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LEGENDRIAN VARIETIES∗

J. M. LANDSBERG† AND L. MANIVEL‡

Abstract. We investigate the geometry of Legendrian complex projective manifolds X ⊂ PV .
By definition, this means V is a complex vector space of dimension 2n+2, endowed with a symplectic
form, and the affine tangent space to X at each point is a maximal isotropic subspace. We establish
basic facts about their geometry and exhibit examples of inhomogeneous smooth Legendrian varieties,
the first examples of such in dimension greater than one.
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1. Introduction. The initial motivation for this project stems from the study of
the holonomy groups of Riemannian manifolds, where the only open case for existence
of compact non-homogeneous examples is the quaternion-Kähler case. Thanks to
work of Salamon, LeBrun and others (see, e.g., [27, 24]), the question is essentially
equivalent to the existence of inhomogeneous contact Fano manifolds (so far none
are known). Several people [30, 29] observed that the set of tangent directions to
minimal degree rational curves through a general point of a contact Fano manifold is
a Legendrian subvariety in its projective span. S. Kebekus [18, 19] then showed:

Theorem 1. Let Y be a smooth contact Fano manifold with Picard number one,
not a projective space. Let y a general point of Y , and denote by Hy ⊂ PTyY the
set of tangent directions to contact lines on Y passing through y. Then X = Hy is a
smooth Legendrian variety in its linear span.

Moreover, if at all points of Y the corresponding Legendrian variety is homogenous
and equivariantly embedded, Hong [14] proved that Y itself must be homogeneous.

The homogeneous examples of contact Fano manifolds are as follows: let g denote
a complex simple Lie algebra and G its adjoint group. Then G has a unique closed
orbit Xad

G inside Pg, the projectivization of its Lie algebra – we call this variety the
adjoint variety of G. It is also the projectivization of the minimal nilpotent orbit in g.
The adjoint varieties are contact Fano manifolds, and the conjecture of Lebrun and
Salamon is that there exists no other.

The set of lines passing through a given point of an adjoint variety is a smooth
homogeneous Legendrian variety. We call these varieties, in these particular embed-
dings, the subadjoint varieties. Classical examples are the twisted cubic in P3 (coming
from the adjoint variety of the exceptional group G2), and the products P1 × Qn of
a projective line with a smooth quadric of dimension n ≥ 1 (coming from the adjoint
varieties of the orthogonal groups). Note that the symplectic groups give empty sub-
adjoint varieties. The adjoint varieties of the other exceptional groups give rise to a
remarkable series of homogeneous varieties, which we called the subexceptional series:
they constitute the third line of the geometric version of Freudenthal’s magic square,
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and were extensively studied in [23, 7, 17]; see also [6] since they are nice examples of
varieties with one apparent double point.

Another motivation for studying Legendrian varieties is the question of special
projective embeddings. It is well known and easy to prove that any smooth n-
dimensional projective variety can be embedded in P2n+1. Moreover, various ob-
structions exist to the existence of an embedding inside P2n. It is thus a natural
question to ask for some prefered embeddings in P2n+1, and Legendrian embeddings
are natural candidates. Indeed, any smooth projective curve has a Legendrian em-
bedding in P3, see [2] or §4.1. But this remarkable fact is somewhat misleading, and
the case of higher dimensional varieties seems dramatically different.

In §2 we establish a series of Chern class identities for Legendrian varieties. They
imply that a smooth Legendrian variety which is a product, must be a P1 × Qn

(Corollary 6), that the only Legendrian embedding of Pn is linear (Corollary 5), that
a smooth Legendrian variety cannot be Pk-ruled when k > 1 (Corollary 7) or an
abelian variety (Corollary 4) and that a homogeneous Legendrian variety with Picard
number one, not necessarily equivariantly embedded a priori, must be a projective
space or a subadjoint variety (Theorem 11). But the identities do not exclude, for
example, that a smooth Legendrian variety has general type, which we do not expect
to be possible. In fact most of these results could be seen, somewhat optimistically, as
we will see, as evidence that smooth Legendrian varieties of dimension greater that one
should be homogeneous. Note, in the same spirit, a very recent result of Buczyński,
that every smooth Legendrian variety whose ideal is generated by quadrics, is indeed
homogeneous [4].

In §3 we establish basic properties about the local differential geometry of a
Legendrian variety Z. In particular we show that any line having contact to order
two with a general point of Z is contained in Z (and thus Z is uniruled).

In §4 we use Bryant’s method to construct examples of smooth Legendrian sur-
faces, which we now explain in more detail.

By Pfaff’s theorem, all (holomorphic) contact structures are locally equivalent to
the space of one-jets of functions on Cn and their Legendrian submanifolds are all
locally given by the one-jets of functions. In the algebraic category, the model space
for the space of one-jets is P(T ∗Pn+1) and the Legendrian varieties are just the lifts
Z# := PN∗

Z (Nash blow-ups) of subvarieties Z ⊂ Pn+1. Now P(T ∗Pn+1) is birational
to P2n+1 and one can take a birational map ϕ : P(T ∗Pn+1) 99K P2n+1 that is a linear
contactomorphism on a C2n+1 (a “big cell” in each space). (The inverse rational map
and its cousins are studied in detail in [22].)

Hence the idea: choose any variety Z ⊂ Pn+1, then Z̃ := ϕ(Z#) will be Legen-
drian in P2n+1. The problem is that, except for curves, this has very little chance
to produce a smooth variety: for example, in dimension two, bitangent planes on a
surface Z ⊂ P3 tend to produce double points on Z̃ ⊂ P5. We analyze the conditions
under which Z̃ can be smooth. It turns out that when Z is a Kummer quartic surface
– a quartic surface with sixteen double points as singularities, the resulting surface is
smooth. To give a precise statement, note that we have a diagram

Z#

ւ ց

P3 ⊃ Z Z∗ ⊂ P̌3,

where Z∗ ⊂ P̌3 is the dual variety of Z, which is again a Kummer quartic surface
projectively equivalent to Z. The surface Z# is a K3 surface, and its natural maps to
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Z and Z∗ resolve their singularities. Let C and D denote general hyperplane sections
of Z and Z∗, pulled back to Z#. Then C and D meet transversely in 12 points.

Theorem 2. The blow up of the K3 surface Z# in these twelve points can be
embedded in P5 as a smooth Legendrian surface of degree 20.

Apart from curves, this is the first example of a non-homogeneous smooth Leg-
endrian variety. In particular, it provides a counter-example to the näıve guess that
smooth Legendrian varieties of dimension greater than one, should be rational.

2. Chern classes of Legendrian varieties. In this section we establish Chern
class identities for smooth Legendrian varieties. They involve not only the Chern
classes of the variety, but also the hyperplane class. We determine a number of
consequences, including obstructions to the existence of a Legendrian embedding of
a given variety. For example, an abelian variety of dimension at least two has no
Legendrian embedding.

2.1. An exact sequence. Let X ⊂ PV be a smooth variety, let x ∈ X , let
T̂xX ⊂ V denote the affine tangent space to X at x, let T̃xX = P(T̂xX) ⊂ PV denote
the embedded tangent space and let TxX denote the Zariski tangent space. We have
a natural identification

TxX = Hom(x, T̂xX/x) ⊂ TxPV = Hom(x, V/x).

By hypothesis, T̂xX is a Lagrangian subspace of V , so that the symplectic form
induces a canonical identification of V/T̂x with the dual of T̂x.

Consider the commutative diagram of vector bundles, whereN denotes the normal
bundle to X :

0 0
↑ ↑

(T̂X)∗ = N ⊗OX(−1)
↑ ↑

0 → OX(−1) → V ⊗OX → TPV ⊗OX(−1) → 0
|| ↑ ↑

0 → OX(−1) → T̂X → TX⊗OX(−1) → 0
↑ ↑
0 0

We deduce an exact sequence

0 → OX(−1) → N∗(1) → TX(−1) → 0.

2.2. Chern class identities. From the previous exact sequence, we get an
identity between Chern characters:

ch(TX(−1)) + ch(OX(−1)) = ch(N∗(1))
= ch(Ω1

PV (1)|X) − ch(Ω1
X(1))

= 2n+ 2 − ch(OX(1)) − ch(Ω1
X(1)).

Let h denote the hyperplane class on X . We can rewrite this identity as

e−hch(TX) + ehch(Ω1
X) + eh + e−h = 2n+ 2.
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Extracting the homogeneous components, we obtain:

Proposition 3. Let Xn ⊂ P2n+1 = PV be a smooth Legendrian variety, and
h ∈ H2(X,Z) the hyperplane class. Then for all m > 0, the characteristic class

σ2m(X,h) :=

2m
∑

i=0

(−1)i

(

2m

i

)

ch2m−i(TX)hi + h2m

is zero.
In particular, for m = 1 we get the identity

(1) 2ch2(TX) = c21 − 2c2 = 2hc1 − (n+ 1)h2.

This already has striking consequences:

Corollary 4. An abelian variety, more generally a parallelizable variety, has
no Legendrian embedding.

Corollary 5. The unique Legendrian embedding of the projective space Pn, with
n > 1, is the linear embedding Pn ⊂ P2n+1.

Corollary 6. Suppose that X = Y × Z has a Legendrian embedding. Then
X = P1 × Qn−1, where Qn−1 denotes a smooth (n− 1)-dimensional quadric, and the
unique Legendrian embedding is the Segre embedding.

Proof. Note that the class 2ch2 = c21 − 2c2 is additive, ch2(E⊕F ) = ch2(E) +
ch2(F ). By the Künneth formula, we can decompose our very ample class h as
ℓ+ θ+m over the rational numbers, where ℓ ∈ H2(Y,Q) and m ∈ H2(Z,Q) are very
ample (being the classes of the restriction of the hyperplane divisor to fibers of the
projection of X to Z and Y , respectively), and θ ∈ H1(Y,Q)⊗H1(Z,Q). Our Chern
class identity decomposes into the following conditions, where nY and nZ respectively
denote the dimensions of Y and Z:

c2(Y ) = 2ℓc1(Y ) − (nY + nZ + 1)ℓ2,

0 = c1(Y )θ − (nY + nZ + 1)ℓθ,

0 = c1(Y )m+ ℓc1(Z) − (nY + nZ + 1)ℓm,

0 = θc1(Z) − (nY + nZ + 1)θm,

c2(Z) = 2mc1(Z) − (nY + nZ + 1)m2.

Note that the class ℓ′ = −c1(Y ) + (nY + nZ + 1)ℓ is very ample (ℓ being very ample,
this special case of the Fujita conjecture can easily be proved by induction on the
dimension). By the hard Lefschetz theorem, the second identity ℓ′θ = 0 thus implies
that θ = 0.

Now the third condition implies that c1(Y ) (resp. c1(Z)) and ℓ (resp. m) are
numerically proportional. Let us write c1(Y ) = λℓ and c1(Z) = µm for some rational
numbers λ and µ. Then λ + µ = nY + nZ + 1. Therefore, we cannot have both
λ ≤ nY and µ ≤ nZ , so we may suppose that λ > nY . Then by the Kobayashi-Ochiai
theorem, Y ≃ PnY is a projective space, ℓ is the hyperplane class and λ = nY + 1.
Hence µ = nZ , which implies that Z ≃ QnZ is a quadric and m is the hyperplane
class. But then the first identity cannot be fulfilled, unless nY = 1, in which case
everything vanishes.
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Corollary 7. Let X = PE be the total space of a Pp-bundle over a variety Y .
Then if p > 1, X does not admit a Legendrian embedding.

Proof. Let π : PE → Y denote the projection. We have exact sequences

0 −→ OX −→ OE(1)⊗π∗E∗ −→ T vX −→ 0,

0 −→ T vX −→ TX −→ π∗TY −→ 0,

where T vX denotes the relative tangent space with respect to π. Let ℓ denote the
first Chern class of the relative hyperplane bundle OE(1), and let r = p + 1, then
c1(X) = rℓ + (basic) and c2(Z) =

(

r
2

)

ℓ2 − ℓ.(basic) + (basic), where (basic) denotes
any class that is the pullback of a class on Y . Suppose that X has a Legendrian
embedding, given by a very ample line bundle h = kℓ+π∗L. Let q = dimY . Identity
(1) implies

r − 2rk + (q + r)k2 = 0.

Considering this as a quadratic equation for k, its discriminant is −4rq.

2.3. The case of surfaces.

Proposition 8. Let Z ⊂ P5 be a ruled Legendrian surface. Then Z = P1 × P1,
embedded by the complete linear system |H + 2H ′|.

Proof. Suppose that Z = PE for some rank 2 vector bundle E on a curve C of
genus g, and call π the projection to C. We have exact sequences as above.

Let ℓ denote the first Chern class of the relative hyperplane bundle OE(1), then
c1(Z) = 2ℓ − π∗(c1(E) +KC) and c2(Z) = ℓ2 − ℓ.π∗(c1(E) + 2KC). Hence c21(Z) =
2c2(Z). Note that ℓ2 = deg(E), and ℓ.π∗L = deg(L) for any line bundle L on C.

We suppose that Z has a Legendrian embedding, given by a very ample line
bundle h = kℓ+ π∗L. We must have 2c1(Z)h = 3h2, that is,

4k(1 − g) = (3k − 2)(kdeg(E)) + 2deg(L)).

But k > 0, and h2 = k(kdeg(E) + 2deg(L)) > 0. This implies g = 0, and then either
k = 1 and deg(E) + deg(L) = 1, or k = 2 and deg(E) + 2deg(L) = 4. Since C is
rational, E is split and we can normalize it as E = O⊕O(−e) with e ≥ 0. Then the
very ampleness of h is equivalent to the condition that deg(L) > ke ([13], V, Corollary
2.18). We easily deduce that e = 0, so that Z = P1 × P1, and then we already proved
that it must be embedded by h = H + 2H ′.

Proposition 9. Let Z ⊂ P5 be a minimal surface of Kodaira dimension zero, in
some Legendrian embedding. Then deg(Z) = 8χ(OZ), and moreover χ(OZ) > 1.

In particular Z can be neither an abelian nor an Enriques surface. If it is a K3
surface, then its genus must be equal to 9.

Proof. The first Chern class of Z is numerically trivial, so that the formula
c21 − 2c2 = 2c1h − 3h2 gives 3deg(Z) = 3h2 = 2c2 = 24χ(OZ), hence the first claim.
Since h is very ample, Riemann-Roch gives

h0(Z, h) = χ(h) =
h2

2
+ χ(OZ) = 5χ(OZ).

Since Z is nondegenerate in P5, we have h0(Z, h) ≥ 6, hence χ(OZ) > 1.
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As we already know, this excludes abelian surfaces, for which χ(OZ) = 0, and
also Enriques surfaces, for which χ(OZ) = 1. For a K3 surface, χ(OZ) = 2, hence
h2 = 16. Since the genus of the polarized K3 surface (Z, h) is defined by the identity
h2 = 2g − 2, we get g = 9.

Following Mukai [26], a general K3 surface of genus 9 is a linear section of the
symplectic Grasmmannian Gω(3, 6), which we already met as an example of a subad-
joint (hence Legendrian) variety. Note also that a surface in P5 is Legendrian, if and
only if the image of its Gauss map is contained in a copy of Gω(3, 6) ⊂ G(3, 6). This
could hint that K3 surfaces of genus 9 do admit Legendrian embeddings, but we have
not been able to prove or disprove this.

Proposition 10. Let Z ⊂ P5 be a minimal surface of general type, in some
Legendrian embedding. Then c1(Z)2 < 2c2(Z).

Note that this is stronger than Miyaoka’s bound c1(Z)2 ≤ 3c2(Z). Since
Miyaoka’s bound is sharp, we get infinite families of surfaces of general type admitting
no Legendrian embedding.

Questions: Does there exist any example of a surface of general type admitting a
Legendrian embedding? More generally, what can be the Kodaira dimension of a
smooth Legendrian variety? Can it be positive?

2.4. The case of homogeneous spaces. Let X = G/P be homogeneous,
i.e., the quotient of a semi-simple algebraic group G by some parabolic subgroup P .
We may suppose that G is simple, otherwise X is a product and has already been
characterized. We fix a maximal torus and a Borel subgroup of G inside P , hence a
set ∆ of simple roots. Let I ⊂ ∆ denote the simple roots which are not roots of P ,
and Φ+

P the positive roots which are not roots of P . The cohomology algebra of X is

H∗(G/P,Z) = Z[P ]WP /Z[P ]W+ Z[P ]WP ,

where P denotes the root lattice, W the Weyl group of G, WP ⊂W the Weyl group
of P , Z[P ]WP the algebra of WP -invariant polynomials, and Z[P ]W+ Z[P ]WP the ideal
generated by homogeneousW -invariants of positive degree [16]. Since we can interpret
Φ+

P as the set of Chern roots of TX , we have

c1(X) =
∑

α∈Φ+

P

α, 2ch2(X) =
∑

α∈Φ+

P

α2.

Since there is no invariant of W in degree one, the identity 2ch2 = 2c1l − (n + 1)l2

means that the corresponding quadratic element of Z[P ]WP is W -invariant. But W
is generated by WP and the simple reflections si for i ∈ I, so we just need to check
the invariance under the action of these simple reflections.

Recall that a positive root α is in Φ+
P if and only (α, ωj) ≥ 0 for all j ∈ I, and

there is at least one k ∈ I such that (α, ωk) > 0. For each i ∈ I, define

Φ+
P (i) = {α ∈ Φ+

P | (α, ωj) = 0 ∀j ∈ I\i, (α, ωi) > 0 = (siα, ωi)}.

We have

2ch2 − 2si(ch2) = αi

∑

α∈Φ+

P
(i)

α(Hi)(α+ siα).
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Theorem 11. Let X = G/P 6= P1 be a homogeneous space with Picard number
one. Suppose that X admits a Legendrian embedding, not necessarily equivariant a
priori. Then X is subadjoint. In particular, the Legendrian embedding is the equivari-
ant subadjoint embedding.

Proof. Since X has Picard number one, there is a unique simple root αi which is
not a root of P . Then the corresponding weight ωi generates Pic(X), and we can let
c1 = γωi and ℓ = λωi for some positive integers γ and λ.

Consider the identity 2ch2 = 2c1ℓ− (n+1)ℓ2. Applying si and dividing by αi we
get the relation

∑

α∈Φ+

P
(i)

α(Hi)(α+ siα) = λ(2γ − (n+ 1)λ)(2ωi − αi).

In particular, the scalar product with ωi gives

∑

α∈Φ+

P
(i)

α(Hi)
2 (αi, αi)

2
= λ(2γ − (n+ 1)λ)(2ωi − αi, ωi) > 0.

But 2ωi − αi is a linear combination, with positive coefficients, of the fundamental
weights corresponding to the nodes of the Dynkin diagram that are connected to i. In
particular, (2ωi −αi, ωi) > 0 and we deduce that 2γ− (n+1)λ > 0. This implies that
λ = 1 (otherwise the index of X would be greater that n + 1, which is impossible),
and that X has index γ > n+1

2 .
The index of the rational homogeneous spaces with Picard number one have been

computed by Snow [28], and we easily get the following lemma from his results.

Lemma 12. Let X be a homogeneous space with Picard number one.
1. If X is adjoint, its index is γ = n+1

2 .
2. If γ > n+1

2 , then X is either a projective space, G(2, n), G(3, 7), Gω(2, n), a
quadric, a spinor variety Sm with m ≤ 7, the Cayley plane, or a subadjoint
variety.

Then we check that our Chern class identity only holds in the subadjoint case.
Moreover, λ = 1 implies that the embedding is given by the subadjoint embedding,
which is Legendrian, possibly followed by a projection, which is excluded by the fact
that the dimension of the ambient space would become too small.

2.5. More Chern class identities. If the dimension of X is large enough,
we can eliminate the hyperplane class from the identities σ2m(X,h) = 0 to obtain
identities between the Chern classes of X . This illustrates the principle that, the
greater the dimension, the more difficult it should be to find inhomogeneous smooth
Legendrian varieties – if any exist.

Formally, we just interpret our identities as polynomial equations for h, with
coefficients in the Chow ring of X . Let Rl,m be the resultant of the polynomials σ2l

and σ2m, a polynomial of degree 2l+ 2m+ 2 in the Chern classes.

Proposition 13. Let X be a smooth variety of dimension n ≥ 8, admitting a
Legendrian embedding. Then Rl,m(X) = 0 for 1 ≤ l < m.

The first identity R1,2(X) = 0 comes out in degree 8 and can be written

C8,4(n+ 1)4 + C8,3(n+ 1)3 + C8,2(n+ 1)2 + C8,1(n+ 1) + C8,0 = 0,
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where the classes C8,i are expressed as follows in terms of the Chern classes:

C8,4 = ch2
4,

C8,3 = 16ch2ch
3
3 − 8ch1ch3ch4 − 20ch2

2ch4,

C8,2 = 32ch2
1ch2ch4 − 16ch1ch

2
2ch4 + 100ch4

2,

C8,1 = 32ch3
1ch2ch3 − 176ch2

1ch
3
2 − 16ch4

1ch4,

C8,0 = 468ch4
1ch

2
2.

3. Local differential geometry of Legendrian varieties. When X is a
subexceptional variety (a homogeneous Legendrian variety coming from the adjoint
variety of an exceptional Lie algebra), the base locus of the second fundamental form
is a Severi variety [31]. This suggests that the Lebrun-Salamon conjecture could be
derived from Zak’s classification of Severi varieties. For this we would need a very
precise understanding of the local geometry of Legendrian varieties. In this section
we obtain basic results in that direction.

Let Xn ⊂ PV be a Legendrian variety and let z ∈ X be a general point. By
Pfaff’s theorem (see, e.g., [3] p38) there exist local coordinates x1, ..., x2n+1 about z
such that locally X may be written as a graph of the form

x2n+1 = f(x1, ..., xn)(2)

xn+j =
∂f

∂xj
(x1, ..., xn) 1 ≤ j ≤ n(3)

where f and all its first derivatives vanish at z = (0, ..., 0). Thus |IIIz |, the third
fundamental form, consists of a single cubic (given by the third order partials of f
at z) and the quadrics of the second fundamental form |IIz| consist of the n partial
derivatives of |IIIz |. In particular, letting N2,z = IIz(S

2TzX) denote the image of
the second fundamental form, we may view IIz ∈ S2T ∗

z ⊗N2,z as having an additional
symmetry, using the symplectic form ω to identify Tz with N2,z we obtain IIz ∈ S3T ∗

z .
A coordinate free way to see this symmetry is as follows: Let γ : X → G(n +

1, 2(n+ 1)) denote the Gauss map of X . Then X is Legendrian iff the image of γ is
contained in the ω-isotropic Grassmanian Gω(n+ 1, 2(n+ 1)). Recall that TEGω(n+
1, 2(n+ 1)) ≃ S2E∗ (see, e.g., [21]) so IIz ≃ dγz ∈ T ∗

zX ⊗TT∗

z XGω(n+ 1, 2(n+ 1)) =
T ∗

zX ⊗S2T ∗
zX . On the other hand, the differential of the Gauss map of any variety

is an element of S2T ∗
zX ⊗T ∗

zX and the intersection of these two spaces is exactly
S3T ∗

zX .
This property propagates to higher order differential invariants. Let Fk,z ∈

SkT ∗
zX ⊗N2,zX denote the relative differential invariant of order k (defined in coor-

dinates in the proof below, see [15] section 3.5 for a coordinate free definition):

Proposition 14. Let X ⊂ PV be Legendrian, let z ∈ X be a smooth point. Then
using the identification N2,zX ≃ T ∗

zX, we have Fk,z ∈ Sk+1T ∗
zX.

Proof. The coefficients of Fk,z are simply the higher order terms in the Taylor

series for the xn+j , which correspond to the k-th derivatives of ∂f
∂xj .

If P denotes the cubic for the third fundamental form and v ∈ TzX , let Qv = ∂P
∂v

denote the corresponding quadric in IIz . Let Base |IIz | := {v ∈ TzX | II(v, v) = 0},
the base locus of the second fundamental form, the set of tangent directions to lines
having contact with X at z to order two.

Corollary 15. Base |IIz | = {v ∈ Tz | v ∈ (Qv)sing}
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Let Cz ⊂ TzX denote the tangent directions to lines on X passing through z.
Note that one always has Cz ⊆ Base |IIz|.

Theorem 16. Let X ⊂ PV be Legendrian and let z ∈ X be a general point.
Then Cz = Base |IIz |. In particular, |IIIz | is singular if and only if X is uniruled by
lines.

Proof. Let v ∈ Base |IIz |, so v ∈ (Qv)sing . Now [20] (3.1.2) implies v ∈ (F3,v)sing

(here we mean the cubic in the normal direction corresponding to the tangent vector
v) but now the symmetry implies v ∈ BaseF3. But now [20] (3.1.3) implies v ∈
(F4,v)sing and the symmetry again implies v ∈ BaseF4. Continuing, v ∈ (Fj,v)sing

and v ∈ Base (Fi) for all i ≤ j implies v ∈ (Fj+1,v)sing and then the symmetry implies
in turn v ∈ Base (Fj+1), and these two facts imply v ∈ (Fj+2,v)sing etc... and one
obtains v ∈ Base (Fl) for all l, i.e., that there is a line having infinite order contact to
X at x in the direction of v.

We summarize some other known properties of Legendrian varieties:

Proposition 17. Let X ⊂ P2n+1 = PV be a Legendrian variety.

1. If X is linearly degenerate, then X is a linear subspace or a cone.
2. If X is not linearly degenerate, then the tangential variety τ(X) ⊂ PV and

the dual variety X∗ ⊂ PV ∗ are projectively isomorphic hypersurfaces.

Proof. IfX is degenerate, any tangent space to X is contained in some hyperplane.
By duality, we get that every tangent space to X passes through some fixed point. In
characteristic zero, this implies that X is a cone.

A hyperplane H is tangent to X at the point x if and only if the point h = H⊥

belongs to the embedded tangent space TxX . This gives a linear identification between
X∗ and τ(X). The fact that they are hypersurfaces follows e.g., from the fact that
IIIz is nonzero (because X is not linearly degenerate) hence, by the infinitesimal
calculation of the dimension of the secant variety σ(X) in [12], we have σ(X) = PV
and thus by the Fulton-Hansen connectedness theorem τ(X) is a hypersurface.

The subexceptional varieties have the remarkable property that their dual vari-
eties are quartic hypersurfaces.

In the case of surfaces, the degree of the dual variety, which is sometimes called
the codegree, does not depend of the embedding but only of the Chern numbers.
This seems to be specific to dimension two. Note the curious relation with Miyaoka’s
inequality.

Proposition 18. If X ⊂ P5 is a Legendrian surface, its codegree is equal to
3c2 − c21.

Proof. By Katz’s formula ([10], Chapter 2, Theorem 3.4), the degree of X∗ is
c2 − 2hc1 + 3h3. Since for a Legendrian surface we know that c21 − 2c2 = 2hc1 − 3h3,
the result follows.

4. Bryant’s method. Now that we have various numerical conditions on
smooth Legendrian varieties, we expect that it should be a delicate problem to con-
struct explicit examples, especially in higher dimensions. The only method of con-
struction that we are aware of was suggested by Bryant. As explained in the intro-
duction, it is based on the observation that the corresponding problem in P(T ∗Pn+1)
is easily solved. One then tries to transport the solutions to P2n+1 through an explicit
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birational map. Unfortunately, there are strong obstructions for this simple and ele-
gant idea to produce smooth varieties and we are only able to make it work in a very
special situation.

4.1. The birational map. For convenience we switch n to n − 1 and we con-
sider P(T ∗Pn) as the flag variety F1,n(Cn+1) of pairs of incident lines and hyperplanes
in Pn. It has two projections p and p′ on Pn and its dual P̌n. If we choose homoge-
neous coordinates x0, . . . , xn on Pn, and dual coordinates y0, . . . , yn on P̌n, it is the
subvariety of Pn × P̌n defined by the equation

∑n

i=0 xiy
i = 0.

Let [w1, . . . , wn, z1, . . . , zn] be homogeneous coordinates on P2n−1. We consider
the rational map

ϕ : F1,n(Cn+1) 99K P2n−1

([x], [y]) 7→ [x0y
1, . . . , x0y

n−1, x0y
0 − xny

n, x1y
n, . . . xn−1y

n, x0y
n].

This is a birational map, whose inverse is given by

ϕ−1 : P2n−1
99K F1,n(Cn+1)

[w, z] 7→ ([zn, z1, . . . , zn−1,−
1
2 (wn + (w,z)

zn
)],

[12 (wn − (w,z)
zn

), w1, . . . , wn−1, zn]),

where (w, z) :=
∑n−1

i=1 wizi.

Consider the contact structures given by the line-bundle valued one-forms θ′ =
xdy = −ydx on F1,n(Cn+1), and θ = zdw − wdz on P2n−1.

Lemma 19. The birational map ϕ is compatible with the contact structures de-
termined by θ′ on F1,n(Cn+1) and θ on P2n−1.

Proof. A simple computation shows that ϕ∗θ = x0y
nθ′.

Now let Z be any subvariety of Pn. Denote by Z# ⊂ F1,n(Cn+1) its conormal
variety, defined as the Zariski closure of the projectivized conormal bundle PN∗

Z ⊂
F1,n(Cn+1), taken over the smooth locus of Z. As mentioned in the introduction, it
is well known that Z# is Legendrian with respect to the contact structure θ. Since
by the Lemma the birational map ϕ preserves the contact structure, we immediately
get:

Corollary 20. Let Z ⊂ Pn be a subvariety, and Z# ⊂ F1,n(Cn+1) its conormal

variety. Then Z̃ = ϕ(Z#) is a Legendrian subvariety of P2n−1.

The conormal variety is the closure of the incidence variety of pairs (z,H) where
z ∈ Z is a smooth point and H ∈ Pn∗ is such that T̃zZ ⊂ H . Its projection to
the dual projective space P̌n is, by definition, the dual variety Z∗ of Z. That the
image variety Z̃ is Legendrian means that at every smooth point, the affine tangent
space is maximal isotropic with respect to θ. Unfortunately, the fact that ϕ is not
an isomorphism will tend to produce singularities on Z̃. We now analyze ϕ in some
detail to determine conditions under which Z̃ can be smooth.

Fact 0. The exceptional locus Exc(ϕ) of ϕ is the hyperplane section x0y
n = 0

of F = F1,n(Cn+1), union of the two irreducible divisors E1 := {([x], [y]) | x0 = 0}
and E2 := {([x], [y]) | yn = 0}. The indeterminacy locus is Ind(ϕ) = E1 ∩ E2.

Outside the exceptional locus, ϕ restricts to an isomorphism onto the affine space
defined as the complement of the hyperplane P = (zn = 0).
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Let H0 be the hyperplane {x0 = 0} in Pn, and p0 ∈ H0 the point dual to
the hyperplane yn = 0 in P̌n. Geometrically, E2 = {(p,H) ∈ F | p0 ∈ H} and
E1 = {(p,H) ∈ F | p ∈ H0}.

Fact 1. Two points (p,H) and (p′, H ′) of F outside the indeterminacy locus are
in the same fiber of ϕ if and only if

p = p′ ∈ H0 or p0 ∈ H = H ′.

Proof. On Exc(ϕ) − Ind(ϕ), ϕ is given by the following formulas:

ϕ([0, x1, . . . , xn], [y]) = [0, . . . , 0, xn, . . . , x1, 0],
ϕ([x], [y0, . . . , yn−1, 0]) = [y1, . . . , yn−1,−y0, 0, . . . , 0].

This implies the claim.

Let now Z ⊂ Pn be some irreducible, possibly singular hypersurface. This case is
of primary interest since when Z has codimension bigger than one, Z̃ is birationally
ruled. Note also that when Z is a hypersurface, Z# is just the closure of the image
of the Gauss map of Z.

Fact 2. If Z̃ is smooth, then (Z − Z ∩H0)
# is smooth outside E2.

Proof. This follows from Fact 0, since

Z# − Exc(ϕ) = (Z − Z ∩H0)
# − E2.

We say that Z is quasi-smooth outside H0 if (Z − Z ∩ H0)
# is smooth. For a

curve, this means that outside H0, Z has only nodes or simple cusps. In general, it
seems to be a difficult problem to understand quasi-smooth singularities. A surface
with a double curve will be quasi-smooth at smooth points of that curve. An isolated
quadratic singularity is also quasi-smooth, but apparently no other simple surface sin-
gularity. Arnold and his school have classified what they call (real) stable Legendrian
singularities ([1], section 21). This gives examples of quasi-smooth singularities, for
example the swallow-tail. But note that Z and its dual have the same conormal va-
riety, so that the dual variety of a smooth variety (which is in general very singular),
is always quasi-smooth.

Fact 3. Let z ∈ Z ∩H0 be a smooth point such that p0 /∈ TzZ. Then Z# meets
the fiber of ϕ containing (z, T̃zZ) transversely at (z, T̃zZ).

Proof. By Fact 1, the fiber of ϕ at (z, T̃zZ) is {(z,H) | z ∈ H}, or, identifying
a linear space on F with a vector subspace of the ambient V ⊗V ∗, it is the set of
elements {u⊗h′ | [u] = z, 〈u, h′〉 = 0}, which also corresponds to the kernel of ϕ∗ at
(z, T̃zZ). On the other hand, an easy moving frame calculation shows

T̂z,T̃zZZ
# = {v⊗ h− x⊗Q(v, ·) | [h] = T̃zZ, v ∈ T̂zZ} ⊂ V ⊗V ∗

where Q ∈ S2T ∗ is the quadric corresponding to h as an element of the second
fundamental form of Z at z. (Here we slightly abuse notation to consider Q(v, ·)
as an element of V ∗ which requires a choice of splitting, but this identification is
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harmless. Recall that T̂Z# denotes the affine tangent space to Z# ⊂ F, considered
as a subvariety of P(V ⊗ V ∗).)

The unique intersection of these two linear spaces is the line {u⊗h | [u] = z, [h] =
T̃zZ}, which corresponds to the zero vector in Tz,T̃zZZ

#.

Fact 3’. Let z ∈ Z − Z ∩H0 be a smooth point such that p0 ∈ TzZ. Then Z#

meets the fiber of ϕ containing (z, TzZ) transversely at (z, T̃zZ), if and only if the
Gauss map of Z is immersive at z, that is, if and only if z is not a flex point of Z.

Proof. Here, by Fact 1 again, the fiber of ϕ containing (z, T̃zZ) is the projective
space {(p, T̃zZ) | p ∈ T̃zZ} which we identify with the linear subspace {v⊗ h | [h] =
T̃zZ, 〈v, h〉 = 0} of V ⊗V ∗, which also corresponds to the kernel of ϕ∗ at (z, T̃zZ).
Note in particular that this space consists of rank one elements. On the other hand,
as above

T̂z,TzZZ
# = {v⊗h− x⊗Q(v, ·) | [h] = T̃zZ, v ∈ T̂zZ}

which, except for the point v⊗h when [v] = z consists of rank at least two elements,
as long as v is not a singular point of Q. If v is a singular point of Q then the two
spaces coincide.

Fact 3”. More generally, assuming Z̃ is smooth, let z ∈ Z − Z ∩ H0, not
necessarily a smooth point, and z∗ a tangent hyperplane at z, containing p0. Suppose
that Z# is smooth at (z, z∗).

Then Z# meets the fiber of ϕ transversely at (z, z∗), if and only if the projection
Z# −→ Z∗ is immersive at (z, z∗).

Proof. Same proof as for Fact 3’.

Note that from these facts one can reproduce Bryant’s proof that any smooth
projective curve can be embedded as a smooth Legendrian curve ([2], Theorem G).
Simply project the curve to P2 so it has only nodal singularities and make sure it is
in sufficiently general position with respect to (p0, H0). See [2] for details.

If Z has dimension greater than one, Z∩H0 is a positive dimensional hypersurface
in H0. Its tangent hyperplanes will cover H0 (as long as Z∩H0 is not set theoretically
a linear space), and in particular some of them will contain p0, so that Z# will meet
Ind(ϕ). Before resolving the indeterminacies of ϕ, we make two simple observations.

Fact 4. Assume Z̃ is smooth. Let p, p′ be smooth points of Z − Z ∩H0 with
the same tangent hyperplane H , passing through p0. Then H must be tangent to Z
along a curve.

Proof. Otherwise (Z − Z ∩ H0)
# would meet a fiber of ϕ along a disconnected

subset, and its image would therefore be multibranch at the corresponding point of
P2n−1, contradicting the smoothness assumption.

Fact 4’. Assume Z̃ is smooth. Let p ∈ H0 be a singular point of Z. Then Z
has at most one branch at p tangent to a hyperplane not containing p0.

Proof. Otherwise Z# would contain two points (p,H) and (p,H ′) in the same
fiber of ϕ (or if H = H ′, Z# would not be unibranch at (p,H)), and its image under
ϕ would not be unibranch, thus would be singular.
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To go further in our analysis, we need to resolve the indeterminacies of ϕ. A simple
thing to do would be to blow-up the indeterminacy locus, but:

Fact 5. The indeterminacy locus Ind(ϕ) has a quadratic singularity at (p0, H0),
and is smooth outside that point.

Proof. We choose local coordinates on F := F1,n(Cn+1) at (p0, H0) as follows: for
a pair (p,H), p = [x0, x1, . . . , xn−1, 1] andH is the hyperplane generated by p and n−1
other vectors en−1 − zn−1e0, . . . , e1 − z1e0, so that H = [1, z1, . . . , zn−1,−x0 − (x, z)],
where (x, z) =

∑

1≤i≤n−1 xizi. Then the condition that p ∈ H0 is equivalent to
x0 = 0, and the condition that p0 ∈ H is equivalent to x0 + (x, z) = 0. We thus see
that E1 and E2 are smooth hypersurfaces meeting nontransversely at (p0, H0) along
the codimension two subvariety x0 = (x, z) = 0, a quadratic cone in a coordinate
hyperplane.

Outside this singularity there is no serious problem: blowing-up the indeterminacy
locus is enough to resolve the indeterminacies.

Fact 6. Let σ : F̃ → F − {p0 ∈ H0} be the blow-up of Ind(ϕ) − {p0, H0}. Then
ψ := ϕ ◦ σ is a morphism.

Proof. We check this in local coordinates. Let (p1, H1) be a point of
Ind(ϕ). We may suppose that p1 = [0, 1, 0, . . . , 0] and H1 = [0, . . . , 0, 1, 0]. If
[x0, 1, x2, . . . , xn] are affine coordinates around p1 in Pn, and [y0, . . . , yn−2, 1, yn]
are affine coordinates around H1 in the dual projective space, we can choose
x0, x2, . . . , xn, y

0, y2, . . . , yn−2, yn as affine coordinates on F, with the missing coordi-
nate y1 given by the relation

x0y
0 + y1 +

n−2
∑

i=2

xiy
i + xn−1 + xny

n = 0.

Above the corresponding open set U ⊂ F, the blow-up F̃ is the set of points
(x, y, [s, t]) ∈ U × P1 such that sx0 = tyn.

The roles of s and t being symmetric, we may suppose that s 6= 0. Then we let
s = 1 and choose x2, . . . , xn, y

0, y2, . . . , yn−2, yn, t as local coordinates on F̃. In these
coordinates, ψ is given by

ψ(x, y, [s, t]) = ϕ([tyn, 1, x2, . . . , xn], [y0, y1, . . . , yn−2, 1, yn]
= [tyny1, . . . , tynyn−1, xny

n − tyny0,
xn−1y

n, . . . , x2y
n, yn, t(yn)2]

= [ty1, . . . , tyn−1, xn − ty0, xn−1, . . . , x2, 1, ty
n].

This is always defined, and our claim follows.

Although we do not use it in what follows, we briefly describe what happens near
the singular point. We leave the details to the reader.

We begin by blowing-up (p0, H0) in F, giving a map σ : F′ → F. We let ϕ′ =
ϕ ◦ σ : F′

99K P2n−1, and I ′ be the strict transform of Ind(ϕ).

Fact 7. The indeterminacy locus Ind(ϕ′) has two irreducible components: I ′

and a smooth hyperplane H inside the exceptional divisor E ≃ P2n−2. These two
components meet transversely along the smooth subvariety I ′ ∩H .
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Then we blow-up I ′ by σ′ : F′′ → F′, and we let ϕ′′ = ϕ′ ◦ σ′.

Fact 8. The indeterminacy locus Ind(ϕ′′) is the strict transform H ′ of H , a
smooth subvariety of F′′ of codimension two.

Finally we blow-up H ′ by σ′′ : F′′′ → F′′, and we let ϕ′′′ = ϕ′′ ◦ σ′′.

Fact 9. ϕ′′′ : F′′′ → P2n−1 is a morphism, and its exceptional locus is the union
of four irreducible divisors.

4.2. Surfaces. Now suppose that Z is a surface in P3, such that Z# does not
contain (p0, H0) – for example, we can just ask that p0 /∈ Z. Then by Fact 6, we just
need to blow-up the smooth part of Ind(ϕ) to resolve the indeterminacies of ϕ on Z#.

Let Z## denote the strict transform of Z# by the blow-up σ. Also we let E#
1 and

E#
2 be the strict transforms of E1 and E2, and E#

0 be the exceptional divisor of σ. The

morphism ψ restricts to an isomorphism between the complement of E#
0 ∪ E#

1 ∪ E#
2

and the complement of the hyperplane H in P5. Moreover, ψ maps E#
0 to a quadratic

cone Q inside the hyperplane P = {z3 = 0}, and E#
1 , E#

2 to planes U1 and U2 inside
Q, meeting at the vertex of Q.

Proposition 21. Suppose that:
1. Z ∩H0 is a smooth curve,
2. Z has no bitangent plane containing p0,
3. Z ∩H0 has no bitangent line containing p0.
4. Z# meets Ind(ϕ) transversely.

Then ψ is injective on Z##.

Actually, we can replace condition (3) by the weaker condition (3′): on a line in
H0 containing p0, there is at most one point of Z whose tangent hyperplane contains
p0.

Proof. We just need to check that the fiber of a point of the quadratic cone Q
contains at most one point of Z##.

Let q = [u1, u2, w, v2, v1, 0] be a point of Q − U1 ∪ U2. Let p ∈ π ◦ σ(ψ−1(q)) ⊂
Ind(ϕ). By the formulas above for the morphism ψ we see that p belongs to the line
in H0 generated by v = [0, v1, v2, 0] and p0. By (1), Z is smooth at p, and by (3)
or (3′), p is uniquely determined. Now, (4) guarantees that the restriction of σ to
Z# is just the blow-up of the finite set of points on the smooth curve C = Z ∪H0,
where the tangent lines to C hits p0. Our point p is one of these, and it follows that
Z## is smooth over p and contains the whole fiber of ψ over (p, TpZ). This fiber is a
projective line. But it follows from its expression that ψ restricts to an isomorphism
between that line and a line in P5. We conclude that ψ restricted to Z## is injective
over Q− U1 ∪ U2.

Because of Fact 1, (2) and (3) ensure that it is also injective over U1 ∪ U2, and
our claim follows.

Proposition 22. Suppose moreover that:
1. Z is quasi-smooth,
2. the projection Z# −→ Z∗ is immersive over any tangent plane containing p0,
3. at any point p ∈ Z ∩ H0 such that TpZ contains p0, the base locus of the

second fundamental form of Z does not contain the line pp0.
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Then ψ defines an embedding of Z## in P5, and its image Z̃ is a smooth Legendrian
surface in P5.

Proof. Since Z# is smooth and meets Ind(ϕ) transversely, Z## is smooth (note
that this transversality hypothesis is equivalent to the hypothesis we made on the
second fundamental form, as the computation below will show).

By Fact 3 and Fact 3” the restriction of ψ to Z## is immersive outside E#
0 , and

what we need to check is that this remains true on this divisor. The intersection
Z## ∩E#

0 is a bunch of projective lines – the pre-images under the blow-up σ of the
finite number of points inside Z# ∩ Ind(ϕ).

Let (p1, H1) be one of these points. We use the notations of the proof of Fact
6, with n = 3. Let F = 0 be the equation of the surface Z, and f(x0, x2, x3) = 0
the equation we get by letting x1 = 1. Our hypothesis on H1 = Tp1

Z means that
∂f/∂x0(0) = ∂f/∂x3(0) = 0, and we may suppose that ∂f/∂x2(0) = 1. The local
equations of Z# are

f(x0, x2, x3) = 0, (∂f/∂x2)y
0 = ∂f/∂x0, (∂f/∂x2)y

3 = ∂f/∂x3.

If we write f(x0, x2, x3) = x2+q(x0, x2, x3)+ higher order terms, where q is quadratic,
we deduce from these equations that the tangent space of Z# at (p1, H1) is given by:

dx2 = 0,
dy0 = q00dx0 + q03dx3,
dy3 = q03dx0 + q33dx3.

In particular, the intersection with Ind(ϕ) is transverse if and only if q33 6= 0. But in
the system of local coordinates on Z given by x0 and x3, the local analytic equation
of that hypersurface is, up to higher order terms, x2 + q00x

2
0 + 2q03x0x3 + q33x

2
3 = 0,

so that the condition q33 6= 0 precisely means that the second fundamental form
II : (x0, x3) 7→ q00x

2
0 + 2q03x0x3 + q33x

2
3 does not vanish identically on the line

x0 = 0. This is precisely condition (3) at p1.
Now consider the strict transform of Z#, which means that we let x0 = ty3 and

replace x0 by t in our system of local equations. The equations of the tangent space
T of Z## at the point (0, 0, [1, t]) over (p1, H1) become:

dx2 = 0,
dy0 = tq00dy

3 + q03dx3,
dy3 = tq03dy

3 + q33dx3.

But ψ∗(dt, dx2, dx3, dy
0, dy3) = (−tdx2, dt, dx3 − tdy0, dx2, tdy

3). If t 6= 0, the kernel
of ψ∗ is the line dt = dx2 = dy3 = dx3 − tdy0 = 0, which is not contained in T . If
t = 0, this kernel is the plane dt = dx2 = dx3 = 0, which again meets T only at the
origin. This implies our claim.

The series of conditions given by Propositions 21 and 22 look very restrictive.
In particular, a “generic” smooth surface will have a curve (possibly reducible) of
bitangent planes, covering the whole of P3. This will not be compatible with condition
(2) of Proposition 21, which is really a necessary condition for Z̃ to be smooth.

Thus we look for singular surfaces, but not too singular since they must remain
quasi-smooth, at least outside the hyperplaneH0. Let p̌0 denote the set of hyperplanes
passing through p0.
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Theorem 23. Let Z be a Kummer quartic surface in P3, in general position with
respect to p0 and H0. Let C = Z ∩ H0 and D = Z∗ ∩ p̌0, two general hyperplane
sections. The pull-backs of these curves to the K3 surface Z# meet transversely in
twelve points. The surface Z̃ is isomorphic to Z# blown up at these twelve points and
is a smooth Legendrian surface in P5.

Recall (see for example [11]) that a Kummer surface Z in P3 is a singular quartic
surface in P3 with exactly 16 ordinary double points as singularities. In particular, it
is quasi-smooth. But the property that will be most useful to us is that the dual of
a Kummer surface also only has ordinary double points as singularities. In fact the
Kummer surface is projectively isomorphic to its dual surface Z∗. The double points
of the dual surface define 16 planes in Z called its tropes. These planes are (doubly)
tangent to Z along smooth conics, each of which contains exactly 6 double points
(this is the famous 166 configuration). The map Z# −→ Z blows-up the 16 double
points of Z, and the dual map Z# −→ Z∗ contracts the pull-back of the tropes to the
16 double points of Z∗.

Proof. We verify that the conditions of the previous two Propositions hold for
general p0 and H0. The only bitangent planes to Z are the 16 tropes, so the conditions
of Proposition 21 clearly hold true in general. Since Z has a finite number of singular
points, which are ordinary double points, it is certainly quasi-smooth, which was
condition (1) of Proposition 22. If the hyperplane p̌0 of P̌3 does not contain any of
the sixteen singular points of Z∗, then the projection Z# −→ Z∗ is an isomorphism
above Z∗∩ p̌0, and condition (2) is also verified. Finally, (3) is again a general position
condition and will hold in general. We conclude that Z## is smooth and isomorphic
with Z̃.

Now the hyperplane section Z ∩H0, supposed to be general, is a smooth quartic
plane curve C whose dual, by the Plücker formulas, is a curve of degree twelve. We
conclude that the indeterminacy locus of ϕ restricted to Z is given by the twelve points
on C whose tangent line to C hits p0. The surface Z## is therefore the K3-surface
Z#, blown-up at the twelve corresponding points.

We can give a precise meaning to the condition that Z be in general position with
respect to p0 and H0. Namely, we need that:

1. p0 is not contained in Z nor in any of its tropes,
2. H0 is not tangent to Z and contains none of its double points,
3. none of the 28 bitangents of the quartic curve C = Z ∩H0 pass through p0,
4. if p ∈ C is such that the tangent line TpC contains p0, this line is not a

bitangent, and is not contained in the kernel of the second fundamental form
of Z at p.

These are all non-empty and open conditions.

Note that since c2(Z
#) = 24, we get c2(Z̃) = 36, and since c1(Z

#) = 0, c1(Z̃) is
minus the sum of the 12 exceptional divisors E1, . . . , E12. In particular, c21 = −12
and 2ch2 = −84.

On the other hand, let L (resp. L′) denote the pull-back to Z# of the hyperplane
divisor of Z (resp. Z∗). By construction, the hyperplane class on Z̃ is h = L +
L′ − E1 − · · · − E12. We know that L2 = (L′)2 = 4, while L.L′ = 12, hence h2 =
4+2×12+4−12 = 20 and c1.h = −12. Finally, 2c1h−3h2 = −2×12−3×20 = −84, in
agreement with the identity 2ch2 = 2c1h−3h2 which we proved to hold for Legendrian
surfaces.
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4.3. Relations with homalöıdal polynomials. In this final section we explore
the relation of Bryant’s method with the subadjoint varieties.

Let P be a homogeneous polynomial of degree d in n variables. Denote by ZP ⊂
Pn+1 the hypersurface of equation xd−1

0 xn+1 = P (x1, . . . , xn). After applying Bryant’s

birational map ϕ to its tranform Z#
P ∈ F1,n(Cn+1), we get a Legendrian, possibly

singular variety Z̃P . For d 6= 2,this variety can also be described as the image of the
birational map

ψ : [x0, x] ∈ Pn 7→ [xd
0, x

d−1
0 x, x0∂P, P ] ∈ P2n+1.

Again the problem is: when is Z̃P a smooth Legendrian variety ?

Example 1. Let P = x3
1, so that ZP is a cuspidal rational plane cubic. Its dual

Z∗
P is again a cuspidal cubic, but Z#

P is smooth, and Z̃P is a normal rational cubic
curve in P3.

Example 2. Let P = x1x2...xn. One can check that Z̃P is singular for n ≥ 4. For
n = 3, Z̃P = P1 × P1 × P1 is smooth.

Example 3. Let q be a quadratic form on Cn−1, and let P = q(x1, . . . , xn−1)xn.
Then Z̃P ≃ P1×Q(q), where Q(q) ⊂ Pn denotes the quadric hypersurface of equation
x0xn = q(x1, . . . , xn−1). In particular, Z̃P is smooth if and only if q is nondegenerate.

We first note that the self-duality of Z is a rather general phenomenon. This gener-
alizes the well-known self-duality of smooth quadrics, which is the case where d = 2.
We refer to [8] for the terminology in the next statement.

Proposition 24. Let P denote the unique (up to constant) relative invariant of
minimal degree of an irreducible regular prehomogeneous space under some reductive
Lie group. Then the hypersurface Z is self dual.

Proof. As noticed in [8], the polynomial P (∂1P, . . . , ∂nP ) is again a relative invari-
ant, nonzero because of the regularity hypothesis. It must therefore be a nonzero mul-
tiple of P d−1. In particular the homogeneous coordinates [y0 = (d−1)xd−2

0 xn+1, y1 =
∂1P, . . . , yn = ∂nP, yn+1 = xd

0 ] are related by an identity

P (y1, . . . , yn) = cP (x)d−1 = c(xd
0xn+1)

d−1 = (
y0
d− 1

)d−1yn+1.

This proves the claim.

Let us try to understand when Z̃P can be smooth at the point q0 = [0, . . . , 0, 1].
We first note that its (reduced) tangent cone contains, for each x such that P (x) 6= 0,
the point [0, 0, ∂P (x), 0]. We can suppose that x 7→ ∂P (x) is linearly non-degenerate.
Otherwise, after a change of coordinates we can suppose that ∂P/∂xn = 0, hence
Z̃P is linearly degenerate, hence a linear space. Then the reduced tangent cone must
contain the n-dimensional linear space L = [0, 0, ∗, ∗].

Supposing Z̃P to be smooth, L must cöıncide with its tangent space at q. Then
the projection of Z on L with respect to the supplementary space [∗, ∗, 0, 0] must be a
local isomorphism in the complex topology. That is, the map [xd

0, x
d−1
0 x, x0∂P, P ] 7→

[x0∂P, P ] must be a local isomorphism at q – in particular it must be injective. But
suppose that we can find two noncolinear vectors x1 and x2 with P (x1), P (x2) 6= 0,
such that the vectors ∂P (x1) and ∂P (x2) are colinear. After multiplying them by
a suitable constant, we may suppose that P (x1)

−1∂P (x1) = P (x2)
−1∂P (x2). Then
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for x0 small enough, [xd
0 , x

d−1
0 x1, x0∂P (x1), P (x1)] and [xd

0, x
d−1
0 x2, x0∂P (x2), P (x2)]

are two distinct points in Z̃, arbitrarily close to q, but [x0∂P (x1), P (x1)] and
[x0∂P (x2), P (x2)] coincide – a contradiction with the smoothness of Z̃P at q. We
conclude that the rational map [x] ∈ Pn−1 7→ [∂P (x)] ∈ Pn−1 must be injective on
the open subset P (x) 6= 0. In particular, we have proved:

Proposition 25. Let ZP ⊂ Pn+1 be the hypersurface xd−1
0 xn+1 = P , and

suppose that Z̃P is a smooth Legendrian variety. Then P must be homalöıdal.

Corollary 26. If d = 3 and Z̃P is a smooth Legendrian variety, then P must be
the determinant of a semisimple Jordan algebra of rank three, and Z̃P is a subadjoint
variety.

Proof. That a homalöıdal polynomial of degree three must be the determinant of
a semisimple Jordan algebra of rank three is due to Etingof, Kazhdan and Polischuk
[9], see also [5]. The fact that the resulting varieties Z̃P are exactly the subadjoint
varieties follows from [22], where they were constructed precisely that way.
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