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RATIONALLY CONNECTED VARIETIES AND LOOP SPACES∗

LÁSZLÓ LEMPERT† AND ENDRE SZABÓ‡

Abstract. We consider rationally connected complex projective manifolds M and show that
their loop spaces—infinite dimensional complex manifolds—have properties similar to those of M .
Furthermore, we give a finite dimensional application concerning holomorphic vector bundles over
rationally connected complex projective manifolds.
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0. Introduction. Let M be a complex manifold and r = 0, 1, . . . ,∞. The space
Cr(S1,M) of r times continuously differentiable maps x : S1 →M , the (free) Cr loop
space of M , carries a natural complex manifold structure, locally biholomorphic to
open subsets of Banach (r < ∞) resp. Fréchet (r = ∞) spaces, see [L2]. The same
is true of “generalized loop spaces”—or mapping spaces— Cr(V,M), where V is a
compact Cr manifold, possibly with boundary; when r = 0, V can be just a compact
Hausdorff space. A very general question is how complex analytical and geometrical
properties of M and its loop spaces are related.

Our contribution to this problem mainly concerns rational connectivity. A com-
plex projective manifold is a complex manifold, biholomorphic to a connected sub-
manifold of some projective space Pn(C). Such a manifold M is called rationally
connected if it contains rational curves (= holomorphic images of P1(C)) through any
finite collection of its points. This is equivalent to requiring that for a nonempty open
U ⊂ M ×M and any (p, q) ∈ U there should be a rational curve through p and q.
For the theory of rationally connected varieties see [AK, Kl1, KMM].

Projective spaces, Grassmannians, and in general complex projective manifolds
birational to projective spaces are rationally connected. In a sense rationally con-
nected manifolds are the simplest manifolds; at the same time, general complex pro-
jective manifolds can be studied through rationally connected ones by the device of
maximally rationally connected fibrations [Kl1, Theorem IV.5.4].

Here is a brief description of the results presented in this paper. For more com-
plete formulations and for background the reader is referred to Section 1. First we
prove that loop spaces Cr(S1,M) of rationally connected complex projective mani-
folds M contain plenty of rational curves, but in some other mapping spaces Cr(V,M)
rational curves are rare. Then we shall discuss holomorphic functions and, more gen-
erally, holomorphic tensor fields. Extending earlier results of Dineen–Mellon and the
first author [DM,L2] we show that on mapping spaces of rationally connected com-
plex projective manifolds M holomorphic functions are locally constant, and the same
is true on submanifolds of Cr(V,M) consisting of so called based maps. This infi-
nite dimensional result has the finite dimensional corollary that holomorphic linear
connections on vector bundles E → M are trivial.
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Next we consider the “trivial” component of Cr(V,M) consisting of contractible
maps. We show that the constancy of holomorphic functions on this component al-
ready follows once we knowM is compact, connected, and all contravariant symmetric
holomorphic tensor fields on M (of positive weight) vanish (i.e., the only holomorphic
section the symmetric powers of T ∗M admit is the zero section). This property is
weaker than rational connectivity. In fact, rational connectivity implies that con-
travariant holomorphic tensor fields, symmetric or not, vanish, see [AK, Theorem 30];
and conjecturally the converse, “Castelnuovo’s criterion”, is also true for complex pro-
jective manifolds. On the other hand, Kollár pointed out in an email to us that simply
connected Calabi–Yau manifolds are not rationally connected, but all contravariant
symmetric holomorphic tensor fields on them are zero.—Finally we prove that for
compact connected M , if on M all contravariant holomorphic tensor fields of positive
weight vanish then the same holds on the trivial component of Cr(V,M).

Acknowledgement. The authors are grateful to J. Kollár and Z. Szabó for their
comments on certain aspects of this paper. We also acknowledge suggestions by the
referees, some of which led us to modify our original presentation.

1. Background and results.

1.1. Mapping spaces. Fix r = 0, 1, . . . ,∞ and a compact manifold V of class
Cr, possibly with boundary (or just a compact Hausdorff space, when r = 0). We
start by quickly describing the complex manifold structure on the mapping space
X = Cr(V,M) of a finite dimensional complex manifold M . For generalities on
infinite dimensional complex manifolds, see [L1, Section 2]. We need

Lemma 1.1. There are an open neighborhood D ⊂M ×M of the diagonal and a
C∞ diffeomorphism F between D and a neighborhood of the zero section in TM with
the following properties. Setting Dw = {z ∈ M : (z, w) ∈ D} and Fw = F (·, w), for
all w ∈M we have
(a) Fw maps Dw biholomorphically on a convex subset of TwM ;
(b) Fw(w) ∈ TwM is the zero vector;
(c) dFw(w) : TwD

w = TwM → TwM is the identity.
(In (c) we have identified a tangent space to the vector space TwM with the vector

space itself.)

Proof. When M is a convex open subset of some Cn so that TM is identified with
Cn ×M , one can take D = M ×M and F (z, w) = (z − w,w). A general M being
locally biholomorphic to convex open subsets of Cn, one obtains a covering of M by
open sets W and C∞ maps FW : W ×W → TW that satisfy (a, b, c) for w ∈ W (with
Dw replaced by W ). If {χW }W is a corresponding C∞ partition of unity on M , one
can take as F (z, w) the restriction of

∑

W

χW (w)FW (z, w)

to an appropriate neighborhood of the diagonal.
Given D and F , define the complex structure on X = Cr(V,M) as follows. A

coordinate neighborhood of y ∈ X consists of those x ∈ X for which (x(t), y(t)) ∈ D
for all t ∈ V . This neighborhood is mapped to an open subset of Cr(y∗TM), the
space of Cr sections of the induced bundle y∗TM → V , by the map

ϕy : x 7→ ξ, ξ(t) = F (x(t), y(t)).



RATIONALLY CONNECTED VARIETIES AND LOOP SPACES 487

It is straightforward that the local charts ϕy are holomorphically related and so define
a complex manifold structure on Cr(V,M); also, this structure is independent of the
choice of D and F . Both facts can be verified as in [L2, p. 38].

The above construction is slightly simpler then the one in [L2, Section 2] (but it
defines the same complex structure). Its drawback is that it does not generalize to
infinite dimensional manifolds M , that may not admit C∞ partitions of unity. By
contrast, the construction in [L2] does generalize, since it uses partitions of unity on
V only.

Lemma 1.2. Let N be a (finite dimensional) complex manifold, and with a map
h : N → Cr(V,M) associate the map

g : N × V →M, g(s, t) = h(s)(t).

Then h is holomorphic if and only if g is Cr and g(·, t) is holomorphic for each t ∈ V .

Proof. We sketch a proof for r > 0. When M and N are open subsets of Cm, resp.
Cn, and V is the closure of a domain with Cr boundary in Rp, the manifold Cr(V,M)
is an open subset of the Fréchet space Cr(V,Cm). In this case the “if” direction
follows from Morera’s theorem. Indeed, if ∆ ⊂ N is a holomorphically embedded
closed disc and ζ a holomorphic coordinate along ∆, then

∫

∂∆

h(ζ) dζ =

∫

∂∆

g(ζ, ·) dζ = 0;

since h is obviously continuous, it must be holomorphic. In the “only if” direction we
only verify that g is Cr. Let f denote a partial derivative of g along V , of some order
≤ r. This is a continuous function, holomorphic along {t} × N , t ∈ V , for it is the
locally uniform limit of certain difference quotients that do have these properties. It
follows that partial derivatives of f along N , of any order, are also continuous, since
they can be represented by an integral according to Cauchy. Hence g is indeed Cr.

The general case can be reduced to the one just discussed by shrinking M , N ,
and V to coordinate neighborhoods.

A closed A ⊂ V and x0 ∈ X determine a subspace of “based” maps. Denoting
the r–jet of x by jrx, the subspace in question is

(1.1) Z = Cr
A,x0

(V,M) = {x ∈ X : jrx|A = jrx0|A},

a complex submanifold of X . As explained in [L2, Sections 2,3], for x ∈ X the tangent
space TxX is naturally isomorphic to Cr(x∗TM); if x ∈ Z, under this isomorphism
TxZ ⊂ TxX corresponds to

(1.2) Cr
A(x∗TM) = {ξ ∈ Cr(x∗TM) : jrξ|A = 0}.

Up to this point TX , TZ are real vector bundles. However, as in finite dimensions,
the local charts endow the real tangent bundles of X and Z with the structure of a
locally trivial holomorphic vector bundle, and we shall always regard TX and TZ as
such.

1.2. Rational connectivity. While our principal interest is in complex mani-
folds, we will have to deal with projective (or quasiprojective) varieties defined over
fields other than C as well. Then we shall use the language of algebraic geometry, in
particular the topology implied will be Zariski’s. If M is a variety defined over a field
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k, we write M(k) for its points over k. When k is algebraically closed we shall ignore
the difference between M and M(k), so, for instance, a smooth projective variety M
over C will be thought of as a complex projective manifold determined by M(C).

Definition 1.3. Let M be a smooth projective variety defined over a field k of
characteristic 0. When k is algebraically closed, M is rationally connected if there is
a morphism f : P1 → M defined over k (i.e., a rational curve) such that the induced
bundle f∗TM is ample: f∗TM ≈

⊕

OP1(dj), with all dj > 0. In general, M is ratio-
nally connected if it is such when considered over some (and then over an arbitrary)
algebraically closed field K ⊃ k.

Over a field of positive characteristic the above property defines the so called
separably rationally connected varieties. When k = C, rational connectivity is equiv-
alent to requiring that there be a nonempty open U ⊂ M(C) ×M(C) such that for
(p, q) ∈ U there is a rational curve through p and q; and also to requiring that through
any finite collection of points in M(C) there be a rational curve. For all this, see [AK,
Definition–Theorem 29]. (In [AK, Definition-Theorem 29], unlike in Definition 1.3
above, it is assumed that k is uncountable, but it is for the other five definitions—this
particular definition works for all k. By the way, all our fields in this paper contain
the complex numbers, so they are all uncountable.)

1.3. Rational connectivity of loop spaces.

Theorem 1.4. Let M be a rationally connected complex projective manifold and
V a one real dimensional manifold (always compact!). Then the space Cr(V,M) is
rationally connected in the sense that for any n ∈ N there is a dense open O ⊂
Cr(V,Mn) such that through any n–tuple of maps (x1, . . . , xn) ∈ O there is a rational
curve, i.e., a holomorphic image of P1(C), in Cr(V,M).

The theorem would not hold for higher dimensional V . First, the space Cr(V,M)
may be disconnected, which precludes rational connectivity. But even within compo-
nents rational curves will be scarce, typically. Let us call the component of Cr(V,M)
containing constant maps the trivial component.

Theorem 1.5. If V is an oriented closed connected surface, and h : P1(C) →
Cr(V,P1(C)) holomorphic, then h is constant or else maps into the trivial component
of Cr(V,P1(C)).

We do not know whether in the trivial component generic n–tuples can be con-
nected with rational curves; but at least a nonempty open set of n–tuples can be.
We shall not prove this, but it follows along the lines of Section 2 (with Lemma
2.2 slightly modified), even for arbitrary V and the mapping space Cr(V,M) of a
rationally connected M instead of P1(C).

1.4. Holomorphic functions. A simple consequence of Theorem 1.4 is that on
loop spaces of rationally connected complex projective manifolds holomorphic func-
tions are constant. It turns out that this generalizes to spaces Z of based maps, see
(1.1), even though a typical Z will not contain compact subvarieties, let alone ratio-
nal curves according to [L2, Theorem 3.4]. For the rest, we consider general mapping
spaces as introduced in 1.1.

Theorem 1.6. If M is a rationally connected complex projective manifold, A ⊂ V
is closed, and x0 ∈ Cr(V,M), then holomorphic functions Z = Cr

A,x0
(V,M) → C are

locally constant.



RATIONALLY CONNECTED VARIETIES AND LOOP SPACES 489

The case when M is a projective space was known earlier, see [DM, Theorems 7,
11] for r = 0 and [L2, Theorem 4.2] in general. The theorem has the following

Corollary 1.7. If a holomorphic vector bundle (possibly with fibers Banach
spaces) E → M over a rationally connected complex projective manifold admits a
holomorphic (linear) connection, then both E and the connection are trivial.

In fact, in Section 4 we shall prove a rather more general result. However, some-
thing far more general may also be true that has nothing to do with rational connectiv-
ity. We conjecture that Corollary 1.7 is true for all simply connected compact Kähler
manifolds M .—As Kollár noted, when E has finite rank and M is not only rationally
connected but Fano, Corollary 1.7 immediately follows from [AW, Proposition 1.2].
Holomorphic connections have been studied first by Atiyah [A]. Among other things
he proved a Lefschetz type theorem on generic hyperplanes, and completely classified
holomorphic connections over Riemann surfaces in terms of the fundamental group.

1.5. Holomorphic tensor fields. All tensor fields will be contravariant, with-
out explicit mentioning. Over a finite dimensional manifold N these tensor fields are
sections of tensor powers of T ∗N . To avoid, in the infinite dimensional case, dealing
with the ambiguous notion of tensor product of Banach or Fréchet spaces/bundles, we
simply define a holomorphic tensor field on a complex manifold N as a holomorphic
function

g : T jN = TN ⊕ . . .⊕ TN → C,

multilinear on each fiber. The integer j = 0, 1, . . . is the weight of the tensor field;
a tensor field of weight 0 is just a holomorphic function on N . If g is symmetric on
the fibers we speak of a symmetric tensor field. Examples of symmetric holomorphic
tensor fields are the zero fields (for all weights) and the constant fields of weight 0.
We call these fields trivial, and we shall be interested in manifolds M on which all
holomorphic tensor fields are trivial (this implies M is connected). As said earlier,
rationally connected complex projective manifolds are of this kind.

In the next theorem M can be a complex manifold locally biholomorphic to open
sets in Banach spaces.

Theorem 1.8. Let M be a complex manifold and Y ⊂ Cr(V,M) a connected
neighborhood of the space of constant maps.

(a) If on M all symmetric holomorphic tensor fields are trivial, then holomorphic
functions on Y are constant.

(b) If on M all holomorphic tensor fields are trivial, then the same holds on Y .

As already said, for complex projective manifolds having only trivial holomorphic
tensor fields is conjecturally equivalent to rational connectivity. According to Theo-
rems 1.4, 1.8, both properties are inherited by loop spaces, a fact we consider a mild
additional evidence in favor of the conjecture.

2. Rational connectivity of loop spaces. In this section we shall prove The-
orem 1.4. The key is the following.

Lemma 2.1. Let k be a field of characteristic zero and M a smooth, rationally
connected projective variety over k. Given distinct points p1, . . . , pn ∈ P1 defined over
k, there are a smooth variety W and a morphism f : P1 ×W → M over k such that
the map

(2.1) ϕ = (f(pν , ·))
n
ν=1 : W →Mn
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is a surjective submersion on a dense open U ⊂Mn and its fibers are irreducible.

Proof. This is more or less a reformulation of [KSz, Theorem 16]. We give here a
short, standard argument. For more details, we refer to the Internet: [LSz].

At the price of replacing M by P3 ×M it can be assumed that dim(M) ≥ 3,
and we may also assume n ≥ 3, and p1 = ∞ ∈ P1. The n-tuples of points on M
are parameterized by Mn, hence the generic n-tuple is defined over the function field
K(Mn). We shall apply [KSz, Theorem 16] to M over the field K(Mn), and get
a family of smooth rational curves (defined over K(Mn)) going through the generic
n-tuple, parameterized by a smooth, geometrically irreducible variety. This amounts
to having a dense open subset U ⊂ Mn, a family ω : W → U of smooth, irreducible
varieties, a subfamily R

π
→W of W ×M →W , whose fibers Rw are smooth rational

curves in {w} ×M , and n sections qi : W → R such that the composite morphism

W
(q1,...qn)
−→ Rn π×···×π

−→ Mn is just ω. We shrink U and W so that for w ∈ W the
points qi(w) ∈ Rw are disjoint, and choose coordinates on Rw such that q1(w) = ∞,
q2(w) = 0 and q3(w) = 1. Then there is a unique polynomial morphism P1 → Rw of
degree n−2 which sends each pi to qi(w). These morphisms glue together to a global
morphism P1 ×W → R, and the composition f : P1 ×W → R → M will satisfy the
condition of the lemma. Indeed, ϕ is just our ω, hence it has all required properties.

Next we need a result from differential geometry. Let V be a one dimensional
compact manifold.

Lemma 2.2. Let ϕ : W → U be a surjective C∞ submersion between finite di-
mensional C∞ differential manifolds, whose fibers are connected. For any r and
y ∈ Cr(V, U) there is such an η ∈ Cr(V,W ) that ϕ ◦ η = y.

Proof. First observe that any compact subset C of a fiber ϕ−1(u) has an open
neighborhood W0 ⊂W such that ϕ|W0 is a trivial fiber bundle with connected fibers.
To verify this we can assume U = Rm and u = 0. A partition of unity argument gives
a connection on W , i.e. a subbundle H ⊂ TW complementary to the tangent spaces of
the fibers of ϕ. Fix a relatively compact, connected open neighborhoodG ⊂ ϕ−1(u) of
C. Connect an arbitrary v ∈ Rm with 0 ∈ Rm by a curve γ consisting of m segments,
the µ’th segment parallel to the µ’th coordinate axis. If v is in a sufficiently small
neighborhood U0 ⊂ Rm of u and c ∈ G then γ can be uniquely lifted to a piecewise
smooth curve Γ, tangent to H and starting at c. Let ψ(c, v) denote the endpoint of
Γ. Then ψ is a fiberwise diffeomorphism of G × U0 on an open neighborhood W0 of
C, as claimed.

It follows that there are closed arcs A1, . . . , An covering V and Cr maps ην : Aν →
W such that ϕ ◦ ην = y. We show that there is a Cr map η : A1 ∪A2 →W such that
ϕ ◦ η = y. Indeed, A1 ∩A2 is empty or consists of one or two components. In the first
case η = ην on Aν , ν = 1, 2, will do. Otherwise choose points bi from each component
of A1 ∩ A2; thus A1 ∪ A2\{bi}i is the disjoint union of two arcs Ãν ⊂ Aν , ν = 1, 2.
Using the neighborhoods of C = Ci = {η1(bi), η2(bi)} from our initial observation, it
is straightforward to construct the required η; it will agree with ην on Ãν , away from
a small neighborhood of bi.

Now one can continue in the same spirit, fusing more and more arcs, eventually
to obtain the η of the lemma.

Proof of Theorem 1.4. Fix distinct p1, . . . , pn ∈ P1(C) and apply Lemma 2.1, with
k = C. We obtain a holomorphic map f : P1(C) ×W → M of complex manifolds so
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that

ϕ = (f(pν , ·))
n
ν=1 : W →Mn

is a surjective submersion on a Zariski dense open U ⊂ Mn, with irreducible, hence
connected fibers (see [M, 4.16 Corollary]). Since the complement of U is of real
codimension 2 in Mn, O = Cr(V, U) is dense in Cr(V,Mn). Given x1, . . . , xn ∈
Cr(V,M) such that y = (x1, . . . , xn) ∈ O, there is a holomorphic map h : P1(C) →
Cr(V,M) with h(pν) = xν , ν = 1, . . . , n. Indeed, using Lemma 2.2 one finds η : V →
W such that ϕ ◦ η = y. Setting

F (p, t) = f(p, η(t)), p ∈ P1(C), t ∈ V,

the map h given by h(p) = F (p, ·) will do.

3. The Proof of Theorem 1.5. The proof we give here is simpler than our
original proof, that used more complex geometry. It depends on the following topo-
logical observation. If g : S2 × V → S2 is continuous, then either g(a, ·) or g(·, b) is
homotopic to constant, for all a ∈ S2, resp. b ∈ V . This was pointed out to us by
Kollár and Z. Szabó in the case V = S2, but an even simpler argument than theirs
takes care of the general statement. Indeed, pull back a generator of H2(S2) by g
to a class w ∈ H2(S2 × V ); then w2 = 0 in the cohomology ring. By Künneth’s
formula H2(S2 × V ) is the direct sum of the pullbacks of H2(S2) and H2(V ) under
the projection maps. If w = (u, v) in this direct decomposition, then w2 = 0 implies
u = 0 or v = 0. This means that g restricted to {a} × V or to S2 × {b} induces
the zero map on H2, whence it is homotopic to constant by Hopf’s theorem, see [S,
Chapter 8, Section 1].

From this Theorem 1.5 follows by considering the map g : P1(C) × V → P1(C)
given by g(s, t) = h(s)(t). If h does not map into the trivial component, then, as seen
above, g(·, b) is homotopic to constant. This map being holomorphic, itself must be
constant, for all b ∈ V ; in other words, h is constant.

4. Holomorphic Functions on the Manifold of Based Loops. In this sec-
tion we shall consider a rationally connected complex projective manifold M , the
space Cr

A,x0
(V,M) = Z of based maps, A ⊂ V, x0 ∈ Cr(V,M), and we shall show

that complex valued holomorphic functions on Z are locally constant, Theorem 1.6.
We shall also derive Corollary 1.7, in a more general form.

Lemma 4.1. Given p ∈M and v ∈ TpM , there are a neighborhood U of p and a
holomorphic map ϕ : P1(C) × U →M such that

ϕ(∞, ·) = idU and ϕ∗T(∞,p)(P
1(C) × {p}) ∋ v.

Proof. In [LSz] the reader will find a proof using only basic deformation theory.
Upon repeated prodding by our referees, here we give a shorter argument. Let q ∈M
be a very general point. By [Kl2, Theorem 4.1.2.4] there is a rational curve g : P1 →M
through p and q whose tangent direction at p is v. This curve is free by [AK, Corollary
11]. By II.3.5.4.2 of [Kl1] the deformations of this curve form a family f : P1×W →M ,
with the evaluation map f a submersion. Hence on some (metric) neighborhood
U ⊂ M of p it has a holomorphic section (σ1, σ2) : U → P1 ×W . We can choose
the section so that f(·, σ2(p)) = g. Then the family ϕ : P1 × U → M given by
ϕ(t, u) = f(t, σ2(u)) has the property that each member ϕ(·, u) goes through the
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point u, and the tangent direction of ϕ(·, p) = g at p is just v. After reparameterizing
these curves we can achieve that φ(∞, u) = u for all u ∈ U . This proves the lemma.

Proof of Theorem 1.6. Let f : Z → C be holomorphic; we have to prove df(ξ) = 0
for all x ∈ Z and ξ ∈ TxZ. Fix x. Given τ ∈ V and nonzero v ∈ Tx(τ)M , construct U
and ϕ as in Lemma 4.1, and with a sufficiently small neighborhood B ⊂ V of τ define
a Cr map

Φ: P1(C) ×B ∋ (s, t) 7→ ϕ(s, x(t)) ∈M,

holomorphic in s. Note that

Φ(∞, t) = x(t) , t ∈ B.

We take B compact and (when r ≥ 1) a Cr manifold with boundary. We also arrange
that Φt = Φ(·, t) is an immersion near ∞, when t ∈ B.

First suppose that ξ ∈ TxZ ≈ Cr
A(x∗TM) is supported in the (relative) interior

of B, and

(4.1) ξ(t) ∈ Φt
∗T∞P1(C), for all t ∈ B.

To show that df(ξ) = 0, consider the map ν : Cr
(A∩B)∪∂B,∞(B,P1(C)) → Z,

ν(y)(t) =

{

Φ(y(t), t), if t ∈ B

x(t), if t ∈ V \B.

By [L2, Propositions 2.3, 3.1] ν is holomorphic, and so is

f ◦ ν : Cr
(A∩B)∪∂B,∞(B,P1(C)) → C.

Therefore f ◦ ν is locally constant by [L2, Theorem 4.2]; for the case r = 0, see the
earlier [DM]. Now ξ is in the range of ν∗; indeed, ξ = ν∗η, if η(t) ∈ T∞P1(C) is defined
by η(t) = 0 when t ∈ V \B and Φt

∗η(t) = ξ(t) when t ∈ B, cf. (4.1). It follows that

df(ξ) = d(f ◦ ν)(η) = 0.

Next choose a basis v = v1, . . . , vm of Tx(τ)M and construct corresponding maps

Φ = Φ1,Φ2, . . . ,Φm : P1(C) ×B →M.

If B is sufficiently small then

Tx(t)M =
⊕

j

Φt
j∗T∞P1(C) , t ∈ B.

For each j, if ξj ∈ TxZ ≈ Cr
A(x∗TM) has support in intB and satisfies (4.1), with j

appended, then df(ξj) = 0. Since any ξ ∈ Cr
A(x∗TM) supported in intB is the sum

of such ξj ’s, we conclude each τ ∈ V has a neighborhood B so that df(ξ) = 0 when
supp ξ ⊂ int B. But then a partition of unity gives df(ξ) = 0 for all ξ ∈ TxZ, as
needed.

We shall apply Theorem 1.6 to study holomorphic connections in the follow-
ing setting. Let π : E → N be a holomorphic map of complex manifolds lo-
cally biholomorphic to open subsets of Banach spaces. Assume π is a submersion,
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i.e. π∗(e) : TeE → Tπ(e)N is surjective for all e ∈ E. A holomorphic connection on
E (or on π) is a holomorphic subbundle D ⊂ TE such that De is complementary
to Ker π∗(e), e ∈ E. The connection is complete if curves in N can be lifted to
horizontal curves in E, i.e., for any x ∈ C1([0, 1], N) and e ∈ π−1(x(0)) there is a
y ∈ C1([0, 1], E) such that y(0) = e, π ◦ y = x, and y′(t) ∈ Dy(t) for all 0 ≤ t ≤ 1.
The lift is unique by the uniqueness theorem for ODE’s. For example, linear connec-
tions on Banach bundles and G–invariant connections on principal G bundles—G a
Banach–Lie group—are complete.

The simplest example of a connection is on a trivial bundle π : E = F ×N → N ,
with D(f,n) = T(f,n)({f} × N). Connections isomorphic to such a connection are
called trivial. Corollary 1.7 follows from

Theorem 4.2. Let M be a rationally connected complex projective manifold,
E a complex manifold locally biholomorphic to open subsets of Banach spaces, and
π : E → M a holomorphic submersion such that on each fiber holomorphic functions
separate points. If π admits a complete holomorphic connection D then the connection
is trivial.

Proof. The mapping space C1([0, 1], E) has a natural structure of a complex
manifold—the construction in [L2, Section 2] carries over to Banach manifolds. Hor-
izontal lift defines a map Λ of the manifold

{(e, x) ∈ E × C1([0, 1],M) : π(e) = x(0)}

into C1([0, 1], E). This map is holomorphic. To see this, note that for (e, x) in a small
neighborhood of a fixed (e0, x0), and for small τ ∈ (0, 1], finding y = Λ(e, x) over the
interval [0, τ ] amounts to solving an ODE. Doing this by the standard iterative scheme
of Picard–Lindelöf (see [Hm, p. 8]) shows the local lift y|[0, τ ] ∈ C1([0, τ ], E) depends
holomorphically on (e, x). Since the full lift y is obtained by concatenating local lifts,
Λ is indeed holomorphic. It is also equivariant with respect to reparametrizations: if
σ : [0, 1] → [0, 1] is a C1 map, σ(0) = 0, then

(4.2) Λ(e, x) ◦ σ = Λ(e, x ◦ σ), x ∈ C1([0, 1],M).

With fixed p ∈M and variable q ∈M consider

Y = {x ∈ C1([0, 1],M) : x(0) = p}, Yq = {x ∈ Y : x(1) = q}, and

Zq = {x ∈ Yq : x′(0) ∈ TpM and x′(1) ∈ TqM are both zero},

connected manifolds since M is simply connected by [C]. Therefore Theorem 1.6
implies that C–valued holomorphic functions on Zq are constant. In particular, for
any e ∈ π−1(p) and holomorphic function h : π−1(q) → C, h(Λ(e, x)(1)) is independent
of x ∈ Zq. Since holomorphic functions separate points of π−1(q), Λ(e, x)(1) itself is
independent of x ∈ Zq. It follows from (4.2) that Λ(e, x)(1) is even independent of
x ∈ Yq (take e.g. σ(t) = 3t2 − 2t3, then x ◦ σ ∈ Zq), and so there is a holomorphic
map Ψ: π−1(p) ×M → E such that

(4.3) Λ(e, x)(1) = Ψ(e, x(1)).

One checks that Ψ is biholomorphic and maps π−1(p) × {q} to π−1(q), q ∈M .
To conclude, note that with τ ∈ [0, 1] and σ(t) = τt (4.2), (4.3) imply

Λ(e, x)(τ) = Ψ(e, x(τ)),

i.e. Ψ maps curves (e, x) to horizontal curves in E. It follows that the induced con-
nection Ψ−1

∗ D on the bundle π−1(p) ×M →M is trivial, hence so is D.
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5. Holomorphic Tensor Fields. To prove Theorem 1.8 we first discuss the
notion of order of vanishing. Let Y be a complex manifold, locally biholomorphic
to open sets in Banach or even Fréchet spaces, y ∈ Y , and f : Y → C holomorphic.
We say that f vanishes at y to order n if for arbitrary 0 ≤ k < n and vector fields
v1, . . . , vk on Y , holomorphic near y

(v1v2 . . . vkf)(y) = 0.

If Y is connected and f vanishes at y to all orders then f ≡ 0.
Suppose f vanishes at y to order n. To see if it vanishes to order n+ 1, one is led

to consider holomorphic vector fields v1, . . . , vn in a neighborhood of y and

(5.1) (v1v2 . . . vnf)(y).

Observe first that (5.1) is independent of the order in which the vector fields are
applied (since e.g.

v2v1v3 . . . vnf = v1v2 . . . vnf − [v1, v2]v3 . . . vnf = v1v2 . . . vnf

at y); next that (5.1) vanishes if some vi vanishes at y (since this is clearly so if
v1(y) = 0). It follows that (5.1) depends only on the values that the vi take at y, and
so (5.1) induces a symmetric n–linear map

dnf(y) : T n
y Y = TyY ⊕ . . .⊕ TyY → C.

Proof of Theorem 1.8(a). Constant maps V → M form a submanifold of Y ,
biholomorphic to M ; we shall simply denote this manifold by M ⊂ Y . If f : Y → C

is holomorphic then by assumption f |M is constant. At the price of subtracting this
constant from f we can assume f vanishes at each point of M to first order. We shall
prove by induction it vanishes at each p ∈M to arbitrary order.

Suppose f is already known to vanish to order n ≥ 1 at each p ∈M , so that the
differentials dnf(p) are defined on T n

p Y . We want to show dnf(p) = 0, i.e.,

(5.2) dnf(p)(η1, . . . , ηn) = 0, ηi ∈ TpY, p ∈M.

Note that by Subsection 1.1 TpY is naturally isomorphic to Cr(V, TpM). With fixed
ϕ1, . . . , ϕn ∈ Cr(V,C) define a homomorphism Φn : T nM → T nY |M of holomorphic
vector bundles

(5.3) Φn : T nM ∋ (ξ1, . . . , ξn) 7→ (ϕ1ξ1, . . . , ϕnξn) ∈ T nY |M ;

the pullback of dnf by Φn is a symmetric holomorphic tensor field on M , of weight
n ≥ 1, hence vanishes. Therefore (5.2) holds when each ηi is of form ϕiξi, and also
when each ηi is a linear combination of such tangent vectors. When dimTpM < ∞,
linear combinations

k
∑

j=1

ϕ(j)ξ(j), k ∈ N, ϕ(j) ∈ Cr(V,C), ξ(j) ∈ TpM,

constitute all of Cr(V, TpM), and in general a dense subspace; whence indeed dnf(p) =
0, p ∈ M . This means f vanishes to order n + 1 along M , hence to all orders, and
therefore f = 0 on Y .
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For the rest of Theorem 1.8 we first extend the notions of vanishing order and
higher differentials to tensor fields. Let now f be a holomorphic tensor field of weight
j on the manifold Y . We say that f vanishes at y ∈ Y to order n ≥ 0 if for all
0 ≤ k < n and holomorphic vector fields v1, . . . , vk, w1, . . . , wj , defined near y

v1 . . . vkf(w1, . . . , wj) = 0 at y.

Note that vanishing to order 0 is automatic. Suppose f does vanish to order n. As
before,

(5.4) (v1 . . . vnf(w1, . . . , wj))(y)

is symmetric in the vl, and for fixed wi, depends only on the values vl(y).

Proposition 5.1. If some wi vanishes at y then (5.4) vanishes.

Proof. First observe that if F is a Fréchet space, h an F valued holomorphic
function defined in a neighborhood of 0 in some Cq, and h(0) = 0, then there are
holomorphic functions h1, . . . , hq such that

h(z1, . . . , zq) =

q
∑

s=1

zshs(z1, . . . , zq)

in a neighborhood of 0. Indeed,

h(z) =

∫ 1

0

d

dλ
h(λz)dλ =

∑

s

zs

∫ 1

0

∂h

∂zs

(λz)dλ.

Now suppose, for concreteness, that w1(y) = 0. Since as far as the vl are con-
cerned, (5.4) depends only on vl(y), we can assume that all vl are tangent to a finite,
say q, dimensional submanifold Q ⊂ Y passing through y. After a local trivialization
of TY the above observation gives holomorphic functions (local coordinates) ζ1, . . . , ζq
on Q and holomorphic sections h1, . . . , hq of TY |Q near y, such that

ζ1(y) = . . . = ζq(y) = 0 and w1|Q =
∑

s

ζshs.

Then Leibniz’s rule implies

v1 . . . vnf(w1, . . . , wj) =
∑

s

v1 . . . vn{ζsf(hs, w2, . . . , wn)} = 0

at y.

It follows that (5.4) depends only on (f and) the values that v1, . . . , wj take at y;
therefore (5.4) induces a multilinear map

dnf(y) : T n+j
y Y → C.

Proof of Theorem 1.8(b). Assume now f is a holomorphic tensor field of weight j ≥
1 on Y . Suppose we know f vanishes at all p ∈M to order n ≥ 0. As before, a choice
of ϕ1, . . . , ϕn+j ∈ Cr(V,C) defines a homomorphism Φn+j : T n+jM → T n+jY |M ,
cf. (5.3). The pullback of dnf by Φn+j is a holomorphic tensor field on M , hence 0;
from which it follows, as earlier, that dnf(p) = 0, p ∈ M . Thus f vanishes to order
n+ 1 along M , so to all orders. This implies f = 0 on Y as claimed.
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