt

ys(t)

= 2πV (s)

∫ l(s)

0

dt

ys(t)
(3)
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On the other hand, Rem. 13 allows to write

∫

SG[q,r]

U2(v) dµ(v) =

∫ r

q

∫ l(s)

0

∫

Scs(t)

U2(v) dλ(v) ys(t) dt ds =

∫ r

q

V (s) ds. (4)

The ineqs. (1) to (4) gather to

∫ r

q

V (s) ds ≤

√

8πV (q)

∫ l(q)

0

dt

yq(t)
+

√

8πV (r)

∫ l(r)

0

dt

yr(t)
(5)

+2π(αr + βr − αq − βq).

Since 0 ≤ (
√
a−

√
c)2 ⇒ a+c+2

√
ac ≤ 2a+2c⇒

√
a+

√
c ≤

√

2(a+ c) for arbitrary
a, c ≥ 0 the right-hand side of (5) can be estimated again by

√

8πV (q)

∫ l(q)

0

dt

yq(t)
+

√

8πV (r)

∫ l(r)

0

dt

yr(t)
+ 2π(αr + βr − αq − βq)

≤

√

16πV (q)

∫ l(q)

0

dt

yq(t)
+ 16πV (r)

∫ l(r)

0

dt

yr(t)
+ 2π(αr + βr − αq − βq)

≤

√

32πV (q)

∫ l(q)

0

dt

yq(t)
+ 32πV (r)

∫ l(r)

0

dt

yr(t)
+ 8π2(αr + βr − αq − βq)2,

which leads to the claimed inequality.

2.3. Flatness condition in case of bounded curvature. During this section,
suppose that K > −b2 for some b > 0 and that γ is minimal (cf. Lem. 12).

Lemma 15. | cosαs|, | cosβs| ≤ tanh(bl(s)/2) ∀ s ∈ R.

Proof. For every r, the geodesic segment from γ2(s) = σs(l(s)) to γ1(s + r) is
longer than dC(γ(s), γ(s + r)) = r, because it is a lift of a geodesic segment in C
between γ(s) and γ(s+ r), and γ is minimal.

In a plane of constant curvature −b2, consider a geodesic triangle, where two
edges, one of length l(s) and one of length r, span an angle of αs. The length of the
edge on the opposite side shall be a. Comparing this triangle with the geodesic triangle
in ˜C with vertices γ1(s), γ1(s+r) and γ2(s), Prop. 3 implies a ≥ d(γ2(s), γ1(s+r)) > r.

Hence the hyperbolic cosine-theorem holds for any r > 0

cosαs =
cosh(bl(s)) cosh(br) − cosh(ba)

sinh(bl(s)) sinh(br)
<

(cosh(bl(s)) − 1) cosh(br)

sinh(bl(s)) sinh(br)

⇒ cosαs ≤
cosh(bl(s)) − 1

sinh(bl(s))
= tanh(bl(s)/2),

as r → ∞. The same estimation, applied to βs and the opponent angles π−αs, π−βs

proves the claim.

Corollary 16.
∫ l(s)

0 dt/ys(t) <
π
b cosh2(bl(s)/2) ∀ s ∈ R.

Proof. First, claim

ys(t) ≥ xs(t) :=
cosh(b(t− l(s)/2))

cosh2(bl(s)/2)
∀ s ∈ R, t ∈ [0, l(s)].
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In accordance with Lem. 15,

ys(0) = sinαs =
√

1 − cos2 αs ≥

√

1 − tanh2 bl(s)

2
=

1

cosh(bl(s)/2)
= xs(0)

∀ s ∈ R and as well ys(l(s)) ≥ 1/ cosh(bl(s)/2) = xs(l(s)) (cf. [BK] Lem. 2.4). Fix
0 < δ < 1 and assume that there are s, t s.th. ys(t) < δxs(t). Then define τ := inf{t ∈
[0, l(s)] | ys(t) < δxs(t)}; obviously τ > 0, ys(τ) = δxs(τ) and y′s(τ) ≤ δx′s(τ). As
ys > 0 on [0, l(s)], by Lem. 4 get for τ ≤ t ≤ l(s)

ys(t) ≤ ys(τ) cosh(b(t− τ)) + y′s(τ)
sinh(b(t− τ))

b

≤ δxs(τ) cosh(b(t− τ)) + δx′s(τ)
sinh(b(t− τ))

b
= δxs(t)

– where the last equality refers to the fact, that both sides solve the Jacobi equation
with K ≡ −b2 and coincide in τ in their values and 1st derivatives.

But that leads to the contradiction ys(l(s)) ≤ δxs(l(s)) < xs(l(s)) ≤ ys(l(s)),
which shows ys ≥ δxs. Since δ can be chosen arbitrarily, ys ≥ supδ<1 δxs = xs.

Thus

∫ l(s)

0

dt

ys(t)
≤

∫ l(s)

0

cosh2(bl(s)/2) dt

cosh(b(t− l(s)/2))
=

∫ l(s)/2

−l(s)/2

cosh2(bl(s)/2) dt

cosh(bt)

= cosh2 bl(s)

2

∫ l(s)/2

−l(s)/2

2ebt dt

e2bt + 1
= cosh2 bl(s)

2

∫ ebl(s)/2

e−bl(s)/2

2 dx

b(x2 + 1)

= cosh2(bl(s)/2)
2 arctan(ebt)

b

∣

∣

∣

∣

l(s)/2

−l(s)/2

<
π

b
cosh2(bl(s)/2).

Lemma 17.

∫ ∞

−∞

|αs + βs − π| ds

cosh2(bl(s)/2)
<

2π2

b
.

Proof. Since |αs − βs| < π, the 1st variation formula acquires the form

l′(s)

2 cos((αs − βs)/2)
= − cos

αs + βs

2
= sin

αs + βs − π

2
∀ s ∈ R.

Here, cos αs−βs

2 becomes minimal, when |αs − βs| is maximal; meanwhile due to
Lem. 15 arccos tanh(bl(s)/2) ≤ αs, βs ≤ π − arccos tanh(bl(s)/2) and so

cos
αs − βs

2
≥ cos

π − 2 arccos tanh(bl(s)/2)

2
= sin arccos tanh(bl(s)/2)

=

√

1 − tanh2(bl(s)/2) = 1/ cosh(bl(s)/2).
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Now if l′ ≥ 0 on [q, r] then

0 ≤ αs + βs − π ≤ π sin
αs + βs − π

2
=

πl′(s)

2 cos((αs − βs)/2)

≤
πl′(s) cosh(bl(s)/2)

2
∀ q ≤ s ≤ r

⇒

∫ r

q

|αs + βs − π| ds

cosh2(bl(s)/2)
≤

∫ r

q

πl′(s) ds

2 cosh(bl(s)/2)
=

∫ l(r)

l(q)

π dl

2 cosh(bl/2)

=
2π arctan ebl(s)/2

b

∣

∣

∣

∣

r

q

just as computed in the proof of Cor. 16. In case that l′ ≤ 0 on [q, r], deduce
analogously

0 ≥ αs + βs − π ≥ π sin
αs + βs − π

2
≥
πl′(s) cosh(bl(s)/2)

2

⇒

∫ r

q

|αs + βs − π| ds

cosh2(bl(s)/2)
≤

∫ r

q

−πl′(s) ds

2 cosh(bl(s)/2)
=

−2π arctan ebl(s)/2

b

∣

∣

∣

∣

r

q

.

In light of Rem. 11,

∫ ∞

−∞

|αs + βs − π| ds

cosh2(bl(s)/2)
≤

2π arctan ebl(s)/2

b

∣

∣

∣

∣

∞

0

−
2π arctan ebl(s)/2

b

∣

∣

∣

∣

0

−∞

<
2π2

b

if C contains closed geodesics; while for cylinders without closed geodesics even

∫ ∞

−∞

|αs + βs − π| ds

cosh2(bl(s)/2)
≤

2π arctan ebl(s)/2

b

∣

∣

∣

∣

∞

−∞

<
π2

b

holds.

Theorem 18. Let C be a cylinder free of conjugate points and K ≥ −b2. If

lim sups→±∞
l(s)
ln |s| < 1/b, then C is flat.

Proof. For r ≥ 0 define L(r) := max(l(r), l(−r)) and W (r) :=
∫ r

−r V (s) ds. Using
Cor. 16, Lem. 14 states

W 2(r) ≤ 32π

(

V (−r)

∫ l(−r)

0

dt

y−r(t)
+ V (r)

∫ l(r)

0

dt

yr(t)

)

+ 8π2(αr + βr − α−r − β−r)
2

≤
32π2 cosh2(bL(r)/2)

b

(

V (−r) + V (r)
)

+ 8π2(αr + βr − α−r − β−r)
2.

The triangle-inequality yields

(αr + βr − α−r − β−r)
2 ≤ 2π|αr + βr − α−r − β−r|

≤ 2π
(

|αr + βr − π| + |α−r + β−r − π|
)

≤ 2π

(

|αr + βr − π|

cosh2(bl(r)/2)
+

|α−r + β−r − π|

cosh2(bl(−r)/2)

)

cosh2 bL(r)

2
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– which together with V (−r) + V (r) = W ′(r) implies

W 2(r) ≤
32π2

b

(

W ′(r) +
bπ|αr + βr − π|

2 cosh2(bl(r)/2)
+
bπ|α−r + β−r − π|

2 cosh2(bl(−r)/2)

)

cosh2 bL(r)

2
.

Now assume that W (R) > 0 for some R > 0 – so by the monotonicity of W also
W (r) > 0 ∀ r ≥ R. Then

W ′(r)

W 2(r)
≥

b

32π2 cosh2(bL(r)/2)
−

bπ

2W 2(r)

(

|αr + βr − π|

cosh2(bl(r)/2)
+

|α−r + β−r − π|

cosh2(bl(−r)/2)

)

for all r ≥ R; and integration leads to (cf. [BK], Lem 3.12)

1

W (R)
≥

−1

W (r)

∣

∣

∣

∣

∞

R

=

∫ ∞

R

W ′(r) dr

W 2(r)

≥

∫ ∞

R

b dr

32π2 cosh2(bL(r)/2)

−
bπ

2W 2(R)

∫ ∞

R

(

|αr + βr − π|

cosh2(bl(r)/2)
+

|α−r + β−r − π|

cosh2(bl(−r)/2)

)

dr

≥

∫ ∞

R

b dr

32π2 cosh2(bL(r)/2)
−

bπ

2W 2(R)

∫ ∞

−∞

|αs + βs − π| ds

cosh2(bl(s)/2)

>

∫ ∞

R

b dr

32π2 cosh2(bL(r)/2)
−

π3

W 2(R)

according Lem. 17.
But by the assumption, bL(r) < ln r for r > R,R sufficiently large, so

∫ ∞

R

dr

cosh2(bL(r)/2)
>

∫ ∞

R

4 dr

ebL(r) + 3
≥

∫ ∞

R

4 dr

r + 3
= ∞

– a contradiction. So W ≡ 0. Using Lem. 12, this proves

∫

SC

U2(v) dµ(v) =

∫ ∞

−∞

V (s) ds = lim sup
r→∞

W (r) = 0.

Hence U = 0 µ-a.e. and therefore K ≡ 0 by Riccati equation, as K is continuous.
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