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1. Introduction. In his celebrated work [S-98, S-02], Siu proved that the

plurigenera of any algebraic manifold are invariant in families. More precisely, let

π : X → D be a holomorphic submersion (i.e., dπ is nowhere zero) from a complex

manifold X to the unit disk D, and assume that every fiber Xt := π−1
(t) is a com-

pact projective manifold. Then for every m ∈ N, the function Pm : D → N defined by

Pm(t) := h0
(Xt,mKXt

) is constant.

Siu’s approach to the problem begins with the observation that the function Pm is

upper semi-continuous. Thus in order to prove that Pm is continuous (hence constant)

it suffices to show that given a global holomorphic section s of mKX0
, there is a family

of global holomorphic sections st of Xt, for all t in a neighborhood of 0, that varies

holomorphically with t and satisfies s0 = s.
To prove such an extension theorem, Siu establishes a generalization of the

Ohsawa-Takegoshi Extension Theorem to the setting of complex submanifolds of a

Kahler manifold having codimension 1 and cut out by a single, bounded holomor-

phic function. This theorem, which we will discuss below, requires the existence of

a singular Hermitian metric on the ambient manifold having non-negative curvature

current, with respect to which the section to be extended is L2
. Thus in the presence

of the extension theorem, the approach reduces to construction of such a metric.

The case where the fibers Xt of our holomorphic family are of general type was

treated in [S-98]. In this setting, Siu produced a single singular Hermitian metric e−κ

for KX so that every m-canonical section is L2
with respect to e−(m−1)κ

.

However, in the case where the fibers Xt of our holomorphic family are assumed

only to be algebraic, and not necessarily of general type, Siu’s proof in [S-02] does

not construct a single metric as in the case of general type. Instead, Siu constructs

for every section s of mKX0
a singular Hermitian metric for mKX of non-negative

curvature so that s is L2
with respect to this metric.

Definition. Let X → ∆ be a holomorphic family of complex manifolds and X0

the cental fiber of X . A universal canonical metric for the pair (X ,X0) is a singular

Hermitian metric e−κ for the canonical bundle KX of X such that for every global

holomorphic section s ∈ H0
(X0,mKX0

),

∫

X0

|s|2e−(m−1)κ < +∞.
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The goal of this paper is to prove that for any holomorphic family X → ∆ of

compact complex algebraic manifolds with central fiber X0, the pair (X ,X0) has a

universal canonical metric having non-negative curvature current. To this end, our

main theorem is the following result.

Theorem 1. Let X be a complex manifold admitting a positive line bundle A→
X, and Z ⊂ X a smooth compact complex submanifold of codimension 1. Assume
there is a subvariety V ⊂ X not containing Z such that X−V is a Stein manifold. Let
T ∈ H0

(X,Z) be a holomorphic section of the line bundle associated to Z, thought
of as a divisor. Let E → X be a holomorphic line bundle and denote by KX the
canonical bundle of X. Assume we are given singular metrics e−ϕE for E and e−ϕZ

for the line bundle associated to Z.
Suppose in addition that the above data satisfy the following assumptions.
(R) The metrics e−ϕE and e−ϕZ restrict to singular metrics on Z.
(B)

sup

X
|T |2e−ϕZ < +∞.

(G) For each m > 0, the line bundles p(KX+Z+E)+A, 0 ≤ p ≤ m−1, are globally
generated, in the sense that a finite number of sections of H0

(X, p(KX +Z+

E) +A) generate the sheaf OX(p(KX + Z + E) +A).
(P)

√
−1∂∂̄ϕE ≥ 0 and there exists a constant µ such that µ

√
−1∂∂̄ϕE ≥√

−1∂∂̄ϕZ .
(T) The singular metric e−(ϕZ+ϕE)|Z has trivial multiplier ideal:

I (Z, e−(ϕZ+ϕE)|Z) = OZ .

Then there is a metric e−κ for KX + Z + E with the following properties:
(C)

√
−1∂∂̄κ ≥ 0.

(L) For every m > 0 and every section s ∈ H0
(Z,m(KZ + E|Z)),

|s|2e−((m−1)κ+ϕE+ϕZ) is locally integrable.
(I) For every integer m > 0 and every section s ∈ H0

(Z,m(KZ + E)),

∫

Z

|s|2e−(m−1)κ+ϕE < +∞.

Remarks.

(i) For the ambient manifold X , we have in mind the following two examples:

either X is compact complex projective (in which case the variety V could

be taken to be a hyperplane section of some embedding of X) or else X is

a family of compact complex algebraic manifolds. In the former case, it is

well-known [S-98] that the hypothesis (G) holds for any sufficiently ample A,

while in the latter case, one might have to shrink X a little to obtain (G). Of

course, there are many other examples of such X .

(ii) Note that in condition (L), the local functions |s|2e−((m−1)κ+ϕE+ϕZ)
depend

on the local trivializations of the line bundles in question. However, the local

integrability condition is independent of these choices.

Together with a variant of the Ohsawa-Takegoshi Theorem (Theorem 4 below),

Theorem 1 implies a generalization of Siu’s extension theorem to the case where the

normal bundle of the submanifold Z is not necessarily trivial. The first extension
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theorem of this type was established by Takayama [Ta-05, Theorem 4.1]under some

additional hypotheses. The general case was done in [V-06], where Theorem 4 was

also established. (In the case where Z is a fiber in a smooth familty, the result in

[V-06] was also proved by Claudon in [C-06].) The argument here is related to that

of [V-06], but the focus is on construction of the metric rather than on the extension

theorem.

As a result of Theorem 1, we have the following corollary, which is our stated

goal.

Corollary 2. For every holomorphic family X → ∆ of smooth projective
varieties with central fiber X0, the pair (X ,X0) has, perhaps after slightly shrinking
the family, a universal canonical metric having non-negative curvature current.

Proof. Let X be a family of compact projective manifolds π : X → D, and

Z = X0 the central fiber. Take T = π, E = OX and ϕE ≡ 0. Since X0 is cut out

by a single holomorphic function, the line bundle associated to X0 is trivial. Take

ϕZ ≡ 0. Then the hypotheses of Theorem 1 are satisfied, perhaps after shrinking the

family, and we obtain a metric e−κ for KX such that
√
−1∂∂̄κ ≥ 0 and |s|2e−(m−1)κ

is integrable for every integer m > 0 and every section s ∈ H0
(X0,mKX0

).

Remark. Note that in the setting of families, the constant µ is not needed, and

the hypotheses (L) and (I) are the same.

Remark. In his paper [Ts-02], Tsuji has claimed the existence of a metric with

the properties stated in Corollary 2. As in our approach, Tsuji’s proof makes use

of an infinite process. It seems that convergence of Tsuji’s process was not checked;

in fact, it is demonstrated in [S-02] that Tsuji’s process, as well as any reasonable

modification of it, diverges.

Proposition 3. For each integer m > 0, fix a basis s
(m)

1
, ..., s

(m)

Nm
of

H0
(X,m(KZ + E|Z)). Choose constants εm such that the metric

κ0 := log




∞∑

m=1

εm

(
Nm∑

ℓ=1

|s(m)

ℓ |2
)1/m




is convergent. Suppose e−ϕE is locally integrable. Then for each m > 0 and every
s ∈ H0

(X,m(KZ + E|Z)),

∫

Z

|s|2e−((m−1)κ0+ϕE) < +∞.

Proof. Fix s ∈ H0
(X,m(KZ + E|Z)), and let κ0,m = log

(∑Nm

ℓ=1
|s(m)

ℓ |2
)

1/m

.
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Note that e−κ0 . e−κ0,m , and thus we have

∫

Z

|s|2e−(m−1)κ0+ϕE

.

∫

Z

|s|2e−(m−1)κ0,m+ϕE

=

∫

Z

|s|2/m
(

|s|2

|s(m)

1
|2 + ...+ |s(m)

Nm
|2

)
(m−1)/m

eγE−ϕEe−γE

.

∫

Z

|s|2/meγE−ϕEe−γE

.

(∫

Z

|s|2eγE−ϕEe−mγEω−(n−1)(m−1)

)
1/m(∫

Z

eγE−ϕEωn−1

)
(m−1)/m

,

where ω is a fixed Kähler form for Z and e−γZ is a smooth metric for E|Z. The last

inequality is a consequence of Hölder’s Inequality. Since e−ϕE is locally integrable,

we are done.

A calculation similar to the proof of Proposition 3 shows that

|s|2e−((m−1)κ0+ϕZ+ϕE)
is locally integrable on Z. Thus in view of Proposition

3, Theorem 1 follows if we construct a metric e−κ with non-negative curvature

current such that e−κ|Z = e−κ0 . This is precisely what we do. We employ a technical

simplification, due to Paun [P-05], of Siu’s original idea of extending metrics using an

Ohsawa-Takegoshi-type extension theorem for sections. Paun’s simplification allows

one to get rid of a rather difficult part of Siu’s original proof; the use (and proof) of

an effective version of global generation of multiplier ideal sheaves. As a consequence

of Paun’s methods, the present paper is also substantially shortened.

2. The Ohsawa-Takegoshi Extension theorem. Let Y be a Kähler manifold

of complex dimension n. Assume there exists an analytic hypersurface V ⊂ Y such

that Y − V is Stein. Examples of such manifolds are Stein manifolds (where V is

empty) and projective algebraic manifolds (where one can take V to be the intersection

of Y with a projective hyperplane in some projective space in which Y is embedded).

Fix a smooth hypersurface Z ⊂ Y such that Z 6⊂ V . In [V-06] we proved the

following generalization of the Ohsawa-Takogoshi Extension Theorem.

Theorem 4. Suppose given a holomorphic line bundle H → Y with a singular
Hermitian metric e−ψ, and a singular Hermitian metric e−ϕZ for the line bundle
associated to the divisor Z, such that the following properties hold.

(i) The restrictions e−ψ|Z and e−ϕZ |Z are singular metrics.
(ii) There is a global holomorphic section T ∈ H0

(Y, Z) such that

Z = {T = 0} and sup

Y
|T |2e−ϕZ = 1.

(iii)
√
−1∂∂̄ψ ≥ 0 and there is an integer µ > 0 such that µ

√
−1∂∂̄ψ ≥

√
−1∂∂̄ϕZ .

Then for every s ∈ H0
(Z,KZ +H) such that

∫

Z

|s|2e−ψ < +∞ and s ∧ dT ∈ I (e−(ϕZ+ψ)|Z),

there exists a section S ∈ H0
(Y,KY + Z +H) such that

S|Z = s ∧ dT and

∫

Y

|S|2e−(ϕZ+ψ) ≤ 40πµ

∫

Z

|s|2e−ψ.
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Remark. The list of L2
extension theorems is by now rather long. For a large

collection of such results and additional references, see [MV-05].

3. Inductive construction of certain sections by extension. In this section

we use the method of Paun [P-05] mentioned in the introduction. Fix a holomorphic

line bundle A→ X such that the property (G) in Theorem 1 holds.

Let us fix bases

{σ̃(m,0,p)
j ; 1 ≤ j ≤Mp}

of H0
(X, p(KX +Z +E) +A). We let σ

(m,0,p)
j ∈ H0

(Z, p(KZ +E|Z) +A|Z) be such

that

σ̃
(m,0,p)
j |Z = σ

(m,0,p)
j ∧ (dT )

⊗p.

We also fix smooth metrics

e−γZ and e−γE for Z → X, and E → X

respectively. Finally, let us fix bases

s
(m)

1
, ..., s

(m)

Nm
for H0

(X,m(KZ + E|Z)), m = 1, 2, ...,

orthonormal with respect to the singular metric (ω−(n−1)e−γE )
m−1e−ϕE for (m −

1)KZ + mE|Z. (Since e−ϕE is locally integrable, every holomorphic section is inte-

grable with respect to this metric.)

Proposition 5. For each m = 1, 2, ... there exist a constant Cm < +∞ and
sections

σ̃
(m,k,p)
j,ℓ ∈ H0

(X, (km+ p)(KX + Z + E) +A)

where p = 1, 2, ...,m− 1, 1 ≤ j ≤Mp, 1 ≤ ℓ ≤ Nm and k = 1, 2, ..., with the following
properties.

(a) σ̃
(m,k,p)
j,ℓ |Z = (s

(m)

ℓ )
⊗k ⊗ σ

(m,0,p)
j ∧ (dT )

(km+p)

(b) If k ≥ 1,

∫

X

∑M0

j=1
|σ̃(m,k,0)
j,ℓ |2e−(γZ+γE)

∑Mm−1

j=1
|σ̃(m,k−1,m−1)

j,ℓ |2
≤ Cm.

(c) For 1 ≤ p ≤ m− 1,

∫

X

∑Mp

j=1
|σ̃(m,k,p)
j,ℓ |2e−(γZ+γE)

∑Mp−1

j=1
|σ̃(m,k,p−1)

j,ℓ |2
≤ Cm.

Proof. (Double induction on k and p.) Fix a constant Ĉm such that the

sup

X

∑M0

j=1
|σ̃(m,0,0)
j |2ωn(m−1)e(m−1)(γZ+γE)

∑Mm−1

j=1
|σ̃(m,0,m−1)

j |2
≤ Ĉm
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and

sup

Z

∑M0

j=1
|σ(m,0,0)
j |2ω(n−1)(m−1)e(m−1)γE

∑Mm−1

j=1
|σ(m,0,m−1)

j |2
≤ Ĉm,

and for all 0 ≤ p ≤ m− 2,

sup
X

∑Np+1

j=1
|σ̃(m,0,p+1)

j |2ω−ne−(γZ+γE)

∑Mp

j=1
|σ̃(m,0,p)
j |2

≤ Ĉm,

and

sup

Z

∑Np+1

j=1
|σ(m,0,p+1)

j |2ω−(n−1)e−γE

∑Mp

j=1
|σ(m,0,p)
j |2

≤ Ĉm.

(k = 0) We set σ̃
(m,0,p)
j,ℓ := σ̃

(m,0,p)
j and simply observe that

∫

X

∑Mp

j=1
|σ̃(m,0,p)
j,ℓ |2e−(γZ+γE)

∑Mp−1

j=1
|σ̃(m,0,p−1)

j,ℓ |2
≤ Ĉm

∫

X

ωn.

(k ≥ 1) Assume the result has been proved for k − 1.

((p = 0)): Consider the sections (s
(m)

ℓ )
⊗k ⊗ σ

(m,0,0)
j , and define the semi-positively

curved metric

ψk,ℓ,0 := log

Mm−1∑

j=1

|σ̃(m,k−1,m−1)

j,ℓ |2

for the line bundle (mk − 1)(KX + Z + E) +A. Observe that locally on Z,

|(s(m)

ℓ ∧ dTm)
k ⊗ σ

(m,0,0)
j |2e−(ϕZ+ψk,ℓ,0+ϕE)

= |s(m)

ℓ ∧ dTm|2
|σ(m,0,0)
j |2e−(ϕZ+ϕE)

∑Mm−1

j=1
|σ(m,0,m−1)

j |2

. |s(m)

ℓ |2e−(ϕZ+ϕE).

Moreover, we have

√
−1∂∂̄(ψk,ℓ,0 + ϕE) ≥ 0 and µ

√
−1∂∂̄(ψk,ℓ,0 + ϕE) ≥

√
−1∂∂̄ϕZ .

Finally,

∫

Z

|(s(m)

ℓ )
k ⊗ σ

(m,0,0)
j |2e−(ψk,ℓ,0+ϕE)

=

∫

Z

|s(m)

ℓ |2
|σ(m,0,0)
j |2e(m−1)γEe−((m−1)γE+ϕE)

∑Mm−1

j=1
|σ(m,0,m−1)

j |2
< +∞.

We may thus apply Theorem 4 to obtain sections

σ̃
(m,k,0)
j,ℓ ∈ H0

(X,mk(KX + Z + E) +A), 1 ≤ j ≤M0, 1 ≤ ℓ ≤ Nm,
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such that

σ̃
(m,k,0)
j,ℓ |Z = (s

(m)

ℓ )
⊗k ⊗ σ

(m,0,0)
j,ℓ ∧ (dT )

⊗km, 1 ≤ j ≤M0, 1 ≤ ℓ ≤ Nm,

and

∫

X

|σ̃(m,k,0)
j,ℓ |2e−(ψk,ℓ,0+ϕZ+ϕE) ≤ 40πµ

∫

Z

|s(m)

ℓ |2
|σ(0)

j |2e−(ϕE+ϕB)

∑Nm−1

j=1
|σ(m−1)

j |2
.

Summing over j, we obtain

∫

X

∑M0

j=1
|σ̃(m,k,0)
j,ℓ |2e−(γZ+γE)

∑Mm−1

j=1
|σ̃(m,k−1,m−1)

j,ℓ |2

≤ sup

X
eϕZ+ϕE−γZ−γE

∫

X

∑M0

j=1
|σ̃(m,k,0)
j,ℓ |2e−(ϕZ+ϕE)

∑Mm−1

j=1
|σ̃(m,k−1,m−1)

j,ℓ |2

≤ 40π sup

X
eϕZ+ϕE−γZ−γE

∫

Z

|s(m)

ℓ |2
∑M0

j=1
|σ(m,0,0)
j |2e−ϕE

∑Mm−1

j=1
|σ(m,0,m−1)

j |2
e−κ

≤ 40πĈm sup
X
eϕZ+ϕE−γZ−γE

∫

Z

|s(m)

ℓ |2ω−(n−1)(m−1)e−((m−1)γE+ϕE)

= 40πĈm sup
X
eϕZ+ϕE−γZ−γE .

((1 ≤ p ≤ m− 1)): Assume that we have obtained the sections σ̃
(m,k,p−1)

j,ℓ , 1 ≤ j ≤
Mp−1, 1 ≤ ℓ ≤ Nm. Consider the non-negatively curved singular metric

ψk,ℓ,p := log

Mp−1∑

j=1

|σ̃(m,k,p−1)

j,ℓ |2

for (km+ p− 1)(KX + Z + E) +A. We have

|(s(m)

ℓ )
k ⊗ σ

(m,0,p)
j |2e−(ϕZ+ψk,ℓ,p+ϕE)

=
|σ(m,0,p)
j |2e−(ϕZ+ϕE)

∑Mp−1

j=1
|σ(m,0,p−1)

j |2
. e−(ϕZ+ϕE),

which is locally integrable on Z by the hypothesis (T). Next,

∫

Z

|(s(m)

ℓ )
k ⊗ σ

(m,0,p)
j |2e−(ψk,ℓ,p+ϕE)

=

∫

Z

|σ(m,0,p)
j |2e−ϕE

∑Mp−1

j=1
|σ(m,0,p−1)

j |2

≤ C⋆
∫

Z

eγZ
|σ(m,0,p)
j |2e−(ϕZ+ϕE)

∑Mp−1

j=1
|σ(m,0,p−1)

j |2
< +∞,

where

C⋆ := sup

Z
eϕZ−γZ .

Moreover,

√
−1∂∂̄(ψk,ℓ,p + ϕE) ≥ 0 and

√
−1∂∂̄(ψk,ℓ,p + ϕE) ≥

√
−1∂∂̄ϕZ .
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By Theorem 4 there exist sections

σ̃
(m,k,p)
j,ℓ ∈ H0

(X, (mk + p)(KX + Z + E) +A), 1 ≤ j ≤M0

such that

σ̃
(m,k,p)
j,ℓ |Z = (s

(m)

ℓ )
⊗k ⊗ σ

(m,0,p)
j,ℓ ∧ (dT )

⊗km+p, 1 ≤ j ≤Mp,

and

∫

X

|σ̃(m,k,p)
j,ℓ |2e−(ψk,ℓ,p+ϕZ+ϕE) ≤ 40πµ

∫

Z

|σ(m,0,p)
j |2e−ϕE

∑Mp−1

j=1
|σ(m,0,p−1)

j |2
.

Summing over j, we obtain

∫

X

∑Mp

j=1
|σ̃(m,k,p)
j,ℓ |2e−(γZ+γE)

∑Mp−1

j=1
|σ̃(m,k,p−1)

j,ℓ |2
≤ 40πµ sup

X
eϕZ+ϕE−γZ−γE Ĉm

∫

Z

e−ϕEωn−1.

Letting

Cm

:= 40πµĈmmax

(∫

X

ωn, sup

X
eϕZ+ϕE+ϕB−γZ−γE , sup

X
eϕZ+ϕE−γZ−γE

∫

Z

e−ϕEωn−1

)

completes the proof.

4. Construction of the metric. This part of the proof follows the ideas of Siu

set forth in [S-02].

4.1. A metric associated to m(KX + Z + E). Fix a smooth metric e−ψ for

A→ X . Consider the functions

λ
(m)

ℓ,N := log

Mp∑

j=1

|σ̃(m,k,p)
j,ℓ |2ω−n(mk+p)e−(km(γZ+γE)+ψ),

where N = mk + p. Set

λ
(m)

N := log

Nm∑

ℓ=1

eλ
(m)

ℓ,N .

Lemma 6. For any non-empty open subset V ⊂ X and any smooth function
f : V → R+,

1∫
V
fωn

∫

V

(λ
(m)

N − λ
(m)

N−1
)fωn ≤ log

(
NmCm supV f∫

V
fωn

)
.

Proof. Observe that by Proposition 5, there exists a constant Cm such that for

any open subset V ⊂ X ,

∫

V

(eλ
(m)

ℓ,N
−λ

(m)

ℓ,N−1)fωn ≤ Cm sup
V
f,
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and thus

∫

V

(eλ
(m)

N
−λ

(m)

N−1)fωn =

Nm∑

ℓ=1

∫

V

(eλ
(m)

ℓ,N
−λ

(m)

ℓ,N−1)fωn ≤ NmCm sup
V
f.

An application of (the concave version of) Jensen’s inequality to the concave

function log then gives

1∫
V fω

n

∫

V

(λ
(m)

N − λ
(m)

N−1
)fωn ≤ log

(
NmCm supV f∫

V fω
n

)
.

The proof is complete.

Consider the function

Λ
(m)

k =
1

k
λ

(m)

mk .

Note that Λ
(m)

k is locally the sum of a plurisubharmonic function and a smooth func-

tion. By applying Lemma 6 and using the telescoping property, we see that for any

open set V ⊂ X and any smooth function f : V → R+,

(1)
1∫

V fω
n

∫

V

Λ
(m)

k fωn ≤ m log

(
NmCm supV f∫

V fω
n

)
.

Proposition 7. There exists a constant C
(m)

o such that

Λ
(m)

k (x) ≤ C(m)

o , x ∈ X.

Proof. Let us cover X by coordinate charts V1, ..., VN such that for each j there is

a biholomorphic map Fj from Vj to the ball B(0, 2) of radius 2 centered at the origin

in C
n
, and such that if Uj = F−1

j (B(0, 1)), then U1, ..., UN is also an open cover. Let

Wj = Vj \ F−1

j (B(0, 3/2)).

Now, on each Vj , Λ
(m)

k is the sum of a plurisubharmonic function and a smooth

function. Say Λ
(m)

k = h + g on Vj , where h is plurisubharmonic and g is smooth.

Then for constant Aj we have

sup

Uj

Λ
(m)

k ≤ sup

Uj

g + sup

Uj

h

≤ sup

Uj

g +Aj

∫

Wj

h · Fj∗dV

≤ sup

Uj

g −Aj

∫

Wj

g · Fj∗dV +Aj

∫

Wj

Λ
(m)

k · Fj∗dV

Let

C
(m)

j := sup
Uj

g −Aj

∫

Wj

g · Fj∗dV

and define the smooth function fj by

fjω
n

= Fj∗dV.
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Then by (1) applied with V = Wj and f = fj , we have

sup

Uj

Λ
(m)

k ≤ C
(m)

j +mAj log

(
NmCm supWj

fj∫
Wj

fjωn

)∫

Wj

fjω
n.

Letting

C(m)

o := max
1≤j≤N

{
C

(m)

j +mAj log

(
NmCm supWj

fj∫
Wj

fjωn

)∫

Wj

fjω
n

}

completes the proof.

Since the upper regularization of the lim sup of a uniformly bounded sequence of

plurisubharmonic functions is plurisubharmonic (see, e.g., [H-90, Theorem 1.6.2]), we

essentially have the following corollary.

Corollary 8. The function

Λ
(m)

(x) := lim sup
y→x

lim sup

k→∞

Λ
(m)

k (y)

is locally the sum of a plurisubharmonic function and a smooth function.

Proof. One need only observe that the function Λk is obtained from a singular

metric on the line bundle m(KX+Z+E) (this singular metric e−κ
(m)

k will be described

shortly) by multiplying by a fixed smooth metric of the dual line bundle.

Consider the singular Hermitian metric e−κ
(m)

for m(KX + Z + E) defined by

e−κ
(m)

= e−Λ
(m)

ω−nme−m(γZ+γE).

This singular metric is given by the formula

e−κ
(m)

(x)
= exp

(
− lim sup

y→x
lim sup

k→∞

κ
(m)

k (y)

)
,

where

e−κ
(m)

k = e−Λ
(m)

k ω−nme−m(γZ+γE).

The curvature of e−κ
(m)

k is thus

√
−1∂∂̄κ

(m)

k =

√
−1

k
∂∂̄ log

Nm∑

ℓ=1

N0∑

j=1

|σ̃(m,k,0)
j,ℓ |2 − 1

k

√
−1∂∂̄ψ

≥ −1

k

√
−1∂∂̄ψ.

We claim next that the curvature of e−κ is non-negative. To see this, it suffices

to work locally. Then we have that the functions

κ
(m)

k +
1

k
ψ

are plurisubharmonic. But

lim sup
y→x

lim sup

k→∞

κ
(m)

k +
1

k
ψ = lim sup

y→x
lim sup

k→∞

κ
(m)

k = κ(m).

It follows that κ(m)
is plurisubharmonic, as desired.
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4.2. The metric for KX + Z + E; Proof of Theorem 1. Let εm be constants,

chosen so εm ց 0 sufficiently rapidly that the sum

eκ :=

∞∑

m=1

εme
1

mκ(m)

=

∞∑

m=1

exp(
1

mκ
(m)

+ log εm),

converges everywhere on X (to a metric for −(KX + Z + E)). It is possible to find

such constants since, by Proposition 7, each κ(m)
is locally uniformly bounded from

above. (The lower bound eκ
(m) ≥ 0 is trivial.) Moreover, by elementary properties

of plurisubharmonic functions, κ is plurisubharmonic. Indeed, for any r ∈ N, the

function

ψr := log

r∑

m=1

exp(
1

mκ
(m)

+ log εm)

is plurisubharmonic, and ψr ր κ. It follows that κ = supr ψr is plurisubharmonic.

(Again, see [H-90, Theorem 1.6.2].)Thus e−κ is a singular Hermitian metric for KX +

Z + E with non-negative curvature current.

Observe that, after identifying KZ with (KX + Z)|Z by dividing by dT ,

κ
(m)

k |Z = log

(
Nm∑

ℓ=1

|s(m)

ℓ |2
)

+
1

k
log

M0∑

j=1

|σ(m,0,0)
j |2.

Thus we obtain e−κ
(m) |Z =

(∑Nm

ℓ=1
|s(m)

ℓ |2
)−1

. It follows that

e−κ|Z =
1

∑∞
m=1

εm

(∑Nm

ℓ=1
|s(m)

ℓ |2
)

2/m
.

In view of the short discussion following the proof of Proposition 3, the metric e−κ

satisfies the conclusions of Theorem 1. The proof of Theorem 1 is thus complete.

Acknowledgement. I am indebted to Lawrence Ein and Mihnea Popa. It is to
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