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MONODROMY OF CONSTANT MEAN CURVATURE SURFACE

IN HYPERBOLIC SPACE∗

GIAN PIETRO PIROLA†

Abstract. In this paper we give a global version of the Bryant representation of surfaces of
constant mean curvature one (cmc-1 surfaces) in hyperbolic space. This allows to set the associated
non-abelian period problem in the framework of flat unitary vector bundles on Riemann surfaces.
We use this machinery to prove the existence of certain cmc-1 surfaces having prescribed global
monodromy.
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Introduction. The local theory of surfaces of constant mean curvature one (cmc-
1 surfaces) in hyperbolic space is equivalent to the local theory of minimal surfaces
in Euclidean space. If this was originally the main reason for their study (but see
also [4]), the interest in the topic was renewed by the fundamental work of Robert
Bryant [2]. The “Bryant-Weierstrass” formula (see also [3] for the analysis of an
earlier formulation) allows to represent these surfaces by holomorphic mappings. To
explain this, let SL(2,C) be the special linear group and SU(2) the special unitary
group. We identify the quotient SL(2,C)/SU(2) with the hyperbolic 3−space H3.

Letting π : SL(2,C) → H3 be the quotient then [2] a simply connected cmc−1 surface
in H3 arises as S = f(U), where U is an open set of the complex plane, f = π · g and
g : U → SL(2,C) is a holomorphic map. In other words, the entries of the matrix

g(z) =

(

a(z) b(z)
c(z) d(z)

)

,

are holomorphic; moreover they satisfy the Bryant conditions:

det g(z) = 1, det g′(z) = det

(

a′(z) b′(z)
c′(z) d′(z)

)

= 0. (1)

The global theory of cmc-1 surfaces substantially differs from the theory of min-
imal surfaces in flat spaces. In fact, since SU(2) is non abelian, the period problem
cannot be solved by classical potential theory. In this paper we set the Bryant-
Weierstrass representation formula in the framework of unitary bundles on Riemann
surfaces. The period problem becomes then equivalent to the existence of suitable
holomorphic sections of a flat bundle. The holonomy of the flat connection encodes
the monodromy data. To explain this, let X be a Riemann surface and f : X → H3

be a conformal immersion such that f(X) is a cmc-1 surface. Then there are a rank
2 vector bundle F , with flat SU(2) connection ∇, and two holomorphic sections of F,
s1 and s2, satisfying:

det(s1, s2) = 1 , det(∇s1,∇s2) = 0. (2)
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With respect to a unitary basis for the space of harmonic sections of F , the equa-
tions in (2) become the Bryant conditions (1). Fix a point x ∈ X and let Π1(X,x)
denote the fundamental group of X at x. The monodromy map associated to f is a
homomorphism:

m(f) : Π1(X,x) → SU(2),

which is the holonomy of ∇. Conversely, two holomorphic sections of a flat SU(2)-
bundle on X that satisfy the equations (2) define a cmc-1 surface in H3.

In the case of an algebraic complex curve, the flat unitary bundles are equivalent
to certain stable parabolic holomorphic vector bundles. This allows, via a Riemann-
Roch type theorem, to prove the existence of surfaces with fixed monodromy. More
precisely, let Y be a compact Riemann surface and H ⊂ Y be any finite subset, pos-
sibly empty. The result given in 4.3.4 implies (see the end of section 4) the following:

Existence Theorem. Let m : Π1(Y \H) → SU(2) be a group homomorphism.
Assume that the image of m is not an abelian group. Then there is a finite set D ⊂ Y

and an immersion f : Y \ (D∪H) → H3 such that f(Y \ (D∪H)) is a cmc-1 surface
and m(f) : Π1(Y \ (D ∪H)) → SU(2) factors through m. That is m(f) = mj∗ where

j∗ : Π1(Y \ (D ∪H)) → Π1(Y \H)

is induced by the inclusion.

Moreover in 4.3.4 the sections are meromorphic at D∪H, the ends of f. The study
of meromorphic sections satisfying the Bryant conditions (2) turns out to be quite
interesting. Our proof of the existence result relies on a homogenization procedure.
This allows to use intersection theory in projective spaces. We note we are not able
to prove that our surfaces are complete: if we complete them, we are no longer able
to prove they are immersed. This problem should be clarified by an analysis of the
moduli space parametrizing sections that satisfy Bryant conditions. In contrast with
the Euclidean minimal surfaces case (see [11]), an infinitesimal useful description has
not yet been found.

The paper is organized as follows. In section 1, starting from simple considera-
tion on complex Lie groups, we obtain the global version of the Bryant-Weierstrass
representation 1.4.3. In section 2 we analyze the case of a punctured disk and the
induced local parabolic structure. In 2.2.2 we give a simple, but important, remark on
the Laurent series of our sections. In section 3 we recall the correspondence between
stable and flat SU(2) bundle on a smooth complex algebraic curve. We remark the
result of lemma 3.2.3. It provides a properness result in the case of irreducible con-
nections. In section 4, all previous results are collected to prove our main Theorem
4.3.4. A more general setting is considered in section 5, which is in certain sense a
complementary section. We use the unifying language of Higgs fields to consider both
the surfaces introduced in [10] and the periodic cmc-1 case. This allows to formulate
a general non-abelian period problem (see 5.1.1).

It is a great pleasure to thank Maasaki Umehara for his precious advice. I am
really grateful to him. I would like to thank Enrico Schlesinger, who read the manu-
script and suggested many improvements.
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1. Bryant representation.

1.1. Lie groups and flat structures. Let X be a smooth connected Riemann
surface and OX be the holomorphic structure sheaf of X . Let G be a complex Lie
group and let g be its Lie algebra. We denote by J : g → g the map induced by the
complex structure. Let H be a closed (Lie) subgroup of G with Lie algebra h. We
shall assume H transverse to the complex structure of G, that is:

Jh ∩ h = 0g . (3)

Letting π : G→ G/H be the quotient, we consider maps f : X → G/H. We say that
f is h-liftable if there are local holomorphic liftings of f to G. This means that there
exist an open covering {Uα}α∈I of X and holomorphic maps:

gα : Uα → G (4)

such that πgα = f |Uα. For α and β ∈ I we define

gαβ = g−1
α · gβ : Uα ∩ Uβ → H ⊂ G. (5)

Since gαβ is holomorphic and H is transverse to the complex structure, the gαβ are
locally constant and therefore define a H-principal flat bundle on X. If a point p of
X is fixed, loops restriction induces the monodromy homomorphism :

m : Π(X, p) → H ⊂ G.

If V is a complex vector bundle and ρ : G→ GL(V,C) is a complex linear representa-
tion, the ρ(gαβ) are transition functions for a flat complex vector bundle F on X. The
structure group of F reduces to ρ(H). Then F has a natural holomorphic structure
and the composition

θ = ρ ·m : Π(X, p) → ρ(H) ⊂ GL(V ) (6)

is the associated monodromy representation.

1.2. Special and unitary group. Let M(n) denote the vector space of square
complex matrices of order n. In the sequel, unless specified differently, G and H will
denote respectively the special linear group G = SL(n,C) = {g ∈M(n) : det(g) = 1},
and the special unitary group H = SU(n) = {g ∈ SL(n,C) : g · g∗ = e}, where
e ∈ M(n) is the identity matrix and g∗ = tḡ is the adjoint of g. Clearly, H is
transverse to the complex structure of G: h = su(n). By the spectral theorem we
identify the quotient SL(n,C)/SU(n) with

L(n) = {g ∈ SL(n,C) : g = g∗, g > 0},

so that

π(g) = g · g∗.

Let f : X → L(n) be a h-liftable map and let {gαβ} be the SU(n)-cocycle
defined in (5). Let W = Cn be the standard representation of SU(n) and F be the
associated flat complex vector bundle on X. Note that F is a rank n holomorphic
vector bundle on X with trivial determinant. The natural hermitian product on F

will be denoted by <,> . For a fixed v ∈ W , the collection {g−1
β v}β∈I (see formula
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4) defines a holomorphic section of F . Letting H0(X,F ) denote the vector space of
the holomorphic sections of F, we thus obtain an inclusion j : W → H0(X,F ). We let
{vi}i=1,...,n be the canonical basis of W , and set j(vi) = ei. Under the isomorphism
det(F ) = OX we have:

e1 ∧ . . . ∧ en = 1. (7)

If we denote by Fx the fiber of F over x ∈ X the ei(x) give a SL(n,C) basis of Fx at
every point x ∈ X.

Definition 1.2.1. A holomorphic frame {ei}i=1,...,n satisfying (7) will be called
a special frame of F .

To any h-liftable map f : X → L(n) = Sl(n,C)/SU(n) is associated a special
frame e1 . . . en of a SU(n) flat vector bundle F . Conversely, if F is a SU(n,C) flat
vector bundle on X and e1 . . . en is a special frame of F, for every x ∈ X we define

A(x) = (e1(x), . . . , en(x)) ∈ Hom(Cn, Fx).

This gives a holomorphic section A ∈ Hom(Cn, F ). On the other hand, the adjoint
A∗(x) :

< A(x)v, w >x=< v,A∗(x)w >,

provides an antiholomorphic section A∗ of Hom(F,Cn). Then

f(x) = A(x) · A∗(x) ∈ L(n) = Sl(n,C)/SU(n)

defines a h-liftable map f : X → Sl(n,C)/SU(n), the holomorphic local lifting of f
being A(x) written in local coordinates.

Definition 1.2.2. Two special frames {ei}i=1,...,n and {fi}i=1,...,n of F will be
said equivalent if there is U ∈ SU(n) such that Uei = fi i = 1 . . . , n.

Special equivalent frames correspond to the same h-liftable mapping f, thus we
have:

Proposition 1.2.3. There is a one to one correspondence between h-liftable
maps

f : X → SL(n,C)/SU(n)

and equivalence classes of special frames of SU(n)-flat vector bundles of X.

Proof. Clear.
The monodromy (6) gives a map θ : Π(X, p) → SU(n). The group

Gθ = im(θ) (8)

is well defined up to conjugation and determines the flat bundle F.

Definition 1.2.4. The flat bundle F is said reducible (resp. irreducible) if
the corresponding representation θ of the fundamental group is reducible (resp. irre-
ducible).

Remark 1.2.5. There are many Lie subgroups H ⊂ SL(n,C) transverse to the
complex structure, for instance SL(n,R). For our purposes, however, it is useful to
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assume h = su(n), that is, the connected component He of H is the special unitary
group: He = SU(n). In this case K = H/He is a discrete group acting on L(n). We
have L(n)/K = G/H. If f : X → G/H is as before and K acts freely on L(n), by
taking a suitable covering X̃ → X, we may define a periodic lifting (see also section
5) f̃ : X̃ → L(n).

1.3. Flat connections. We fix a flat SU(n) vector bundle F on X with her-
mitian metric <,> . Denote by C∞(F ) the sheaf of smooth sections of F. Let
Ak(F ) = C∞(F ⊗ Ωk

X) be the sheaf of k-forms on F . Using the complex struc-
ture on X we can also consider the space Ap,q(F ) of p, q forms on X ([5]). Let
∇ : Ak(F ) → Ak+1(F ) (see [9]) be the associated unitary flat connection

∇2 = 0,

which preserves the metric

d < s, t >=< ∇s, t > + < s,∇t >

and the complex structure:

∇′′ = ∂̄.

Here ∇′′ denotes the composition of ∇ : C∞(F ) → A1(F ) and the projectionA1(F ) →
A0,1(F ). Let

ker∇ ⊂ C∞(F )

be the sheaf of harmonic sections of F . We have ker∇ ⊂ ker∇′′. We identify as usual
F with the sheaf ker∇′′ of holomorphic sections of F .

Remark 1.3.1. The holonomy of ∇ associated to F is (up conjugation) the group
Gθ (see 8). We say that ∇ is irreducible if the monodromy representation 1.2.4 is
irreducible.

1.4. Bryant condition. We now set G = SL(2,C) and H = SU(2). The quo-
tient L(2) = G/H can be identified with the hyperbolic 3−space H3. By 1.2.3 h-
liftable maps f : X → H3 correspond to special frames of SU(2) vector bundles on
X. We fix a flat SU(2) vector bundle F on X , and denote by ∇ its connection. We
remark that ∇, (see 1.3.1), is reducible if and only if Gθ is abelian and hence, up to
conjugation, Gθ is contained in the subgroup of diagonal matrices.

If s is a holomorphic section of F, s ∈ H0(X,F ), then ∇s is a holomorphic
section of F ⊗ ωX , ∇s ∈ H0(X,F ⊗ ωX). Here ωX denotes the sheaf of holomorphic
differentials on X. Since detF is trivial, det(F⊗ωX) = ω2

X is the sheaf of holomorphic
quadratic differentials of X. If s ∈ H0(X,F ) and t ∈ H0(X,F ) we define:

Ω(s, t) = ∇s ∧∇t ∈ H0(X,ω2
X). (9)

The vanishing of the above differential (9) has an important geometric meaning (see
[2]). Recall that a special frame (see 1.2.1) of F is a pair of holomorphic sections s
and t such that

s ∧ t = 1.
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Definition 1.4.1. We say the special frame (s, t) of F satisfies the Bryant
condition if ∇s ∧∇t = 0. In this case (s, t) will be called a B-frame.

Let (s, t) be B-frame of F . Fix a point x̄ ∈ X and let {U(x̄), z} be a simply
connected open coordinate neighborhood of x̄. Let z : U(x̄) → C be the coordinate
map. We can find, by parallel transport, a harmonic unitary frame h1, h2 of F ,
∇hi = 0, on U(x̄) such that h1 ∧ h2 = 1. We may write:

s = a(z)h1 + c(z)h1; t = b(z)h1 + d(z)h1,

hence

∇s = (a′(z)h1 + c′(z)h2)dz; ∇t = (b′(z)h1 + d′(z)h2)dz.

Here a, b, c and d are holomorphic functions. Define the matrix

A(z) =

(

a(z) b(z)
c(z) d(z)

)

,

and note detA(z) = 1. Taking derivative we may write the Bryant condition as

detA′(z) = det

(

a′(z) b′(z)
c′(z) d′(z)

)

= 0. (10)

Let f : U(x) → H3 (see 1.2.3)

f(z) = A(z) ·A∗(z),

be the associated map. Assume that f is non-constant, then following [2] (see also
[13], [14] and the H. Rosenberg contribution in [6]), we observe that (10) gives the
Bryant-Weierstrass representation of the constant mean curvature one (cmc-1) surface
f(X) ⊂ H3. We have proven:

Proposition 1.4.2. The maps f : X → H3 such that f(X) is a (branched)
cmc-1 surface are in one to one correspondence with equivalence classes (see 1.2.2)
of non-trivial B-frames 1.4.1.

One verifies that, if (s, t) is a B-frame, then f : X → H3 is an immersion if and
only if all the local holomorphic lifting gα : Uα → SL(2,C) are immersions (see [6]).
It follows then that x is a branch point if and only if A′(z(x)) = 0 (see 10). Therefore
f is an immersion if and only if the set of branch points of f

Z(f) = {x ∈ X : ∇s(x) = ∇t(x) = 0}

is empty. We finally state the following (compare with [2]):

Proposition 1.4.3. Global Bryant-Weierstrass representation Let M ⊂
H3 be a cmc-1 immersed surface. Then M = f(X) where X is a Riemann surface,
and f : X → H3 is the h-liftable map associated to a pair of sections s, t of a SU(2)
flat bundle F such that

a) ∂̄s = ∂̄t = 0 (holomorphicity);
b) s ∧ t = 1 (special-frame);
c) ∇s ∧∇t = 0 (Bryant condition);
d) Z = {x ∈ X : ∇s(x) = ∇t(x) = 0} = ∅ (immersion).
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2. The punctured disk: the end of a surface. Let ∆ = {z ∈ C : |z < 1} be
the unit disk and denote by O the origin of ∆. Set ∆∗ = ∆− {O}. We will recall the
classical description of the SU(2) connections of ∆∗ which will be used in our setting.

2.1. Singular connection on ∆. Since the fundamental group of ∆∗ is cyclic,
any SU(2) bundle over ∆∗ is reducible (see 1.2.4 and 1.3.1) and the holonomy map
can be described by a single matrix T (a) :

T (α) =

(

exp(πiα) 0
0 exp(−πiα)

)

where α ∈ R, 0 ≤ α < 1. The holonomy group is Gα = {T (α)n : n ∈ Z}. To construct
a flat bundle with Gα−holonomy, take the trivial bundle

C
2 × ∆ → ∆.

Then we define the singular connection:

∇α = d−
(

α 0
0 −α

)

dz

z
, (11)

that is,

∇α(f, g) = (df − α
f

z
dz, dg + α

g

z
dz).

Let O∆(nO) be the sheaf of meromorphic function on ∆ that are holomorphic on ∆∗

and have at most at most a pole of order n at the origin O of ∆. We have

∇ : O2
∆ → O2

∆(O) ⊗ ω∆.

Its residue

res∇α = Γα =

(

α 0
0 −α

)

(12)

is an operator on C2, the fiber of O, having eigenvalues α and −α, and, if 0 < α < 1,
eigenspaces Lα = {(z, 0) : z ∈ C} and L−α = {(0, z) : z ∈ C}. Let V = C

2|∆∗ be the

restriction on ∆∗ we set

∇α = ∇α|∆∗ .

Note that ∇α is a flat connection on V . The matrix

H(α) =

(

wα 0
0 w−α

)

w = z · z̄ = x2 + y2, z = x+ iy,

defines an hermitian product <,>α on V compatible with ∇α. The holonomy group
of ∇α is Gα. We remark that the metric <,>α extends continuously by 0 on Lα and
gives a natural filtration

0 ( Lα ( C
2
O.

We have:
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Proposition 2.1.1. The connection ∇α is a SU(2) flat connection with
holonomy Gα.

Proof. One has ∇2
α = 0, ∇′′

α = ∂̄ and ∇α is compatible with <,>α .

Remark 2.1.2. Set ˜d = ∧2∇. Then ˜d defines the trivial connection on detE. In
fact, let v1 = (0, 1), v2 = (1, 0) be the constant sections, u = v1∧v2 and fix a function
b. We have

˜d(b · u) = d(b(v1 ∧ v2)) + b(∇α(v1) ∧ v2 + v1 ∧∇α(v2)) =

(db) · (v1 ∧ v2) + b
αdz

z
(−v1 ∧ v2 + v1 ∧ v2) = (db) · u,

that is, ˜d = d.

If {F,∇} is a SU(2) flat bundle on ∆∗ then it is isomorphic to {V,∇α} for some
α, 0 ≤ α < 1. Therefore there is a natural logarithmic extension {E,∇} of {F,∇} to
∆:

∇ : E → E(O) ⊗ ω∆,

where E is isomorphic to the trivial bundle C2 and E(O) = E ⊗O∆(O). Moreover, if
EO is the fiber of E at O, Γ = res∇ ∈ Hom(E0, E0) has eigenvalue α and −α. If the
holonomy is non-trivial, i.e. α > 0, let W = ker(Γ−αId) where id is the identity. The
hermitian product on E extends by 0 on all of W . We have a filtration E0 ) W ) 0.

Definition 2.1.3. Suppose {F,∇} is a SU(2) flat bundle ∆∗ with extension
{E,∇} ≃ {C2,∇α}, 0 ≤ α < 1. If {F,∇} has non trivial holonomy, i.e. α > 0, the
associated local parabolic structure on E is given by:

i) the weight α ∈]0, 1[⊂ R;
ii) the filtration E0 ) W ⊃ 0 where W = ker(Γ − α id) and Γ = res∇α.

2.2. Bryant condition on ∆∗. We write Bryant condition for sections of
{V,∇α}. Let s and t be holomorphic sections of V . Laurent expansion allows to
write s = (a(z), b(z)) and t = (c(z), d(z)) as singular sections of C2. Assume s∧ t = 1,
i.e. ad − bc = 1. Let f : ∆∗ → H3 be the h-liftable map associated to this special
frame 1.2.3.

Definition 2.2.1. We say the frame (s, t) has finite type if s and t extend
meromorphically to ∆. The order of (s, t) is the smallest integer n ≥ 0 such that zns

and znt are holomorphic. We also say the h-liftable associated map (or cmc-1 surface
immersion) has order n.

Denote by Ωα(s, t) - compare formula (9) above - the singular extension of ∇αs∧∇αt

to ∆:

Ωα(s, t) = ∇αs ∧∇αt = det
[

(

a′ b′

c′ d′

)

− α
1

z

(

a −b
c −d

)

]

(dz)2. (13)

Let

H0(∆, ω2
∆(m)) = H0(∆, ω2

∆ ⊗O∆(mO))



SURFACES IN HYPERBOLIC SPACE 659

be the space of holomorphic quadratic differentials on ∆ having a pole of order at
most m at O. If (s, t) has finite type of order n, then Ωα(s, t) = ∇αs ∧ ∇αt ∈
H0(∆, ω2

∆(2n+ 2)).

The following more precise result will play a role in our existence result:

Lemma 2.2.2. Assume s, t ∈ H0(∆,O∆(nO)), and s ∧ t = 1 (or else s ∧ t

holomorphic at O). We have
1. Ωα(s, t) ∈ H0(∆, ω2

∆(2n+ 1)) if 0 < α < 1;
2. Ω0(s, t) ∈ H0(∆, ω2

∆(2n)).

Proof. Write the condition that s ∧ t is holomorphic on the Laurent series of s
and t. Then compare with the Laurent series of equation 13.

Now assume that (s, t) is a Bryant frame, that is, s∧ t = 1 and Ωα(s, t) = 0 1.4.1.
We obtain the:

Bryant equations for the punctured disk:

{

ad− bc = 1
z2(a′d′ − b′c′) + zα(ad′ − a′d− b′c+ bc′) − α2 = 0.

(14)

3. Flat bundles on algebraic complex curves. Non-abelian Hodge-theory
gives correspondences between representations of the fundamental group of algebraic
(or compact Kähler) varieties, that is, flat vector bundles, and algebraic objects:
(parabolic) stable (Higgs) bundles. We will only describe the SU(2) case on algebraic
curves.

3.1. Parabolic and stable bundles. Let Y be a compact Riemann surface. A
real divisor of Y is a finite combination S =

∑

aiPi, ai ∈ R, Pi ∈ Y. We will always
assume that Pi 6= Pj if i 6= j. We say that S is effective if ai ≥ 0 for all i. The support
of S is the divisor

supp (S) =
∑

Pi : ai 6= 0.

A divisor D is simple if D = supp (D). We identify as usual the set ∪n
i=1{Pi} with the

simple divisor D =
∑

Pi (the support is empty if D = 0). If D is simple, X = Y −D

is an algebraic complex curve.

Let E be a holomorphic vector bundle on Y . Fix a simple divisor D =
∑

Pi, let
EP be the fiber of E at P ∈ Y. Set Ei = EPi

if Pi ∈ D. We shall consider only the
parabolic structures, which we call special, connected with the SU(2)−bundles. For
the general case we suggest [8] and also [1].

Definition 3.1.1. A special parabolic vector bundle is given by the data {E,P} ≡
{E,D(P),Wi}, where:

a) E is a rank 2 holomorphic vector bundle such that detE = OY ;
b) D(P) =

∑

i αiPi is a real weight divisor where 0 < αi < 1;
c) Wi is a proper subspace of Ei, 0 ⊂Wi ⊂ Ei, for every i.

We set DP = suppD(P) =
∑

i Pi and dP =
∑

i αi. The trivial parabolic structure on
E is given by the divisor D = 0.

Since in our case the weight sequence at any point has just one element (see [1]),
we have encoded this information into a real divisor. We would like to stress that this
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is possible only in the rank 2 case. Let L ⊂ E be a holomorphic sub-line bundle. Let
Li ⊂ Ei be the fiber of L at Pi ∈ D. We set

{

γi = αi if Li = Wi

γi = −αi if Li 6= Wi.
(15)

and define the real divisor

D(L,P) =
1

2

n
∑

i=1

γiPi,

which has degree degD(L,P) = 1
2

∑n

i=1 γi. We define the parabolic degree par(L) of
L by the formula

par(L) = degL+ degD(L,P). (16)

We give the following:

Definition 3.1.2. A special parabolic bundle {E,P} is called stable (respectively
semistable) if par(L) < 0 (resp. par(L) ≤ 0) for every holomorphic line bundle
L ⊂ E.

Remark 3.1.3. With the trivial parabolic structure on E, we have par(L) =
degL. Since detE = OY , parabolic stability in this case coincides with usual stability,
see [8].

We prove now a standard result we will use in section 4. For any holomorphic
vector bundle K on Y we set hi(K) = dimHi(Y,K).

Proposition 3.1.4. Let {E,P} be a special stable parabolic bundle and L be a
line bundle of degree d.

1. If d ≥ 1
2dP + 2g − 1, then h1(E(L)) = 0.

2. If d ≥ 1
2dP + 2g, then E(L) is generated by its global sections.

Proof.
1. By Serre duality we have to prove that h0(E(L−1) ⊗ ωY ) = 0. Note that

detE = OY and hence that E is self-dual. Assume by contradiction that
s 6= 0 is a global section of E(L−1) ⊗ ωY . It defines a map L ⊗ ω−1

Y → E.

The parabolic degree of the image line bundle is bigger than degL−degωY −
1
2 degD(L,P) ≥ 0. This gives a contradiction.

2. Fix a point P ∈ Y. Consider the exact sequence 0 → E(L(−P )) → E(L) →
E(L)P → 0. We have H1(E(L(−P ))) = 0 by the first part of the proof.
Hence the map H0(Y,E(L)) → E(L)P is surjective.

3.2. Flat bundles and parabolic structures. Let X = Y − D, where Y is
compact and D =

∑

Pi is simple. Let {F,∇} be an SU(2) flat vector bundle on X,

∇ : F → F ⊗ ωX

is flat: ∇2 = 0 and there is an hermitian form <,>, on F compatible with ∇. We
use the local construction described in section 2. Take a coordinate disk Uj around a
point Pj , then consider U∗ = Uj −{Pj}. The restriction of {F,∇} to U∗

j extends (see
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2.1.3) to a singular connection defined on Uj. Repeating this construction at every
point of D, we see there is an extension

(E,∇)

where E is a holomorphic vector bundle on Y, E|X = F,

∇ : E → E(D) ⊗ ωY = E(D) ⊗ ωY . (17)

If Ej is the fiber over Pj ∈ D, the residues define maps:

Γj = Resj(∇) : Ej → Ej ,

and (up to conjugation) exp(−πiΓj) gives the holonomy of ∇ around Pj . The eigen-
values αj and −αj of Γj are real with 0 ≤ αj < 1. We define the weight divisor

∑

i

αjPj .

To define the parabolic structure (see 3.1.1) we set, for αj > 0,

Wi = ker(Γi − αiid).

Since F is a SU(2) flat vector bundle, detF is trivial and ∧2∇ = d is the trivial con-
nection. Arguing as in 2.1.2 we see ∧2∇ extends ∧2∇ and gives a regular connections
on detE, that is, {detE,∧2∇} is a flat unitary line-bundle with trivial monodromy:
detE = OY .

Definition 3.2.1. When {E,P} = {
∑

αiPi,Wi} is the special parabolic vector
bundle associated to {F,∇} we write

τ({F,∇}) = {E,P}. (18)

It follows that {E,P} = τ({F,∇}) is semistable, and stable if the representation
is irreducible. This gives an almost invertible functor:

Theorem 3.2.2. The correspondence

{F,∇} 7→ τ({F,∇}) = {E,P}

defines a one-to one functor between special stable parabolic bundles and irreducible
SU(2)-bundles. Moreover, if {E,P} is semistable parabolic, there is an SU(2)-bundle
{F,∇} such that τ({F,∇}) = {E,P}.

Proof. See [8] and the appendix of [1].

We recall now a basic result we wiil need in section 4.

Lemma 3.2.3. Let s and t be linearly independent meromorphic global sections of
an irreducible SU(2)-bundle {E,∇} (i.e. the associated {E,P} is stable). If s∧t = 0,
then ∇s ∧∇t 6= 0.

Proof. The proof is standard. We assume ∇s∧∇t = 0 and we show that {E,∇}
is reducible. First, since s∧ t = 0, we find a meromorphic function g such that t = gs.

It follows that g is non-constant since s and t are linearly independent. Then one has:

0 = ∇s ∧∇t = ∇s ∧∇(g · s) = (dg)s ∧∇s+ g · ∇s ∧∇s = dg · (s ∧∇s),
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and hence

s ∧∇s = 0

because g is non constant. We obtain that the sub-bundle generated by s is holonomy-
invariant. Then {E,∇} is reducible.

3.3. Algebraic cmc-1 surfaces in H3 . Fix a special semistable parabolic vec-
tor bundle {E,P} where P = {D(P),Wi}, D(P) =

∑

αiPi, and DP = supp (D(P) =
∑

i Pi. Let ∇ : E → E(D) ⊗ ωY be the singular connection (see 3.2.2) whose restric-
tion to Y ′ = Y \D(P) gives an SU(2) flat connection ∇ on F = E|Y ′ . We recall that
detE = OY .

Definition 3.3.1. Two meromorphic sections (s, t) of E define a special mero-
morphic frame of E if s ∧ t ≡ 1.

The meromorphic special frame (s, t) of E provides a holomorphic section of
E2 ⊗OY (S) for a suitable divisor S. We can write:

1 = s ∧ t ∈ H0(Y, det(E2 ⊗OY (S))) = H0(Y,OY (2S)).

Let L ≡ OY (S) be the line bundle associated to S and σ ∈ H0(Y, L) be the
section corresponding to 1. This means that the zero divisor of σ : OY → L is S. Set
v = σ · s and w = σ · t ∈ H0(Y,E(L)). The condition s ∧ t = 1 becomes:

v ∧ w = σ2 ∈ H0(Y, L2); σ 6= 0. (19)

If conversely L is a fixed line bundle and v and w in H0(Y,E(L)) such that v ∧ w =

σ2 ∈ H0(Y, L2) where 0 6= σ ∈ H0(Y, L) then s =
v

σ
and t =

w

σ
define a special

meromorphic frame of E.

Definition 3.3.2. A pair of sections (v, w) in H0(Y,E(L)) defines a special
frame of E(L) if 0 6= v ∧ w = σ2, σ ∈ H0(Y, L).

Let D be a simple divisor and X = Y \D.
Definition 3.3.3. A h-liftable map f : X → H3 will be said to be of finite type

if it is associated to a special meromorphic frame (s, t) of a parabolic bundle {E,P}.
To a special meromorphic frame (s, t), we have associated in (9) a meromorphic

quadratic differential Ω(s, t) = ∇s ∧∇t on Y . We have

Lemma 3.3.4. Let (s, t) be a special meromorphic frame with poles on S. Then
Ω(s, t) has poles on 2S +DP , that is: Ω(s, t) ∈ H0(Y, ω2

Y (2S +DP)).

Proof. It follows from lemma 2.2.2.
The meaning of the above lemma is the following: the condition det(s, t) ≡ 1

forces the quadratic differential Ω(s, t) to have slightly milder singularities. The ho-
mogeneous form of the above quadratic differential is

Θ(v, w) = σ2 · Ω(
v

σ
,
w

σ
) ∈ H0(Y, ω2

Y ⊗ L2(DP)), (20)

v and w in H0(Y,E(L)) and v ∧ w = σ2. We consider the case Ω(s, t) = 0, i.e.
Θ(v, w) = 0 (see 1.4.1).

Definition 3.3.5. With the above notation
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1. a meromorphic special frame (s, t) of E will be said to be a meromorphic
B-frame of E if Ω(s, t) = 0;

2. a special frame (v, w) of E(L) will be called a B-frame of E(L) if Θ(v, w) = 0;
3. a h-liftable non-constant map f : X → H3 associated to a meromorphic B-

frame will be called an algebraic cmc-1 curve of hyperbolic space.

Lemma 3.3.6. Let (s, t) be a meromorphic B-frame of E and S be its polar divisor.
Then D = supp (S) contains the support of the parabolic divisor: D − DP ≥ 0 i.e.
D −DP is effective.

Proof. Use formula 14.

4. Existence results. We fix a compact Riemann surface Y of genus g and a
semistable parabolic bundle {E,P} on Y. The singular connection on E will be ∇, its
support divisor DP and dP = degDP (3.1.1).

4.1. The variety of special frames. Let L be a holomorphic line bundle on
Y of degree d.

Hypothesis 4.1.1. From now on we assume d ≥ 1
2dP + 2g. Riemann-Roch and

3.1.4 imply:
a) h0(L) = d− (g − 1); h0(L2) = 2d− (g − 1).
b) h1(E(L)) = 0, that is, h0(E(L)) = 2d− 2(g − 1).
c) E(L) is generated by its global sections.

We define the basic determinant map φ : H0(Y,E(L)) ×H0(Y,E(L))→H0(Y, L2)

φ(ω1, ω2) = ω1 ∧ ω2. (21)

Let

˜Q = {ϑ ∈ H0(Y, L2) : ϑ = σ2 : σ ∈ H0(X,L)), σ 6= 0}.

Let P = P(H0(X,L2)) be the projective space of H0(X,L2). The locus ˜Q is a ho-
mogenous cone, we let Q be its associated projective locus:

Q = {(ϑ) : ϑ ∈ ˜Q}. (22)

The Veronese embedding (σ) → (σ2) identifies Q and P(H0(X,L)), the projective
space associated to H0(X,L). In particular dim Q = d − g. We recall that (ω1, ω2)

gives rise to a special frame if and only if φ(ω1, ω2) ∈ ˜Q. Let G = G(2, H0(Y,E(L))
be the Grassmannian of 2−planes in H0(Y,E(L)). We have dim G = 4(d− g).

Definition 4.1.2. The locus

F = φ−1( ˜Q)

will be called the locus of special frames of E(L). A plane generated by a special frame,

Π = span(ω1, ω2) : φ(ω1, ω2) ∈ ˜Q, will be called special. Therefore the locus

G = {Π ∈ G : Π is special}

will be called the special planes locus.
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We remark that any basis of a special plane gives a special frame of E(L). We
have then a natural fibration ψ : F → G defined by:

ψ(ω1, ω2) = span(ω1, ω2).

Finally we define the mapping: ̺ : G→Q ⊂ P by

̺(span(ω1, ω2)) = (φ(ω1, ω2)) = (ω1 ∧ ω2). (23)

Let Υ ⊂ G × Q be the closure of the graph Υ̺ of ̺. That is :

Υ = {(Π, ̺(Π)) : Π ∈ G} = Υ̺. (24)

Set T = G × Q. We recall that using the Veronese embedding we have identified Q

and P(H0(Y, L)). Let q1 : T → G and q2 : T → Q be the projections. We still denote
by q1 : Υ → G and q2 : Υ → Q the induced projection maps. We can identify G
with Υ̺, and q1|Υ̺

with ̺. We have q(Υ) = G the closure of G. Set Υ0 = Υ \Υ̺, and

G0 = G − G.
Proposition 4.1.3. Let Π ∈ G0 and (v, w) be any basis of Π. Then : v∧w = 0.

Proof. If Π = span(v, w) ∈ Υ then its determinant v ∧ w = σ2 is a square where
σ ∈ H0(X,L); σ 6= 0 if and only if Π ∈ G.

4.2. Existence of special frames. We show under the hypothesis 4.1.1 that
the locus of special frames of E(L) is not empty. Let v ∈ H0(Y,E(L)) be a fixed
section. Let φv : H0(Y,E(L))→H0(X,L2) be the linear map :

φv(ω) = φ(v, ω) = v ∧ ω.

We have a well-known:

Lemma 4.2.1. If v is a general section then dim ker(φv) = 1, i.e. ker(φv) is
generated by v.

Proof. Since E(L) is generated by global section we can find v ∈ H0(Y,E(L))
without zeros. Assume v ∧ ω = 0, then ω = f · v where f is a meromorphic function
on Y. Since v has no zeros, then f has no poles, and so it is constant.

Denote by Φv = {(a) ∈ P , a = v ∧ ω}. It follows from lemma 4.2.1 that Φv is a
projective space of dimension h0(E(L)) − 2 = 2d− 2g, that is, Φv has codimension g
in P. Since Q is a projective subvariety of codimension g of P, we have proved:

Proposition 4.2.2. The locus Qv = Q∩Φv is projective of codimension e ≤ d+g.
That is, dim Qv ≥ d− 2g and, in particular, (by 4.1.1) it is not empty.

A dimension count gives:

Corollary 4.2.3. The loci F and G are not empty and moreover:

dimF ≥ 3d− (4g − 4) , dimG ≥ 3d− 4g.

Proof. The algebraic locus F ⊂ H0(Y,E(L))2 is not empty by 4.2.2. Let pi :
H0(Y,E(L))2→H0(Y,E(L)), i = 1, 2 be the projections. Then p1(F) contains the
general point v and so an open Zariski set. Finally p2(p

−1
1 (v) ∪ F) is the locus

Γv = {w ∈ H0(Y,E(L)) : (v ∧ w) = (φv(w)) ∈ Q} = φ−1
v (Qv).

Since (see 4.2.2) the codimension Qv is d we have dimension dim Γv = d− 2g+ 2. We
finally obtain dimF = dim Γv + h0(E(L)) = d− 2g+ 2 + 2d− 2g+ 2 = 3d− 4g+ 4.
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4.3. The variety of B-frames . Now we will study the loci defined by the
Bryant condition (see 1.4.1 ). If (v/σ,w/σ) is a special frame we defined (see 20) :

Θ(v, w) = σ2 · ∇(
v

σ
) ∧∇(

w

σ
)

where v∧w = σ2 and 0 6= σ ∈ H0(Y, L)). We also recall (see 4.1.2) that the locus of the
special frames is F = {(v, w) ∈ H0(E(L))×H0(E(L)) : v∧w = σ2, σ ∈ H0(L), σ 6= 0}.

Since Θ(v, w) is invariant under the changing of sign in σ, it defines a map:

Θ : F→H0(Y, ω2
Y (DP)). (25)

The equation Θ(v, w) = 0 holds (see 3.3.5) for the B-frame (v, w) of E(L). We also
defined ψ : F → G, ψ(ω1, ω2) = span(ω1, ω2). Accordingly we give the following:

Definition 4.3.1. A special plane Π ∈ G ⊂ G will be called a B plane if it is
generated by a B-frame. We set:

a) B = Θ−1(0) ⊂ F ≡ the locus of B-frames.
b) M = ψ(B) ⊂ G ≡ the locus of B-planes.

We remark that any basis of a B-plane is a B-frame of E(L).

Remark 4.3.2. The locus of the special planes G is not compact in general, and
moreover (see 23) ̺ : G → Q does not extend to the closure G ⊂ G. We notice however
that if the condition v ∧ w = σ2 is dropped formula (20) is well defined for σ 6= 0.

We defined T = G × Q with projections q1 : T → G and q2 : T → Q. Let SG be
the tautological rank 2 vector bundle of G, that is:

SG = {(Π, v) ∈ G ×H0(Y,E(L)) : v ∈ Π}.

The line bundle
∧2

SG generates the Picard group of G ([5] chapter 2) and its dual
is ample. Let OQ(−1) be the tautological line bundle of Q = P(H0(X,L)). The

pull-backs: M = q∗1(
∧2

SG) and N = q∗2(OQ(−1)) are line bundles on T. Define the
trivial bundles

V = H0(Y, ω2
Y L

4(DP )) × T, W = H0(Y, ω2
Y L

2(DP )) × T.

Given v and w in H0(Y,E(L)) the formula

Ψ(v, w, σ) = σ4∇ v

σ
∧∇w

σ
(26)

is well defined if 0 6= σ ∈ H0(X,L) and Ψ(v, w, σ) ∈ V. Letting λ ∈ C, A ∈ GL(2,C),
we observe the homogeneity:

Ψ(Av,Aw, λσ) = λ4σ4∇Av

λσ
∧∇Aw

λσ
= detAλ2Ψ(v, w, σ).

This defines a bundle map:

Ψ : M ⊗N2 → V. (27)

Now we study the restriction of Ψ to Υ. First we see by 3.3.4 that on Υ̺ we have

Ψ(σ, v, w) = σ2Θ(v, w)
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where Θ(v, w) ∈ H0(Y, ω2
Y L

2(DP )). Then the locus

Γ = {(span(v, w), (σ)) ∈ T : Ψ(σ, v, w) = σ2η, η ∈ H0(Y, ω2
Y L

2(DP ))}

is closed and Υ̺ ⊂ Γ, so that Υ ⊂ Γ. In fact if Π = span(v, w) ∈ Υ we have:

Ψ(v, w, σ) ∈ σ2
W ⊂ V.

This observation is essentially the content of 3.3.4. We will denote with WΓ and MΓ

the restriction of W and M to Γ. Let, for σ 6= 0,

Ψ(v, w, σ) = σ−2 Ψ(v, w, σ).

We have the homogeneity:

Ψ(Av,Aw, λσ) = det(A)Ψ(v, w, σ).

Therefore the restriction of Ψ to Γ defines a bundle map Λ : MΓ → WΓ, and this
bundle map is well defined on Υ ⊂ Γ. Let M |Υ = ˜M be the restriction of M to Υ
and denote for sake of notation by WΥ the restriction of W to Υ. It follows that the
restriction of Ψ to Υ defines a vector bundle map:

Λ : ˜M → WΥ. (28)

In the case of irreducible monodromy the boundary loci G0 and Υ0 do not intersect
the zeroes of Λ. In fact we have the following:

Lemma 4.3.3. Assume that E is (parabolic) stable. Then ZΛ ∩ Υ0 = ∅. In
particular the projection q1 = ̺ : Υρ → G defines an isomorphism between ZΛ and
the locus M of B planes.

Proof. It is the content of lemma 3.2.3.
Now we state our existence result:

Theorem 4.3.4. Assume that {E,∇}, is associated to an irreducible SU(2)-flat
representation, i.e., {E,P} is stable. We set degDP = dP . Let L be a holomorphic
line-bundle of degree degL = d. Suppose

d ≥ 7g − 3 + dP .

Then the locus M of B-planes of E(L) is a nonempty algebraic set of dimension
a ≥ d− 7(g − 1) − dP − 4.

Proof. By 4.3.3 we have to show that ZΛ is not empty of dimension a ≥ d−7(g−
1)− dP . We consider Λ ∈ H0(WΥ ⊗ (˜M)−1). Since by 4.2.3 dim Υ = dimG ≥ 3d− 4g

it is enough to show the top Chern class ctop of WΥ ⊗ (˜M)−1 is not zero. Since WΥ

is trivial we have

ctop = c1(˜M−1)r,

where r = 2d + 3g − 3 + dP is the rank of WΥ. Let i : Υ →֒ G be the inclusion. It
follows then

ctop = i∗(q∗1(h)r),
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where h = c1(∧2SG)∗ is positive since ∧2S∗
G

is ample. We compute the cohomology
class µ = q1∗i∗(ctop) of G. First we obtain:

i∗ctop = i∗i
∗(q∗1(h)r) = q∗1(hr) · [Υ],

where [Υ] denotes the class of the variety Υ ⊂ T. Similarly we let [G] be the class of
G in G. Then we get

µ = q1∗q
∗
1(hr) · [Υ] = hr · q1∗[Υ] = hr · [G] 6= 0

since h is positive and the dimension of G is larger than r. It follows that ctop 6= 0,
which proves the theorem.

Proof of the Existence Theorem. One observes that 4.3.4 provides B-meromorphic
frames of E in the case of any irreducible monodromy on Y − D. If (s, t) is such a
B-frame, let Ps and Pt be the polar divisors of s and t respectively. Let Z = {z ∈ Y :
∇s(z) = ∇t(z) = 0} the branch points divisor. Let H = Ps ∪ Pt ∪ Z be the union.
We define a cmc-1 immersion (see 1.4.3) f : Y \ (D ∪H) → H3. By construction the
monodromy of f is the monodromy of E.

5. Higgs fields and the period problem. In this section we use the special
frames to obtain a standard form for the flat connection. Then the period problem is
translated into a holonomy problem. The language of Higgs fields (see [7] and [12])
allows, in particular, to discuss the condition given in [10].

5.1. Higgs fields associated to h-liftable map. Let G = SL(n,C) and let
H be a closed subgroup of G. Let He be the connected component of H containing
e: we assume He = SU(n). Let f : X → SL(n)/H be h-liftable, {F,∇} be the
associated flat bundle. The associated special frame, e1, . . . , en, gives a holomorphic
trivialization of F :

F ≡f On
X .

Since f is h-liftable, we have ∇ei ∈ H0(X,ωX)n. We write

∇ei = (ω1,i, . . . ωn,i).

Transposing we obtain a matrix of 1.0-forms.

Θ =t(∇e1, . . . ,∇en) = (ωi,j) (29)

We will identify Θ with the associated map Θ : F → F ⊗ ωX , that is Θ ∈
H0(X,Hom(F, F ⊗ ωX)). We may write

∇ = d+ Θ.

The decomposition ∇ = D′ +D′′ gives D′ = ∂ + Θ and D′′ = ∂. The condition that
∇ is special translates into the vanishing of the trace of Θ. In fact one has

0 = (∧n∇)(e1 ∧ . . . ∧ en) = (

n
∑

i=1

ωi,i)e1 ∧ . . . ∧ en,

and hence

n
∑

i=1

ωi,i = 0.
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It follows that Θ is a sl(n,C) matrix.

Definition 5.1.1. The matrix Θ in (29) will be called the Higgs field associated
to f .

Let MΘ ⊂ SL(n,C) be the holonomy group of ∇. The topological closure KΘ =
MΘ of MΘ in SL(n,C) (by Cartan theorem) defines a Lie-subgroup. By construction
one has that the connected component of KΘ through e is contained in H = SU(n).

Conversely given on F = On
X a connection ∇ = d+Θ where Θ = (ωi,j) is a tensor

of type (1, 0), we have:
1. ∇2 = 0 if and only if ∂(Θ) = 0 (i.e. the ωi,j are holomorphic).
2. ∇ is a SL(n,C) connection if and only if the trace of Θ vanishes, i.e.

∑n

i=1 ωi,i = 0.
Given a holomorphic trace-free Higgs field Θ, let ∇Θ = d + Θ be the associated

connection. Let MΘ be its holonomy group and KΘ be its closure in G. We give the
following:

Definition 5.1.2. (Non abelian period problem): We say that Θ satisfies
the period problem if the connected component of KΘ through e is contained in SU(n).

We may state:

Proposition 5.1.3. Assume Θ satisfies the period problem of 5.1.2. Then the
standard basis of On

X defines a h-liftable map f : X → G/H where H ⊃ KΘ and
He = SU(n).

Proof. For any simply connected open set U of X fix flat unitary basis f1, . . . fn

of Cn consider the matrix A = (ai,j) such that ei =
∑

j ai,jfj. Then define f(x) =
A(x) ·A∗(x) mod H for x ∈ U.

Remark 5.1.4. It appears difficult to provide conditions in order to solve the
above period problem.

5.2. Higgs fields and Maurer-Cartan form. We consider again a h-liftable
map f : X → G/H where G = SL(n,C) and He = SU(n) as in the previous section.
We let Θ be the Higgs field associated to f (see 5.1.1) and ∇ = d+Θ be the associated
flat connection on F = Cn. Let {U, z} be a simply connected coordinate open set.
Using the canonical frame of Cn, we set E = (e1, . . . , en). As in proposition 5.1.3, we
have matrices A(z) such that

f(x) = A(z(x)) · A∗(z(x)) mod H

for x ∈ U. Moreover A−1E = R = (f1, . . . fn) is a unitary frame of F |U . Taking
derivative in the equation A · R = E we find

dA ·R = ∇(A ·R) = ∇E = θ ·E = θA ·R

that is:

Θ = dA · A−1. (30)

Now comparing with [10, section 3] we see that Θ is pull-back to U of the right
invariant Maurer- Cartan form of G = SL(n,C), that is:

Proposition 5.2.1. The Higgs field Θ is the pull-back of the right- invariant
Maurer Cartan form to X.
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If we now consider the matrix of quadratic forms:

Θ2 = (βi,j) =

n
∑

k=1

ωi,kωk.j

we have the following generalization of the Bryant condition:

Kokubu-Takahashi-Umehara-Yamada condition (see [10, 3.3])

trace(Θ2) =

n
∑

k=1

βk,k =
∑

i,k

ωi,kωk,i = 0. (31)

We specialize formula (31) to the case n = 2 to get the Bryant condition (1.4.1),
that is ∇e1 ∧∇e2 = 0. If we write the sl(2) matrix:

Θ =

(

α γ

β −α

)

we obtain ∇e1 = αe1 + βe2 and ∇e1 = γe1 − αe2, and hence

∇e1 ∧∇e2 = −α2 − βγ = detΘ.

Then the frame satisfies the Bryant condition if and only if detΘ = 0. That is Θ is
nihilpotent: Θ2 = detΘI or equivalently the trace of Θ2 vanishes.

Remark 5.2.2. Cousin’s representation of a (local) minimal surface in Euclidean
space is obtained, when detΘ = 0, taking ω1 = α, ω2 = i(β + γ) and ω3 = i(β − γ).
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