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1. Introduction. Let M and N be Kähler manifolds with respective Kähler

metrics h = hijdzi ⊗ dzj and g = gαβdwα ⊗ dwβ
, respectively. A map u : Mm → Nn

is said to be harmonic if the tension field τs
[u] satisfies

τs
[u] = ∆Mus

+

m∑

i,j=1

n∑

t,γ=1

Γ
s
tγ∂iu

t∂ju
γhij

= 0 for 1 ≤ s ≤ n, (1.1)

where (hij
)
t

is the inverse of the matrix (hij), ∆M =
∑

i,j hij∂ij and Γ
s
tγ denote the

Christoffel symbols of the Hermitian metric g on N . It follows from (1.1) that if u is

holomorphic, then u must be harmonic. Thus, it is natural to ask under what circum-

stances a harmonic map is holomorphic or antiholomorphic. Under the assumption

that both M and N are compact, Siu [31] demonstrated that if the curvature tensor

of N is strongly negative and the rank of du is greater than or equal to four at a point

of M , then a harmonic map u must be holomorphic or antiholomorphic. The proof

follows from Siu’s Bochner type identity together with the compactness assumption

on M .

If M is a complete noncompact manifold of strongly negative curvature with

infinite volume, the previous Bochner type identity technique fails and not much is

known about the rigidity of u. In general, the answer to the above posed question

is negative: one needs to add some natural conditions to the map such as being a

proper map. Along this direction, when M and N are unit balls in C
n

endowed

with Bergman metrics (the simplest case of Kähler manifolds with strongly negative

curvature) progress was made by Li and Ni in [25]. They showed that for m > 1, if

u : (Bm, h) → (Bn, g) is a C2
up to the boundary pluriharmonic proper map, where h

and g are respective Bergman metrics on Bm
and Bn

, then u must be holomorphic or

antiholomorphic. In addition to this, several other equivalent conditions were given

(cf. [25]).

The main purpose of this paper is to use a similar approach to the one given

in (cf. [25]) to generalize their theorem from unit balls to smoothly bounded strictly

pseudoconvex domains in C
m

and C
n

for m > 1 with more general metrics of Bergman

type. More precisely, we consider two smoothly bounded strictly pseudoconvex do-

mains Ωm and Ωn in C
m

and C
n

respectively. Let ρ and r be C4
respective strictly
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plurisubharmonic defining functions for Ωm and Ωn. We consider the complex Kähler

metric

h = hijdzi ⊗ dzj = −∂2
log(−ρ)

∂zi ⊗ ∂zj
dzi ⊗ dzj (1.2)

for Ωm and the Kähler metric

g = gαβdwα ⊗ dwβ
= −∂2

log(−r)

∂wα∂wβ
dwα ⊗ dwβ

(1.3)

for Ωn. By the asymptotic expansion of the Bergman kernel function given by C.

Fefferman in [15] the Bergman metric is a special case of the above setting, and so is

the Kähler-Einstein metric given by Cheng and Yau in [8].

Let (ρij
)
t

be the inverse matrix of the matrix (ρij). Let

ρi
=

∑

j

ρijρj , ρj
=

∑

i

ρijρi and |∂ρ|2ρ =

∑

i

ρiρi =

∑

j

ρjρj ; (1.4)

a complex normal derivative R, a tangential complex derivative Xj and an elliptic

operator L be defined as follows:

R := ρj∂j , Xj :=

m∑

i=1

(ρij − ρiρj

|∂ρ|2ρ − ρ
)∂i, L := (ρij − ρiρj

|∂ρ|2ρ − ρ
)∂ij . (1.5)

Let e[u] be the energy density function associated to the map u : (M, h) → (N, g)

defined as

e[u](z) :=

n∑

α,β=1

m∑

i,j=1

hijgαβ(∂iu
α∂juβ + ∂ju

α∂iu
β) (1.6)

Our first theorem, which is a generalization of the main theorem for the case when

Ωm = Bm and Ωn = Bn are balls given by Li and Ni in [25], is as follows:

Theorem 1.1. Assume that m > 1, and let Ωm ⊂ C
m, Ωn ⊂ C

n be bounded
strictly pseudoconvex domains with strictly plurisubharmonic defining functions ρ ∈
C4

(Ωm), r ∈ C4
(Ωn), respectively. Let u : Ωm → Ωn be a proper map so that u ∈

C2
(Ωm, Ωn). Then the following statements are equivalent.

(i) The map u is either holomorphic or antiholomorphic.
(ii) The map u is pluriharmonic.
(iii) The map u is harmonic and rsLus

+ rstXju
tus

j
= 0 on ∂Ωm.

(iv) The map u is harmonic and the energy density function e[u](z) = m on the
set {z ∈ ∂Ωm : Eb[u](z) > 0}, where Eb[u](z) = |∂bu|2 + |∂bu|2 and ∂b is the
tangential Cauchy-Riemann operator.

(v) The map u is harmonic and
∑n

γ,s=1
(rsRus

(z))(rγRuγ
(z)) = 0 on ∂Ωm.

Another problem we want to explore is the existence and regularity of proper

harmonic maps. More precisely, if φ : ∂Ωm → ∂Ωn is a smooth map, can one find a

harmonic map u that when restricted to ∂Ωm equals φ? If so, what type of regularity

statement can we offer?

In a series of papers [19]–[21], P. Li and L-F. Tam explored the existence, unique-

ness and regularity of proper harmonic maps between real hyperbolic spaces. They
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showed that if φ : Dm → Dn
(here Dm

is the unit ball in IR
m

with the Poincaré

metric and similarly Dn
is the unit ball in IR

n
with the Poincaré metric) is a C1

map with nonvanishing energy density e(φ)(x) at every x ∈ Sm−1
, then there exists a

unique proper harmonic map u : Dm → Dn
which equals φ when restricted to Sm−1

.

If in addition, the boundary map φ is in Ck,α
(Sm−1, Sn−1

), where 1 ≤ k ≤ m − 1

and 0 < α ≤ 1, then u belongs to Ck,γ
(D

m
) for 0 < γ < α. They also proved that

if u : D
m → D

n
and v : D

m → D
n

are C1
proper harmonic maps such that they

are equal on Sm−1
and the energy density of the boundary map does not vanish any-

where, then u = v. As a corollary, they obtained that if u : D
m → D

n
is a C1

, proper

harmonic map with non-vanishing energy density on Sm−1
, then the energy density

equals m at the boundary.

The case where both M and N are rank one symmetric spaces was tackled by

Donnelly in [11]. He was able to generalize the existence and regularity results of

Li and Tam under the assumption that the boundary map φ satisfies some contact

conditions. The problem was also studied by S-Y. Li and L. Ni in [25] where they for-

mulated a simpler contact condition and provided an existence theorem. The second

purpose of this paper is to generalize their theorem on unit balls to strictly pseudo-

convex domains. Our result is:

Theorem 1.2. Assume that φ : ∂Ωm → ∂Ωn belongs to Ck,α
(∂Bm) for k ≥ 2

and 0 < α ≤ 1. In addition, suppose that Eb[φ](z) = |∂bφ|2 + |∂bφ|2 > 0 on ∂Ωm,
where ∂b is the tangential Cauchy-Riemann operator, and the necessary condition

∑

s

rs(φ)(z)Xjφ
s
(z) = 0, z ∈ ∂Ωm, 1 ≤ j ≤ m. (1.7)

Then for all 0 < l + β < min{m, k + α} there exists a unique proper harmonic map
u ∈ Cl,β

(Ωm) such that u = φ on ∂Ωm.

2. Cauchy-Riemann functions. A complex-valued C1
function u in a domain

Ω in C
m

is said to be CR if ∂u = 0, which is the same as u being holomorphic. Since
∂

∂zj

∂
∂zk

=
∂

∂zk

∂
∂zj

for all 1 ≤ j, k ≤ m, it is easy to show that if for each z ∈ Ω we

have that either ∂u(z) = 0 or ∂u(z) = 0, then we must have that either ∂u ≡ 0 on Ω

or ∂u ≡ 0 on Ω.

It was proved by Li and Ni [25] that the above phenomenon remains true for

functions on the unit sphere in C
m

(m > 1) where the problem is much more difficult

since the tangent vector fields are not commutative.

Let Ω be a smoothly bounded domain in C
m

. Let u ∈ C1
(∂Ω). We say that u is

a CR function on ∂Ω if u satisfies the tangential Cauchy-Riemann equation: ∂bu = 0

on ∂Ω, which is equivalent to Xju = 0 on ∂Ω for all 1 ≤ j ≤ m where X1, · · · , Xm

are holomorphic tangent vector fields which span the holomorphic tangent bundle on

∂Ω. Based on the main idea in [25], Li and Zhang [27] proved the following theorem.

Theorem 2.1. Let m > 1 and let Ω be a bounded strictly pseudoconvex domain
in C

m with C3 boundary. Let g ∈ C2
(∂Ω) so that for any point z ∈ ∂Ω, we have that

either ∂bg(z) = 0 or ∂bg(z) = 0. Then either g is CR or g is CR on ∂Ω.

3. Preliminary results. Let u = (u1, u2, . . . , un
) : (M, h) → (N, g) be a map.

We need the following definitions:
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(i) u is pluriharmonic if

∂iju
s
+

n∑

t,γ=1

Γ
s
tγ∂iu

t∂ju
γ

= 0 for 1 ≤ i, j ≤ m and 1 ≤ s ≤ n. (3.1)

(ii) u is holomorphic if ∂iu
s

= 0 for 1 ≤ i ≤ m and 1 ≤ s ≤ n.
(iii) the energy density function of u denoted e[u](z) is defined by (1.6).

Since

hij = − ∂

∂zi
(
ρj

ρ
) =

ρij

−ρ
+

ρiρj

ρ2
=

1

−ρ
[ρij +

ρiρj

−ρ
], (3.2)

we have

hij
= (−ρ)[ρij − ρiρj

|∂ρ|2ρ − ρ
] (3.3)

where

ρi
=

∑

j

ρijρj , ρj
=

∑

i

ρijρi and |∂ρ|2ρ =

∑

i

ρiρi =

∑

j

ρjρj . (3.4)

Therefore

rilr
l
= rilr

plrp = δiprp = ri, rjlr
l
= rjlr

plrp = δjprp = rj . (3.5)

Let L, R and Xj be defined by (1.5). Then

X i =

m∑

j=1

(ρij − ρiρj

|∂ρ|2ρ − ρ
)∂j and R =

m∑

j=1

ρj∂j . (3.6)

For u ∈ C2
(Ωm, Ωn), let

Eb(u) := |∂bu|2 + |∂bu|2 (3.7)

where

|∂bu|2 =

m∑

j=1

n∑

s=1

|Xju
s|2, |∂bu|2 =

m∑

j=1

n∑

s=1

|Xju
s|2. (3.8)

Finally, since ρ(z) < 0 on Ωm, let

a[u](z) =
r(u(z))

ρ(z)
, z ∈ Ωm. (3.9)

For each z0 ∈ ∂Ωm, a[u](z0) = limz→z0
a[u](z). We will apply this convention for the

rest of the paper.

Now we proceed to compute τs
[u] explicitly. Then using the properness assump-

tion on u, we obtain an expression for τs
[u] that allows us to understand under what

circumstances either u is CR or u is CR.

Let us first obtain an explicit expression for the Christoffel symbols Γ
k
ij for N =

(Ωn, g). By definition we know that
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Γ
k
ij =

∑

ℓ

gkℓ ∂giℓ

∂uj
(3.10)

= (−r)(rkℓ − rkrℓ

|∂r|2r − r
)

∂

∂uj

[
1

(−r)
(riℓ +

rirℓ

−r
)

]

= (−r)(rkℓ − rkrℓ

|∂r|2r − r
)

[ rj

r2
(riℓ +

rirℓ

−r
) +

1

(−r)
(rijℓ +

rj

r2
rirℓ +

rijrℓ + rirjℓ

−r
)

]

= (rkℓ − rkrℓ

|∂r|2r − r
)

[ rj

−r
(riℓ +

rirℓ

−r
) + rijℓ +

rj

r2
rirℓ +

rijrℓ + rirjℓ

−r

]

= (rkℓ − rkrℓ

|∂r|2r − r
)

[
rijℓ +

2

r2
rirjrℓ +

riℓrj + rijrℓ + rirjℓ

−r

]

= (rkℓ − rkrℓ

|∂rr|2 − r
)rijℓ + (rkℓ − rkrℓ

|∂r|2r − r
)(

riℓrj + rijrℓ + rirjℓ

−r
)

+
2

r2
(rirjr

k − |∂r|2r
|∂r|2r − r

rkrirj)

= (rkℓ − rkrℓ

|∂r|2r − r
)rijℓ +

1

(−r)
(δikrj + rkrij + riδjk)

− rkrℓ

(−r)(|∂r|2r − r)
(riℓrj + rijrℓ + rirjℓ) +

2

(−r)

rkrirj

(|∂r|2r − r)

= (rkℓ − rkrℓ

|∂r|2r − r
)rijℓ +

1

(−r)
(δikrj + rkrij + riδjk)

− 1

(−r)(|∂r|2r − r)
(rir

krj + rijr
k|∂r|2r + rir

krj) +
2

(−r)

rkrirj

(|∂r|2r − r)

= (rkℓ − rkrℓ

|∂r|2r − r
)rijℓ +

1

(−r)
(δikrj + rkrij + riδjk)

− |∂r|2r
(−r)(|∂r|2r − r)

rijr
k

=
1

−r
(δikrj + riδjk) + (rkℓ − rkrℓ

|∂r|2r − r
)rijℓ +

rijr
k

|∂r|2r − r
.

Substituting the expression we just found for Γ
k
ij in the definition of τs

[u], we obtain

τs
[u] = ∆Mus

+
1

(−r(u))
hij

(δtsrγ(u) + rt(u)δγs)u
t
iu

γ

j
(3.11)

+ [(rsℓ
(u) − rs

(u)rℓ
(u)

|∂r|2r(u) − r(u)
)rtγℓ(u) +

rtγ(u)rs
(u)

(|∂r|2r − r(u))
]hijut

iu
γ

j

= ∆Mus
+

1

(−r(u))
hij

(rγ(u)us
i u

γ

j
+ rt(u)ut

iu
s
j
)

+

[
(rsℓ

(u) − rsrℓ
(u)

|∂r|2r − r(u)
)rtγℓ(u) +

rtγ(u)rs
(u)

|∂r|2r − r(u)

]
hijut

iu
γ

j
.
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Let u = (u1, · · · , un) ∈ C2
(Ωm) be a map from Ωm → Ωn. Define

Es
[u] : =

1

(−ρ)
hij

[rγ(u)us
i u

γ

j
+ rt(u)ut

iu
s
j
]. (3.12)

Then using the expression for hij
in (3.3), we have

Es
[u] = (ρij − ρiρj

|∂ρ|2ρ − ρ
)[rt(u)us

i∂ju
t
+ rt(u)∂iu

tus
j
] (3.13)

= us
i rt(u)Xiu

t
+ us

i
rt(u)Xiu

t.

Next we will express Es
[u] in terms of the vector fields Xj , R, Xj and R. This is

carried out in the following lemma.

Lemma 3.1. Let u = (u1, · · · , un
) : Ωm → Ωn be a map with u ∈ C2

(Ωm). Then

Es
[u] = ρij [Xiu

s rt(u)Xju
t
+ Xju

s rt(u)Xiu
t
] (3.14)

+
−ρ

(|∂ρ|2ρ − ρ)2
[Rus rt(u)Rut

+ Rus rt(u)Rut
]

for all z ∈ Ωm.

Proof. For any point z0 ∈ Ωm, by a rotation if necessary, we may assume that the

complex Hessian matrix of ρ at z0 is diagonal. In other words, we may assume that

H(ρ)(z0) = diag(ρ
11

, · · · , ρmm). Thus ρij
(z0) = δijρii(z0)

−1
and

Es
[u] = us

i rt(u)X iu
t
+ us

i
rt(u)Xiu

t
(3.15)

= ρiiXiu
s rt(u)Xiu

t
+ ρii

ρℓρi

|∂ρ|2ρ − ρ
us

ℓ rt(u)X iu
t

+ ρiiXiu
s rt(u)Xiu

t
+ ρii

ρiρℓ

|∂ρ|2ρ − ρ
us

ℓ
rt(u)Xiu

t

= ρii

[
Xiu

s rt(u)Xiu
t
+ Xiu

s rt(u)Xiu
t
]

+ ρii

[ ρi

|∂ρ|2ρ − ρ
Rus rt(u)Xiu

t
+

ρi

|∂ρ|2ρ − ρ
Rus rt(u)Xiu

t
]
.

Note that at z = z0, we have that ρiiρ
i
= ρi and ρiρ

ii
= ρi

. Thus

m∑

i=1

ρiiρ
iX i =

m∑

i=1

ρiX i =

m∑

i=1

ρi

m∑

j=1

(ρij − ρiρj

|∂ρ|2ρ − ρ
)∂j (3.16)

=

m∑

i=1

ρi∂i −
m∑

j=1

|∂ρ|2ρρj

|∂ρ|2ρ − ρ
∂j

= R −
|∂ρ|2ρR
|∂ρ|2ρ − ρ

=
−ρ

|∂ρ|2ρ − ρ
R.
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Therefore,

Es
[u] = ρii[Xiu

s rt(u)Xiu
t
+ Xiu

s rt(u)Xiu
t
]

+
−ρ

(|∂ρ|2ρ − ρ)2
[Rus rt(u)Rut

+ Rus rt(u)Rut
].

The proof is complete.

Next, we want to understand the behavior of rsXju
s

and rsXju
s

on ∂Ωm. This

is the content of Lemma 3.2.

Lemma 3.2. Let u = (u1, · · · , un) : Ωm → Ωn be a proper harmonic map so that
u ∈ C2

(Ωm). Then

n∑

s=1

rs(u)∂bu
s

=

n∑

s=1

rs(u)∂bu
s ≡ 0 on ∂Ωm. (3.17)

Proof. By Lemma 3.1

rs(u)Es
[u] = 2ρijrs(u)Xiu

s rt(u)Xju
t
+

2(−ρ)

(|∂ρ|2ρ − ρ)2
rs(u)Rus rt(u)Rut.

Since r[u] = 0 on ∂Ωm, and Xi is a tangential vector field, we have that

0 = Xir[u](z0) = rs(u)Xiu
s
+ rs(u)Xiu

s
= rs(u)Xiu

s
+ rs(u)Xius.

Thus,

rs(u)Xiu
s rt(u)X iu

t
(z0) = −

∣∣∣
n∑

s=1

rs(u)Xiu
s
(z0)

∣∣∣
2

= −
∣∣∣

n∑

s=1

rs(u)X iu
s
(z0)

∣∣∣
2

for all 1 ≤ i ≤ m. For any z0 ∈ ∂Ωm, by a rotation, we may assume H(ρ)(z0)

is diagonal. Since H(ρ) is positive definite, there is a positive constant ǫ so that

H(ρ) ≥ ǫIn for all z ∈ Ωm. Therefore,

rs(u)Es
[u](z0) = −2

m∑

i=1

ρii(z0)|
n∑

s=1

rs(u)Xiu
s
(z0)|2 (3.18)

= −2

m∑

i=1

ρii(z0)|
n∑

s=1

rs(u)X iu
s
(z0)|2.

Since u is proper harmonic (τs
[u] = 0 in Ωm), and u ∈ C2

(Ωm), one can easily see

that
∑n

s=1
rs(u)Es

[u] = 0 on ∂Ωm. Combining this with the above identity, we obtain

∑

s

rs(u)Xiu
s
(z0) =

n∑

s=1

rs(u)X iu
s

= 0, 1 ≤ i ≤ m

for all z0 ∈ ∂Ωm.
By the fact that X1, · · · , Xm generate T 1,0

(∂Ωm), we conclude that

n∑

s=1

rs(u)∂bu
s
(z) =

n∑

s=1

rs(u)∂bu
s
(z) = 0 for all z ∈ ∂Ωm.
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The proof of the lemma is complete.

Let

Yi = (δij −
ρiρ

j

|∂ρ|2ρ − ρ
)∂j . (3.19)

Note that Yi =
∑

j ρijXj . Thus Yi ∈ T (1,0)
(∂Ωm). The following lemma expresses L

in terms of the vector fields Xj, Xj , Yj , Y j , R and R.

Lemma 3.3. With the notation above, we have

L = XjY j +
L(ρ)

|∂ρ|2ρ − ρ
R − ρ

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
R (3.20)

= XjYj +
L(ρ)

|∂ρ|2ρ − ρ
R − ρ

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
R. (3.21)

Proof. The proof is just a simple computation. By definition

L =

∑

ij

(ρij − ρiρj

|∂ρ|2ρ − ρ
)∂ij

=

∑

j

Xj∂j

=

∑

j

XjY j +

∑

j

Xj(
ρℓρj

|∂ρ|2ρ − ρ
∂ℓ)

=

∑

j

XjY j +

m∑

j,ℓ=1

Xj(ρj)

|∂ρ|2ρ − ρ
ρℓ∂ℓ +

m∑

j,ℓ=1

ρjXj(
ρℓ

|∂ρ|2ρ − ρ
∂ℓ)

=

∑

j

XjY j +
L(ρ)

|∂ρ|2ρ − ρ
R +

−ρ

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
R.

Similarly, we have

L =

∑

ij

(ρij − ρiρj

|∂ρ|2ρ − ρ
)∂ij

=

∑

j

Xj∂j

=

∑

j

XjYj +

∑

j

Xj(
ρℓρj

|∂ρ|2ρ − ρ
∂ℓ)

=

∑

j

XjYj +

m∑

j,ℓ=1

Xj(ρj)

|∂ρ|2ρ − ρ
ρℓ∂ℓ +

m∑

j,ℓ=1

ρjXj(
ρℓ

|∂ρ|2ρ − ρ
∂ℓ)

=

∑

j

XjYj +
L(ρ)

|∂ρ|2ρ − ρ
R − ρ

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
R.

The proof is complete.
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Since Yi ∈ T (1,0)
(∂Ωm), it follows from Lemma 3.2 that

n∑

s=1

rs(u)Yju
s
(z) = 0 on ∂Ωm, 1 ≤ j ≤ m.

A similar reasoning shows that

n∑

s=1

rs(u)Y ju
s
(z) = 0 on ∂Ωm, 1 ≤ j ≤ m.

This implies that for each 1 ≤ j ≤ m we have that

0 = Xj(rs(u)Yju
s
) = rstXju

t Yju
s
+ rstXju

t Yju
s
+ rs(u)XjYju

s

and

0 = Xj(rs(u)Y ju
s
) = rstXju

t Y ju
s
+ rstXju

t Y ju
s
+ rs(u)XjY ju

s.

Thus

−rs(u)XjYju
s

= rst(u)Xju
t Yju

s
+ rst(u)Xju

t Yju
s

and

−rs(u)XjY ju
s

= rst(u)Xju
t Y ju

s
+ rst(u)Xju

t Y ju
s.

Therefore, it follows from Lemma 3.3 that on ∂Ωm

L(ρ)

|∂ρ|2ρ
∑

s

rs(u)Rus
(3.22)

=

n∑

s=1

rs(u)Lus −
n∑

s=1

m∑

j=1

rs(u)XjYju
s
+ rs(u)

ρ(z)

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
Rus

= rs(u)Lus
(z) + rst(u)Xju

t Yju
s
+ rst(u)Xju

t Yju
s

= rs(u)Lus
(z) + rst(u)Xju

tYju
s
+ rst(u)Xju

tYju
s.

Similarly,

L(ρ)

|∂ρ|2ρ
∑

s

rs(u)Rus
(3.23)

=

n∑

s=1

rs(u)Lus −
n∑

s=1

m∑

j=1

rs(u)XjY ju
s
+ rs(u)

ρ(z)

|∂ρ|2ρ − ρ
R

1

|∂ρ|2ρ − ρ
Rus

= rs(u)Lus
(z) + rst(u)Xju

tY ju
s
+ rst(u)Xju

tY ju
s.

Recall that a[u](z) is given by

r(u) = a[u](z)ρ(z), z ∈ Ωm.

It is easy to see that a[u] ≥ 0 on Ωm, a[u](z) > 0 on Ωm and a[u] ∈ C1
(Ωm). Thus,
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τs
[u] = (−ρ)Lus

+ (−ρ)

[
rsℓ

(u)rtγℓ +

rtγ(u)rs
(u) − rsrℓrtγℓ

|∂r|2r − r

]
Xju

t uγ

j
(3.24)

+
ρ(z)

r(u)
Es

[u]

= (−ρ)Lus
+ (−ρ)

[
rsℓ

(u)rtγℓ(u) +

rtγ(u)rs
(u) − rsrℓrtγℓ

|∂r|2r − r

]
Xju

tuγ

j

+
1

a[u]
ρij [Xiu

srt(u)Xju
t
+ Xju

srt(u)Xiu
t
]

+
1

a[u]

(−ρ)

(|∂ρρ|2 − ρ)2
[Rusrt(u)Rut

+ Rusrt(u)Rut
]

= (−ρ)

[
Lus

+ (rsℓ
(u)rtγℓ +

rtγ(u)rs
(u) − rs

(u)rℓ
(u)rtγℓ(u)

|∂r|2r − r
)Xju

t uγ

j

+
1

a[u]

1

(|∂ρ|2ρ − ρ)2
(Rusrt(u)Rut

+ Rusrt(u)Rut
)

]

+
1

a[u]
ρij [Xiu

srt(u)Xju
t
+ Xju

srt(u)Xiu
t
].

Since
∑n

s=1
rs(u)rs

(u) = |∂r|2r , we have that on ∂Ωm

n∑

s=1

(
rsℓ

(u)rtγℓ +
rtγ(u)rs

(u) − rs
(u)rℓrtγℓ

|∂r|2r

)
rs(u)Xju

tuγ

j

= (rℓ
(u)rtγℓ + rtγ(u) − rℓrtγℓ(u))Xju

tuγ

j

= rtγ(u)Xju
tuγ

j
.

Thus on ∂Ωm,

rs(u)τs
[u] =

2

a[u]
ρij(rs(u)Xiu

s
)(rt(u)Xju

t
) (3.25)

+ (−ρ)

[
(rs(u)Lus

+ rtγ(u)Xju
tuγ

j
) + 2

rs(u)Rus rt(u)Rut

a[u](|∂ρ|2ρ − ρ)2

]
.

Since u ∈ C2
(Ωm), we know by Lemma 3.2 that

(

∑

s

rs(u)Xiu
s
)(

∑

s

rs(u)Xju
s
) = O(ρ(z)

2

).

From the harmonicity of u, it follows that rs(u)τs
[u] = 0. This implies that for any

z ∈ ∂Ωm

a[u](rs(u)Lus
+ rtγ(u)Xju

tuγ

j
) + 2

rs(u)Rus rt(u)Rut

|∂ρ|4ρ
= 0. (3.26)

Theorem 3.4. Let Ωm ⊂ C
m (m > 1) and Ωn ⊂ C

n be smoothly bounded strictly
pseudoconvex domains with metric h and g, respectively. Let u = (u1, · · · , un

) ∈
C2

(Ωm) be a proper harmonic map from (Ωm, h) to (Ωn, g). If

lim
w→z

(rsLus
(w) + rst(u)Xju

tus
j
) = 0, for z ∈ ∂Ωm, (3.27)
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then either u is CR or u is CR.

Proof. Notice that

m∑

j=1

ρjXj =
(−ρ)R

|∂ρ|2ρ − ρ
.

By a rotation if necessary, we may assume without loss of generality that for any

z0 ∈ ∂Ωm, we have that ρij(z0) = ρii(z0)δij . Therefore,

rst(u)Xju
t us

j
(z0) = rst(u)Xju

tY ju
s
(z0) +

rst(u)Xju
tρjρ

k∂kus
(z0)

|∂ρ|2ρ − ρ

= rst(u)Xju
tY ju

s
(z0). (3.28)

Now (3.26) and (3.27) imply that

(
rs(u)Rus

(z0)

)(
rt(u)Rut

(z0)

)
= 0. (3.29)

Also

Yju
s
(z0) = ρjj(z0)(ρ

jj∂j − ρjj ρjρ
k

|∂ρ|2ρ
∂k)us

(z0) (3.30)

= ρjj(z0)(ρ
kj∂k − ρjρk

|∂ρ|2ρ
∂k)us

(z0)

= ρjj(z0)Xju
s
(z0).

Similarly, we have

Y ju
s
(z0) = ρjj(z0)Xju

s
(z0). (3.31)

Combining (3.29) with (3.22) and (3.23), and using (3.30) and (3.31), we obtain

(rstρjjXju
sXju

t
)(rpqρkkXkusXkut

) = 0.

Since (rpq(u(z0)) and H(ρ)(z0) are positive definite, we have

[ m∑

j=1

n∑

s=1

|Xju
s
(z)|2

][ m∑

j=1

n∑

t=1

|Xju
t
(z0)|2

]
= 0.

Therefore, either ∂bu
s
(z0) = 0 or ∂bu

s
(z0) = 0 for all 1 ≤ s ≤ n. The proof is

complete by applying Theorem 2.1.

The following lemma gives an expression for a[u](z) in terms of the vector fields

R and R and provides a sufficient condition for two proper harmonic maps with the

same boundary data to be equal.

Lemma 3.5. Let u : Ωm → Ωn be a proper harmonic map so that u ∈ C2
(Ωm).

(i) Then rs(u)Rus and rs(u)Rus are non-negative on ∂Ωm. In particular, for
any z ∈ ∂Ωm with |∂ρ|2

0
=

∑n
j=1

|∂jρ|2, we have

a[u](z)|∂ρ|2
0

=
rs(u)(R + R)us

(z)

|∂ρ|2ρ
. (3.32)
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(ii) On {z ∈ ∂Ωm : a[u](z) > 0} we have

rsLus
(w) + rst(u)Xju

tus
j

=
−(m + 1)E[u](z) + D[u](z)

4m
(3.33)

a[u](z)|∂ρ|2
0

=
E(u)(z)

2m
+

D[u]

2m(m − 1)
, (3.34)

where

E[u](z) = rst(u)XjutYju
s
(z0) + rst(u)XjutY ju

s
(z0)

and

D[u] =
[
(m+1)

2E[u]
2− 16m(rst(u)XjutYju

s
(z0))(rst(u)XjutY ju

s
(z0))

]
1/2

.

(iii) For z ∈ ∂Ωm, we have that Eb(u)(z) > 0 if and only if a[u](z) > 0.
(iv) If u(z) = v(z) and a[u](z) > 0 on ∂Ωm, then u ≡ v on Ωm.

Proof. For any z0 ∈ ∂Ωm, we may assume that |∂ρ(z0)|2 = 1; otherwise, we may

use ρ̃(z) = ρ(z)/|∂ρ(z0)| to replace ρ and use r̃(w) = r(w)/|∂ρ(z0)|0 to replace r(w).

By a rotation if necessary, we may assume without loss of generality that H(ρ)(z0) is

diagonal.

First we prove (i). Let

A =

n∑

s=1

rs(u)Lus
(z0) +

n∑

s,t=1

rst(u)ut
j
Xju

s
(z0),

A1 = rs(u)Rus
(z0), A2 = rs(u)Rus

(z0)

E1 = rst(u)XjutYju
s
(z0)

= rst(u)ρjjXju
sXjut(z0), and (3.35)

E2 = rst(u)XjutY ju
s
(z0)

= rst(u)ρjjXju
sXjut(z0), (3.36)

since Yju
s

= ρjjXju
s

by (3.30).

Then by (3.22)

L(ρ)

|∂ρ|2ρ
A1 = A + rst(u)ρjjXju

sXjut = A + E1, (3.37)

by (3.23)

L(ρ)

|∂ρ|2ρ
A2 = A + rst(u)ρjjXju

sXjut = A + E2, (3.38)

and by (3.26)

a[u]A +
2

|∂ρ|4ρ
A1A2 = 0. (3.39)
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Thus,

L(ρ)
2a[u]A + 2[A + E1][A + E2] = 0

or

2A2

+ (2E1 + 2E2 + L(ρ)
2a[u])A + 2E1E2 = 0. (3.40)

Therefore, A is non-positive since Ej is non-negative for j = 1, 2. Thus Aj is real for

j = 1, 2. Moreover, A < 0 when both E1 > 0 and E2 > 0.

Define R = ρj∂j , R = ρj∂j . Since (R−R)r(u(z)) = 0 for z ∈ ∂Ωm, we have that

a[u] =
R + R

2
r(u) = Rr(u) = Rr(u).

Also R = 〈R,R〉R + T where T is a tangential vector. Since 〈R,R〉 = |∂ρ|2ρ

a[u] = Rr(u) =
Rr(u)

|∂ρ|2ρ
− T r(u)

|∂ρ|2ρ
=

R r(u)

|∂ρ|2ρ
and

a[u] = Rr(u) =
Rr(u)

|∂ρ|2ρ
− Tr(u)

|∂ρ|2ρ
=

Rr(u)

|∂ρ|2ρ
.

Since A2 is real, we obtain

0 ≤ a[u] =
Rr(u)

|∂ρ|2ρ
=

1

|∂ρ|2ρ
(rs(u)Rus

+ rs(u)Rus
) (3.41)

=
1

|∂ρ|2ρ
(rs(u)Rus

+ rs(u)Rus)

=
1

|∂ρ|2ρ
(A1 + A2)

=
1

|∂ρ|2ρ
(A1 + A2),

which is (3.32). Also by (3.39) and the nonpositivity of A,

A1A2 = −a[u]A|∂ρ|4ρ
2

≥ 0.

Thus we have established that A1 + A2 ≥ 0 and A1A2 ≥ 0. As a result, Aj ≥ 0 for

j = 1, 2. This finishes the proof of (i).

Next we prove (ii). Using the fact that ρiρjρij = ρikρkρjρij = ρikρijρkρj
=

δkjρkρj
= ρjρ

j
= |∂ρ|2ρ we have that on ∂Ωm

L(ρ) =

∑

ij

(ρij − ρiρj

|dρ|2 − ρ
)ρij (3.42)

=

∑

i

δii −
∑

ij

ρiρj

|dρ|2 − ρ
ρij
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= m − |∂ρ|2ρ
|∂ρ|2ρ − ρ

= m − 1.

Adding (3.37) to (3.38) and using (3.41) together with (3.42), we have that

a[u] =
2A + E[u]

m − 1
since E[u] = E1 + E2. (3.43)

Substituting (3.43) into (3.40) and using (3.42), we obtain

mA2

+

(m + 1

2

)
E[u]A + E1E2 = 0. (3.44)

Since Ai ≥ 0 for i = 1, 2, (3.37) and (3.38) implies that if a[u] > 0 or E1 6= E2, then

A =
−(m + 1)E[u] + D[u]

4m
, (3.45)

where D[u] =

√
(m + 1)2E[u]2 − 16mE1E2. This establishes (3.33). By (3.43) and

(3.45)

a[u] =
2A + E[u]

m − 1

=
1

m − 1

(−(m + 1)E[u] + D[u]

2m
+ E[u]

)

=
E[u]

2m
+

D[u]

2m(m − 1)

which is (3.34).

Now we prove (iii). By (ii) if a[u] > 0, then E[u] > 0 which implies that Eb(u) > 0

since rst is positive definite. In order to establish the converse, we must show that

for every z0 ∈ ∂Ωm such that a[u](z0) = 0, it holds that Eb(u)(z0) = 0. Since rst

is positive definite, this is equivalent to showing that E[u] = 0. If z0 is a boundary

point of the zero set of a[u] on ∂Ωm, then E[u] = 0 by (3.34) and passing to the

limit. So assume that z0 is an interior point of the zero set of a[u] on ∂Ωm. Since

r(u) = a[u]ρ(z), we have that Rr(u) = Ra[u]ρ(z) + a[u]Rρ(z). Therefore,

Rr(u) = rsRus
+ rsRus

= rsRus
+ rsRus = Ra[u]ρ(z) + a[u]|∂ρ|2ρ.

Thus,

2Re(rsRus
)(rsRus

)a[u]
−1

(3.46)

= |Ra[u]ρ(z) + a[u]|∂ρ|2ρ|2a[u]
−1 − (|rsRus|2 + |rsRus|2)a[u]

−1

(3.47)

≤ |Ra[u]ρ(z) + a[u]|∂ρ|2ρ|2a[u]
−1

= |Ra[u]|2ρ(z)
2a[u]

−1

+ a[u]|∂ρ|4ρ + 2Re(Ra[u]ρ(z)|∂ρ|2ρ)
= |Ra[u]|2ρ(z)

2a[u]
−1

+ a[u]|∂ρ|4ρ + (R + R)a[u]ρ(z)|∂ρ|2ρ
= 4(Ra[u]

1/2

)(Ra[u]
1/2

)ρ(z)
2

+ a[u]|∂ρ|4ρ + (R + R)a[u]ρ(z)|∂ρ|2ρ.

Since Xir(u) = Xia[u]ρ(z) + a[u]Xi(ρ) and Xi(ρ) =
−ρρi

|∂ρ|2ρ−ρ , we have

Xir(u) = rsXiu
s
+ rsXius = Xia[u]ρ(z) − a[u]

ρρi

|∂ρ|2ρ − ρ
.
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Thus,

2Re[(rsXiu
s
)(rsXiu

s
)a[u]

−1ρ(z)
−1

(3.48)

= |Xia[u]ρ(z) − a[u]
ρρi

|∂ρ|2ρ − ρ
|2a[u]

−1ρ(z)
−1 − (|rsXiu

s|2 + |rsX iu
s|2)

a[u]ρ(z)

≤ |Xia[u]ρ(z) − a[u]
ρρi

|∂ρ|2ρ − ρ
|2a[u]

−1ρ(z)
−1

= |Xia[u]|2ρ(z)a[u]
−1 − 2Re(Xia[u]ρi

)

|∂ρ|2ρ − ρ
ρ +

|ρi|2a[u]ρ(z)

(|∂ρ|2ρ − ρ)2

= 4(Xia[u]
1/2

)(X ia[u]
1/2

)ρ − 2Re(Xia[u]ρi
)

|∂ρ|2ρ − ρ
ρ +

|ρi|2a[u]ρ(z)

(|∂ρ|2ρ − ρ)2
.

Since a[u] ∈ C1
(Ωm) and a[u] = 0 on ∂Ωm ∩ B(z0, δ) for some δ > 0, it is clear that

a[u]
1/2 ∈ C1/2

(Ωm). Therefore,

lim
z→z0

[(Ra[u]
1/2

)(Ra[u]
1/2

)ρ(z)
2

] = 0. (3.49)

At the same time, since Xi and Xi are tangential

lim
z→z0

[(Xia[u]
1/2

)(X ia[u]
1/2

)ρ(z)] = 0. (3.50)

Thus, (3.25) and the previous computations show that

0 = lim sup
z→z0

[
Re(rs(u)Lus

+ rst(u)Xju
tus

j
) + 2Re

rs(u)Rus rt(u)Rut

a[u]|(dρ|2 − ρ)2

+
2Re

a[u]|ρ|ρij(rs(u)Xiu
s
)(rt(u)Xju

t
)

]

= lim sup
z→z0

Re(rs(u)Lus
+ rst(u)Xju

tus
j
).

This implies that (rs(u)Lus
+ rst(u)Xju

tus
j
) ≥ 0 at z0. By (3.43), we know that

0 = a[u] =
2A+E[u]

m−1
. Thus 0 ≤ 2A = −E which implies that E = 0.

Finally, we prove (iv). Since a[u](z) > 0 for all z ∈ ∂Ωm, it follows from (ii)

that a[v] = a[u] on ∂Ωm. Next we show dΩn(u(z), v(z)) = 0 for z ∈ ∂Ωm. For each

z0 ∈ ∂Ωm, after a holomorphically change of coordinates, we may assume that z0 = 0,

w0 = u(z0) = 0 and

r(w) = −λ0Re wn
+

n∑

j=1

λj |wj |2 + o(|w|2), λj > 0

for all w ∈ Ωn ∩ B(0, ǫ) for some 0 < ǫ << 1. For any z ∈ Ωm with

|z| ≤ δ so that u(z), v(z) ∈ Ωn ∩ B(0, ǫ), let S = {γ : [0, 1] → Ωn :

γ is piecewise differentiable curve with γ(0) = v(z), γ(1) = u(z)}. Then

dΩn(u(z), v(z)) = inf
γ∈S

∫
1

0

√
gij(γ(t))γi′(t)γj ′(t) dt

= inf
γ∈S

∫
1

0

√
[

1

−r
(rij +

rirj

−r
)](γ(t))γi′(t)γj ′(t) dt
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≤ C inf
γ∈S

∫
1

0

( |γ′
(t)|√

−r(γ(t))
+

|(r(γ(t))′|
|r(γ(t))|

)
dt

Since r(w) is convex in Ωn∩B(0, ǫ) and assuming that r(v(z)) < r(u(z), we have that

r(tu(z) + (1 − t)v(z)) is an increasing convex function in t and

a[tu(z) + (1 − t)v(z)] =
r(tu(z) + (1 − t)v(z))

ρ(z)

≥ ta[u](z) + (1 − t)a[v(z)]

≥ a[u](z0)/2

when ǫ > 0 is small and z ∈ Ωn ∩ B(0, ǫ). Let π(z) be the radial projection of z onto

∂Ωm. Then

|u(z) − v(z)| ≤ |u(z) − φ(π(z))| + |φ(π(z)) − v(z)|
= |u(z) − u(π(z))| + |v(z) − v(π(z))|
≤ C(|u|1 + |v|1)|ρ(z)|.

Let

γ(t) = tu(z) + (1 − t)v(z) ∈ S.

Then

dΩn(u(z), v(z)) ≤ 2C√
a[u](z0)

∫
1

0

|γ′
(t)|√

−ρ(z))
dt + C

∫
1

0

(r(γ(t))′

−r(γ(t))
dt

=
2C√

a[u](z0)

|u(z) − v(z)|√
|ρ(z)|

+ C log
r(v(z))

r(u(z))

≤ 2C√
a[u](z0)

C(|u|1 + |v|1)
√
|ρ(z)| + C log

a[v(z)]

a[u(z)]

→ 0 as z → z0.

Using the fact established in [30] that dΩn(u(z), v(z)) is subharmonic whenever u and

v are harmonic maps, we conclude by the maximum principle that u = v. Thus we

have proved (iv). Therefore, the proof of the lemma is complete.

4. The energy density function. The goal of this section is to calculate the

energy density function on ∂Ωm.

Lemma 4.1. Assume that u ∈ C2
(Ωm) is a harmonic map from Ωm to Ωn. Then

for any z0 ∈ Ωm such that a[u](z0) > 0, we have that

lim
z→z0

e[u](z) = m + 2
(rαRuα

)(z0)(rβRuβ
)(z0)

(a[u](z0))
2(|∂ρ|4ρ)

. (4.1)

Proof. For any z0 ∈ ∂Ωm, we may assume that |∂ρ(z0)|2 = 1; otherwise, we

may use ρ̃(z) = ρ(z)/|∂ρ(z0)| to replace ρ and use r̃(w) = r(w)/|∂ρ(z0)|0 to replace

r(w). By diagonalizing we can assume without loss of generality that at z0 ∈ ∂Ωm we
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have that ρij(z0) = δijρjj(z0), rαβ(u(z0)) = δαβrαα(u(z0)). By definition the energy

density function equals

e[u](z0)

= hijgαβ(∂iu
α∂juβ + ∂ju

α∂iu
β)

= (−ρ)[ρij − ρiρj

|∂ρ|2ρ − ρ
](

1

−r
)[rαβ +

rαrβ

−r
](∂iu

α∂juβ + ∂ju
α∂iu

β)

= (
ρ

r
){Xju

α∂juβ + Xju
β∂ju

α}[rαβ +
rαrβ

−r
]

= (
ρ

r
){Xju

αYjuβ + Xju
βY ju

α
+ Xju

α
ρjRuβ

|∂ρ|2ρ − ρ
+ Xju

β
ρjRuα

|∂ρ|2ρ − ρ
}

× [rαβ +

rαrβ

−r
]

= (
ρ

r
)rαβ{Xju

αYjuβ + Xju
βY ju

α
+ Xju

α
ρjRuβ

|∂ρ|2ρ − ρ
+ Xju

β
ρjRuα

|∂ρ|2ρ − ρ
}

+ (
ρ

r
)(

rαrβ

−r
){Xju

αYjuβ + Xju
βY ju

α
+ Xju

α
ρjRuβ

|∂ρ|2ρ − ρ
+ Xju

β
ρjRuα

|∂ρ|2ρ − ρ
}

= (
ρ

r
)rαα{Xju

αYjuα + Xju
αY ju

α
+ Xju

α
ρjRuα

|∂ρ|2ρ − ρ
+ Xju

α
ρjRuα

|∂ρ|2ρ − ρ
}

+ (
ρ

r
)(

rαrβ

−r
){Xju

αYjuβ + Xju
βY ju

α
+ Xju

α
ρjRuβ

|∂ρ|2ρ − ρ
+ Xju

β
ρjRuα

|∂ρ|2ρ − ρ
}

= (
ρ

r
)rαα{ρjjXju

αXjuα + ρjjXju
αXju

α
+ Xju

αρj

Ruα

|∂ρ|2ρ − ρ
+ Xju

αρj

Ruα

|∂ρ|2ρ − ρ
}

+ (
ρ

r
)(

1

−r
){ρjjrαXju

αrβXjuβ + ρjjrβXju
βrαXju

α}

+ (
ρ

r
)(

rαrβ

−r
){Xju

αρj

Ruβ

|∂ρ|2ρ − ρ
+ Xju

βρj

Ruα

|∂ρ|2ρ − ρ
}.

Using the fact Xju
αρj =

−ρRuα

|∂ρ|2ρ − ρ
and Lemma 3.2, we obtain

e[u](z0)

= (
ρ

r
)rαα{ρjjXju

αXjuα + ρjjXju
αXju

α
+ Xju

αρj

Ruα

|∂ρ|2ρ − ρ
+ Xju

αρj

Ruα

|∂ρ|2ρ − ρ
}

+ (
ρ

r
)(

rαrβ

−r
){Xju

αρj

Ruβ

|∂ρ|2ρ − ρ
+ Xju

βρj

Ruα

|∂ρ|2ρ − ρ
}

= (
ρ

r
)rαα{ρjj |Xju

α|2 + ρjj |Xju
α|2 +

(−ρ)Ruα

|∂ρ|2ρ − ρ

Ruα

|∂ρ|2ρ − ρ
+

(−ρ)Ruα

|∂ρ|2ρ − ρ

Ruα

|∂ρ|2ρ − ρ
}

+ (
ρ

r
)(

rαrβ

−r
){ (−ρ)Ruα

(|∂ρ|2ρ − ρ)

Ruβ

(|∂ρ|2ρ − ρ)
+

(−ρ)Ruβ

(|∂ρ|2ρ − ρ)

Ruα

(|∂ρ|2ρ − ρ)
}

= (
ρ

r
)rαα{ρjj |Xju

α|2 + ρjj |Xju
α|2}
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+ (
ρ

r
)
(−ρ)

(−r)
{ rαRuα

(|∂ρ|2ρ − ρ)

rβRuβ

(|∂ρ|2ρ − ρ)
+

rαRuα

(|∂ρ|2ρ − ρ)

rβRuβ

(|∂ρ|2ρ − ρ)
}.

Adding (3.22) to (3.23) and using Lemma 3.5, we get

rααρjj(|Xju
α|2 + |Xju

α|2) (4.2)

= L(ρ)
rs(u)(R + R)us

|∂ρ|2ρ
− 2(rαLuα

+ rαβXju
βXju

αρjj)

= L(ρ)a[u](z) − 2(rαLuα
+ rαβXju

βXju
αρjj).

We know from (3.42) that L(ρ) = m − 1 on ∂Ωm. Thus,

e[u](z0) = (
ρ

r
){L(ρ)a[u](z)− 2(rαLuα

+ rαβXju
βXju

αρjj)}

+(
ρ

r
)
2{ rαRuα

(|∂ρ|2ρ − ρ)

rβRuβ

(|∂ρ|2ρ − ρ)
+

rαRuα

(|∂ρ|2ρ − ρ)

rβRuβ

(|∂ρ|2ρ − ρ)
}

= (
ρ

r
)L(ρ)a[u](z) − 2(

ρ

r
)(rαLuα

+ rαβXju
βXju

αρjj)

+(
ρ

r
)
2{ |rαRuα|2

(|∂ρ|2ρ − ρ)2
+

|rαRuα|2
(|∂ρ|2ρ − ρ)2

}

= L(ρ) − 2(
ρ

r
)(rαLuα

+ rαβXju
βXju

αρjj)

+
|rαRuα|2 + |rαRuα|2

(a[u](z))2(|∂ρ|4ρ)
.

Lemma 3.5 tells us that (rαRuα
) and (rαRuα

) are real. Thus,

|rαRuα|2 + |rαRuα|2
(a[u](z))2(|∂ρ|4ρ)

=

( rα(R + R)uα

(a[u](z))(|∂ρ|2ρ)
)

2

− 2
(rαRuα

)(rβRuβ
)

(a[u](z))2(|∂ρ|4ρ)

= 1 − 2
(rαRuα

)(rβRuβ
)

(a[u](z))2(|∂ρ|4ρ)
by (3.32). As a result, we obtain

e[u](z0) = (m − 1) − 2
(rαLuα

+ rαβXju
βXju

αρjj)

a[u]

+ 1 − 2
(rαRuα

)(rβRuβ
)

(a[u](z))2(|∂ρ|4ρ)

= m − 2
(rαLuα

+ rαβXju
βXju

αρjj)

a[u]
− 2

(rαRuα
)(rβRuβ

)

(a[u](z))2(|∂ρ|4ρ)

= m − 2
(rαLuα

+ rαβXju
βY ju

α
)

a[u]
− 2

(rαRuα
)(rβRuβ

)

(a[u](z))2(|∂ρ|4ρ)

= m − 2

(rαLuα
+ rαβXju

βuα
j
)

a[u]
− 2

(rαRuα
)(rβRuβ

)

(a[u](z))2(|∂ρ|4ρ)

= m + 2
(rαRuα

)(rβRuβ
)

(a[u](z))2(|∂ρ|4ρ)
,

where the third equality comes from (3.30), the fourth from (3.28) and the last one

from applying (3.26). The proof is complete.



PROPER HARMONIC MAPS IN BERGMAN TYPE METRICS 269

5. The proof of Theorem 1.1. In this section we prove Theorem 1.1. It is

obvious that (i) implies (ii). Next, we prove that (ii) implies (iii). Without loss of

generality we may assume that ρij(z0) = δijρii(z0). Since u is pluriharmonic

0 = ∂iju
s
+

n∑

t,γ=1

Γ
s
tγ∂iu

t∂ju
γ

= ∂iju
s
+

n∑

t,γ=1

[δtsrγ + rtδγs

−r
+ (rsℓ − rsrℓ

|∂r|2r − r
)rtγℓ +

rtγrs

|∂r|2r − r)

]
∂iu

t∂ju
γ .

Multiplying by (−ρ), we obtain that on ∂Ωm

0 =
1

a[u]

n∑

t,γ=1

(δtsrγ + rtδγs)∂iu
t∂ju

γ

=
1

a[u]
(

n∑

γ=1

rγ∂iu
s∂ju

γ
+

n∑

t=1

rt∂iu
t∂ju

s
)

=
1

a[u]
(

n∑

γ=1

rγ∂iu
s∂ju

γ
+ rγ∂iu

γ∂ju
s
).

Multiplying by rs and adding over s we have

0 =
1

a[u]
(

n∑

γ,s=1

rs∂iu
srγ∂ju

γ
+ rγ∂iu

γrs∂ju
s
)

=
2

a[u]
(

n∑

γ,s=1

rs∂iu
srγ∂ju

γ
)

=
2

a[u]

( n∑

γ,s=1

rsρii(Xiu
s
+

ρi

|∂ρ|2ρ − ρ
Rus

)rγρii(X iu
γ

+
ρi

|∂ρ|2ρ − ρ
Ruγ

)

)

=
2

a[u]

( n∑

γ,s=1

rsρii(
ρi

|∂ρ|2ρ − ρ
Rus

)rγρii(
ρi

|∂ρ|2ρ − ρ
Ruγ

)

)

=
2

a[u]

( n∑

γ,s=1

rs(
ρi

|∂ρ|2ρ − ρ
Rus

)rγ(
ρi

|∂ρ|2ρ − ρ
Ruγ

)

)

=
2

a[u]

( n∑

γ,s=1

|ρi|2(
rsRus

|∂ρ|2ρ − ρ
)(

rγRuγ

|∂ρ|2ρ − ρ
)

)

Thus, we have obtained that
2

a[u]

(∑n
γ,s=1

(
rsRus

|∂ρ|2ρ−ρ)(
rγRuγ

|∂ρ|2ρ−ρ )

)
= 0 on ∂Ωm. It follows

from (3.26) that rsLus
+ rstXju

tus
j

= 0 on ∂Ωm, which is (iii).

Next we show that (iii) implies (i). By assumption, u is harmonic and rsLus
+

rstXju
tus

j
= 0 on ∂Ωm. By Theorem 3.4, we find that either u or u is CR. Thus,

there exists a holomorphic or antiholomorphic map v such that v|∂Ωm = u|∂Ωm . Since

r is plurisubharmonic and v is holomorphic or antiholomorphic, r(v(z)) is plurisub-

harmonic. Thus, by Hopf’s lemma a[v](p) = Dνr(v(p)) > 0 at every p ∈ ∂Ωm. Thus

by (iv) of Lemma 3.5 we obtain that u ≡ v on Ωm.
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Now we proceed to show that (iii) implies (iv). Lemma 3.5 tells us that Eb[u] > 0

on ∂Ωm if and only if a[u] > 0 on ∂Ωm. If rsLus
+ rstXju

tus
j

= 0 on ∂Ωm, by (3.26)

we obtain that (rsRus
)(rtRut

) = 0, which implies by Lemma 4.1 that e[u](z) = m
when Eb[u] > 0.

Next, we show that (iv) implies (v). Lemma 3.5 tells us that Eb[u] > 0 on ∂Ωm

if and only if a[u] > 0 on ∂Ωm. Thus by (4.1) we have that (rsRus
)(rtRut

) = 0

on the set {z ∈ ∂Ωm : a[u](z) > 0}. On the other hand, by (3.26) we obtain that

(rsRus
)(rtRut

) = 0 on the set {z ∈ ∂Ωm : a[u](z) = 0}. Thus (iv) implies (v).

Finally, we show that (v) implies (iii). Using the hypothesis of (v) together with

(3.26) and (3.32) we obtain that rsLus
+ rstXju

tus
j

= 0 on ∂Ωm. Since (iii) implies

(i) we are done.

6. The proof of Theorem 1.2. In this section we prove Theorem 1.2. Let

φ ∈ Ck,α
(∂Ωm) with k ≥ 2 and α ≥ 0. Let φ(z) denote the ‘radial’ extension of φ

from ∂Ωm to Ωm in the sense that r(φ(z)) = 0 for all z ∈ Ωm near ∂Ωm. In order to

apply Li-Tam’s general existence theorem of [21], we first construct an approximating

harmonic map similar to the construction in [25]. To do this, we define an extension

v(z) given by

v(z) = φ(z) + ρ(z)b(z), (6.1)

where ρ(z) is a strictly plurisubharmonic defining function for Ωm, which is the po-

tential function for the metric h, and b(z) is a vector valued function which will be

given later. A computation shows that

Lv(z) = Lφ(z) + Lρ(z)b(z) + ρ(z)Lb + Xiρ ∂ib + Xjρ ∂jb(z), (6.2)

which implies that on ∂Ωm

Lv(z) = Lφ(z) + (m − 1)b(z). (6.3)

By (1.7) and (3.25), we have

rs(v)τs
[v] = −ρ(z)[rs(v)Lvs

+ rstXjv
tvs

j
+

2rs(v)Rvsrt(v)Rvt

a[v](|∂ρ|2ρ − ρ)2
] + O(ρ2

). (6.4)

Let

I[v] = a[v]

(
rs(v)Lvs

+ rstXjv
tvs

j

)
+

2

(|∂ρ|2ρ − ρ)2
rs(v)Rvsrt(v)Rvt. (4.5)

Since
∑

j ρjXj = O(ρ)R, we have

n∑

j=1

Xjφ
tvs

j
=

n∑

j=1

Xjφ
tYjv

s
j

+ O(ρ) =

n∑

j=1

Xjφ
tYjφ

s
+ O(ρ).

Let b0 ≥ 0 and

bs
= b0rs(φ), 1 ≤ s ≤ n.

Note that on ∂Ωm,

a[v](z) =
r(v(z))

ρ(z)
=

r(φ + bρ)

ρ
= rs(φ + bρ)bs

+ rs(φ + bρ)bs = 2b0

∑

s

|rs(φ)|2.
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Since we extended φ from ∂Ωm to Ωm so that

(R + R)φ = 0, for z near ∂Ωm,

and r(φ) = 0 on ∂Ωm, we have that

2 Im

∑

s

rs(φ)(R − R)φs
= 0.

So
∑

s rs(φ)Rφs
is real. By Lemma 3.3, we know that

m∑

j=1

(XjY j − XjYj) =
m − 1

|∂ρ|2ρ − ρ
(R − R) + O(ρ)

and

L =
1

2
(XjY j + XjYj) +

m − 1

|∂ρ|2ρ
(R + R)

2
+ O(ρ).

Since r(φ) = 0 on ∂Ωm and Xj is tangential we have that

Xjr(φ) = rsXjφ
s
+ rsXjφ

s
= 0 on ∂Ωm. (6.5)

Equation (6.5) together with (1.7) implies that

∑

s

rs(φ)Y jφ
s

=

∑

s

rs(φ)Xjφ
s

= 0 on ∂Ωm.

As a result, we obtain that

0 =

∑

s

(rstXjφ
t
+ rst(φ)Xjφt)Y jφ

s
+

∑

s

rs(φ)XjY jφ
s

(6.6)

and

0 =

∑

s

(rstXjφ
t
+ rst(φ)X jφt)Yjφ

s
+

∑

s

rs(φ)XjYjφ
s. (6.7)

Thus on ∂Ωm

rsLvs
+ rstXjv

svt
j

=
rs

2
(XjY j + XjYj)φ

s
+ (m − 1)rsb

s
+ rstXjv

svt
j

= (
1

2
)

(
rsXjY jφ

s
+ rsXjYjφ

s
)

+ (m − 1)rsb
s
+ rstXjv

svt
j

= (−1

2
)

(
rst(Xjφ

t
)(Y jφ

s
) + rst(Xjφ

t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
)

+ rst(Xjφ
t
)(Yjφ

s
)

)
+ (m − 1)rsb

s
+ rstXjv

svt
j

= −(
1

2
)

(
rst(Xjφ

t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
) + rst(Xjφ

t
)(Y jφ

s
)

+ rst(Xjφ
t
)(Yjφ

s
)

)
+ (m − 1)rsb

s
+ rstXjv

svt
j
.
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It is easy to see that on ∂Ωm

rsRvs
= rs(Rφs

+ R(ρ)bs
) = rsRφs

+ |∂ρ|2ρrsb
s

= rsRφs
+ |∂ρ|2ρ

a[v]

2

and

rsRvs
= rsRφs

+ |∂ρ|2ρ
a[v]

2
.

Let z0 ∈ ∂Ωm. By a rotation if necessary, we may assume without loss of generality

that ρij(z0) = ρii(z0)δij . Then at z0

Yjφ
s

= ρjjXjφ
s

and Y jφ
s

= ρjjXjφ
s.

Also

rst(v)Xjv
t vs

j
(z0) = rst(v)Xjv

tY jv
s
(z0) + rst(v)Xjv

tρjρk∂kvs
(z0)

= rst(v)Xjv
tY jv

s
(z0)

= rst(v)Xjv
tY jφ

s
(z0)

= rst(φ)(Xjφ
t
)(ρjjXjφ

s
)(z0).

Therefore at z0,

rsLvs
+ rstXjv

svt
j

= −1

2
rst(XjφtYjφ

s
+ Xjφ

t
Y jφ

s
) + (m − 1)rs(φ)bs

and by (6.6) and (6.7)

m∑

j=1

rs(XjY j − XjYj)φ
s

= −rst(Xjφ
t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
).

Thus, we obtain

I[v] = a[v]

(
rsLvs

+ rstXjv
svt

j

)
+ 2

(rsRvs
)(rtRvt

)

|dρ|4

= a[v]

(rst(Xjφ
t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
)

−2
+ (m − 1)rsb

s
)

+
1

2

( |dρ|4a[v]
2 − (rs(R − R)φs

)
2

|dρ|4
)

= 2|rs|2b0

(rst(Xjφ
t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
)

−2
+ (m − 1)|rs|2b0

)

+
1

2

(
(2|rs|2b0)

2 − (rs(XjY j − XjYj)φ
s
)
2

(m − 1)2

)

= 2|rs|2b0

(rst(Xjφ
t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
)

−2
+ (m − 1)|rs|2b0

)

+
1

2

(
(2|rs|2b0)

2 − −(rst(Xjφ
t
)(Y jφ

s
) + rst(Xjφ

t
)(Yjφ

s
))

2

(m − 1)2

)
.
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Let

A = rst(Xjφ
t
)(Y jφ

s
),

B = rst(Xjφ
t
)(Yjφ

s
),

E = A + B.

Then

I[v] = 2|rs|2b0(
−E

2
+ (m − 1)|rs|2b0) + 2|rs|4b2

0
− 1

2(m − 1)2
(−A + B)

2

= 2m|rs|4b2

0
− E|rs|2b0 −

(−A + B)
2

2(m − 1)2
.

Let

4m|rs|2b0 = E +

√
E2 +

4m

(m − 1)2
(−A + B)2

= E +
1

m − 1

√
(m − 1)2E2 + 4m(E2 − 4AB)

= E +
1

m − 1

√
(m + 1)2E2 − 16mAB

≥ E +
1

m − 1

√
(m + 1)2E2 − 4mE2

= 2E.

By assumption Eb[φ] > 0 on ∂Ωm, which implies that E > 0 since rst is positive

definite. This in turn implies that b0 > 0 and a[v] = 2b0 > 0 on Ωm. Moreover,

I[v] = a[v](rsLvs
+ rstXjv

svt
j
) + 2

(rsRvs
)(rtRvt

)

|∂ρ|4ρ
= 0 on ∂Ωm.

Note that
∑

s rsτ
s
[v] = O(ρ2

) by (6.4). Thus,

|∑s rs(v)τs
[v]|2

r(v)2
= O(ρ2

).

By (3.24), we have

τs
[v] = O(ρ).

Therefore,

|τ [v]|2g = gαβτα
[v]τβ [v]

=

∑
α rαβτα

[v]τβ [v]

|r(v)| +
rατα

[v]rβτβ [v]

r(v)2

= O(ρ(z)).

This implies |τ [v]|g ∈ L2p
(Ωm, dλm) for p > m where dλm(z) = det(hij)dv(z) and

det(hij)(z) ≈ |ρ(z)|−m−1dv(z) for all z ∈ Ωm since Ωm is strictly pseudoconvex.

An application of the existence theorem of [19] and the regularity argument in

[20] establishes our claim. The proof of Theorem 1.2 is complete.
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