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LOCAL GEOMETRY OF PLANAR ANALYTIC MORPHISMS∗

EDUARDO CASAS-ALVERO†

Abstract. The effect of analytic morphisms on plane curve singularities, via direct and inverse
images, is studied in terms of certain objects attached to the morphism, its jacobian, trunk and
tangent map among them.
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1. Introduction. The main purpose of this paper is the study of analytic mor-
phisms between smooth complex analytic surfaces, ϕ : S −→ T , locally at points
O ∈ S and O′ = ϕ(O). More precisely we are interested in describing the effect of the
morphism on the singularities of curve on either surface, via direct or inverse image.
An important role in this description is played by the jacobian (or critical) curve of
ϕ, which in turn is also an object of interest. Indeed, describing and interpreting the
singularity of a jacobian curve (usually associated to a pair of functions f, g or germs
of curve f = 0, g = 0, rather than to the morphism of local equations f, g) is an
old problem about which not very much is already known beyond the particular case
of the polar curves. The reader may see [8], [14], [1], [9] and [13] for recent work in
the non-polar case, and also Example 10.11 below for the difficulties in determining
equisingularity invariants of the jacobian from the pair of germs of curve f = 0, g = 0,
or even from the pencil λ0f + λ1g = 0.

We introduce a couple of objects associated to ϕ. The first one is a finite weighted
sequence of points in successive infinitesimal neighbourhoods of O′ (i.e., an unibranch
weighted cluster) which we call the trunk of ϕ. The second object is a rational map
between the first neighbourhoods of O and the last point of the trunk. This map is a
direct generalization of the ordinary differential to the case of a non smooth ϕ, it is
called the tangent map to ϕ. Both the trunk and the tangent map may be computed
by a rational algorithm which is explained in Section 10.

The trunk of ϕ determines the multiplicities of the inverse images (4.1) and the
tangent map helps to describe their tangent cones (9.1). In Section 5, the ratio between
the multiplicities of a germ of curve and its inverse image is bounded in terms of the
trunk (5.4); this has consequences relative to the dynamics and the asymptotics of
the complexity of ϕ in the case S = T and O = O′ (5.5 and 5.6). The trunk of ϕ
also determines the multiplicity of the jacobian curve (6.1), while the tangent cone to
the jacobian is closely related to the multiple points of the fibres of the tangent map
(10.2). This relationship provides insight on the reasons because of which a jacobian
curve does split. On the other hand the trunk of ϕ gives relevant information on the
singularities of direct images, most of them being partially modelled after the points
and multiplicities of the trunk (11.1, 11.2).

We attach further trunks to ϕ by considering, for each point p infinitely near
to O, the trunk Tp of the composition ϕp of the sequence of blowing-ups giving rise
to p and ϕ itself. Only a few of these further trunks carry new information, as in

∗Received April 4, 2006; accepted for publication April 24, 2006.
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most cases Tp is determined in terms of the trunk Tp′ corresponding to the point p′

preceding p (14.7, 16.2). The trunks Tp determine the infinitely near multiplicities,
and hence, in particular, the equisingularity types, of the inverse images (13.3) and
the jacobian curve (14.1).

In Section 15 it is proved that, under certain conditions on p and Tp which are
satisfied for most of the points p (see 15.2 for more precision), the morphisms ϕp are
locally isomorphic to compositions of blowing-ups. This may be understood as a sort
of partial resolution of the singularity of ϕ and furthermore it completely describes
the singularities of the direct images of the irreducible germs of curve going through
one of these points.

The existence and distribution of irreducible germs of curve whose representatives
are not injectively mapped onto their direct images (folded germs), are dealt with in
Section 16.

Sections 17 and 18 are devoted to the trunks associated to satellite points and
points on the jacobian, respectively. In Section 19, we give conditions for an infinitely
near point to belong to the jacobian germ of ϕ.

2. Preliminaries. If O is a point on a smooth surface S, we will denote by OS,O

the local ring of the germs of analytic functions of S at O. Once local coordinates
x, y at O are taken we will identify the elements of OS,O to convergent series in

x, y and for any h ∈ OS,O we will denote by ̂h ∈ C[x, y] its initial form, and by

o(h) = oO(h) = deg(̂h) its order. If M = (x, y) is the maximal ideal of OS,O, then o
is the M-adic valuation of OS,O.

The reader is referred to [7] for conventions and known facts about germs of plane
curves. Germs of analytic curves on a smooth analytic surface S will be called germs
of curve, and often just germs if no confusion may arise; they are allowed to be non-
reduced, that is, given by an equation with multiple factors. If f is a germ of analytic
function, the notation ξ : f = 0 will denote that the curve or germ of curve ξ is defined
by the equation f . The multiplicity of a germ of curve ξ at a proper or infinitely near
point p will be denoted by ep(ξ). TC(ξ) will denote the tangent cone to a germ ξ,
usually interpreted as an effective divisor on the first neighbourhood of the origin of ξ.
As usual, irreducible germs and irreducible components of germs are called branches
and square brackets denote intersection multiplicity of germs of curve. Families of
germs of the form P = {ξα : α1f1 + α2f2 = 0}, where f1, f2 ∈ OS,O, α = α1/α2 ∈
C ∪ {∞} and no one of the germs ξ0, ξ∞ is included in the other, are called pencils.
They are intrinsically structured as projective lines by taking α1, α2 as homogeneous
coordinates for ξα. The fixed part of P is the germ f0 = gcd(f1, f2) = 0 while its
variable part is the pencil described by the germs α1f1/f0 + α2f2/f0 = 0 which,
clearly, has no (i.e., empty) fixed part. If γ is an irreducible germ not contained in
the fixed part of P , an easy computation shows that all the intersection multiplicities
[γ.ξα] are equal, but for a single germ ξα′ for which [γ.ξα′ ] > [γ.ξα], α 6= α′. We will
refer to ξα′ as the germ in P with higher intersection with γ. The same applies if a
multiple rγ of γ is used instead.

A cluster with origin at O is a finite set K of points equal or infinitely near to
O on S so that for any p ∈ K all points preceding p also belong to K. By assigning
integral multiplicities ν = {νp} to the points p of a cluster K we get a weighted cluster
K = (K, ν), the multiplicities ν being usually called the virtual multiplicities of K.
Weighted clusters whose multiplicities may be realized by a germ of curve (i.e., for
some germ of curve ξ at O, ep(ξ) = νp for all p ∈ K) are called consistent clusters.
They are easily characterized in terms of virtual multiplicities and proximity. Indeed,
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the integer

ρp = νp −
∑

q proximate to p

νq

is called the excess of K at p; consistent clusters are those with no negative excesses,
see [7], 4.2. Generic germs ξ going through a consistent cluster K = (K, ν) have
ep(ξ) = νp for all p ∈ K and no singular points outside of K ([7], 4.2.7), which is
usually abridged by saying that ξ goes sharply through K.

If K = (K, ν) is a consistent cluster and ξ is a germ of curve, both with origin at
O, we will take the intersection multiplicity of K and ξ as being

[K.ξ] = [ξ.K] =
∑

p∈K

νpep(ξ).

As it is clear, [K.ξ] equals the intersection multiplicity of ξ with any germ going
through K with effective multiplicities equal to the virtual ones and sharing no point
with ξ outside of K, which is in particular true for generic germs through K (see [7],
4.2.8). If K′ = (K ′, ν′) is a second weighted cluster with the same origin as K, we will
take

[K.K′] =
∑

p∈K∩K′

νpν
′
p.

We will in particular write

K2 = [K.K] =
∑

p∈K

ν2
p ,

and call it the self-intersection of K. Obviously K2 = [ξ.ζ] for any couple of germs
ξ, ζ going sharply through K and sharing no points outside of it.

Any pencil of germs of curve P without fixed part has a weighted cluster of base
points BP (P) that consists of the points and multiplicities shared by all but finitely
many germs in the pencil. In the sequel, when saying that a pencil has cluster of base
points, we shall implicitly assume that it has no fixed part.

Equalities involving intersection multiplicities or orders of series should be read
as meaning that one side is finite if and only if so is the other and then they agree. A
pencil of smooth germs of curve with variable tangent at a point p on a on a smooth
surface will be called a pencil of lines at p. Once such a pencil is fixed, its members
will be referred to as lines.

If S and T are smooth surfaces, ϕ : S −→ T an analytic morphism, O ∈ S and
O′ = ϕ(O), then the inverse image (at O) of a germ ζ : f = 0 at O′ is ϕ∗(ζ) : ϕ∗(f) =
f ◦ϕ = 0. If γ is an irreducible germ at O and σ is a local parameterization of γ, the
composite map ϕ ◦σ either is constant or defines an irreducible germ γ′ at O′. In the
first case one says that γ has been contracted by ϕ and the direct image of γ, ϕ∗(γ), is
taken to be the point O′. Otherwise we take ϕ∗(γ) = dγ′, d = degϕ◦σ. Directly from
these definitions it follows the equality (projection formula) [ϕ∗(γ).ζ] = [γ.ϕ∗(ζ)], for
which we agree in taking equal to infinity the intersection multiplicity of any germ of
curve and its origin. We will often make use of the following well known fact without
further reference: if γ is an irreducible germ at O′, γ̃ denotes its strict transform
by the composition ϕ of a sequence of blowing-ups and O is the origin of γ̃, then
ϕ∗(γ̃) = γ.
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3. Fundamental points and local degree. In the sequel S and T will denote
smooth complex analytic surfaces, ϕ : S −→ T an analytic morphism, O a point of
S and O′ = ϕ(O). Throughout all the paper we shall assume that the pull back
morphism induced by ϕ, ϕ∗ : OT,O′ −→ OS,O, is a monomorphism, or, equivalently,
that no analytic curve in a neighbourhood ofO′ contains the image of a neighbourhood
of O. In the sequel we will often write ϕ∗(h) = h∗ for h ∈ OT,O′ .

We will take x, y and u, v to be local coordinates on S and T with origins at O
and O′, respectively, and assume that ϕ is given in a neighbourhood U of O by the
equalities

u =f(x, y)

v =g(x, y),

where f and g are non-invertible convergent series in x, y. The above equalities,
and sometimes also the series f, g, will be called the equations of ϕ relative to the
coordinates x, y, u, v.

The injectivity of ϕ∗ being equivalent to the functional independence of f, g, the
jacobian determinant

J(ϕ) = J(f, g) =
∂(f, g)

∂(x, y)

is not identically zero. It defines thus a germ of curve at O that will be called the
jacobian germ, or just the jacobian, of ϕ at O and denoted by J = J(ϕ). Its direct
image ∆ = ∆(ϕ) = ϕ∗(J(ϕ)) is the discriminant of ϕ at O. Of course neither J(ϕ),
nor J(ϕ), nor ∆(ϕ) depend on the choice of coordinates.

The germs in the family P = {ξα : α1f + α2g = 0}, α = α1/α2 ∈ C ∪ {∞}, are
the inverse images of the germs in the pencil of lines N = {ℓα : α1u + α2v = 0},
α = α1/α2 ∈ C ∪ {∞}. As it is clear, all germs in P but at most one have the
same multiplicity at O, which is min(o(f), o(g)). We will call this multiplicity the
multiplicity of ϕ at O, written eO(ϕ) or just e(ϕ). We will say that ϕ is dicritical
at O (or just dicritical) if and only if all germs in P have multiplicity e(ϕ) at O.
This obviously occurs if and only if the forms of degree e(ϕ) of f and g are linearly
independent, or, equivalently, if and only if the tangent cones to the germs in P do
vary with α. Otherwise we will say that ϕ is non-dicritical (at O): then all germs in
P have the same multiplicity and the same tangent cone at O, but for a single germ
which has higher multiplicity.

Put d = gcd(f, g). The family P has a fixed part Φ : d = 0 and a variable part
P ′ : α1f/d + α2g/d = 0, α1/α2 ∈ C ∪ {∞}. We will call Φ the contracted germ (by
ϕ), as all points on a small enough representative of Φ are mapped to O′. An easy
computation shows that Φ is contained in J(ϕ). Of course Φ may be empty: this
occurs if and only if O is isolated in its fibre, or, equivalently, the germ of ϕ at O is
finite (see for instance [11], II.E.6). If both f/d and g/d are non-invertible (which is
always the case if Φ = ∅), P ′ is a pencil of germs at O without fixed part: then we
define BP (ϕ), the cluster of base points of ϕ, as being the weighted cluster of base
points of P ′. Otherwise P ′ is a family all whose germs but one are empty and we just
take BP (ϕ) = ∅.

For any p infinitely near to O we define the multiplicity of ϕ at p, ep(ϕ) as the sum
of the virtual multiplicity of p in BP (ϕ) (just zero if p /∈ BP (ϕ)) and the (effective)
multiplicity of Φ at p. This obviously extends the former definition of eO(ϕ) and, for
any p equal or infinitely near to O, all but finitely many germs in P have effective
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multiplicity ep(ϕ) at p. A point p equal or infinitely near to O will be called a
fundamental point of ϕ if and only if ep(ϕ) > 0, that is, p either is a base point of ϕ
or lies on the contracted germ Φ.

Let MT denote the maximal ideal of OT,O′ . Clearly d is the greatest common
divisor of the elements of the ideal ϕ∗(MT ) generated in OS,O by the inverse images
of the elements of MT . Then BP (ϕ) is the cluster of base points of the linear sys-
tem of germs defined by d−1ϕ∗(MT ) if d−1ϕ∗(MT ) 6= (1), otherwise it is empty. It
easily follows that neither of the notions introduced above depends on the choice of
coordinates.

Proposition 3.1. Fix any pencil of lines N at O′. For all but finitely many
lines ℓ ∈ N , the number of points in ϕ−1(p) that approach O when p approaches O′

on a representative of ℓ equals BP (ϕ)2 + [BP (ϕ).Φ].

Proof. After a suitable choice of the coordinates we may take N = {ℓα : α1u +
α2v = 0}, α = α1/α2 ∈ C ∪ {∞} and ℓ = ℓα, α 6= ∞. If t = u(p) 6= 0, for a
small enough open neighbourhood U of O, ϕ−1(p)∩U is the intersection of the curves
defined in U by f = t and αf + g = 0, which is the same as the intersection of f = t
and d−1(αf + g) = 0, as d|f and hence no point on f = t may be on d = 0. If the
germ ξ′α : d−1(αf + g) = 0 is reduced, or empty, the number of points on f = t and
d−1(αf + g) = 0 that approach O when t approaches 0 is just

[ξ∞.ξ
′
α] = [Φ.ξ′α] + [ξ′∞.ξ

′
α].

If BP (ϕ) = ∅, then ξ′α = ∅ for all but one α and the claim is obviously satisfied.
Otherwise for any α 6= ∞, [ξ′∞.ξ

′
α] = BP (ϕ)2, while for all but finitely many α,

[Φ.ξ′α] = [BP (ϕ).Φ] and ξ′α is reduced, because the ξ′α describe a pencil without fixed
part ([7], 7.2.10). Hence the claim.

In the sequel we will call BP (ϕ)2+[BP (ϕ).Φ] the (local) degree of ϕ at O, and de-
note it by degO(ϕ). If Φ = ∅, then the local degree is just BP (ϕ)2 = dimC OS,O/(f, g).
It holds

Lemma 3.2. degO(ϕ) = 0 if and only if BP (ϕ) = ∅, while degO(ϕ) = 1 if and
only if ϕ is a local isomorphism at O

Proof. Since both BP (ϕ)2 and [BP (ϕ).Φ] are non-negative, degO(ϕ) = 0 forces
BP (ϕ)2 = 0 and hence BP (ϕ) = ∅. The converse is clear. Because of the first claim,
in case degO(ϕ) = 1, BP (ϕ)2 > 0 and so BP (ϕ)2 = 1 and [BP (ϕ).Φ] = 0. The first
equality forces BP (ϕ) to be just O taken with multiplicity one, after which the second
one gives Φ = ∅. Then f and g have linearly independent initial forms of degree one
and ϕ is a local isomorphism at O. Again, the converse is clear.

Remark 3.3. Clearly degO(ϕ) ≥ 0 and degO(ϕ) > 0 if Φ = ∅, as then BP (ϕ) 6= ∅.

Example 3.4. If ϕ is the blowing-up of O′ and O is any point on the exceptional
divisor of ϕ, then degO(ϕ) = 0 and the equality of 3.1 holds true for all lines but the
one going through O.

Example 3.5. If π : T → Z is the blowing-up of a point O′′ on a smooth surface
Z and ϕ is as above and has O′ on the exceptional divisor of π, then all but one lines
ℓ of any fixed pencil of lines at O′′ have their inverse images (at O) (π ◦ ϕ)∗(ℓ) equal
and therefore degO(π ◦ ϕ) = 0.
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Remark 3.6. It follows easily from the proof of 3.1 that if Φ = ∅, then the
equality of 3.1 holds true for all lines ℓ provided the points in ϕ−1(p) are counted
according to the multiplicities of the components of the curve αf + g = 0 they belong
to.

The multiplicity of a direct image is easily determined:

Proposition 3.7. If ξ is an irreducible germ at O, not a branch of the contracted
germ Φ, ϕ∗(ξ) is a germ and eO′(ϕ∗(ξ)) = [ξ.BP (ϕ)] + [ξ.Φ]

Proof. For all but finitely many ℓα in a pencil of lines N at O′, eO′(ϕ∗(ξ)) =
[ϕ∗(ξ).ℓα] = [ξ.ϕ∗(ℓα)] <∞, hence the claim.

4. The main trunk of ϕ. Fix a pencil of lines L at O. By a suitable choice
of the local coordinates x, y, we may assume that L = {ℓα : α1x − α2y = 0}, α =
α1/α2 ∈ C ∪ {∞}. Thus, after dropping the germ of the y-axis, the remaining germs
ℓα ∈ L are given by the parametric equations x = t̄, y = αt̄, α ∈ C. Assume that the
equations of ϕ are written in the form

f = fn + · · · + fi + · · ·

g = gn + · · · + gi + · · · ,

where fi and gi are forms of degree i, n is the multiplicity of ϕ and, therefore, either
fn or gn is non-zero. Interchanging u and v, if necessary, we will assume in the sequel
that fn 6= 0.

The direct image of ℓα, γα = ϕ∗(ℓα) is given by the parametric equations

u =fn(1, α)t̄n + · · · + fi(1, α)t̄i + · · ·

v =gn(1, α)t̄n + · · · + gi(1, α)t̄i + · · · ,

so, if fn(1, α) 6= 0, one may take

t = t̄fn(1, α)1/n(1 + · · · +
fi(1, α)

fn(1, α)
t̄i−n + · · · )1/n

as a new parameter, to get a Puiseux-like parameterization of γα, namely

u = tn

v =
∑

i≥n

ait
i,

the coefficients ai = ai(α) being algebraic functions of α defined in C − Z, Z the set
of zeros of fn(1, α). In fact all ai are rational functions of α and fn(1, α)i/n, as taking

a n-th root of (1 + · · · + fi(1,α)
fn(1,α) t̄

i−n + · · · ) introduces no irrationality.

Note that γα need not be an irreducible germ: it is n/n′ times the irreducible
germ at O′ with Puiseux series

v =
∑

i≥n

aiu
i/n,

n′ being the minimal common denominator of the i/n for which ai 6= 0. Enriques’
theorem describing the infinitely near points on an irreducible germ from one of its
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Puiseux series (see [10], IV.I or [7], 5.5) still applies to γα if one takes for it the above
Puiseux series and the division algorithms are performed using the characteristic ex-
ponents written with denominator n instead of n′, as this has the effect of multiplying
all multiplicities by n/n′, as required.

At least one of the ai really depends on α, as otherwise the pull-back of an equation
of the constant germ γα would be identically zero, contradicting the injectivity of ϕ∗.
Write m for the lowest index i for which the coefficient ai is a non-constant function:
ai is constant if i < m while am is not. According to the way in which the coefficients
of a Puiseux series determine the positions of the free points on the germ ([7], 5.7),
the germs γα for which α ∈ C − Z and am(α) 6= 0, share the point O′, all their
free points depending on the coefficients ai, i < m, all their satellite points that
are satellite of one of the former free points (i.e., the satellite points associated to
characteristic exponents less or equal than m/n), and no further point. Furthermore,
by the Enriques theorem, the multiplicities of these shared points on γα do not depend
on α.

We take the points shared by the germs γα, α ∈ C−Z, am(α) 6= 0, together with
their multiplicities on any of the γα, to make a weighted cluster T = T (ϕ). We shall
call it the trunk or the main trunk of ϕ. Note that n = e(ϕ) is the virtual multiplicity
of O′ in T . As it will turn out in a while, T does not depend on the pencil L used to
define it.

Since the points and the multiplicities of T belong to a multiple of an irreducible
germ, T is consistent and unibranched (i.e., totally ordered), and all of its points but
the last one have excess zero. In other words ([7], 8.4), T = rTred where Tred is an
irreducible cluster and r a positive integer that will be called the multiplicity of T .
The top of T will be the last point in T , both its virtual multiplicity and excess equal
the multiplicity of T .

Clearly, the multiplicity n = e(ϕ) and the fractional power series

S = S(u, θ) =
∑

i<m

aiu
i/n + θum/n,

where θ is a free variable, contain the same information as T . We shall call S the
Puiseux series of T (relative to the coordinates u, v) and take it, as usual, as deter-
mined up to conjugation over C{u}. The partial sum

∑

i<m aiu
i/n will be called the

constant part of S, while the monomial θum/n will be referred to as its variable part.
The characteristic exponents of S will be written m1/n, . . . ,mk/n and called the

characteristic exponents of T . Together with n, which is the virtual multiplicity of O′

in T , they determine (and are in turn determined by) the virtual multiplicities and
proximity relations of the points of T , by the rules of the Enriques theorem.

The integer m will be called the height of T . Again by the Enriques theorem,
m/n is a (necessarily the last) characteristic exponent of T if and only if the top of
T is a satellite point.

If K is an irreducible cluster with origin O′ and r a positive integer, it is easy to
exhibit a morphism ϕ with T (ϕ) = rK. Indeed, according to [7], 5.7.1 and 5.7.2, any
(necessarily irreducible) germ γ going sharply through K has a Puiseux series of the
form s =

∑

1≤i<ℓ biu
i/n′

+ cuℓ/n′

+ · · · , where the coefficients bi are the same for all
germs γ going sharply through K, and c depends on the first point on γ not in K.
Then it is enough to take ϕ defined by f = xrn′

, g =
∑

1≤i<ℓ bix
ri + yrℓ.

Multiplicities of inverse images are controlled by T , namely,

Theorem 4.1. If ζ is any germ of curve at O′, eO(ϕ∗(ζ)) = [ζ.T ].
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Proof. For all but finitely many α, eO(ϕ∗(ζ)) = [ϕ∗(ζ).ℓα], which in turn, by the
projection formula, equals [ζ.γα]. Exclude the α ∈ Z. Then, since the first point
on γα not in T varies with α, the claim follows from the Noether formula for the
intersection multiplicity ([7], 3.3.1) and the definition of T .

If the equisingularity type of the germ ζ is fixed, then the possible intersection
multiplicities [ζ.T ] are described by considering all partial superpositions of the En-
riques diagrams of T and ζ allowed by their own proximity structures. ([7], 3.9).
Then, by 4.1 above, we get in this way all possible multiplicities of the inverse images
ϕ∗(ζ). For instance, if T has first characteristic exponentm1/n, then the multiplicities
of ϕ∗(ζ) for ζ smooth are m1 and the multiples in of n for 0 < i < m1/n.

Dicritical morphisms, already defined on page 6, have very simple trunks:

Corollary 4.2. The morphism ϕ is dicritical if and only if T has O′ as its only
point. Furthermore, ϕ is an isomorphism if and only if T consists of O′ with virtual
multiplicity one.

Proof. Obviously, O′ always belongs to T . Take a pencil N of lines with origin
at O′ as in Section 3. Then T contains a point in the first neighbourhood of O′ if and
only if one of the lines in N has higher intersection with T and so, by 4.1, if and only
if one of the inverse images of the lines in N has higher multiplicity, hence the first
claim. If in addition n = e(ϕ) = 1, then the inverse images of the lines in a pencil
at O′ describe a pencil of lines at O and thus ϕ is an isomorphism. The converse is
obvious.

Remark 4.3. It is clear from definitions that, m ≥ n; by Corollary 4.2, the equal-
ity holds if and only if ϕ is dicritical. By [7], 5.7.4, m is the sum of the multiplicities
of all non-satellite points on T .

One may associate to ϕ the set of the multiplicities of the inverse images by ϕ
of all germs at O′. This is an additive semigroup that will be denoted by Γ(ϕ) and
called the semigroup of ϕ. It is described next:

Proposition 4.4. Γ(ϕ) = rΓ(ζ) where Γ(ζ) is the semigroup of any (necessarily
irreducible) germ going sharply through Tred

Proof. Since Tred is irreducible, all germs ζ going sharply through it are irreducible
and have the same equisingularity type ([7], 4.2.6 and 4.2.8). They all have thus the
same semigroup Γ(ζ). For any germ ξ at O′, we may choose ζ going sharply through
Tred and missing all points on ξ in the first neighbourhood of the top of T ([7], 4.2.6).
For such a ζ, r[ξ.ζ] = [ξ.T ] and therefore Γ(ϕ) ⊂ rΓ(ζ). On the other hand, for each
characteristic exponent κi, i = 1 . . . , k, of ζ one may choose an irreducible germ ξi
going with effective multiplicity one through the last free point qi on ζ associated to
κi and having no satellite point after it. Then n/r and the intersection multiplicities
[ξi.ζ] (minimally) generate Γ(ζ) ([7], 5.8, for instance). Since ζ goes sharply through
Tred, all the points qi, i = 1 . . . , k, belong to T and therefore, by the Noether formula,
r[ξi.ζ] = [ξi.T ]. Since obviously n ∈ Γ(ϕ), this proves that a set of generators of rΓ(ζ)
is contained in Γ(ϕ) and so that rΓ(ζ) ⊂ Γ(ϕ), as needed to complete the proof.

In fact the multiplicities of the inverse images of the germs at O′ are the values
of the pull-backs of their equations by the M-adic valuation of OS,O. We have:

Corollary 4.5. The composition of ϕ∗ and the M-adic valuation of OS,O (M
the maximal ideal of OS,O) is a divisorial valuation, has value semigroup Γ(ϕ) and
its centers and multiplicities are the points and multiplicities of T (ϕ).
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Proof. The composition obviously is a valuation. That its centers and multi-
plicities are the points and multiplicities of T is a direct consequence of 4.1 and the
Noether formula for valuations ([7], 8.1.7). Since the divisorial valuations are those
with finitely many centers, this completes the proof.

From 4.5 we get, as already announced:

Corollary 4.6. The trunk of ϕ does not depend on the pencil of lines at O used
to define it.

As an easy but not quite representative example, the reader may consider the
case in which ϕ is the composition of blowing up points O′, q1, . . . qj , each in the
first neighbourhood of the preceding one, and O is any point on the exceptional
divisor of the last blowing-up. Then T (ϕ) is the only irreducible cluster with points
O′, q1, . . . , qj , O and BP (ϕ) = ∅.

The next geometrical interpretation of the self-intersection of T is also a direct
consequence of 4.1 and the definition of T :

Corollary 4.7. If L is any pencil of lines at O, for all but finitely many ℓ ∈ L,
eO(ϕ∗ϕ∗(ℓ)) = T 2.

Corollary 4.8. If ϕ is as above and ψ : T → Z is a second analytic morphism
to a smooth surface Z whose image is not contained in a curve, then

eO(ψ ◦ ϕ) = [BP (ψ).T (ϕ)] + [Ψ.T (ϕ)],

Ψ being the contracted germ by ψ.

Proof. The multiplicity eO(ψ ◦ ϕ) equals the multiplicity of ϕ∗(ψ∗(ℓ)) for all but
at most one of the lines ℓ in a fixed pencil of lines at ψ(O′). By 4.6, eO(ϕ∗(ψ∗(ℓ))) =
[(ψ∗(ℓ).T (ϕ)]. Now, since for all but finitely many ℓ, ψ∗(ℓ) is composed of Ψ and a
germ going sharply through BP (ψ) and sharing no base points with T (ϕ) ([7], 7.2.10),
the claim follows.

5. Ratios of multiplicities. As above, we write n = e(ϕ) and m1/n, . . . ,mk/n,
k ≥ 0, the characteristic exponents of T (ϕ). Put ni = gcd(n,m1, . . . ,mi), so that
n0 = n and nk = r. Let us recall how the Enriques theorem applied to any germ
going sharply through Tred relates the points of T to its characteristic exponents (see
[7], 5.5 for more details). To each characteristic exponent mi/n there is associated a
non-empty set of consecutive free points immediately followed by a non-empty set of
consecutive satellite points, in such a way that O′ (retained as a free point just for
this description) is the first point associated to m1/n and the first point associated to
mi/n lies in the first neighbourhood of the last satellite point associated to mi−1/n for
i > 1. There is a further, maybe empty, set of consecutive free points in T following
the last satellite point associated to mk/n, this set being the whole set of points of T
if T has no characteristic exponents.

As seen in the proof of 4.4, the minimal system of generators of the semigroup
Γ(ϕ) may be obtained just as for the semigroup of an irreducible germ: we choose
irreducible germs ξ1, . . . , ξk, each ξi going with effective multiplicity one through the
last free point qi ∈ T associated to mi/n and having no satellite points after qi. One
takes m̌i = [ξi.T ] and then {n, m̌1, . . . , m̌k} is the minimal system of generators of
Γ(ϕ). Furthermore, a direct computation gives

m̌i =
(n− n1)m1

ni−1
+

(n1 − n2)m2

ni−1
+ · · · +

(ni−2 − ni−1)mi−1

ni−1
+mi (1)
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which allow to compute the m̌i from the mi and conversely. It is also worth noting
that, necessarily, each ξi has multiplicity n/ni−1 and goes through no point in T after
qi.

Similarly, a direct computation of [T .γ], γ going sharply through Tred, gives the
formula

T 2

r
=

(n− n1)m1

r
+

(n1 − n2)m2

r
+ · · · +

(nk−1 − r)mk

r
+m, (2)

which shows that, once n and the characteristic exponents of T are known, m and
T 2 determine each other.

Remark 5.1. It follows from the above expressions that m̌ini−1 < m̌i+1ni for
i = 1, . . . , k − 1, and m̌knk−1 ≤ T 2, the last inequality being strict if and only if
mk < m, this is, T has a free top.

We adapt the definition of contact between two germs, as given in [15], by taking
as contact of an irreducible germ γ at O′ and T the rational number

〈γ.T 〉 = nmaxs{ordu(S − s)},

where s runs on the conjugates of the Puiseux series of γ. It is clear from the definition
that the maximal contact of irreducible germs with no more than i− 1 characteristic
exponents (1 ≤ i ≤ k) and T is mi, this maximal contact being reached if and only
if the germ goes through the last free point in T associated to the i-th characteristic
exponent. Also, the height m is the maximal contact of T with arbitrary irreducible
germs. All germs going sharply through Tred have contact m with T .

For a real c, 0 < c ≤ m, define

ρ(c) =
m̌ini−1

n
+

(c−mi)ni

n

if mi < c ≤ mi+1, mk+1 = m. Clearly ρ(c) is a continuous, strictly increasing and
piecewise linear function of c. We have:

Lemma 5.2. For any irreducible germ γ at O′,

[γ.T ]

eO′(γ)
= ρ(〈γ.T 〉).

Proof. Follows by direct computation as in the proof of [15], 2.4.

Proposition 5.3. Take 0 < i ≤ k. For any non-empty germ ξ at O′, no branch
of which has i or more characteristic exponents,

eO(ϕ∗(ξ))

eO′(ξ)
≤
m̌ini−1

n
,

and the equality holds if and only if all branches of ξ go through the last free point in
T associated to the i-th characteristic exponent.

For any non-empty germ ξ at O′

eO(ϕ∗(ξ))

eO′(ξ)
≤

T 2

n
,
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and the equality holds for all germs going sharply through Tred.

Proof. Assume first ξ irreducible. By 4.1 and 5.2, the first inequality may be
written

ρ(〈ξ.T 〉) ≤
m̌ini−1

n
= ρ(mi),

after which both claims regarding it follow from the properties of the function ρ and
the contact stated above. The case of ξ non irreducible follows by using the additivity
of multiplicities.

Similar arguments prove the second inequality. The last claim is obvious after 4.1
and the definition of T 2.

Remark 5.4. One may add to the upper bounds of Proposition 5.3 the rather
obvious lower one

n ≤
[T .ξ]

eO′(ξ)
=
eO(ϕ∗(ξ))

eO′(ξ)
.

In particular, for a dicritical ϕ one gets T 2 = n2 and therefore eO(ϕ∗(ξ))/eO′(ξ) =
n for any non-empty ξ, which also results from an easy direct computation.

Next are two consequences of 5.3 and 5.4 regarding the asymptotics of the com-
plexity of ϕ in case S = T and O = O′ (see for instance [2] and [3], 1994-48, 1994-49):

Corollary 5.5. If S = T and O = O′, then for any j > 0 and any non-empty
germ of curve ξ at O,

e(ϕ)j ≤
eO((ϕj)∗(ξ))

eO(ξ)
≤

(

T 2

e(ϕ)

)j

.

Since for any j, e(ϕj) equals the multiplicity eO((ϕj)∗(ℓ)) for all but one lines ℓ
in a fixed pencil of lines at O′, 5.5 applied to any such ℓ gives:

Corollary 5.6. If S = T and O = O′, then for any j > 0,

e(ϕ)j ≤ e(ϕj) ≤

(

T 2

e(ϕ)

)j

.

Note that both the inequalities of 5.5 and 5.6 become equalities if ϕ is dicritical.

6. The multiplicity of the jacobian. This section is devoted to proving the
following theorem, which relates the multiplicity of the jacobian and the height of the
trunk:

Theorem 6.1. If, as above, n is the multiplicity of ϕ at O and m denotes the
height of T (ϕ),

eO(J(ϕ)) = n+m− 2.

Before proving 6.1 we set a couple of easy facts about jacobians whose proof is
left to the reader:
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Lemma 6.2. If P, P ′ are homogeneous polynomials in x, y, of degrees d and d′,
then the jacobian determinant

J(P, P ′) =
∂(P, P ′)

∂(x, y)

is zero if and only if P d′

= aP ′d for some a ∈ C. Otherwise J(P, P ′) is homogeneous
of degree d+ d′ − 2

We call the couple P, P ′ homothetical when J(P, P ′) = 0.

Lemma 6.3. If h, h′ are germs of analytic functions at O, o(J(h, h′)) ≥ o(h) +

o(h′)−2. The equality is true if and only if the initial forms ̂h,̂h′ are not homothetical.

In this case ̂J(h, h′) = J(̂h,̂h′).

Proof. Proof of 6.1: As in the preceding section, choose the coordinates u, v so
that the initial form fn of the first equation f of ϕ has degree n. For any equation h
of any germ of curve ζ : h = 0 at O′

J(f, h(f, g)) =
∂h

∂v
(f, g)J(f, g).

By taking orders at O and using 6.3 we get

eO(J(ϕ)) = o(J(f, g)) =o(J(f, h(f, g))) − o

(

∂h

∂v
(f, g)

)

≥o(f) + o(h(f, g)) − 2 − o

(

∂h

∂v
(f, g)

)

=n+ eO(ϕ∗(ζ)) − 2 − eO(ϕ∗(ζ′))

=n+ [T .ζ] − 2 − [T .ζ′],

where ζ′ denotes the polar germ of ζ, ζ′ : ∂h/∂v = 0. Then,

Lemma 6.4. If the above inequality is strict, then the difference [T .ζ] − [T .ζ′] is
not maximal.

Proof. Proof of 6.4: By 6.3, if the inequality is strict the initial forms of f and
h(f, g) are homothetical, and so there exits b ∈ C so that o(fn′

− bh(f, g)n) > nn′,
where n′ = o(h(f, g)) = eO(ϕ∗(ζ)) = [T .ζ]. Take h1 = un′

− bhn and ζ1 : h1 = 0, so
that ϕ∗(h1) : fn′

− bh(f, g)n = 0 and the last inequality may be written [T .ζ1] > nn′.
On the other hand the polar ζ′1 has equation hn−1∂h/∂v = 0 and thus

[T .ζ′1] = (n− 1)[T .ζ] + [T .ζ′] = nn′ − [T .ζ] + [T .ζ′],

from which

[T .ζ1] − [T .ζ′1] > [T .ζ] − [T .ζ′],

as claimed.

Now, to complete the proof of 6.1, we will show that

max
h

{[T .ζ] − [T .ζ′]} = m.
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As in the definition of T , take γα = ϕ∗(ℓα): for all but finitely many values of α, γα

is defined by the parameterization

u = tn

v = sα(t) =
∑

i<m,

ait
i + am(α)tm + · · ·

and, by the definition of T , for any germ ξ : z = 0 at O′, [T .ξ] = ot(z(t
n, sα(t))) for

all but finitely many α.

We begin by proving the inequality [T .ζ] − [T .ζ′] ≤ m. Notice that the polar
ζ′ depends on the equation h of ζ and not only on ζ itself. If one takes a different
equation wh, w invertible, the new polar is ζ′′ : w∂h/∂v + h∂w/∂v = 0. Let us
consider two possibilities:

If [T .ζ] − [T .ζ′] > 0 then, for all but finitely many α,

ot(h(tn, sα(t))) > ot(
∂h

∂v
(tn, sα(t)))

and it is clear from the above equation of ζ′′ that [T .ζ′′] = [T .ζ′]. Thus, the difference
[T .ζ] − [T .ζ′] does not depend on the equation of ζ. In particular [T .ζ] − [T .ζ′] is
positive no matter which equation of ζ is used to define ζ′.

Otherwise, for one, and therefore for all choices of the equation of ζ, [T .ζ] −
[T .ζ′] ≤ 0, which makes the inequality [T .ζ] − [T .ζ′] ≤ m obvious.

Thus, it will be enough to prove the inequality for germs for which [T .ζ]− [T .ζ′] is
positive: in such a case this difference does not depend on the choice of the equation
of ζ and it is enough to consider a single equation for each germ ζ: we take its
Weierstrass equation

h = uk

e
∏

j=1

(v − sj(u)),

where k ≥ 0 and the sj , j = 1, . . . , e, are the Puiseux series (including all conjugates)
of ζ. An equation of ζ′ is then

∂h

∂v
= h

(

∑

j

1

v − sj(u)

)

,

and for all but finitely many α,

[T .ζ] − [T .ζ′] = − ot

(

∑

j

1

sα(t) − sj(tn)

)

(3)

≤− min
j
ot

(

1

sα(t) − sj(tn)

)

= max
j
ot(sα(t) − sj(t

n)) ≤ m

as the term am(α)tm cannot be canceled. The next lemma proves that the bound
m is attained and therefore completes the proof. We state it separately for future
reference.
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Lemma 6.5. If ζ : h = 0 is any irreducible germ having the last free point q′ ∈ T
as a simple point and no satellite points after it, then [T .ζ] − [T .ζ′] = m for any
u-polar ζ′ : ∂h/∂v = 0 of ζ.

Proof of 6.5. According to [7], 5.7.1 and 5.7.3, ζ has a Puiseux series of the
form s1 =

∑

i<m aiu
i/n + · · · , the dots indicating terms which do not increase the

polydromy order. Thus, none of the conjugates sj of s1, j 6= 1, has partial sum
∑

i<m aiu
i/n and so

m = ot(sα(t) − s1(t
n)) > ot(sα(t) − sj(t

n)).

Then the claim for the u-polar corresponding to the Weierstrass equation follows from
the equality 3 above. Then, since m > 0, one may argue as in the proof of 6.1 to show
that the claim is true for all u-polars.

The reader may notice that a dicritical morphism ϕ has m = n, because T has a
single point, and 6.1 gives eO(J(ϕ)) = 2n− 2, as is already well known.

7. Pencils of a particular kind. In this section we will prove some technical
results about pencils with irreducible cluster of base points. Recall that irreducible
clusters are those weighted clusters that are totally ordered and have all excesses zero
but for its last point, which has excess one.

Lemma 7.1. Let K be an irreducible cluster and q its last point. A germ ζ goes
through K with effective multiplicities equal to the virtual ones if and only if ζ is
irreducible, eq(ζ) = 1 and the point on ζ in the first neighbourhood of q is free.

Proof. Assume that ζ goes through K = (K, ν) with effective multiplicities equal
to the virtual ones: then, clearly, ρq = 1 gives eq(ζ) = νq = 1. Furthermore, since
ρp = 0 for p 6= q, points on ζ not in K cannot be proximate to a p ∈ K, p 6= q.
Then all points on ζ not in K are infinitely near to q, which is simple on ζ, and
the irreducibility of ζ follows. Furthermore, arguing as above, the point in the first
neighbourhood of q on ζ cannot be proximate to a point preceding q, hence it is free.

Conversely, ζ being irreducible and the point on ζ in the first neighbourhood of
q being free, all points on ζ proximate to a point preceding q belong to K. Of course
eq(ζ) = 1 = νq. Then, for each p preceding q, νp =

∑

p′ νp′ , because ρp = 0, and
ep(ζ) =

∑

p′ ep′(ζ) both summations running on the points p′ proximate to p in K.
Using induction backwards from q, it follows ep(ζ) = νp for any p ∈ K, as wanted.

By using the same arguments the reader may easily prove:

Lemma 7.2. If K = (K, ν) is an irreducible cluster and ξ is a multiple of an
irreducible germ, has effective multiplicity e > 0 at the last point q of K and its point
in the first neighbourhood of q is free, then ξ goes through eK = (K, eν) with effective
multiplicities equal to the virtual ones.

Now, let Q = {ζβ : β1h1 + β2h2 = 0}, β = β1/β2 ∈ C ∪ {∞}, be a pencil with
irreducible cluster of base points. Denote by q the last point of BP (Q) and by Eq the
first neighbourhood of q. The dimension and degree of the linear series cut out by Q
on Eq (see [7], section 7.2) are both equal to one, because q is the last base point and
has virtual multiplicity one. Thus, for all β, the virtual transform with origin at q of
ζβ , ζ̌β , has a single point qβ in Eq. Hence, the virtual transforms ζ̌β describe a pencil
of lines at q. Furthermore, by [7], 7.2.9, the map ζβ 7→ qβ is a projectivity Q −→ Eq
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and so we may take β as the absolute projective coordinate of qβ . In this situation
we will say that the germ ζβ and the point qβ ∈ Eq correspond to each other.

Assume that qβ is a free point. Then, since qβ does not belong to any exceptional
divisor other than that of blowing up q, ζβ effectively goes through qβ , and eqβ

(ζβ) = 1.
Let ζ′ be a germ of Q going sharply through BP (Q) and missing qβ . By 7.1, the
(only) branch γ of ζβ that goes through qβ is going through BP (Q) with effective
multiplicities equal to the virtual ones. Using the Noether formula,

[γ.ζ′] = BP (Q)2 = [ζ′.ζβ ]

which forces ζβ = γ. Thus ζβ is irreducible and goes sharply through BP (Q). If
ζβ goes sharply through BP (Q) it is clear that ζβ is irreducible and effectively goes
through qβ . The notations being as above, we have proved

Lemma 7.3. The point qβ is free if and only if ζβ goes sharply through BP (Q).
In such a case ζβ is irreducible and effectively goes through qβ.

Thus, the satellite points qβ correspond to the germs ζβ that do not go sharply
through BP (Q). These germs are usually called the special germs of the pencil. In
the trivial case in which BP (Q) is just O counted once, there are no satellite points
qβ or special germs. Otherwise there is a unique germ in the pencil having higher
multiplicity at O: this germ will be called the first special germ in the pencil, and
its corresponding point the first satellite of q. If q is a free point, there are no other
satellite points in its first neighbourhood, and therefore no other special germs in the
pencil. If q is satellite, there remains another satellite point in its first neighbourhood
and so another special germ in Q. We will call them the second satellite of q and the
second special germ in Q.

In fact the above distinction among the first and second satellite points of q
makes no sense unless we check that it does not depend on the pencil Q, which we
will do next. Assume that q is any satellite point. There is a unique irreducible
cluster K = (K, ν) with last point q, as its points are evident and its multiplicities
are determined by the irreducibility. Let q′ be one of the satellite points in the first
neighbourhood of q; add it counted once to K to make a new weighted cluster K̄, and
use unloading to get a consistent cluster K′ = (K ′, ν′) equivalent to K̄. It is easy
to check, using an Enriques diagram of K, that νO = ν′O for one choice of q′, and
νO < ν′O for the other. Take q′ according to the second choice: for any pencil Q with
BP (Q) = K, the special germ ζ′ corresponding to q′ goes through K′ and hence has
eO(ζ′) ≥ ν′O > νO: ζ′ is thus the first special germ of Q, and so q′ is the first satellite
of q, regardless of the choice of Q.

Keep the notations as above for the next lemma.

Lemma 7.4. If Q is a pencil with irreducible cluster of base points and γ is a
multiple of an irreducible germ, then:

(1) If ζβ ∈ Q, then [ζβ .γ] ≥ [BP (Q).γ]
(2) Assume that ζβ is non-special. Then the above inequality is an equality if and

only if ζβ and γ share no point in the first neighbourhood of the last point q
of BP (Q).

(3) If γ has a free point qβ in the first neighbourhood of q, then the germ ζβ corre-
sponding to qβ is the one with higher intersection with γ.

(4) If the germ ζβ with higher intersection with γ is non-special, then γ effectively
goes through qβ.
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Proof. The first claim is a direct consequence of the Noether virtual formula ([7],
4.1.2). The claim 2 follows by computing the first member by the ordinary Noether
formula, as ζβ has effective multiplicities equal to the virtual ones at the base points
and no points outside of BP (Q) other than the point in the first neighbourhood of q
and points infinitely near to it. Claims 3 and 4 result from claim 2 applied to both
ζβ and any other non-special germ of Q.

8. The tangent map to ϕ. Back to considering the analytic map ϕ : S −→ T ,
the next proposition introduces a rational map ϕ̂ which may be viewed as the first
non-degenerate algebraic approximation to ϕ at O. If ϕ is smooth at O, then ϕ̂ agrees
with the ordinary linear tangent map. Denote by q the top of T (ϕ) and by EO and
Eq the first neighbourhoods of O and q, respectively, both endowed with their natural
structures of one-dimensional projective spaces.

Proposition 8.1. There is a rational map ϕ̂ : EO −→ Eq so that for any pencil
L of lines at O and all but finitely many ℓ ∈ L, the image of the point on ℓ in EO is
the point on ϕ∗(ℓ) in Eq.

Obviously, ϕ̂ is determined by the condition in the claim and is non-constant, by
the definition of q. We will call ϕ̂ the tangent map to ϕ at O.

Proof of 8.1. Fix local coordinates x, y at O. For a suitable choice of the para-
meters α1, α2, α = α1/α2, the germs ℓα ∈ L may be written in parametric form

x = α1t+ t2w(t, α1, α2), y = α2t+ t2w′(t, α1, α2),

w, w′ analytic. Indeed, using suitable local coordinates x′, y′, the germs of L have the
parametric form x′ = α′

1t, y
′ = α′

2t. Then just change to coordinates x, y and make
a suitable linear substitution of the homogeneous parameters α′

1, α
′
2.

Take a pencil of germs at O′, Q = {ζβ : β1h1 + β2h2 = 0}, β = β1/β2 ∈ C∪ {∞},
so that BP (Q) = Tred. Fix α: to get the germ ζβ which has higher intersection with
γα = ϕ∗(ℓα), one has just to cancel the initial form, as series in t, of

β1h
∗
1(α1t+ t2w,α2t+ t2w′) + β2h

∗
2(α1t+ t2w,α2t+ t2w′) (4)

On the other hand, by iterated use of the virtual Noether formula ([7], 4.1.2), one
easily sees that for any fixed β and all but finitely many β′

[ζβ .Tred] = [ζβ .ζβ′ ] = T 2
red

and so, for all ζ
β
∈ Q,

eO(ϕ∗(ζβ)) = [ζβ .T ] =
1

r
T 2.

It follows that the initial forms of h∗1 and h∗2 are linearly independent and both have

degree T 2/r. Thus, but for the finitely many values of α for which ̂h∗1(α1, α2) =
̂h∗2(α1, α2) = 0, the initial coefficient of the series 4 above is

β1
̂h∗1(α1, α2) + β2

̂h∗2(α1, α2).

It will thus be cancelled if and only if

β =
β1

β2
= −

̂h∗2(α1, α2)

̂h∗1(α1, α2)
.



LOCAL GEOMETRY OF PLANAR ANALYTIC MORPHISMS 389

We take this equality as the definition of ϕ̂, which obviously does not depend on L.

Then, but for the points pα belonging to the divisor C : gcd(̂h∗1,
̂h∗2) = 0, ϕ̂(pα) is the

point qβ whose corresponding germ ζβ has higher intersection with γα. We already
know from the definition of T that, for all but finitely many α, the germ γα has a free
point in the first neighbourhood of q. If this is the case, then, by 7.4.3, this point is
ϕ̂(pα), as desired.

Remark 8.2. Enriques’ definition of infinitely near points per abstrazione iden-
tifies each proper or infinitely near point to the class of all irreducible germs of curve
through it (see [10], IV.2, [17] or [7], 3.4). Under this viewpoint the top q of T plays
the role of the image of O by ϕ, after which it makes sense to have the tangent map
defined between the first neighbourhoods of O and q.

The proof of 8.1 has given further information on ϕ̂ which is worth keeping for
future reference. We have in fact seen:

Corollary 8.3 (of the proof of 8.1). Let Q = {ζβ : β1h1+β2h2 = 0, β = β1/β2}
be a pencil with BP (Q) = Tred. Take β as the absolute coordinate of the point qβ ∈ Eq

corresponding to ζβ and α = α1/α2 as the absolute coordinate of the point pα ∈ EO

lying on ℓα : α1y − α2x = 0.
(1) The tangent cones to the inverse images of the germs in Q describe a one dimen-

sional linear series TC(Q∗), of degree T 2/r, whose variable part is the linear
series described by the fibres of ϕ̂.

(2) If pα does not belong to the fixed part of TC(Q∗), then ϕ̂(pα) = qβ if and only if
ζβ is the germ having higher intersection with ϕ∗(ℓα).

(3) The equation of ϕ̂ is

β = −
̂h∗2(α, 1)

̂h∗1(α, 1)
.

(4) deg ϕ̂ ≤ T 2/r

Also,

Corollary 8.4. Assume that pα does not belong to the fixed part of TC(Q∗).
If either γα = ϕ∗(lα) has a free point in the first neighbourhood of q, or ϕ̂(pα) is free,
then ϕ̂(pα) is the point on γα in the first neighbourhood of q .

Proof. Under the first hypothesis, the claim has been proved when proving 8.1.
If ϕ̂(pα) is free, it suffices to apply 8.3.2 and 7.4.4.

If ϕ is non-dicritical, q still denotes the top of T and q1 is the first satellite point
in the first neighbourhood of q, we write F1 = ϕ̂∗(q1) and call it the first special fibre
of ϕ̂. If q is satellite and q2 is the second satellite in the in the first neighbourhood of
q, then F2 = ϕ̂∗(q2) is the second special fibre of ϕ̂. In the sequel, when mentioning
F2 (resp. F1) we will implicitly assume that q is satellite (resp. ϕ is non-dicritical).

9. Tangent cones to inverse images. We will deal with divisors D on one-
dimensional projective spaces: ep(D) will denote the multiplicity of a point p in D and
supp(D) the set of points with non-zero multiplicity in D. We shall write just p ∈ D
for p ∈ supp(D). Without further mention, tangent cones to germs with origin at a
point p will be identified to their corresponding divisors on the first neighbourhood
of p.
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Denote by π : Tq −→ T the composition of the blowing-ups giving rise to the top
q of T , so that q belongs to Tq as a proper point. For the whole of this section, a
bar denotes pull-back by π. We will make repeated use of the following fact without
further mention: if ζ is any germ at O′, then

[ζ.Tred] = [ζ.γ] = [ζ̄.γ̃] = eq(ζ̄),

where γ is a generic germ through Tred and γ̃ denotes its strict transform at q.
Tangent cones to inverse images and inverse images of tangent cones are related

by the next theorem:

Theorem 9.1. There is a divisor A on EO so that for any germ of curve ζ at
O′,

ϕ̂∗(TC(ζ̄)) = TC(ϕ∗(ζ)) + [ζ.Tred]A.

Proof. Drop from Tred the last point q and its multiplicity to get a new weighted
cluster, still consistent, and choose a germ τ : h0 = 0 going sharply through it and
missing q. Notice that, from its own definition, [τ.Tred] = T 2

red − 1. As above, let
Q = {ζβ : β1h1 + β2h2 = 0}, β = β1/β2 ∈ C ∪ {∞}, be a pencil with BP (Q) = Tred.
If ζβ ∈ Q is non-special, both ζβ and τ have the same mutiplicities at the points
preceding q and τ misses q. Because of this

ζ̄β = τ̄ + ζ̃β , (5)

ζ̃β being the strict transform of ζβ at q. It follows that for any ζβ ∈ Q, if ζ̌β is its
virtual transform at q (relative to the multiplicities of BP (Q)),

ζ̄β = τ̄ + ζ̌β ,

and so the pencil of lines described by the virtual transforms at q of the germs in Q
is {ζ̌β : β1h̄1/h̄0 + β2h̄2/h̄0 = 0}. If ũ, ṽ are local coordinates at q, up to a linear
substitution on h1, h2, we may assume that the initial forms of h̄1/h̄0 and h̄2/h̄0 are
ũ and ṽ, respectively.

Let ζ have equation h and denote by P (ũ, ṽ) the initial form of h̄. Write

δ = degP = eq(ζ̄) = [ζ.Tred].

If ξ is the germ ξ : P (h̄1/h̄0, h̄2/h̄0)−h̄ = 0, then eq(ξ) > δ. Take ξ′ : P (h̄1, h̄2)−h̄
δ
0h̄ =

0 to get

eq(ξ
′) > δ(1 + [τ.Tred]) = δT 2

red.

Clearly ξ′ = ζ̄′ where ζ′ : P (h1, h2) − hδ
0h = 0 has thus

[ζ′.Tred] = eq(ξ
′) > δT 2

red

or, equivalently,

eO(ϕ∗(ζ′)) = [ζ′.T ] > δrT 2
red.

The germ ϕ∗(ζ′) has equation

P (h∗1, h
∗
2) − (h∗0)

δh∗ = 0
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where (h∗0)
δh∗ has initial form

̂(h∗0)
δ
̂h∗

of degree

δeO(ϕ∗(τ)) + eO(ϕ∗(ζ)) = δr(T 2
red − 1) + δr =

δ

r
T 2.

On the other hand, by 8.3.1, the initial forms of h∗1 and h∗2 are linearly independent

and both have degree T 2/r. It follows that P (h∗1, h
∗
2) has initial form P (̂h∗1,

̂h∗2) of
degree δT 2/r.

All together, the last inequality forces

P (̂h∗1,
̂h∗2) = ̂(h∗0)

δ
̂h∗.

If d = gcd(̂h∗1,
̂h∗2), the reader may easily check, using 8.3.3, that P (̂h∗1/d,

̂h∗2/d) is
an equation of ϕ̂∗(TC(ζ̄)), after which the claim follows by taking A = A1 − C,
A1 = TC(ϕ∗(τ)) and C the divisor of equation d, that is, the fixed part of the pencil
of tangent cones to the germs in ϕ∗(Q).

Of course, the case in which ϕ is dicritical is far easier and could have been dealt
with directly: then, by 4.2, q = O′, Tq = T , π is the identical map, τ = ∅ and A1 = 0.
One may take Q to be the pencil of the lines α1u+α2v = 0 at O′, their inverse images
are α1f + α2g = 0. The initial forms ̂f, ĝ provide thus the equation of ϕ̂ and it is

enough to note that, ̂f, ĝ being linearly independent by hypothesis, ̂h∗ = ̂h( ̂f, ĝ).

Remark 9.2. It clearly follows from 9.1 that the divisor A is uniquely determined
by ϕ. Furthermore, the equality 5 in the proof of 9.1 proves that the total transform
τ̄ is independent of the choice of τ . Therefore, by 9.1, also A1 = TC(ϕ∗(τ)) is
independent of the choice of τ . This proves that the divisor C is uniquely determined
by ϕ and does not depend on the choice of the pencil Q with BP (Q) = Tred: we shall
call C the indeterminacy divisor of ϕ̂ (due to 8.3).

Corollary 9.3. Assume that ϕ is non-dicritical, let B be the tangent cone
shared by all but one inverse images of the lines in a pencil at O′ and q′ the last free
point in T . If ζ is any germ at O′ missing q′, then TC(ϕ∗(ζ)) = ([ζ.T ]/e(ϕ))B.

Proof. Let ξ, ζ be germs at O′, both missing q′. Let p be the point preceding q′

and Ep the exceptional divisor of blowing up p. Since q′ is proximate to no point other
than p and both germs are missing q′, their total transforms at q′ are ξ̄q′ = ep(ξ̄p)Ep

and ζ̄q′ = ep(ζ̄p)Ep. Furthermore, for any (necessarily irreducible) germ γ going
sharply through Tred, if γ̃q′ denotes its strict transform at q′,

[ξ.Tred] = [ξ.γ] = [ξ̄q′ .γ̃q′ ] = ep(ξ̄p)[Ep.γ̃q′ ]

and similarly for ζ. It follows

[ζ.Tred]ξ̄q′ = [ξ.Tred]ζ̄q′

and so

[ζ.Tred]ξ̄ = [ξ.Tred]ζ̄.
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Then the same relation does hold between the tangent cones to ξ̄ and ζ̄, after which
the claim follows from 9.1 by taking ξ to be any smooth germ going not through the
point of T in the first neighbourhood of O′.

As the reader may have noticed, the equality of 9.3 may also be written
TC(ϕ∗(ζ)) = (eO(ϕ∗(ζ))/e(ϕ))B. The divisor B introduced in 9.3 will play an impor-
tant role in the sequel, we will call it the fundamental divisor of ϕ. For a dicritical ϕ
we take its fundamental divisor B as being the fixed part of the pencil of the tangent
cones to the inverse images of the lines of a pencil at O′. As it is clear, in both cases
B consists of the fundamental points of ϕ in EO and the multiplicity of p in B is
∑

p′ ep′(ϕ), the summation running on all points p′ equal or infinitely near to p and
proximate to O.

Remark 9.4. If the top of T is a free point, then q = q′ and 9.3 applies to the
germ τ in the proof of 9.1 to give

A1 =
r(T 2

red − 1)

e(ϕ)
B.

10. Computing T (ϕ) and ϕ̂. In this section we will describe a rational algo-
rithm that, starting from equations of ϕ, provides germs ξi : Pi = 0, i = 0, . . . , k, and
a pencil of germs Q, both at O′, so that {m̌i = o(ϕ∗(Pi)) = [ξi.T ]|i = 0, . . . , k}, is
the minimal system of generators of Γ(ϕ) and BP (Q) = T (ϕ)red. The reader may
note that the characteristic exponents of T (ϕ) may be computed from the m̌i using
the equalities (1) of Section 5. The multiplicity of T (ϕ) is r = gcd(m̌0, . . . , m̌k). The
height m of T (ϕ), which is computable from 6.1, may also be obtained from Q using
the equality 2 of Section 5. The pencil Q directly gives an equation of ϕ̂, by 8.3.3.
Regarding T (ϕ) itself, the pencil Q provides general enough germs through it, which
often is the easiest way of handling a cluster. Anyway, if needed, one can blow up
successive points on a variable germ in the pencil to get the points and multiplicities
of T (ϕ).

Notations being as introduced in Section 5, we will make use of the following
lemmas, the first of which is an obvious extension of [7], 6.9.2:

Lemma 10.1. Given an infinitely near point p, if ζ and ζ′ are multiples of
irreducible germs going through p and having a free point in its first neighbourhood,
then it holds

eq(ζ)

eq(ζ′)
=

ep(ζ)

ep(ζ′)

for all points q preceding p.

Lemma 10.2. If a germ ζ is going through a free point in the first neighbourhood
of the last satellite point associated to mi/n, then eO′(ζ) ≥ n/ni. If furthermore
eO′(ζ) = n/ni, then ζ is irreducible and all points on ζ after the last satellite point
associated to mi/n are simple and free.

Proof. As it is known (see for example [7], 5.7.3), irreducible germs going through
a free point q after the satellite points associated to mi/n need to have characteristic
exponents m1/n, . . . ,mi/n, and hence multiplicity non less than n/ni. If a germ ζ
goes through q, so does one of its branches γ and therefore eO′(ζ) ≥ eO′(γ) ≥ n/ni.
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In case of equality, ζ equals γ ad is thus irreducible. Furthermore, ζ has no further
characteristic exponent because gcd(n/ni,m1/ni, . . . ,mi/ni) = 1 and therefore all its
points after the satellite points associated to mi/n are simple and free.

Use 〈 〉 as meaning semigroup generated by.

Lemma 10.3. If a germ of curve ξ does not go through the last free point qi ∈ T
associated to mi/n, then [ξ.T ] ∈ 〈n, m̌1, . . . , m̌i−1〉.

Proof. Write νq for the virtual multiplicity of q in T . Let ξi be, as in Section 5,
germs having multiplicity one at qi and no satellite points after it. By 10.1, νq/ep(ξi) =
ni−1 for all q preceding qi and hence, by the Noether formula, [ξ.T ] = ni−1[ξ.ξi] for
any germ ξ missing qi. By taking ξ = ξj , j < i, one sees that the generators of the
semigroup of ξi are n/ni−1 and [ξi.ξj ] = m̌j/ni−1, j < i, from which the claim follows
using again the above equality for [ξ.T ].

Lemma 10.4. Let q ( 6= O′) be a free point in T , and mi/n the last characteristic
exponent whose associated points precede q, i = 0 if there is no such. If q = qi+1 is
the last free point associated to mi+1/n take n′ = ni/ni+1, and n′ = 1 otherwise. Let
ζ : h = 0 be a (necessarily irreducible) germ of multiplicity n/ni whose last point in T
is q. Assume that τ : P = 0 is a germ going not through q and having [T .τ ] = n′[T .ζ],
and consider the pencil B = {τα : α1P + α2h

n′

= 0}, α = α1/α2 ∈ C ∪ {∞}.
Then BP (B) is the irreducible cluster whose last point is either the last satellite point
associated to mi+1/n if q = qi+1 or, otherwise, the point q itself. Furthermore τ is
the first special germ of B, and in case q = qi+1, n

′ζ is the second special germ.

The reader may notice that 10.4 claims, in particular, that the virtual multiplic-
ities of the points p ∈ BP (B) are either νp/ni+1 if q = qi+1, or νp/ni otherwise, νp

being the virtual multiplicity of p in T .

Proof of 10.4. A bar will denote pull-back through the composition of blowing-
ups giving rise to q, while a tilde will denote strict transform with origin at q. Call E
the germ at q of the exceptional divisor: q being free, E is smooth. Since τ misses q,
for some positive integer µ,

τ̄ = µE

and so there is an equation z of E for which P̄ = zµ. Also

ζ̄ = µ′E + ζ̃

where ζ̃ is smooth (by 10.2) and µ′ is a positive integer. If γ is a germ going sharply
through Tred and sharing with τ or ζ no point besides those in T , γ is irreducible and

r[τ.γ] = [τ.T ] = n′[ζ.T ] = rn′[ζ.γ],

which in turn gives

rµ[E.γ̃] = r[τ̄ .γ̃] = rn′[ζ̄ .γ̃] = rn′(µ′[E.γ̃] + [ζ̃ .γ̃]).

Now, if p is the point preceding q, its multiplicity on γ is νp/r = ep(γ) = [E.γ̃]. On

the other hand, ζ and γ share no point infinitely near to q and ζ̃ is smooth, hence
νq/r = eq(γ̃) = [ζ̃.γ̃] and the last displayed equality gives

µνp = n′µ′νp + n′νq.
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Keep this equality in the form

µ− n′µ′

n′
=
νq

νp

. (6)

In particular µ− n′µ′ > 0 and therefore the strict transform of τα, α 6= ∞, is

τ̃α : α1z
µ−n′µ′

+ α2(hz
−µ′

)n′

= 0.

Note that z1 = z and z2 = hz−µ′

may be taken as local coordinates at q, because, by
10.2, ζ̃ is smooth and transverse to E. Using these coordinates, the germs τ̃α, α 6= ∞,
have equations

α1z
µ−n′µ′

1 + α2z
n′

2 = 0.

Assume q = qi+1. The above equations and the equality 6 assure that, for α 6=
0,∞, the germs τ̃α, and hence also the germs τα, have a variable free point in the first
neighbourhood of the last satellite point associated to mi+1/n. By 10.2, eO′(τα) ≥
n/ni+1 if α 6= 0,∞. Since τ0 = n′ζ belongs to the pencil B and has multiplicity
n/ni+1, all but at most one of the τα, α 6= 0,∞, have eO′(τα) = n/ni+1. By 10.2
again, they are irreducible and then 7.1 proves that BP (B) is as claimed. Since n′ > 1,
τ0 = n′ζ is non-reduced and hence special. Clearly, due to its multiplicity, it is the
second special germ. Thus τ∞, which is also special because is missing the point q,
needs to be the first special germ.

If q 6= qi+1, then n′ = 1, νp = νq and hence µ − n′µ′ = 1, after which the τ̃α,
α 6= ∞, together with E : z1 = 0, describe a pencil of lines at q. Then it is clear
that the germs τα, α 6= ∞, go through q and share no point infinitely near to it.
Arguing as in the former case, it follows that all but at most one of the τα, α 6= ∞,
are irreducible and BP (B) turns out to be the irreducible cluster with last point q.
Furthermore, since q is free, B has a single special germ, which is τ∞ by the same
reason as above.

Now we are able to describe the algorithm. Interchanging the coordinates at O′

if necessary, we assume that the equations of ϕ are u = f(x, y), v = g(x, y), with
n = e(ϕ) = o(f) ≤ o(g).

If o(g) = n and ̂f/ĝ is not constant (that is, ϕ is dicritical) we end by just taking
P0 = u and Q = {α1u + α2v = 0}. Otherwise take a ∈ C such that o(af − g) > n.
Assume, using induction on i ≥ 0, to have determined equations Pj ∈ C[u, v] of germs
ξ0 : P0 = 0, . . . , ξi : Pi = 0 giving the first i + 1 elements n = m̌0, m̌1, . . . , m̌i of the
minimal system of generators of Γ(ϕ) as m̌i = [ξi.γ]. Take ni = gcd(m̌0, . . . , m̌i). We
assume also that T contains a free point in the first neighbourhood of the last satellite
point associated to mi/n (of O′ if i = 0) and that we have determined a further germ
ζ : h = 0, h ∈ C[u, v], that goes through such a free point and has eO′(ζ) = n/ni. For
i = 0 we just take P0 = u and h = au− v.

Now we will inductively determine from ζ = ζ0 a finite set of irreducible germs
ζj : hj = 0, hj ∈ C[u, v], of multiplicity n/ni, each ζj going through all points of T on
ζj−1 and at least one further point of T after the satellite points associated to mi/n.
By 10.2, all these further points ζj is going through belong to the set of consecutive
free points of T that immediately follow the last satellite point associated to mi/n.

Take ζ0 = ζ, h0 = h and, inductively, assume to have determined hj−1 defining an
irreducible germ ζj−1 of multiplicity n/ni going through some free point in T after the
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satellite points associated to mi/n. Since there is a free point in T after the satellite
points associated to mi/n, by 9.3, all P ∗

s , s = 0, . . . , i, have homothetical initial forms.
As far as the initial form of h∗j−1 is homothetical to that of f = P ∗

0 and o(h∗j−1) belongs
to the semigroup 〈n, m̌1, . . . , m̌i〉, say o(h∗j−1) = c0n+ c1m̌1 + · · ·+ cim̌i, adjust a ∈ C

to cancel the initial forms in the difference

h∗j−1 − a

i
∏

0

(P ∗
s )cs ,

thus getting

ζj : hj = hj−1 − a

i
∏

0

P cs
s = 0

so that

[ζj .T ] = o(h∗j ) > o(h∗j−1) = [ζj−1.T ]. (7)

If q is the last free point on ζj−1 in T , it is clear that
∏i

0 P
cs
s = 0 does not go

through q. Furthermore q 6= qi+1 if i < k, as otherwise ζj−1 would give rise to a
new generator of Γ(ϕ), against the hypothesis o(h∗j−1) ∈ 〈n, m̌1, . . . , m̌i〉. Then, case
n′ = 1 of Lemma 10.4 applies and proves that ζj is irreducible, has multiplicity n/ni,
and goes through all points of T on ζj−1 with the same multiplicities as ζj−1. The
Noether formula and the inequality 7 show then that ζj goes through at least a further
point in T .

Now, T being finite, the above procedure comes to an end, which means that, for

some j, either o(h∗j ) /∈ 〈n, m̌1, . . . , m̌i〉, or ̂h∗j is not homothetical to ̂f
Assume that [ζj .T ] = o(h∗j ) /∈ 〈n, m̌1, . . . , m̌i〉. Then i < k and, by 10.3, ζj goes

through the last free point qi+1 of T associated tomi+1/n. By 9.1, we may take Pi+1 =
hj and ξi+1 = ζj as the germ giving the next generator of Γ(ϕ), which is computed
as m̌i+1 = o(h∗j ) and allows in turn to compute ni+1 = gcd(n, m̌1, . . . , m̌i+1). Write
n′ = ni/ni+1. Since, as it is well known ([4] or [7], ex. 5.10), n′m̌i+1 ∈ 〈n, m̌1, . . . , m̌i〉,
take as above a suitable monomial Q in the P0, . . . , Pi in order to have o((P ∗

i+1)
n′

) =
n′m̌i+1 = o(Q∗). Again Q = 0 does not go through qi+1 and therefore Lemma
10.4 applies, now with n′ > 1, to show that the cluster of base points of the pencil
B = {τα : α1Q + α2P

n′

i+1 = 0} consists of the points in T up to the last satellite
associated to mi+1/n, taken with 1/ni+1 times the virtual multiplicities they have in
T , and that all τα, α 6= 0,∞, are going sharply through BP (B). They are thus, in
particular, all irreducible and of multiplicity n/ni+1

If the initial forms of P ∗
i+1 and f are homothetical, we take for the parameter

α the (necessarily finite and non-zero) value a that cancels the initial forms of P ∗
i+1

and Q∗. This gives rise to a non-special germ τa ∈ B with higher intersection with
T and that, therefore, goes through the first free point in T after the satellite points
associated to mi+1/n: we take τa as the new ζ and repeat the procedure.

Otherwise, by 9.3, qi+1 is the last free point of T , k = i + 1, and the algorithm
ends by taking Q = B.

There remains the case in which o(h∗j ) ∈ 〈n, m̌1, . . . , m̌i〉 and the initial forms of
h∗j and f are not homothetical: then, again by 9.3, the last point of T on ζj is the
last free point in T , and no satellite points follow it in T , as otherwise o(h∗j ) would
be a new generator of Γ(ϕ) against the hypothesis. Thus i = k and as before, hj
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and a suitable monomial Q in the P0, . . . , Pk so that o(Q∗) = o(h∗j ), may be used to
generate a pencil which, again by 10.4, has cluster of base points Tred, as wanted.

Summarizing, the procedure is as follows:
Interchanging u, v if necessary, assume that o(u∗) ≤ o(v∗). Use double induction

on i, j and start by taking P0 = u, h0,1 = v.
Assume to have determined P0, . . . , Pi, hi,1, . . . hi,j ∈ OT,O′ , i ≥ 0, j ≥ 1, so that

the initial forms ̂P ∗
0 , . . . ,

̂P ∗
i ,
̂h∗i,1, . . . ĥ

∗
i,j−1 are all homothetical. Write m̌ℓ = o(P ∗

ℓ ),
ℓ = 0, . . . , i and Γi = 〈m̌0, . . . , m̌i〉.

1 If o(h∗i,j) ∈ Γi, then determine non negative integers c0, . . . , ci so that

o(h∗i,j) =

i
∑

ℓ=0

cℓm̌ℓ

and take

Qi,j =

i
∏

ℓ=0

P cℓ

ℓ .

1.a If ̂h∗i,j is homothetical to ̂P ∗
0 , then take

hi,j+1 = hi,j − aQi,j,

a ∈ C being chosen so that ̂h∗i,j − âQ∗
i,j = 0

1.b If, otherwise, ̂h∗i,j is not homothetical to ̂P ∗
0 , then end by taking k = i

and Q = {α1hi,j + α2Qi,j = 0}
2 If o(h∗i,j) /∈ Γi, then take Pi+1 = hi,j , m̌i+1 = o(P ∗

i+1), Γi+1 = 〈m̌0, . . . , m̌i+1〉 and
n′ = gcd(m̌0, . . . , m̌i)/ gcd(m̌0, . . . , m̌i+1). Determine non negative integers
c0, . . . , ci so that

n′o(P ∗
i+1) =

i
∑

ℓ=0

cℓm̌ℓ

and take

Qi+1 =

i
∏

ℓ=0

P cℓ

ℓ .

2.a If ̂P ∗
i+1 is homothetical to ̂P ∗

0 , then take

hi+1,1 = Pn′

i+1 − aQi+1,

a ∈ C being chosen so that ̂P ∗
i+1

n′

− aQ̂∗
i+1 = 0.

2.b If, otherwise, ̂P ∗
i+1 is not homothetical to ̂P ∗

0 , then end by taking k = i+1

and P = {α1P
n′

i+1 + α2Qi+1 = 0}.
We have thus proved:

Theorem 10.5. The above procedure reaches its end after finitely many steps and
provides analytic germs of function P0, . . . Pk at O′ and a pencil of germs of curve at
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O′, Q, such that {o(ϕ∗(Pi))}i=0,...,k, is the minimal system of generators of Γ(ϕ) and
BP (Q) = Tred.

Remark 10.6. Assume that ϕ is non-dicritical, call q and q′ the top and the last
free point of T , respectively, and define the top twist ñ of T as being ñ = nk−1/r
if q is satellite and ñ = 1 otherwise. We have seen that for any irreducible germ
ζ : h = 0 having multiplicity one at q′ and no satellite points after it, one may
construct τ : P = 0 that misses q′ and has [τ.T ] = ñ[ζ.T ]. Then 10.4 applies and the
pencil Q = {α1h

ñ + α2P = 0} has BP (Q) = Tred, first special germ τ and, in case of
q being satellite, second special germ ñζ.

Remark 10.7. It follows from 10.6 and 8.3.1 that TC(ϕ∗(τ)) = C + F1 and,
if q is satellite, ñTC(ϕ∗(ζ)) = C + F2. In particular the multiplicities of all non-
fundamental points in the second special fibre are multiples of ñ. Furthermore, by
9.3, C + F1 = (T 2/nr)B.

Next we will work out some examples. In all of them we will denote by x, y both
the local coordinates at O and their initial forms, which are taken as homogeneous
coordinates on the first neighbourhood of O. An absolute coordinate α on the first
neighbourhood of the top q of T will be taken in such a way that the first satellite
point has α = ∞ and, in case of q satellite, the second satellite point has α = 0.
The remaining notations are as used already, in particular ϕ will be given by u =
f(x, y), v = g(x, y) and Q is a pencil with BP (Q) = T (ϕ)red.

Example 10.8. We will first consider the easiest non-dicritical case, namely
that in which in which f = fn + · · · , g = gm + · · · , where fn, gm are non-homothetical
forms of degrees n, m, respectively, m > n and the dots indicate terms of higher
order. Take r = gcd(n,m), n′ = n/r, m′ = m/r. Then e(ϕ) = n and Q may be taken
um′

−αvn′

= 0, after which T = T (ϕ) has Puiseux series S = θum/n, and m and r are
the height and multiplicity of T . Note that in case n | m, T consists of m/n n-fold
free points. Otherwise it has satellite top. The fundamental divisor is B : fn = 0
and ϕ̂ is [x, y] 7→ gn′

m (x, y)/fm′

n (x, y). Then we may get in different situations by
suitable choices of fn, gm, namely for fn = x2 and gm = y3, degϕ = 6 = nm,
supp(B) = supp(F1) and supp(B) ∩ supp(F2) = ∅, while for fn = xy and gm = xy2,
degϕ = 1 and supp(B) = supp(F1) ∪ supp(F2). The case fn = xy, gm = xy7 has the
divisor A of Theorem 9.1 non-effective.

Example 10.9. Take f = x2 − y3, g = x3 − y5. The divisor B is x2 = 0, in
particular n = 2. The fundamental points are those on the germ x2−y3 = 0 up to the
third free point after the satellite one. Q may be taken u3 − v2 − αu2v = 0. Thus T
consists of the points and multiplicities of the germ u3 − v2 up to the first free point
after the satellite one, m = 4 thus. J(ϕ) is xy2(10y2 − 9x) = 0, its multiplicity being
4 = n+m− 2 according to 6.1. Note that the jacobian fails to go through the simple
fundamental points after the satellite one. ϕ̂ is given by −3y3/x3, F1 is x3 = 0.

Example 10.10. Taking f = x9+9y11, g = x11+11x2y11 give n = 9, B : x9 = 0.
A pencil Q is v9 − u11 − αu9v2 = 0. T has thus the points on v9 − u11 = 0 up to the
fourth free point after the satellite ones, with the same multiplicities. The Puiseux
series of T is S = u11/9 + θu15/9 and so m = 15. J(ϕ) is xy21 = 0. ϕ̂ is given by
−99y22/x22, the special fibre being F1 : x22 = 0. The fundamental points are those
on g = x9 + 9y11 = 0 up to the 22-th free point after the satellite ones. Note that the
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jacobian is missing all fundamental satellite points (some are double) and of course
all free points after them.

Example 10.11. If f = x9 + 2y11, g = x11 + x2y11, again n = 9 and B
is x9 = 0. Now Q may be taken v9 − u11 − αu10v = 0. T has thus the points
on v9 − u11 = 0 up to the second free point after the satellite ones, with the same
multiplicities. The Puiseux series of T is S = u11/9 + θu13/9 and so m = 13. J(ϕ) is
xy10(13x9 +4y11) = 0. ϕ̂ is given by −13y11/x11, the special fibre being F1 : x11 = 0.
It is worth comparing with Example 10.10: germs λ0f + λ1g = 0 in the present and
the former example are equisingular for any (λ0, λ1) 6= (0, 0). In spite of this, there
are evident differences. In particular the jacobians are quite different, which shows
that neither the equisingularity types of the pair of germs f = 0 and g = 0, nor those
of all germs in the pencil λ0f + λ1g = 0 can provide complete information on the
equisingularity type of the jacobian germ J(f, g) = 0, as for instance they do not
determine its multiplicity or its splitting in branches.

11. On the behaviour of direct images. We will show in this section that
the irreducible germs at O whose tangent line does not belong to the fundamental
divisor, have their direct images partially modelled after T .

Theorem 11.1. Let ξ be an irreducible germ at O and p its first neighbouring
point. If p does not belong to the fundamental divisor B or to the second special fibre,
then ϕ∗(ξ) goes through the points of T (ϕ) with effective multiplicities equal to eO(ξ)
times the virtual ones and goes also through ϕ̂(p), which is free.

Proof. The dicritical case being obvious, we assume ϕ non-dicritical. Take the
pencil Q and coordinates in the first neighbourhoods of O and q as in 8.3, p = pα. By
the hypothesis and 10.7, pα /∈ C and ϕ̂(pα) = qβ is free: then, by 8.3.2, ζβ has higher
intersection with γα = ϕ∗(ℓα), and so ϕ∗(ζβ) ∈ ϕ∗(Q) has higher intersection with
ℓα. The germs in ϕ∗(Q) have variable tangent cone at O (8.3.1) while ℓα and ξ have
the same tangent line at O: this means that ϕ∗(ζβ) also has higher intersection with
ξ and so ζβ has higher intersection with ϕ∗(ξ). Now, the point qβ on ζβ being free,
by 7.4.4, it belongs to ϕ∗(ξ), and so, by 7.2, ϕ∗(ξ) goes through eq(ϕ∗(ξ))Tred with
effective multiplicities equal to the virtual ones. To conclude, using 10.1 and 3.7,

eq(ϕ∗(ξ)) =
r

e(ϕ)
eO′(ϕ∗(ξ)) =

r

e(ϕ)
([ξ.BP (ϕ)] + [ξ.Φ]) = reO(ξ),

the last equality coming from the fact that, because of the hypothesis p /∈ B, ξ shares
no point other than O with BP (ϕ) or Φ.

Also the case in which the first neighbouring point belongs to the second special
fibre but not to B can be dealt with:

Proposition 11.2. If ξ and p are as in 11.1, still p /∈ B but p ∈ F2, and q′ is the
last free point in T (ϕ), then ϕ∗(ξ) goes through the points of T (ϕ) preceding q′ with
effective multiplicities equal to eO(ξ) times the virtual ones and eq′(ϕ∗(ξ)) > eO(ξ)νq′ ,
νq′ the virtual multiplicity of q′ in T (ϕ).

Proof. Take the pencil Q as in 10.6. Denote by ν the system of virtual multi-
plicities of T . The same argument used in the proof of 11.1 proves that the second
special germ of Q, n′ζ, has higher intersection with ϕ∗(ξ). By 10.1, eb(n

′ζ) = νb/r
for all points b ∈ T preceding q′. Then ϕ∗(ξ) needs to go through q′, otherwise



LOCAL GEOMETRY OF PLANAR ANALYTIC MORPHISMS 399

[ϕ∗(ξ).n
′ζ] = [ϕ∗(ξ).τα] for all non-special τα ∈ Q. Once we know that ϕ∗(ξ) goes

through q′, using 10.1 and that, by 3.7, eO′(ϕ∗(ξ)) = neO(ξ),

eb(ϕ∗(ξ)) =
eO′(ϕ∗(ξ))

eO′(n′ζ)
eb(n

′ζ) = reO(ξ)eb(n
′ζ) = eO(ξ)νb, (8)

for all b ∈ T preceding q′.
It remains to take care of the multiplicity at q′. Let q′′ be the point just before

q′ and use ˜ and ¯ to denote strict and total transforms at q′. The strict transform
of the first special germ τ being empty, we have

τ̄ = µE, n′ζ̄ = µ′E + n′ζ̃

where E is the germ of the exceptional divisor at q′ and µ and µ′ are non-negative
integers. If τα is any non-special germ in Q, we have on one hand [τα.τ ] = [τα.n

′ζ],
because the three germs involved belong to the same pencil, while, on the other,

[rτα.τ ] = rµ[τ̃α.E] = µνq′′

and

[rτα.n
′ζ] = rµ′[τ̃α.E] + r[τ̃α.n

′ζ̃] = µ′νq′′ + n′νq′ ,

the last equality due to the fact that ζ̃ is smooth and shares with τα no point infinitely
near to q′. All together,

µνq′′ = µ′νq′′ + n′νq′ . (9)

Assume that eq′(ϕ∗(ξ)) ≤ eO(ξ)νq′ . Then

eq′(ϕ∗(ξ)) ≤ eO(ξ)νq′ < eO(ξ)νq′′ = eq′′ (ϕ∗(ξ))

and therefore ϕ̃∗(ξ) is tangent to E. Since ζ is transverse to E, using 9 and 8 above,

[ϕ∗(ξ).n
′ζ] = µ′[ϕ̃∗(ξ).E] + [ϕ̃∗(ξ).n

′ζ̃]

≤ µ′eO(ξ)νq′′ + n′eO(ξ)νq′

= µeO(ξ)νq′′

= µeq′′(ϕ∗(ξ))

= µ[ϕ̃∗(ξ).E]

= [ϕ∗(ξ).τ ]

contradicting the fact, already proved, that the second special germ has higher inter-
section with ϕ∗(ξ).

12. The tangent cone to the jacobian. In this section we will see how the
tangent cone to the jacobian germ J(ϕ), still viewed as a divisor on EO, is related to
the multiple points of the fibres of ϕ̂. Again denote by q the top of T and by B the
fundamental divisor. As above, F1, F2 denote the first and second special fibres of ϕ̂.
We also write Fp = ϕ̂∗(ϕ̂(p)) the fibre of any p ∈ EO. The next lemma is elementary
and well known, see [7], 7.1.2 or also [16], XII,2.2 for a more general statement. As
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usual, the ramification divisor of a rational map between projective lines consists of
the e-fold points of its fibres taken (e− 1)-fold, e ≥ 1.

Lemma 12.1. If α1G1(X0, X1) + α2G2(X0, X1) = 0, G1, G2 homogeneous of
the same degree d, defines a one-dimensional linear series on P1, then J(G1, G2)
has degree 2d − 2 and the group J(G1, G2) = 0 (the jacobian group of the series) is
composed of twice the fixed group of the series, gcd(G1, G2) = 0, plus the ramification
divisor of G1/G2.

Recall that the top twist of T (ϕ) was defied in 10.6 as ñ = nk−1/nk if the top of
T (ϕ) is satellite and ñ = 1 otherwise.

Theorem 12.2. The multiplicities of the principal tangents to the jacobian germ
of ϕ are as follows

ep(TC(J)) =
n+m

n
ep(B) − 1 +











− 1
ñ
ep(F1) if p ∈ F1

1
ñ
ep(F2) if p ∈ F2

ep(Fp) otherwise,

where n = e(ϕ), m is the height of T (ϕ) and ñ is the top twist of T (ϕ).

Proof. If ϕ is dicritical, then TC(J) has equation J( ̂f, ĝ) = 0 and the claim
follows applying 12.1 to the series of the tangent cones to the inverse images of the
elements of a pencil of lines at O′. Thus we assume ϕ non-dicritical from now on.

Let q′ be the last free point in T . As allowed by 10.6, we take an irreducible
germ ζ : h = 0 with multiplicity one at q′ and no satellite points after it, as well as a
second germ τ : P = 0 going not through q′ and having [τ.T ] = ñ[ζ.T ]. The pencil
Q = {τα : α1P + α2h

ñ = 0}, α = α1/α2 ∈ C ∪ {∞}, has thus BP (Q) = Tred, first
special germ τ = τ∞ and, if q′ = qk, second special germ ñζ = τ0.

Let R be the ramification divisor of ϕ̂ and, as before, C the fixed part of the tan-

gent cones to the inverse images of the germs in Q. By 8.3.1 and 12.1, J(̂P ∗, (̂h∗)ñ) = 0

defines the divisor R+ 2C. Since P = 0 does not go through q′, by 9.3, ̂P ∗ = ̂fT 2/rn

up to a non-zero constant factor. Thus the divisor R+ 2C is also defined by

(̂h∗)ñ−1
̂f

T
2

rn
−1J( ̂f, (̂h∗))

which, by 6.3, equals

(̂h∗)ñ−1
̂f

T
2

rn
−1 ̂J(f, h∗) = (̂h∗)ñ−1

̂f
T

2

rn
−1

̂(
∂h

∂v

)∗

Ĵ(f, g).

Now let us detail the divisors defined by the factors of this form:

• By 8.3.1, (̂h∗)ñ−1 defines (1−1/ñ)(C+F ), F a fibre of ϕ̂, F = F2, the second
special fibre, if the top q of T is satellite.

• By definition ̂f defines B.
• Take ζ′ : ∂h/∂v=0. By our choice of the coordinates u, v, the first neighbour-

ing point of O′ in T lies on the u-axis. Since ζ goes through it, ζ cannot be
tangent to the v-axis. Therefore eO′(ζ′) = eO′(ζ) − 1 which prevents ζ′ from
going through q′ (by 10.2) and 9.3 applies: the initial form of (∂h/∂v)∗ being

of degree T 2

rñ
−m by 6.5, it defines ( T 2

rnñ
− m

n
)B.

• Ĵ(f, g) obviously defines TC(J).
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All together and using 10.7 we get

R+ 2C =
ñ− 1

ñ
(C + F ) + (

T 2

rn
− 1)B +

1

n
(
T 2

rñ
−m)B + TC(J)

=
ñ− 1

ñ
F +

ñ+ 1

ñ
F1 + 2C −

m+ n

n
B + TC(J),

from which the claim directly follows.

Example 12.3. Back to the case of Example 10.8 and using the same notations,
the fundamental divisor is B : fn = 0 and we take B′ : gm = 0. Then 10.3 easily gives

ep(J) =

{

ep(B) + ep(B
′) − 1 if p has non-zero multiplicity in mB − nB′

ep(B) + ep(B
′) + ep(Fp) − 1 otherwise.

The reader may check this case by direct computation using 12.1 and the identity
J(fm′

n , gn′

m ) = n′m′fm′−1
n gn′−1

m J(fn, gm).

Multiple points of either especial fibre need not belong to TC(J), as shown below:

Example 12.4. Take f = x54y44(9x + y), g = x66y54(11x + y), which, inci-
dentally, is the composition of the morphism of Example 10.10 and the blowing-ups
giving rise to its last satellite fundamental point. Then B : x54y44(9x + y) = 0 and
after a single step of the algorithm one gets Q : αu11 − v9 = 0 and hence n = 99,
m = 121, r = 11, ñ = 9. The tangent map is given by α = y2(11x + y)9/(9x + y)11

and, by Theorem 12.2, the multiplicity in TC(J) of the only point of the first special
fibre F1 : (9x+ y)11 = 0 is 20/9− 1− 11/9 = 0. For p : 11x+ y = 0 in the second spe-
cial fibre, epTC(J) = −1 + 9/9 = 0. Of course, a direct computation of the jacobian
confirms these facts, as it gives J : x121y97 = 0.

Remark 12.5. (on the splitting of the jacobian) If ζ is any germ at O and p belongs
to the first neighbourhood of O, let us write ζp the component of ζ composed of all
branches of ζ having principal tangent p. The germs ζp are often called the tangential
components of ζ and the germ ζ splits in its tangential components, ζ =

∑

p∈TC(ζ) ζ
p.

For any p, eO(ζp) = ep(TC(ζ)) and thus the multiplicities of the tangential compo-
nents of J, eO(Jp), and in particular the first neighbouring points J is going through,
are given by Theorem 12.2. The minus sign that affects the multiplicities of the points
of the first special fibre F1 in the formula of Theorem 12.2 is worth a comment. Un-
like the points in other fibres, for p ∈ F1 the multiplicity ep(TC(J)) is a decreasing
function of ep(Fp). This explains a number of cases in which a component of J with
higher multiplicity at O goes away from the infinitely near base points of the pencil
f + αg = 0 and seems to have little relation with the singularities of the (general or
special) germs in it. Next are two examples:

Example 12.6. In the case of Example 10.10, B consists of the single 9-fold
point x9 = 0. There are two fibres of ϕ̂ having multiple points, each consisting of
a 22-fold point. The only point of the fibre y22 = 0 gives rise to a component of J

with multiplicity 21 at O and principal tangent y = 0 and that, therefore, goes not
through any further base point (this component being in fact y21 = 0). By contrast,
the point p : x = 0 of the first especial fibre x22 = 0 has multiplicity 24−1−22 = 1 in
TC(J), and so the component Jp of J is smooth (equal to x=0 in fact). Incidentally,
note that in this case ep(TC(J)) < 2 = ep(ϕ).
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Example 12.7. Take ϕ with equations f = y2 + 2x4, g = y3 + 3x4y. The
fundamental points of ϕ are the origin O, its first neighbouring point p on the x-
axis, both double, and two pairs of consecutive free simple points following p. Direct
computation gives J : x7 = 0 and so J is missing all infinitely near fundamental
points, from which the first neighbouring one is double. The algorithm of Section 9
easily shows that T consists of the points and multiplicities of the germ u3 − v2 = 0
up to the sixth neighbourhood, hence n = 2 and m = 7. The tangent map ϕ̂ is
[x, y] 7→ x8/y8. The first exceptional fibre is 8p and Theorem 12.2 gives

ep(TCJ) =
2 + 7

2
· 2 − 1 −

8

1
= 0,

thus confirming that J is missing p. Since there are no other points in B, the only
point on J in the first neighbourhood of O comes from to the only non-special fibre
with multiple points, namely x8 = 0.

Remark 12.8. The Example 12.7 shows that the jacobian germ may miss multiple
free fundamental points. A jacobian germ missing both multiple satellite and simple
free fundamental points already appeared in Example 10.10.

The next three corollaries are direct consequences of Theorem 12.2:

Corollary 12.9. A point p belongs to F1 if and only if

ep(TC(J)) <
n+m

n
ep(B) − 1.

Corollary 12.10. If p belongs to a special fibre, then ñep(B) is a multiple of
n/ gcd(n,m). Otherwise ep(B) is a multiple of n/ gcd(n,m).

Also,

Corollary 12.11. If ϕ is non-dicritical and B has a single point, B = np, then
the number of tangents to J going not through p, counted according to multiplicities,
is

1

ñ
deg ϕ̂− 1.

In particular deg ϕ̂ is, in this case, a multiple of ñ.

Proof. By 10.7, F1 = (deg ϕ̂)p and so ep(TC(J)) = n + m − 1 − deg ϕ̂/ñ. Since
n+m− 2 = eO(J) = degTC(J) by 6.1, the claim follows.

Corollary 12.12. If ϕ is non-dicritical,

deg ϕ̂ ≤ ñ(n+m− #(B)),

#(B) being the cardinal of suppB, and this bound is sharp.

Proof. From 12.2,

ep(F1) ≤ ñ

(

n+m

n
ep(B) − 1

)

for all p ∈ B. Since suppF1 ⊂ suppB by 10.7, it is enough to add up for p ∈ B. The
equality holds for the morphism of Example 12.7.

The reader may note that for a dicritical ϕ the obvious bound deg ϕ̂ ≤ n is better
than the bound of 12.12, as for such a ϕ it holds ñ(n+m−#(B)) = 2n−#(B) > n.
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13. Further trunks. So far we have just dealt with the point O and its first
infinitesimal neighbourhood on the source surface S. Now we will extend our consid-
erations to the points infinitely near to O on S. To this end, if p is equal or infinitely
near to O, we will denote by πp : Sp −→ S the composition of the blowing-ups giving
rise to p, Sp being thus the surface p is lying on as a proper point, and by ϕp the
composite morphism ϕp = ϕ ◦ πp.

Let N be any pencil of lines at O′ and denote by Pp the family of the inverse
images ϕ∗

p(ℓ), ℓ ∈ N , PO = P using the notations of Section 3. Clearly the fixed
part of Pp is composed of the total transform of the contracted germ by ϕ plus the
exceptional part shared by all but finitely many total transforms (by πp) of the germs
in the variable part P ′ of P . Thus, for p 6= O, the contracted germ by ϕp, Φp, always
contains the germ of the exceptional divisor of πp at p, and is in particular non-empty.
BP (ϕp) consists of the points in BP (ϕ) equal or infinitely near to p, with the same
virtual multiplicities.

If ϕp is dicritical, we will say that ϕ is dicritical at p, and also that p is a dicritical
point of ϕ. Clearly, ϕ is dicritical at p if and only if p is a dicritical base point of P ,
that is, p is a base point of P and the virtual (or total) transforms at p of the germs
in P have a variable tangent. In particular a dicritical point of ϕ always belongs to
BP (ϕ).

The fundamental divisor of ϕp will be denoted by Bp, and still viewed as a divisor
on the first neighbourhood Ep of p: its points are the points in the first neighbourhood
of p that are either fundamental points of ϕ or satellite points.

The multiplicity of ϕp, e(ϕp), will be also denoted by np if no reference to ϕ is
required. By its own definition, e(ϕp) is the minimal value taken by the divisorial
valuation associated to p on the germs of P . The multiplicities e(ϕp) and ep(ϕ),
already defined in Section 3, are related, namely:

Proposition 13.1. If p is free, proximate to a single point p′, then

e(ϕp) = ep(ϕ) + e(ϕp′).

If p is satellite, proximate to points p′, p′′, then

e(ϕp) = ep(ϕ) + e(ϕp′) + e(ϕp′′).

Proof. For all but finitely many choices of ξ ∈ P , ep(ϕ) = ep(ξ), e(ϕp) =
ep(π

∗
p(ξ)), e(ϕp′ ) = ep′(π∗

p′ (ξ)) and, for p satellite, e(ϕp′′) = ep′′(π∗
p′′ (ξ)), after which

the claim follows from the well known relations between multiplicities of total and
strict transforms of a germ of curve.

Let us quote an obvious consequence of 13.1 for future reference:

Corollary 13.2. For all p, e(ϕp) > 0. If p lies in the first neighbourhood of p′,
then e(ϕp) ≥ e(ϕp′) and the equality holds if and only if p is free and non-fundamental.

The trunk T (ϕp) of ϕp will be called the p-trunk of ϕ and denoted by Tp(ϕ) or
just Tp. If Ip denotes the irreducible cluster with origin at O whose last point is p and
Lp is any pencil with BP (Lp) = Ip, then Tp consists of the points and multiplicities
shared by all but finitely many direct images of the germs in Lp. Still np is the virtual
multiplicity of O′ in Tp and ϕ is dicritical at p if and only if Tp = {O′, np}.

The trunks of ϕ are thus its main trunk TO(ϕ) = T (ϕ) and all its p-trunks
for p infinitely near to O. We will see in the sequel (14.7, 15.4, 16.2) that many
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of these trunks can be computed from those corresponding to preceding points, and
hence do not contain any new information. Before showing some relationship between
numerical characters of different trunks, let us just quote a direct consequence of 4.1
that shows that the multiplicities of the inverse images, and so in particular their
topological types, are determined by the trunks of ϕ:

Proposition 13.3. For any germ ξ at O′ and any p equal or infinitely near to
O,

ep(ϕ
∗(ξ)) = [ξ.Tp(ϕ)] −

∑

p prox. to p′

[ξ.Tp′ (ϕ)].

For any p infinitely near to O, write mp
1/np, . . . ,m

p
kp
/np, the characteristic ex-

ponents of Tp(ϕ) and m̌p
1, . . . , m̌

p
k the corresponding generators of the semigroup

Γ(ϕp) = Γp(ϕ), as described in Section 5. Denote by mp the height of Tp and put
np

i = gcd(np,m
p
1, . . . ,m

p
i ), so that np

kp
= rp is the multiplicity of Tp. Then we have:

Proposition 13.4. If p is infinitely near to O and belongs to the first neighbour-
hood of p′:
(1) For i ≤ min(kp′ , kp),

m̌p′

i n
p′

i−1

np′

≤
m̌p

in
p
i−1

np

,

this inequality being strict if p ∈ Bp′ and mp′

i < mp′ .
(2) If kp′ < kp,

T 2
p′

np′

≤
m̌p

kp′+1n
p
kp′

np

,

and the inequality is strict if p belongs to no special fibre of ϕ̂p′ .
(3) In any case,

T 2
p′

np′

≤
T 2

p

np

,

and the inequality is strict if p does not belong to the first special fibre of ϕ̂p′ .

Proof. It is of course not restrictive to assume p′ = O. In order to prove part
(1), choose an irreducible germ γ at O′ with i− 1 characteristic exponents and going
through the last free point of Tp′ associated to its i-th characteristic exponent. By
5.3,

eO(ϕ∗(γ))

eO′(γ)
=
m̌ini−1

n

and

ep(ϕ
∗
p(γ))

eO′(γ)
≤
m̌p

in
p
i−1

np

.

Then the well known properties of the blowing-up give eO(ϕ∗(γ)) ≤ ep(ϕ
∗
p(γ)) and

hence the wanted inequality.
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If p ∈ B and mi < m, then, by 9.3, p ∈ TC(ϕ∗(γ)) and the strict transform of
ϕ∗(γ) goes through p. This gives eO(ϕ∗(γ)) < ep(ϕ

∗
p(γ)) and the inequality is strict.

For claim (2), fix a pencil Q with BP (Q) = Tred and choose γ to be any non-
special germ of Q. Then eO′(γ) = n/r, eO(ϕ∗(γ)) = T 2/r. Furthermore, γ has k
characteristic exponents, so that, by 5.3,

ep(ϕ
∗
p(γ))

eO′(γ)
≤
m̌p

k+1n
p
k

np

and the inequality follows as in the proof of claim (1). If, in addition, p belongs to no
special fibre, γ may be chosen in such a way that p belongs to TC(ϕ∗(γ)) (by 7.4 and
8.3) and so ϕ∗(γ) effectively goes through p. As above, this proves the inequality to
be strict.

Lastly, choose any ζ ∈ Q different from the first special germ. Then still eO′(ζ) =
n/r (just because ζ is not the first special germ, see Section 7) and eO(ϕ∗(ζ)) = T 2/r.
Then

T 2/r = [ζ.T ] = eO(ϕ∗(ζ)) ≤ ep(ϕ
∗
p(ζ)),

The inequality being strict if ζ goes through p. Claim (3) follows after dividing by
eO′(ζ) = n/r and using the second half of 5.3.

The reader may have noticed that both sides of the inequalities of claim (1) are
polar invariants (of germs going sharply through (Tp′ )red or (Tp)red, respectively), see
[7], 6.8.3. It is also worth noticing that all these inequalities may be equalities, as it
will easily turn out after 14.7 below. The easy example f = x, g = y2 gives equality
in (3). A further remark about 13.4 is:

Remark 13.5. If Tp′ has satellite top and kp′ ≤ kp, then, by 5.1,

m̌p′

kp′
np′

kp′−1

np′

=
T 2

p′

np′

.

Then, due to a well known property of the m̌i (see [4] or [7], ex. 5.11), (1) for i = kp′

is stronger than (2).

Corollary 13.6. If ϕ is dicritical at a point p in the first neighbourhood of p′,
then T 2

p′ ≤ 2n2
p′ if p is free, and T 2

p′ < 3n2
p′ if p is satellite.

Proof. If ϕ is dicritical at p, T 2
p′/np′ ≤ T 2

p /np = np. On the other hand ep(ϕ) ≤
ep′(ϕ) and so, by 13.1 and 13.2, np ≤ ep′(ϕ) + np′ ≤ 2np′ if p is free, and similarly,
np < 3np′ if p is satellite, hence the claim.

To close this section, this corollary follows from the proof of 13.4:

Corollary 13.7. For any germ ζ but the first special one in a pencil Q with
BP (Q) = (Tp′ )red, in particular for any germ ζ going sharply through (Tp′)red,
[ζ.Tp′ ] ≤ [ζ.Tp].

Proof. Just use the equalities [ζ.Tp′ ] = T 2
p′/r (definition of T 2

p′) and ep(ϕ
∗
p(ζ)) =

[ζ.Tp] (Theorem 4.1) together with the inequality in the proof of part (3) of 13.4.
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14. Multiplicities of the jacobian or how the trunks grow up . The
multiplicities of the jacobian J(ϕ) at the infinitely near points are determined by the
heights of the trunks of ϕ, to be precise:

Theorem 14.1. The multiplicities of the jacobian of ϕ are:

ep(J(ϕ)) =











m+ n− 2 if p = O,

mp + np −mp′ − np′ − 1 if p is free, proximate to p′,

mp + np −mp′ − np′ −mp′′ − np′′ if p is proximate to p′ and p′′.

Theorem 14.1 is a direct consequence of Theorem 6.1 and Lemma 14.2 below.
We use a tilde to denote strict transform with origin at p, while for any q, q < p, Fq

denotes the germ at p strict transform of the exceptional divisor of blowing up q, or
just the germ of the exceptional divisor if q = p′.

Lemma 14.2. If p lies in the first neighbourhood of p′ and is free, then

J(ϕp) = ˜J(ϕ) + (mp′ + np′ − 1)Fp′

while if p is satellite, proximate also to p′′, p′ > p′′,

J(ϕp) = ˜J(ϕ) + (mp′ + np′ − 1)Fp′ + (mp′′ + np′′ − 1)Fp′′ .

Proof of 14.2. Denote by π the blowing-up of p′: J(π) = Fp′ and therefore, from
ϕp = ϕp′ ◦ π we get

J(ϕp) = π∗(J(ϕp′ )) + Fp′

If p′ = O, then, by 6.1, π∗(J(ϕp′ )) = J̃(ϕp′ ) + (mp′ + np′ − 2)Fp′ , which gives the
claim. Otherwise, we use induction on the order of the neighbourhood p′ belongs to.

If p is free, Fq = ∅ if q 6= p′. Therefore, the induction hypothesis applied to J(ϕp′ )

and 6.1 still give π∗(J(ϕp′ )) = J̃(ϕp′) + (mp′ + np′ − 2)Fp′ and, as above, the claim.
If p is satellite, then Fp′′ 6= ∅ while Fq = ∅ if q 6= p′, p′′. The point p′ being also

proximate to p′′, in this case we get π∗(J(ϕp′ )) = J̃(ϕp′ )+(mp′ +np′ −2)Fp′ +(mp′′ +
np′′ − 1)Fp′′ and again the claim.

A direct consequence of 14.1 is:

Corollary 14.3. The multiplicities of J(ϕ) at O and all points infinitely near
to O, and hence the germ J(ϕ) itself, are determined by the trunks of ϕ.

Using 13.1, one may rewrite the last two equalities of 14.1 as ep(J) = mp −mp′ +
ep(ϕ)−1 for p free, and ep(J) = mp −mp′ −mp′′ + ep(ϕ) for p satellite. In particular:

Corollary 14.4. If p is not a fundamental point of ϕ, mp = mp′ + ep(J) + 1 if
p is free, and mp = mp′ +mp′′ + ep(J) if p is satellite. In any case, mp > mp′ .

The inequality mp > mp′ need not hold if p is a fundamental point. One may
even get mp < mp′ , as in the next example:

Example 14.5. Taking f = x5 + 5x2y7, g = x3 + 3y7, p′ = O and p its first
neighbouring point on x = 0, gives n = 3 and jacobian J : xy13 = 0. It follows
m = 13. Clearly ep(J) = 1 and np = 6. Then 14.1 gives mp = 12 < m.
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Proposition 14.6. Let p be a free non-fundamental point infinitely near to O
and lying in the first neighbourhood of a point p′. Denote by q the last free point of
Tp′ . We have:
(a) If either the top of Tp′ is not a satellite point or p does not belong to the second

special fibre of ϕ̂p′ , then Tp contains all points in Tp′ with the same virtual
multiplicities and also the further free point ϕ̂p′(p) in the first neighbourhood
of the top of Tp′ .

(b) If p belongs to the second special fibre of ϕ̂p′ , then Tp contains all points in Tp′

preceding q with the same virtual multiplicities and the point q with higher
virtual multiplicity.

Proof. Fix any pencil of germs L at p′ having p′ and p, both with virtual mul-
tiplicity one, as cluster of base points. The strict transforms at p of the non-special
germs in L describe all but one lines in a pencil at p. Its direct images by ϕp are
the germs (ϕp′ )∗(ℓ) for ℓ non-special in L. The claim follows then from 11.1 and 11.2
applied to them.

We will deal with points in the second special fibre in the forthcoming Section
16. Let us keep now under the hypothesis of Proposition 14.6 (a) and add the further
assumption p /∈ J(ϕ). On one hand, if

S′(u, θ) =
∑

i<m′

aiu
i/n + θump′/np′ ,

is the Puiseux series of Tp′ , by 14.6 (a), the Puiseux series of Tp has partial sum
S′(u, a) for a certain a ∈ C, a 6= 0 if the end of Tp′ is satellite. On the other, the
hypothesis p /∈ J(ϕ) implies, by 14.4, mp = mp′ + 1 and so the Puiseux series of Tp is

S = S′(u, a) + θu
m

p′+1

np .

Note that if Tp′ has multiplicity r′ > 1, then (mp′ +1)/np is a characteristic exponent,
while otherwise it is not. In any case gcd(r′,mp′ + 1) = 1 and S has polydromy order
np. All together we get:

Proposition 14.7. Let p be a point infinitely near to O, in the first neighbour-
hood of p′. Assume that p is free, non-fundamental and does not belong to J(ϕ).
Assume also that either Tp′ has free top or p does not belong to the second special fibre
of ϕ̂p′ . Write q′ and r′ the top and multiplicity of Tp′ . Then Tp consists of:
(a) the points in Tp′ with the same virtual multiplicities,
(b) the free point q = ϕ̂p′ (p) in the first neighbourhood of q′, with virtual multiplicity

one, and
(c) r′−1 points in successive neighbourhoods of q and proximate to q′, all with virtual

multiplicity one too.

The reader may notice that Tp is reduced. Also, if p is as in 14.7 and p =
p0, p1, . . . , pi, . . . is any sequence of consecutive free infinitely near points with p1 not
in the second special fibre, then Proposition 14.7, with r′ = 1, applies to all points
pi, i > 0: it follows that each trunk Tpi

is obtained by adding a virtually simple and
free point to Tpi−1

. This fact, that could be described as a fairly regular growing of
the trunks, will become quite obvious after getting a precise description of ϕp in the
next section.
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15. When ϕp is locally a composition of blowing-ups. Besides local iso-
morphisms, compositions of blowing-ups are by far the easiest and better understood
examples of analytic morphisms between smooth surfaces, their study being just that
of the infinitely near points. In this section our morphism ϕ will be related to compo-
sitions of blowing-ups. More precisely, we will prove that the morphism ϕp is locally
isomorphic to a composition of blowing-ups π, provided p is a free non-fundamental
infinitely near point that does not lie on J(ϕ), and Tp is reduced and has free top. This
may be understood as a sort of partial resolution theorem for analytic morphisms, as
after suitable sequences of blowing-ups (but not after all long enough sequences, hence
the word partial), ϕ is turned into a fairly easy morphism. The reader may notice
that 14.7 assures that there is a large set of points p infinitely near to O satisfying
the above hypothesis: all but finitely many points p in the first neighbourhood of any
point p′ are free, non-fundamental and do not belong to J(ϕ) or to the second special
fibre. Then either p itself or all free points in its first neighbourhood but those in the
second special fibre have reduced trunk with free top. In particular one gets points p
in the above conditions after finitely many blowing-ups provided finitely many choices
of the point to blow up next are avoided after each blowing-up.

Furthermore, p being as above, π is the composition of blowing up all points
in Tp but the last one. (It cannot be otherwise, as locally isomorphic morphisms
should have the same trunk.) Then, in particular, we get an easy description of the
singularity of the direct image ϕ∗(γ) of any irreducible germ γ at O going through p,
in terms of Tp and the singularity of γ, see 15.3.

Lemma 15.1. Assume that J(ϕ) is a multiple of a smooth germ, that BP (ϕ) = ∅
and also that T (ϕ) is reduced and has free top. If π : Tq −→ T is the composition of
blowing up all points in T (ϕ) but its top q, then there are open neighbourhoods U of O
in S, and V of q in Tq and an analytic isomorphism ψ : U ≃ V so that ϕ|U = π ◦ ψ.

Proof. Write J(ϕ) = (m+ n− 2)ζ with ζ smooth, n = eO(ϕ) and m equal to the
height of T = T (ϕ) (6.1). Since BP (ϕ) = ∅, the contracted germ Φ is non-empty,
and since it is contained in J(ϕ), Φ = nζ.

Since BP (ϕ) = ∅, up to a linear change of the local coordinates u, v on T , we may
assume that the first equation f of ϕ is an equation of Φ while the second equation
g has ord g > n. Since f is an equation of Φ = nζ, it has a n-th root that defines
the smooth germ ζ and that, therefore, may be taken as the first of a pair of local
coordinates x, y at O. After these choices f = xn and J(ϕ) = xn−1(∂g/∂y). Since
by hypothesis J(ϕ) = (m + n− 2)ζ, xn+m−2 and J(ϕ) differ by an invertible factor,
after which an easy computation proves that g has the form

g = xm−1yw(x, y) + h(x),

with w(x, y) invertible. We make explicit the monomials of g preceding the first
monomial depending on y, by writing the equations of ϕ in the form

f = xn

g = a1x
k1 + · · · + asx

ks + xm−1yw(x, y) + xmh′(x),

n < k1 < · · · < ks < m, ai 6= 0 for i = 1, . . . , s.
The direct images of the lines x = t, y = αt are

u = tn

v = a1t
k1 + · · · + ast

ks + (αb+ h′(0))tm + · · · ,
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where b = w(0, 0) 6= 0 and the dots indicate terms of higher order. Since we are
assuming T (ϕ) reduced and with free top, d = gcd(n, k1, . . . , ks) = 1. The proof will
use induction on s

If s = 0, then n = d = 1, the equations of ϕ are

f = x

g = xm−1(by + xh′(0) + · · · ),

and the claim follows by direct computation.
Otherwise the direct images of the above lines have the form

u = tn

v = a1t
k1 + · · · .

Let q′ be the free point on these germs corresponding to the coefficient a1 ([7], 5.7)
and π′ : Tq′ −→ T the composition of the blowing-ups giving rise to q’. As it is
known (by easy direct computation if n|k1 or from [7], 5.4.2 otherwise), there are
local coordinates ũ, ṽ at q′ so that π′ is given by

(ũ, ṽ) 7→ (ũn/n′

, ũk1/n′

(a1 + ṽ)),

n′ = gcd(n, k1). Then ϕ̃, defined in a suitable neighbourhood of O by the rule

ϕ̃(x, y) = (xn′

, x−k1g − a1)

is a lifting of ϕ to Tq′ , i.e.,

ϕ = π ◦ ϕ̃ (10)

in a neighbourhood of O. Note that x−k1g − a1 has s− 1 monomials in x preceding
the first monomial involving y. Next we will see that either ϕ̃ is a local isomorphism
or the induction hypothesis can be applied to it, thus completing the proof.

By (10) above, J(ϕ̃) is a component of J(ϕ) and so it is a multiple of ζ too. Also
by (10), the direct images by ϕ̃ of the lines in a pencil at O are the strict transforms
of their direct images by ϕ. Then T (ϕ̃) is reduced and has free top, as it is obtained
from T by dropping all points preceding q.

It remains to examine the base points of ϕ̃. Assume first that s > 1 Then the
equations of ϕ̃ take the form

f̃ = xn′

g̃ = xk2−k1(a2 + · · · ),

after which, clearly, ϕ̃ has no base points and the proof ends by induction.
In case s = 1, n′ = d = 1 and the equations of ϕ are

f̃ = x

g̃ = bxm−k1−1(y + xh′(0) + · · · )

If m > k1 +1, again ϕ̃ has no base points and the proof ends by induction. Otherwise
ϕ̃ is an isomorphism, which in particular implies that T (ϕ̃) consists of the point q′

only and therefore q = q′. The morphism ϕ̃ is thus the wanted isomorphism.
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The reader may note that the converse of 15.1 obviously holds: if ϕ is a com-
position of blowing-ups and O is a simple point of its exceptional divisor, then all
conditions in the hypothesis of 15.1 are satisfied.

Theorem 15.2. Let p be a point infinitely near to O, Sp the surface it lies on, q
the top of Tp and πq : Tq −→ T the composition of blowing up all points in Tp but q.
Assume that the following conditions are satisfied:
(1) p is free and non-fundamental,
(2) p does not belong to J(ϕ), and
(3) Tp is reduced and has free top.
Then there is an analytic isomorphism ψ, from an open neighbourhood U of p in Sp

onto an open neighbourhood of q in Tq, so that (ϕp)|U = πq ◦ ψ.

Proof. Condition (1) assures that BP (ϕp) = ∅. The point p being free, by
condition (2) and 14.2, J(ϕp) is a multiple of the only component of the germ of the
exceptional divisor at p, which is of course smooth. Then 15.1 applies to ϕp and gives
the claim.

The next two corollaries are direct consequences of 15.2, the proof of the second
one being left to the reader.

Corollary 15.3. If γ is any irreducible germ at O going through p and p satisfies
the conditions of Theorem 15.2, then ϕ∗(γ) is reduced and its sequence of infinitely
near points may be obtained by appending to the points of Tp the images by ψ of the
infinitely near points on the strict transform γ̃p of γ at p.

Proof. Just compute ϕ∗(γ) = (ϕp)∗(γ̃p) = (πq)∗(ψ(γ̃p)), and recall that direct
images of irreducible germs by blowing-ups are reduced.

In particular, the Enriques diagram of ϕ∗(γ) results by dropping p and the points
preceding it from the Enriques diagram of γ, and then appending the remaining of
the diagram to the end of the Enriques diagram of Tp.

Corollary 15.4. If p′ is infinitely near to p and p satisfies the conditions of
Theorem 15.2, then Tp′ is the only irreducible cluster whose points are those of Tp

plus the images by ψ of all points p′′, p < p′′ ≤ p′.

16. Non-reduced trunks, second special fibres and folded germs. Irre-
ducible germs of curve γ at O, whose image ϕ∗(γ) is a non-reduced germ, will be
called folded germs (by ϕ). More precisely, we will say that γ is r-folded when r is
the degree of the restricted germ of map ϕ|γ : γ −→ ϕ∗(γ)red. In this section we
will gain some insight into the existence and distribution of folded germs. We will
deal with unibranched, possibly non reduced, germs ζ = rγ, γ irreducible and r ≥ 1.
The Puiseux series and characteristic exponents of such a ζ will be taken to be, by
definition, those of γ = ζred. It is convenient to write the characteristic exponents
of ζ with common denominator e(ζ), in which case r may be recovered as the factor
that may be cancelled from the whole of characteristic exponents of ζ. Let us begin
by stating a direct consequence of 15.3 that needs no proof:

Corollary 16.1. If a non-fundamental free point p not on J(ϕ) belongs to a
folded germ, then either Tp is non-reduced or it has satellite top.

We need to pay some attention to points in second special fibres, already not
covered by 14.7, namely:
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Proposition 16.2. Let p be a point infinitely near to O, in the first neighbour-
hood of p′. Assume that p is free, non-fundamental and does not belong to J(ϕ).
Assume also that Tp′ has satellite top and p belongs to the second special fibre of ϕ̂p′ .
If Tp′ has Puiseux series

S′ =
∑

i<mp′

aiu
i/np′ + θump′/np′ ,

then the Puiseux series of Tp is

S =
∑

i<mp′

aiu
i/np′ + θu(mp′+1)/np′ .

Proof. By 14.6 the Puiseux series of Tp has as partial sum the constant part of S′

followed by no monomial of degree less or equal than mp′/np′ . Since mp = mp′ + 1
by 14.4, the claim follows.

Denote by ñ the top twist of Tp.

Lemma 16.3. Assume that p is a free non-fundamental point infinitely near to
O that does not belong to J(ϕ). Then ϕ̂p has degree ñ, its first special fibre is ñ times
the satellite point and, in case ñ > 1, its second special fibre also consists of an ñ-fold
point.

Proof. The point p being free and non-fundamental, the only point of Bp is the
satellite point, that therefore is also the only point of the first special fibre (by 10.7).
Since p /∈ J(ϕ), J(ϕp) is a multiple of the exceptional divisor (14.2) and therefore
its only point in the first neighbourhood of p is the satellite one. Then 12.11 gives
deg(ϕ̂p) = ñ and the claim about the second special fibre follows from 12.2.

In the sequel infinite sequences of free points p, p1, p2,, . . . , each in the first neigh-
bourhood of the preceding one, will be called paths with origin at p.

Choose a point p with non-reduced trunk, say of multiplicity r > 1. Assume that
Tp has Puiseux series

S = S̄ + θum/np

and characteristic exponents m1/np, . . . ,mk/np. Then r = gcd(np,m1, . . . ,mk) di-
vides m. Next we will define a series of paths with origin at p:
(1) Choose p1 to be any free non-fundamental point in the first neighbourhood of p

not belonging to J(ϕ) or to the second special fibre of ϕ̂p if Tp has satellite
top. As it follows from 14.7, Tp1

has Puiseux series

S1 = S̄ + b0u
m/np + θu(m+1)/np ,

b0 6= 0 if the top of Tp is satellite, and its characteristics exponents are those
of Tp plus the further one (m+ 1)/np.

(2) Since 16.3 applies to p1, we take p2 to be the only point in the second special
fibre of ϕ̂p1

, which is free. By 16.2 the Puiseux series of Tp2
is

S2 = S̄ + b0u
m/np + θu(m+2)/np .

If 2 < r still Tp2
has satellite end and we continue in this way for i ≤ r:
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(i) Take pi to be the only point in the second special fibre of ϕ̂pi−1
. The Puiseux

series of Tpi
is

Si = S̄ + b0u
m/np + θu(m+i)/np .

Once we get the point pr the situation changes: the trunk Tp is non-reduced of
multiplicity r and no longer has satellite top. Then we restart by taking any free
point pr+1 in the first neighbourhood of pr (the remaining conditions in step (1)
being now automatically satisfied), and then pr+2, . . . , p2r the points in the successive
second special fibres, and so on. Thus we get paths in which there is a free choice of
the points prj+1 among the free points in the first neighbourhood of prj , after which
the points prj+2, . . . , pr(j+1) are uniquely determined. The Puiseux series of Tpi

is

Si = S̄ +
∑

0≤j<i/r

bju
(m+jr)/np + θu(m+i)/np .

The paths defined above will be called the r-folding paths with origin at p. A folding
path will be a r-folding path for any r > 1.

Assume that 1 < r′ = gcd(i, r) < r. Then the point pi in any one of the r-folding
paths described above has Tpi

r′-fold. Therefore it is the origin of a new series of
r′-folding paths that contain all free points in the first neighbourhood of pi but pi+1,
the only point in the first neighbourhood of pi in the r-folding paths with origin p.

The above description of the r-folding paths with origin at p gives:

Proposition 16.4. If an irreducible germ γ at O goes through the point pi, i > 0,
in an r-folding path with origin at p, and has a free point q in its first neighbourhood,
then the Puiseux series of ϕ∗(γ) has partial sum

S̄ +
∑

0≤j<i/r

bju
(m+jr)/np .

If furthermore q does not belong to any r-folding path, then next in the above series
comes a characteristic term of degree (m+ i)/np.

Proof. After the above description of the Puiseux series of the trunks Tpi
, the

claim directly follows from either 11.2, in case q still belongs to a r-folding germ, or
11.1 otherwise.

Remark 16.5. It is worth noting that the first part of 16.4 says in particular that
the characteristic exponents of ϕ∗(γ) less than (m+ i)/np, are exactly those of Tp. If
furthermore q belongs to no r-folding path, then the next characteristic exponent is
(m+ i)/np.

Corollary 16.6. Irreducible germs γ at O going through p, all whose points
infinitely near to p belong to an r-folding path, are r-folded by ϕ.

Proof. All points on γ infinitely near to p being free, ep(γ) = 1 and thus, by 11.1,
eO′(ϕ∗(γ)) = np. Since 16.5 applies for all i, the characteristic exponents of ϕ∗(γ) are
those of Tp, from which the claim.

A partial converse of 16.6 also holds:
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Corollary 16.7. Let pi, i > 0,be the i-th point in a r-folding path with origin
at p. An irreducible germ γ at O having pi as a non-singular point and its first
neighbouring point on no r-folding path, is not r-folded.

Proof. Again by 11.1, eO′(ϕ∗(γ)) = np and now, by 16.5, r cannot be cancelled
from the whole of characteristic exponents of ϕ∗(γ) written with denominator np.

It is well known that any path with origin at p is the set of points on a uniquely
determined smooth algebroid germ of curve τ at p, this is, a germ given by a order-one
formal, non-necessarily convergent, series at p. The germ τ may be analytic or not,
depending on the position of the points of the path, as suitable coordinates of the
points are the coefficients of a Puiseux series of τ , see for instance [7], 5.7. Therefore,
Corollary 16.6 could have an empty claim, as the points pi, i 6≡ 1 mod r, in a r-
folding path have fixed positions and could give rise to algebroid non-analytic germs,
independently on the choice of the remaining points. Next we will check that this is
not the case by a direct computation.

Since we are concerned with convergence of series, we may take pr instead of p
and therefore assume that p itself is free, non fundamental and does not belong to
J(ϕ). Then, arguing as in the proof of 15.1, we may choose the local coordinates
at O′ and p in such a way that the first equation of ϕp is f = xnp , where x is the
first local coordinate at p, and also a local equation of the exceptional divisor. Since
p /∈ J(ϕ), J(ϕp) is (np +mp − 2)-times the exceptional divisor at p, which forces the
second equation g of ϕp to have the form:

g =
∑

0<i<mp

bix
i + xmp−1g′(x, y),

∂g′

∂y
(0, 0) 6= 0.

One may thus take y′ = g′ as a new second coordinate, after which the equations of
ϕp take the form:

f = xnp , g =
∑

0<i<mp

bix
i + xmp−1y′.

The Puiseux series of Tp is then

S =
∑

0<i<mp

biu
i/np + θump/np

and so, in particular, bi = 0 if i 6≡ 0 mod r, as Tp is assumed to have multiplicity r.
Now, from these equations, one may directly compute the direct images of the

germs

y′ −
∑

1≤rj+1<ρ

cjx
rj+1 − βxρ = 0,

and use induction on ρ to easily see that the r-folding paths with origin at p are
exactly the paths of points on the algebroid germs

y′ −
∑

j≥0

cjx
rj+1 = 0,
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for arbitrary cj ∈ C. The convergence of these series depends of course on the cj ,
which are coordinates of the points prj+1. Suitable choices of these points give thus
analytic germs and we have proved:

Theorem 16.8. For infinitely many choices of each of their (rj + 1)-th points,
j = 0, 1, . . . , the r-folding paths with origin at p are on analytic germs which, therefore,
are r-folded. In particular there are infinitely many folded germs going through each
point p with Tp non-reduced.

Corollary 16.9. Any morphism ϕ with degO(ϕ) > 1 has folded germs.

Proof. We will prove that any such ϕ has at least one dicritical base point p with
e(ϕp) > 1. Then Tp consists of O′ with virtual multiplicity e(ϕp) (4.2) and the claim
follows from 16.8.

Since degO(ϕ) > 0, O is a base point of ϕ, by 3.2. If O is the only base point, then
it is dicritical because there are no base points in its first neighbourhood. Furthermore
e(ϕ) > 1, as otherwise degO(ϕ) = 1, and we may take p = O. If there are base
points other than O, take p to be a maximal one. As before, p is dicritical and
e(ϕp) > e(ϕ) ≥ 1, by 13.1, as wanted.

Remark 16.10. The example 3.5 provides examples of morphisms with degree
zero and folded germs. On the other hand, in case d = degO(ϕ) > 1, d-folded germs
need not to exist, as shown by the next example:

Example 16.11. The morphism (x, y) 7→ (x2, y2) has degree 4, evident 2-folded
germs and no r-folded germs for r > 2. Indeed, any irreducible germ of curve γ at O
may be given by a (Puiseux) parameterization

x = tn

y =
∑

i≥m0

ait
i, am0

6= 0.

ϕ∗(γ) is thus given by

u = t2n

v =

(

∑

i≥m0

ait
i

)2

.

Obviously γ cannot be r-folded, r > 2, if n = 1. If n > 1 there are characteristic
terms amj

tmj , j = 1 . . . , k, each amj
tmj being the first non-zero monomial for which

mj /∈ (n,m1, . . . ,mj−1) and then (1) = (n,m1, . . . ,mk). It is easy to check that the
monomials

2am0
amj

tm0+mj , j = 1 . . . , k,

if m0 < m1, or

a2
m1
t2m1 and 2am1

amj
tm1+mj , j = 2, . . . , k

if m0 = m1, are not canceled in the above expression for v. If m0 < m1,

(2n,m0 +m1, . . . ,m0 +mk) ⊃ (2n, 2m0 + 2m1, . . . , 2m0 + 2mk) = (2)
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and similarly, in case m0 = m1,

(2n, 2m1,m1 +m2 . . . ,m1 +mk) ⊃ (2n, 2m1, 2m1 + 2m2, . . . , 2m1 + 2mk) = (2).

This shows that no factor other than 2 may divide all exponents effectively appearing
in the parameterization of ϕ∗(γ) and therefore completes the argument.

Next we show that any folded germ except possibly the components of J(ϕ), falls
in the situation of 16.6 for a suitable choice of p:

Proposition 16.12. If γ is a folded irreducible germ at O, not a component of
J(ϕ), there is p on γ such that all points on γ infinitely near to p are in a folding path
with origin at p.

Proof. Since γ is not a component of J(ϕ), nor is it a component of the
contracted germ Φ. Thus we may choose a non-singular and non-fundamental p
on γ not belonging to J(ϕ). By 16.1 either Tp is non-reduced, or it is reduced
and has a satellite top. Call m1/np, . . . ,mk/np the characteristic exponents of Tp

and assume that Tp is reduced, so we are in the latter case: by 14.7, 16.1 and
16.3, the point p1 in the first neighbourhood of p on γ is the one in the second
special fibre. If r = gcd(np,m1, . . . ,mk−1,mk + 1) > 1, by 16.2, Tp1

is non-
reduced, of multiplicity r. Otherwise, by 16.2, Tp1

has characteristic exponents
m1/np, . . . ,mk−1/np, (mk+1)/np and therefore satellite top. We repeat the argument
till getting i such that gcd(np,m1, . . . ,mk−1,mk + i) > 1 and hence Tpi

non-reduced.
Thus, by taking pi for p if needed, we need just to deal with the case of Tp non-

reduced, say of multiplicity r. Then either all further points on γ are in a folding path
with origin at p, as claimed, or if p′ is the last point on γ in such a path, by 14.7,
16.1 and the construction of the folding paths, Tp′ needs to be again non-reduced, of
multiplicity r′, 1 < r′ < r. The claim is thus reached after finitely many steps.

We have so far dealt with points p for which the trunk Tp is non-reduced. We
have proved in particular that any such point has folded germs going through, which
is a partial converse of 16.1. A similar claim for points p for which Tp has satellite
top is, however, false. Indeed, by taking O a satellite point infinitely near to O′ and
ϕ the composition of blowing up all points preceding O, no germ is folded by ϕ while
the main trunk T (ϕ) has satellite top. Anyway we have:

Proposition 16.13. If p is equal or infinitely near to O, Tp has satellite top and
the second special fibre of ϕ̂p contains some free non-fundamental point p1 missed by
J(ϕ), then there are infinitely-many folded germs through p.

Proof. As in the construction of the r-folding paths, by repeated use of 16.2 and
16.3, define a sequence of points p1, . . . , pi, each pj in the second special fibre of ϕ̂j−1,
till getting, as in the proof of 16.12, pi with Tpi

non-reduced. Then 16.8 applies.

17. Trunks on the discriminant. In preceding sections we have been dealing
with p-trunks for p free, non-fundamental and not belonging to J = J(ϕ). In this
section we will study the case p ∈ J. We continue to assume that p is free and
non-fundamental.

Proposition 17.1. If p is free, non-fundamental and belongs to J, then all free
points in Tp belong to the discriminant germ ∆ = ϕ∗(J). More precisely, if p lies in
the first neighborhood of p′, then all free points in Tp belong to the direct image of any
branch γ of J going through p for which the ratio ep(γ)/ep′(γ) is maximal.
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Proof. Since p is non-fundamental, we choose the local coordinates at O′ so that
the first equation f of ϕp defines the germ of np times the exceptional divisor at p,
and take a root f1/np as the first of the local coordinates x, y at p. Then the equations
of ϕp may be written

f = xnp

g = P (x) + h(x, y)

where h is a series whose initial form effectively depends on y and P is a polynomial
in x of degree strictly less than o(h), say

P =

o(h)−1
∑

i=np

bix
i.

The direct images of the lines x = t, y = αt are

u =tnp

v =P (t) + ̂h(1, α)to(h) + · · · ,

after which, clearly, mp = o(h) and the constant part of the Puiseux series of Tp is

P (u1/np) =

mp−1
∑

i=np

biu
i/np .

An equation of J(ϕp) being x(np−1)∂h/∂y = 0, the strict transforms of the
branches of J through p are the branches of ∂h/∂y = 0 other than the germ of
the second axis.

If γ is a branch of J whose strict transform at p is the germ of the x-axis, the
Puiseux series of ϕ∗(γ),

P (u1/np) + h(u1/np , 0),

has the constant part of the Puiseux series of Tp as a partial sum and therefore all
free points of Tp lie on ϕ∗(γ), as claimed.

Now, let γ be a branch of J with origin at O whose strict transform at p, γ̃p is
not the x-axis, and therefore has a Puiseux parameterization x = tν , y = βtµ + · · · ,
β 6= 0. Then ep′(γ) = ν and ep(γ) = min{ν, µ}. Let τ be the (ν, µ)-twisted order of
h, namely

τ = min{νi+ µj for ai,jx
iyj a non-zero monomial of h}.

A direct computation shows that the Puiseux series of (ϕp)∗(γ̃p) has partial sum

∑

np≤i<τ/ν

biu
i/np

and therefore, as above, the claim for γ will be satisfied if it holds mp − 1 < τ/ν.

Assume that the monomial of higher degree in y of ̂h has bidegree (c1, c2). By the
definition of h, c2 > 0 and c1 + c2 = o(h) = mp. The point Q = (c1, c2) is a vertex of
the Newton polygon N of h, all sides above it have slope strictly less than −1 while
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the remaining ones have slopes non-less than −1. By the derivation rules, the same
occurs with the point Q′ = (c1, c2 − 1) and the Newton polygon N′ of ∂h/∂y.

Let us assume first that c2 > 1 and so that either the x-axis is a branch of
∂h/∂y = 0 or there are sides of N′ below Q′. If γ̃p is the x-axis, then, clearly
ep(γ)/ep′(γ) = 1 and the claim for γ has ben already verified. Assume that γ̃p

corresponds to a side Γ of N′ below Q′. The slope of Γ is then −ν/µ ≥ −1, which
gives ep(γ)/ep′(γ) = 1. Furthermore the (ν, µ)-twisted order of h is attained by the
non-zero monomials on the line of equation νi + µj = τ which meets the first axis
at the point Q1 = (τ/ν, 0). The line of slope −1 through Q meets the first axis at
the point Q2 = (mp, 0). The convexity of N and the inequality of slopes −ν/µ ≥ −1
prevents the point Q2 from being beyond Q1, thus giving for γ the wanted inequality
τ/ν ≥ mp > mp − 1.

Branches γ̃p corresponding to sides above Q have −ν/µ < −1, after which
ep(γ)/ep′(γ) < 1 and there is nothing to prove about them, because we have seen
above that there is some branch γ with ep(γ)/ep′(γ) = 1.

In case c2 = 1, N′ is obtained from N by discarding its only possible side with
upper end Q and translating the remaining sides one step downward. In particular,
the lowest vertex of N′ is (c1, 0) = (mp−1, 0) and the slope of any of its sides is strictly
less than −1. Therefore, for any branch γ of J, ep(γ)/ep′(γ) = µ/ν < 1. Branches
with maximal ep(γ)/ep′(γ) are thus those whose strict transform is associated to the
side of N′ that ends at (mp − 1, 0). Since N has a parallel side with lower end
(mp − 1, 1), τ = ν(mp − 1) + µ > ν(mp − 1) as wanted.

Remark 17.2. Keep the assumption that p is free and non-fundamental. If p /∈ J,
the trunk Tp has been determined from Tp′ in 14.7 and 16.2 with no problem in locating
the free points of Tp not already in Tp′ . Indeed, due to the equality mp = mp′ +1 there
is at most one such point, which, if it does exist, is ϕ̂p′(p), by 14.6. In case p ∈ J,
there may be many free points of Tp not in Tp′ . After 17.1, all these points are well
determined, as they lie in successive neighbourhoods of the top of Tp′ , belong to any
branch ζ of the discriminant direct image of a branch of J with maximal ep(γ)/ep′(γ)
and their number is determined by 4.3. Obviously, ζ also determines the satellite
points preceding a free point in Tp. A possible group of satellite points at the end of
Tp is of course determined by mp/np = mp/np′ by the customary division algorithm.

In the following examples we assume that p′ = O, p is the point in its first
neighbourhood on the x-axis and the morphism ϕ has equations u = f(x, y), v =
g(x, y).

Example 17.3. Take f = x3 and g = y7 + x11y + x13. Then the jacobian
consists of two times the germ of the y-axis plus a further branch γ : 7y6 + x11 = 0.
By direct computation of the direct images of x = t, y = αt and x = t, y = αt2

one easily gets the trunks T and Tp. T consists of the origin and two free points
on the u-axis, of multiplicities 3, 3, 1, followed by two simple satellite points, which
gives m = 7. Tp has the three non-satellite points of T , all with multiplicity 3 (case
(b) of 14.6), and two further free points which still belong to the u-axis and have
multiplicities 3, 1, followed by two simple satellite points, corresponding to a single
characteristic exponent 13/3. Thus mp = 13. The origin and the four free points of
Tp lie on the ϕ∗(γ), as claimed in 17.1, as in fact these points belong to ϕ∗(γ) with
multiplicities 18, 18, 18, 18, 5 and are followed on ϕ∗(γ) by the group of satellite points
corresponding to the characteristic exponent 77/18. Note that we are in case c2 = 1
of the proof of 17.1. Since ν = 6 and µ = 5, τ = 77 and τ/ν = 77/6 < 13 = mp.
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Example 17.4. If one takes f = x3 and g = x8 + x4y3 + x10 + x14, T and
Tp have Puiseux series θu7/3 and u8/3 + θu10/3, respectively. Hence in this case the
free points of Tp not in T are preceded by a satellite point that does not belong to T
either. An easy direct computation shows that, as implied by 17.1, all these points
belong to the direct image of the branch y = 0 of J : x6y2 = 0.

Example 17.5. By taking f = x3 and g = x2y2 + x10 + x14, one gets a case in
which there are satellite points in Tp that do not belong to the discriminant. Indeed,
the Puiseux series of Tp is θu8/3 while the only branch of the discriminant has Puiseux
series u11/3 + u14/3.

18. The trunks Tq for q satellite. Take O and ϕ as above. We will show in
this section that the algorithm of Section 10 may be modified in order to compute,
from the equations f, g of ϕ, the trunks Tq for all points q which either lie on one of
the axes of coordinates, or are satellite points of a point on an axis. This applies to
the case in which a free point p infinitely near to O and the corresponding morphism
ϕp are taken instead of O and ϕ, allowing to compute the trunks Tq, for all satellite
points q of p, from local equations of ϕp relative to coordinates for which the germ
at p of the exceptional divisor is one of the axes. Furthermore, the fact that the
computations for different trunks Tq are all performed at p allows to establish some
relationship between the trunks associated to the different satellite points of p.

Once a smooth germ at O, h = 0, has been fixed, the point O itself, the (neces-
sarily free) points infinitely near to O on h = 0 and their satellite points are called
h-satellite points. After choosing local coordinates x, y at O, we are interested in the
points that are either x-satellite or y-satellite: they will be referred to in the sequel as
frame-satellite points. This notion obviously depends on the choice of the coordinates.
Points which are not frame-satellite will be called frame-free.

It is well known (see [7], Chapter 5, for instance) that all Puiseux series y = s(x)
of all irreducible germs at O going through a fixed frame-satellite point q and having
a frame-free point in its first neighbourhood have the same order σ ∈ Q, which in
turn determines q as the last frame-satellite point on any germ with Puiseux series
s(x) = axσ + · · · , a 6= 0. We will call σ the slope of q and will often write σ = σ(q) and
q = q(σ), the maps q 7→ σ(q) and σ 7→ q(σ) being reciprocal bijections between the
set of frame-satellite points and the set of positive rational numbers. As the reader
may notice, O = q(1) and q(σ) is y-satellite if σ ≥ 1, while it is x-satellite if σ ≤ 1.
Also q(σ) belongs to the x-axis (resp. y-axis) if and only if σ (resp. 1/σ) is an integer.
It follows from the first step of the Newton-Puiseux algorithm that a germ of curve ξ
at O goes through q(σ) and has a frame free point in its first neighbourhood if and
only if the Newton polygon of ξ has a side with slope −1/σ. In the sequel such a side
will be said to be orthogonal to σ.

If σ is any positive rational number, write it as a continued fraction

σ = d0 +
1

d1 +
1

.. .
1

ds

,
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take

σ′ = d0 +
1

d1 +
1

.. .
1

ds−1

and then write σ and σ′ as irreducible fractions: σ = σ1/σ2, σ
′ = σ′

1/σ
′
2.

Lemma 18.1. There are local coordinates x̃, ỹ at q(σ) for which each coordinate
axis is either the strict transform of a coordinate axis at O or a component of the
exceptional divisor, and such that the equations of the blowing-up giving rise to q(σ)
are

x =x̃σ2−σ′

2 ỹσ′

2

y =x̃σ1−σ′

1 ỹσ′

1 .

Proof. Follows from the elementary properties of continued fractions by direct
computation, if one takes as new coordinates after each blowing-up the pull-backs of
z1 and z2/z1, z1, z2 being the former coordinates taken in a suitable order.

In the sequel we take at q(σ) the local coordinates x̃, ỹ of Lemma 18.1. Take the
σ-order of h =

∑

ai,jx
iyj to be

oσh = min{σ2i+ σ1j|ai,j 6= 0}

and its σ-initial form

inσ(h) =
∑

σ2i+σ1j=oσ(h)

ai,jx
iyj.

Two σ-initial forms I, I ′ are called homothetical if and only if Iδ = aI ′ for a non-zero
complex number a and a positive rational number δ. We will call δ the ratio of I, I ′.

Lemma 18.2. If a bar denotes the pull-back by the composition of blowing-ups
giving rise to q(σ), then for any h, h′ ∈ OS,O:
(i) o(h̄) = oσ(h)

(ii) ̂h̄ = inσ(h)
(iii) The initial forms of h̄ and h̄′ are homothetical if and only if so are the σ-initial

forms of h and h′

Proof. By 18.1, the σ-order of any monomial is the ordinary order of its pull-back,
after which all three claims directly follow.

Proposition 18.3. If the algorithm of Section 10 is applied to equations of ϕ
using σ-orders and σ-initial forms instead of the ordinary ones, then it gives rise to
germs of analytic function P0, . . . Pk at O′ and a pencil Q such that {oσ(Pi)}i=0,...,k

is a minimal system of generators of Γ(ϕq(σ)) and BP (Q) = (Tq(σ))red
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Proof. Obvious from 18.2 and 10.5, as the pull-backs of all intermediate germs of
function at O given rise to by the algorithm of the claim are just those produced by
the ordinary algorithm performed at q(σ) from the pull-backs of the equations of ϕ.

Next we will relate the above σ-algorithms for different values of σ. Let h be a
non-zero germ of analytic function at O and N(h) its Newton polygon. For a given
positive rational number σ two possibilities may occur, namely:
(a) There is a side Γσ(h) of N(h) orthogonal to σ. Then the monomials of highest

and lowest degree in y of inσ(h) are different and correspond to the ends of
Γσ. The remaining monomials of inσ(h) correspond to points lying on Γσ.

(b) No side of N(h) is orthogonal to σ. Then inσ(h) is a monomial and its corre-
sponding point is a vertex Γσ(h) of N(h).

The next lemma is elementary and needs no proof:

Lemma 18.4. Let h1 and h2 be non-zero germs of analytic function at O. We
have:
(1) If inσ(h1), inσ(h2) are homothetical of ratio δ, then the homothety of center the

origin and ratio δ maps Γσ(h1) onto Γσ(h2)
(2) inσ(h1), inσ(h2) are homothetical monomials and have ratio δ if and only if

Γσ(h1) and Γσ(h2) are vertices aligned with the origin and their ratio of dis-
tances to it is δ.

Lemma 18.5. If h1 and h2 are as above and inσ0
(h1) inσ0

(h2) are homothetical
of ratio δ for a certain σ0, then there exists an open interval (σ1, σ2), 0 ≤ σ1 < σ0 <
σ2 ≤ ∞, such that inσ(h1) inσ(h2) are homothetical of ratio δ for any σ ∈ (σ1, σ2),
while they are not homothetical if σ = σi 6= 0,∞, i = 1, 2. Each end σi is, if finite
and non-zero, orthogonal to a side of either N(h1) or N(h2).

Proof. Take σ′ to be the maximum of 0 and the slopes σ < σ0 orthogonal to a
side of N(h1) or N(h2) and let pi denote the upper end of Γσ0

(hi) if it is a side, or the
vertex Γσ0

(hi) itself otherwise. By Lemma 18.4, p1, p2 are aligned with the origin and
their ratio of distances to it is δ. Therefore, by the choice of σ′ and again 18.4, inσ(h1),
inσ(h2) are homothetical monomials of ratio δ for σ′ < σ < σ0. If either σ′ = 0 or
inσ′(h1), inσ′(h2) are not homothetical, then we take σ1 = σ′. Otherwise inσ′(h1)
and inσ′(h2) are homothetical, and their ratio is δ because their corresponding sides
Γσ(h1), Γσ(h2) have lower ends p1, p2. Then we restart from σ′ till getting σ1 after
finitely many steps. A similar argument gives σ2.

In the sequel open and closed intervals in the set of positive real numbers R+ will
be allowed to have infinite length, that is, to be open or closed half-lines, [a,∞), (a,∞),
respectively. Intervals (0, a] will be taken as (relatively) closed. An homographic
function is a real function δ of the form δ(σ) = (aσ+ b)/(cσ+ d), for a, b, c, d real and
ac− bd 6= 0. If {Hi} is a family of closed intervals, no two sharing an interior point,
the functions defined in

⋃

i Hi whose restrictions to each Hi are homographical will
be said to be piecewise homographical in

⋃

i Hi.
Now, if still u = f(x, y), v = g(x, y) are local equations of ϕ, by Lemma 18.5 there

are open intervals Hj , j = 1, . . . , ℓ, ℓ ≥ 0, so that inσ(f), inσ(g) are homothetical if
and only if σ ∈ Hj , their ratio being constant for σ ∈ Hj . Take Ξ = R+ −

⋃

j Hj .
For σ ∈ Ξ, inσ(f), inσ(g) are not homothetical and therefore the algorithm for Tq(σ)

ends after a single step, giving as Puiseux series of Tq(σ) Sσ = θuρ(σ), where ρ(σ)
is a piecewise homographical function in Ξ. Indeed, fix a slope σ0 ∈ Ξ and take σ1

(σ2) to be the highest (lowest) slope below (above) σ orthogonal to a side of either
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N(f) or N(g), or 0 (∞) if there is no such. By its own definition, Ξ contains [σ1, σ2]
and for σ ∈ (σ1, σ2) the σ-initial forms inσ(f), inσ(g) are monomials independent of
σ, corresponding to certain vertices (c, d) and (a, b) of N(f) and N(g), respectively.
Then

ρ(σ) =
oσ(g)

oσ(f)
=
a+ bσ

c+ dσ
.

Furthermore ac−bd 6= 0, as the vertices are not aligned with the origin due to Lemma
18.4. For σ = σi 6= 0,∞, i = 1, 2, one of the initial forms is no longer a monomial,
but still the σ-orders of f and g may be computed using the vertices (c, d) and (a, b).
Therefore the above expression for ρ(σ) still holds.

Now take one of the open intervals Hj and call it just H . By 18.5, the first step
of the algorithm is equally performed for all σ ∈ H , giving rise to a new function
h ∈ OT,O′ , independent of σ. The above argument may then be repeated by taking
h∗ and H instead of g and R+: we get a set Ξ1 which is the union of finitely many
relatively closed intervals in H , so that for σ ∈ Ξ1 the algorithm ends at this step and
the Puiseux series of the trunks Tq(σ) have all the same constant part. As above, Ξ1

splits in finitely many intervals so that in each interval

T 2
q(σ)

rq(σ)nq(σ)
=
oσ(h)

oσ(f)
=
a′ + b′σ

c+ dσ
,

(a′, b′) a vertex of N(h) and a′c − b′d 6= 0. Then, using the equality (2) of Section
5, the degree of the variable part of the Puiseux series of the trunks Tq(σ) is again
given by a piecewise homographical function in Ξ1. The argument may be repeated
within each of the finitely many open intervals H − Ξ1 is composed of, and so on,
in a procedure that need not to be finite and whose infiniteness may depend on the
coordinates, as shown by the easy example u = x + y, v = x/(1 − x). Summarizing,
we have:

Proposition 18.6. There is a finite or countable family of open intervals with
rational or infinite ends, Ij = (σj , σ

′
j), pairwise disjoint and such that R+ ∪{0,∞} =

⋃

j [σj , σ
′
j ], for which we have:

(1) For all rational σ ∈ Ij, the Puiseux series of Tq(σ) may be written in the form

Sσ = S̄j + θuδj(σ),

where their constant part S̄j is independent of σ and δj is a piecewise homo-
graphical function in [σj , σ

′
j ].

(2) But for ends equal to 0 or ∞, the constant parts of Sσj
and Sσ′

j
are partial sums

of S̄j.

Example 18.7. Take f = x9 − x7y− x2y2 + y3, g = −x10 + x2y2. The Puiseux
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series Sσ of the trunks Tq(σ) turn out to be:

Sσ = θu
2σ+2

3σ for σ ∈ (0, 2]

Sσ = −u+ θuδ(σ) for σ ∈ (2, 7/2), δ(σ) =

{

3σ
2σ+2 for σ ∈ (2, 3]

9
2σ+2 for σ ∈ [3, 7/2)

Sσ = θu
2σ+2

9 for σ ∈ [7/2, 4]

Sσ = −u
10
9 + θuδ′(σ) for σ ∈ (4,∞), δ′(σ) =

{

2σ+2
9 for σ ∈ (4, 6]

σ+8
9 for σ ∈ [6,∞)

.

The reader may consider the case in which f = x and g is the equation of an
irreducible germ having maximal contact with the x-axis. Then the jacobian is just
the x-polar of g = 0 and the σ-algorithms eliminate from g monomials in x till
getting a σ-initial form involving y. The slopes σ for which this σ-initial form is not a
monomial correspond to branches of the x-polar of g = 0, as described in [5] and [6].

19. Infinitely near points the jacobian is going through . The points
belonging to the jacobian germ J(ϕ) of a morphism ϕ have been characterized in
terms of trunks in preceding Section 14. Next we will show other conditions for an
infinitely near point to belong to the jacobian, mainly based on Theorem 12.2. Recall
that in examples 10.10 and 12.7 we have seen that the jacobian of a morphism may
miss some of its fundamental points, even if they are free and multiple.

Proposition 19.1. Let p be any point equal or infinitely near to O and denote
by ñ the top twist of Tp, as already defined in 10.6. Then:
(1) A free non-fundamental point p′ in the first neighbourhood of p belongs to J(ϕ)

if and only if either p′ is a multiple point of a non-special fibre of ϕ̂p, or it
belongs with multiplicity higher than ñ to the second special fibre of ϕ̂p

(2) All free fundamental points in the first neighbourhood of p and not in the first
special fibre of ϕ̂p, do belong to J(ϕ)

(3) All points on the contracted germ belong to J(ϕ)

Proof. By 14.2, the strict transform of J(ϕ) and J(ϕp) differ by germs of compo-
nents of the exceptional divisor only. Thus claims (1) and (2) directly follow form 12.2
applied to ϕp. Claim (3) is obvious and has been included for the sake of complete-
ness, as a direct computation easily shows that the contracted germ is a component
of the jacobian.

The case of a dicritical p is easy. Then (Tp)red = {O′}, thus any pencil of lines
at O′ goes sharply through (Tp)red and therefore the pull-back at p of the pencil
P : α1f + α2g = 0, f, g the equations of ϕ, cuts on the first neighbourhood of p a
linear series with fixed part B and, by 8.3, variable part the linear series of the fibres
of ϕ̂p. Furthermore in this case there are no special fibres and therefore Proposition
19.1 gives the next corollary, whose first part reproves theorem 3 of [9].

Corollary 19.2. If ϕ has equations f, g and p is a dicritical fundamental point
of ϕ, then:
1 A free non-fundamental point in the first neighbourhood of p belongs to J(ϕ) if and

only if it is a singular point of the only germ α1f +α2g = 0 going through it.
2 All free fundamental points in the first neighbourhood of p belong to J(ϕ).
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In the easiest non-dicritical cases we have:

Corollary 19.3. Assume that Tp has either no characteristic exponent or a
single characteristic exponent and satellite end. Write B the fundamental divisor
of ϕp. Let ζ be any smooth germ going through the last free point of Tp and write
B′ = TC(ϕ∗

p(ζ)). Then a free point p′ in the first neighbourhood of p belongs to J(ϕ)
if and only if it is multiple either in B +B′ or in its fibre Fp′ = ϕ̂∗(ϕ̂∗(p

′)).

Proof. As above the free points on J(ϕ) are those on J(ϕp). Just take the local
coordinates at O′ with first coordinate axis ζ to have ϕp in the conditions of Example
10.8 and then use 12.3.

When all the free points of Tp belong to one of the coordinate axes, the case of
the above corollary has been already considered in [12],[13].

On the other hand, the case of a free non-fundamental point p may be easily
handled using suitable coordinates at p, as the ones already used in sections 15 and
16. Indeed, if u, v are local coordinates at O′, p being non-fundamental, all pull-backs
ϕ∗

p(α1u + α2v), α = α1/α2 ∈ C ∪ {∞}, define the same multiple of the exceptional
divisor at p but for a single one, which defines a germ with higher multiplicity at
p. Up to a linear change of coordinates at O′, one may assume that the exceptional
pull-back is ϕ∗

p(v), after which, by choosing the first coordinate x at p to be a suitable
equation of the germ of the exceptional divisor, the equations of ϕp take the form:

u = xn, v = xn′

h(x, y),

x 6 |h, n′ ≥ n and n′ > n if h(0, 0) 6= 0. Then J(ϕp) : xn+n′−1∂h/∂y = 0 and since x

does not divide ∂h/∂y either, the strict transform of the jacobian is J̃(ϕ)p : ∂h/∂y = 0.
Thus p belongs to J(ϕ) if and only if ∂h/∂y vanishes at p = (0, 0).

As above, call P the pencil of the inverse images at O of the lines α1u+α2v = 0:
if f, g are the equations of ϕ relative to any choice of local coordinates at O, then
P : α1f + α2g = 0. If p belongs to a germ ξ ∈ P , this germ is necessarily unique, as
p is not fundamental. In such a case, after our choice of coordinates at p, the strict
transform of ξ is ξ̃p : h = 0 and so the strict transform of the jacobian is a polar of

the non-empty germ ξ̃p = 0 relative to x, J̃(ϕ)p = Px(ξ̃p). As it is well known ([7],

6.1.7, for instance), the polar is empty if and only if ξ̃p is transverse to the exceptional
divisor x = 0. Thus:

Proposition 19.4. Let ϕ have equations f, g and p be a free non-fundamental
point that lies on one germ ξ : α1f + α2g = 0. Then the jacobian germ of ϕ goes
through p if and only if p is a singular point of ξ.

Note that if J(ϕ) goes through p, then the germ ξ is special in P . One may even
go a bit further. We have seen that the strict transform of J(ϕ) is a polar of ξ̃p,

although not necessarily a transverse one, as ξ̃p may be tangent to the exceptional
divisor. Thus, the splitting of the polar germs in terms of the singularity of the germ

(see [7], section 6.10) applies to J̃(ϕ)p, which gives a partial splitting of J(ϕ) in terms
of the singularities of the special germs of the pencil P : α1f + α2g = 0 beyond the
fundamental points. The reader may have noticed that the particular case in which
ξ is either f = 0 or g = 0 is dealt with in [1].

A slightly more general reformulation of the above arguments may be obtained
by modifying the choice of the coordinates at O′ and hence the pencil P . Let ζ be
any smooth germ at O′ and assume that the free non-fundamental point p belongs to
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ϕ∗(ζ). Then the reader may easily check that a choice of coordinates as above may
be made with v an equation of ζ. Then 19.4 gives:

Proposition 19.5. If a free non-fundamental point p lies on the inverse image
of a smooth germ ζ, then the jacobian germ of ϕ goes through p if and only if p is a
singular point of ϕ∗(ζ).

Still in this case the strict transform of the jacobian is a polar of ϕ∗(ζ) and
therefore splitting of polars again gives a partial splitting of the jacobian, this time
in terms of the singularities of ϕ∗(ζ) at p and its infinitely near points.

It is worth noting that the condition of a non-fundamental point to belong to
the inverse image of a smooth germ is a rather strong one, as we will show next.
Recall that the intersection multiplicities of a fixed irreducible singular germ γ with
smooth germs reach a maximum which is usually named the maximal contact of γ ([7],
5.2.4, for instance). Obviously the same occurs if either a multiple of an irreducible
singular germ or a multiple of an irreducible cluster containing some satellite point
is taken instead of γ. We will keep calling maximal contact the maximal intersection
multiplicity with an smooth germ in these cases. We have:

Lemma 19.6. Assume that γ is an irreducible germ at O whose direct image
contains some satellite point (i.e., ϕ∗(γ)red is singular). If κ is the maximal contact
of ϕ∗(γ), then no point on γ in the i-th neighbourhood of O, i ≥ κ, has the inverse
image of an smooth germ going through.

Proof. For any smooth germ ξ at O′, [γ.ϕ∗(ξ)] = [ϕ∗(γ).ξ] ≤ κ and the Noether
formula for the intersection multiplicity ([7], 3.3.1) gives the claim.

The next lemma may give an idea of how scarce are the points lying on inverse
images of smooth germs:

Lemma 19.7. Let q be equal or infinitely near to O, assume that the trunk Tq

contains some satellite point and call κ its maximal contact. For all but finitely many
free points q′ in the first neighbourhood of q, no inverse image of a smooth germ is
going through the i-th point of a path {q, q′, . . . } if i > κ.

Proof. By Theorem 11.1, for all but finitely many free q′ in the first neighbourhood
of q, all smooth germs with origin at q and going through q′ have their direct images
going through Tq with effective multiplicities equal to the virtual ones. This obviously
implies that all these direct images have maximal contact κ, after which the claim
follows from 19.6 above.

The next corollaries give necessary conditions for a fundamental point to be missed
by the jacobian germ. The first one is a direct consequence of 19.2, 19.4 and 19.5.

Corollary 19.8. Assume that ϕ has equations f, g and take P = {ξ : α1f +
α2g = 0, α1/α2 ∈ C ∪ {∞}}. If p is a fundamental point of ϕ the jacobian germ is
not going through, then:
(1) no dicritical fundamental point of ϕ, equal or infinitely near to p, has a free

fundamental point in its first neighbourhood, and
(2) no inverse image of a smooth germ, and in particular no germ of P, has a free

non-fundamental singular point infinitely near to p.

Corollary 19.9. If p is a free fundamental point J(ϕ) does not go through,
then no satellite fundamental point infinitely near to p is dicritical.
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Proof. Assume that q is a satellite dicritical fundamental point infinitely near
to p. By taking the last free point preceding q instead of p, it is not restrictive to
assume that q is a satellite of p. Take local coordinates x, y at p so that the germ of the
exceptional divisor is the second axis x = 0. Then q is a x-satellite point and therefore,
as explained in Section 18, it has associated slope σ = σ(q) < 1. Assume that f, g are
the equations of ϕp and take ξλ : hλ = λ1f + λ2g = 0, λ = λ1/λ2 ∈ C ∪ {∞}. Take
at q the coordinates of 18.1 and use a bar to denote pull-backs with origin at q. The
point q being dicritical, by 19.8, neither a free point in the first neighbourhood of q is
a fixed point of the linear series of the tangent cones to the germs ξ̄λ, nor may a such
free point be multiple in one of the groups of the series. This easily implies that, up
to a linear substitution of the parameters λ1, λ2, the initial forms of the h̄λ have the
form

̂h̄λ = x̃aỹb(λ1x̃
d + λ2ỹ

d),

d > 0. Then, by 18.2 we may perform a linear change of coordinates on the target to
have

inσ(f) = xαyβ

inσ(g) = xα′

yβ′

,

both monomials having the same σ-order and αβ′ − α′β 6= 0. Then

J(inσ(f), inσ(g)) = (αβ′ − α′β)xα+α′−1yβ+β′−1 6= 0

and therefore

inσJ(f, g) = (αβ′ − α′β)xα+α′−1yβ+β′−1

Since J(ϕ) is assumed to miss p, J(f, g) has the equation x of the exceptional divisor
as its only factor, which forces β + β′ − 1 = 0 and so, up to swapping over β, β′, we
may take β = 0, β′ = 1. Now, the equality of σ-orders gives

α = α+ σβ = α′ + σβ′ = α′ + σ

against the already noted inequality σ < 1.

To close, next is an easy example showing that a free multiple fundamental point
missed by the jacobian may be followed by satellite fundamental (necessarily non-
dicritical) points.

Example 19.10. Take ϕ to have equations f = y2 + 2x5, g = y3 + 3x5y.
Its fundamental points are the points on the germ γ : y2 + 2x5 = 0 up to the 8-th
neighbourhood, with the same multiplicities they have on γ. The jacobian J(ϕ) : x9 =
0 misses the fundamental point in the first neighbourhood, which has multiplicity two
and is followed by a satellite fundamental point in the third neighbourhood of the
origin.
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