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The classical Oka’s Lemma states that if Ω is a pseudoconvex domain in Cn,
n ≥ 2, then − log δ is plurisubharmonic where δ is some distance function to the
boundary. Let M be a complex hermitian manifold with the metric form ω. Let Ω
be relatively compact pseudoconvex domain in M . We say that a distance function
δ to the boundary bΩ satisfies the strong Oka condition if it can be extended from a
neighborhood of bΩ to Ω such that δ satisfies

i∂∂̄(− log δ) ≥ c0ω in Ω (0.1)

for some constant c0 > 0.
In this note we first study the relation between the strong Oka’s Lemma and the

existence of bounded strictly plurisubharmonic functions on a pseudoconvex domain
in a complex manifold with C2 boundary. The existence of Hölder continuous bounded
plurisubharmonic exhaustion functions for pseudoconvex domains with C2 boundary
in Cn or a Stein manifold is proved by Diederich-Fornaess [DF]. A similar result for
domains in CPn is proved in Ohsawa-Sibony [OS]. In this paper we will give a more
unified approach to the existence of bounded plurisubharmonic functions using the
strong Oka’s lemma. We also show the existence and regularity of the ∂̄-Neumann
operator for pseudoconvex domains in complex Kähler manifolds with nonnegative
curvature, extending earlier results of [BC] and [CSW]. There are also many other
applications of bounded plurisubharmonic functions (see [DF], [GW] and [De]).

A quantitative approach to the strong Oka’s Lemma with compactness and subel-
lipticity for the ∂̄-Neumann operator has been obtained recently in [Ha] for pseudo-
convex domains in Cn. In particular, if (0.1) is satisfied for some positive continuous
function c0 = c0(z) for z ∈ Ω and c0(z) → ∞ as z → bΩ, then the ∂̄-Neumann op-
erator is compact. Furthermore, the ∂̄-Neumann operator is subelliptic if c0 in (0.1)
goes to infinity by some inverse fractional order of the distance function. Such results
hold for a pseudoconvex domain with Lipschitz boundary in Cn. This gives another
description of the finite type condition for pseudoconvex domains (see Kohn [Ko1],
D’Angelo [DA] and Catlin [Ca]). In Section 3 we give a more streamlined proof of
this result when the domain is C2 pseudoconvex in a complex Kähler manifold with
nonnegative curvature. All our results are stated for domains with C2 boundary. It
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is still an open question if one can relax the smoothness of the domain to only C1 or
Lipschitz boundary in this paper (see the remarks at the end of the paper).

1. The Strong Oka’s Lemma and bounded plurisubharmonic exhaus-

tion functions. For a bounded pseudoconvex domain Ω with C2 boundary in Cn or
in a Stein manifold, a well known result by Diederich-Fornaess [DF] shows that there
exists a Hölder continuous strictly plurisubharmonic exhaustion function with Hölder
exponent 0 < η < 1. We first examine some equivalent conditions for the existence of
such bounded plurisubharmonic functions based on the following simple observation
(see [CSW], [CS2]).

Lemma 1.1. Let M be a complex hermitian manifold with metric ω and let Ω ⊂⊂
M be a pseudoconvex domain with C2 boundary. Suppose that the distance function
δ satisfies the strong Oka condition (0.1). Then for 0 < t0 ≤ 1 the following three
conditions are equivalent:

(1)

i∂∂̄(log δ) ≥ it0
∂δ ∧ ∂̄δ

δ2
. (1.1)

(2)

i∂∂̄(−δt0) ≥ 0. (1.2)

(3) For any 0 < t < t0, there exists some constant Ct > 0 such that

i∂∂̄(−δt) ≥ Ctδ
t(ω + i

∂δ ∧ ∂̄δ

δ2
). (1.3)

In particular, −δt is a Hölder continuous strictly plurisubharmonic exhaustion function
for Ω.

Proof. If (1.1) holds, we have

i∂∂̄(− log δ) = i
∂∂̄(−δ)

δ
+

i∂δ ∧ ∂̄δ

δ2
≥ it0

∂δ ∧ ∂̄δ

δ2
. (1.4)

Condition (2) is equivalent to

i
∂∂̄(−δ)

δ
+ (1 − t0)

i∂δ ∧ ∂̄δ

δ2
≥ 0.

Comparing this with (1.4), it is easy to see that (1) and (2) are equivalent (without
any assumption on the strong Oka condition for δ).

Assume that the distance function δ satisfies the strong Oka condition (0.1). To
see that (2) and (3) are equivalent, we multiply (1.4) by (1− ǫ) and (0.1) by ǫ. Adding
the two inequalities, we conclude that, for any 0 ≤ ǫ ≤ 1, the inequality

i∂∂̄(− log δ) = i
∂∂̄(−δ)

δ
+

i∂δ ∧ ∂̄δ

δ2
≥ c0ǫω + (1 − ǫ)t0

i∂δ ∧ ∂̄δ

δ2
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holds. Hence, for any 0 < t < t0, we choose ǫ = ǫt such that (1 − ǫt)t0 > t. Then

i∂∂̄(−δt) = itδt

(

∂∂̄(−δ)

δ
+ (1 − t)

∂δ ∧ ∂̄δ

δ2

)

= itδt

(

∂∂̄(− log δ) − t
∂δ ∧ ∂̄δ

δ2

)

≥ Cttδ
t

(

ω +
i∂δ ∧ ∂̄δ

δ2

)

where Ct = min(c0ǫt, (1 − ǫt)t0 − t). This gives that (2) implies (3).
To see that (3) implies (2), we use the assumption that the boundary is C2. This

implies that that the function δ is C2. Condition (3) implies that i∂∂̄(−δt) ≥ 0 for
every 0 < t < t0. Condition (2) follows from (3) by continuity. This proves that (2)
and (3) are equivalent. The lemma is proved.

Theorem 1.2. Let M be a complex hermitian manifold and let Ω ⊂⊂ M be
a pseudoconvex domain with C2 boundary bΩ. Let δ(x) = d(x, bΩ) be the distance
function to bΩ with respect to the hermitian metric such that δ satisfies the strong
Oka condition (0.1). Then there exists 0 < t0 ≤ 1 such that

i∂∂̄(− log δ) ≥ it0
∂δ ∧ ∂̄δ

δ2
.

Proof. Near a boundary point, we choose a special orthonormal basis w1, · · · , wn

for (1, 0)-forms such that wn =
√

2∂δ. Let L1, · · · , Ln be its dual. Let a be any
(1, 0)-vector. We decompose a = aτ + aν where aν = 〈a, Ln〉 is the complex normal
component and aτ is the complex tangential component. We have

〈∂∂̄(− log δ), a ∧ ā〉

= 〈∂∂̄(−δ)

δ
, aτ ∧ āτ 〉 + 2ℜ〈∂∂̄(−δ)

δ
, aτ ∧ āν〉

+ 〈∂∂̄(−δ)

δ
, aν ∧ āν〉 +

|aν |2
δ2

.

(1.5)

From (0.1) and the equality in (1.4), we have

〈∂∂̄(−δ)

δ
, aτ ∧ āτ 〉 ≥ c0|aτ |2. (1.6)

If δ is C2 up to the boundary, we have for any ǫ > 0,

|〈∂∂̄(−δ)

δ
, aτ ∧ āν〉| ≤ C

(

1

ǫ
|aτ |2 + ǫ

|aν |2
δ2

)

. (1.7)

Also near the boundary when δ(z) < ǫ, we have

|〈∂∂̄(−δ)

δ
, aν ∧ āν〉| ≤

C

δ
|aν |2 ≤ C

ǫ

δ2
|aν |2. (1.8)

Substituting (1.6)-(1.8) into (1.5) and choosing ǫ sufficiently small, we have

〈∂∂̄(− log δ), a ∧ ā〉 ≥ 1

2

|aν |2
δ2

− K|aτ |2 (1.9)
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for some large constant K. Multiplying (0.1) by K
c0

and adding it to (1.9), we have

(
K

c0
+ 1)〈∂∂̄(− log δ), a ∧ ā〉 ≥ 1

2

|aν |2
δ2

. (1.10)

This proves (1.4) with t0 = 1
2( K

c0
+1)

near the boundary. The theorem is proved.

Corollary 1.3. Let Ω, δ(x) and t0 be the same as in Theorem 1.2. Then for

any 0 < t < t0, the function δ̃ = −δt is a strictly plurisubharmonic bounded exhaustion
function on Ω.

The corollary follows immediately from the equivalence of (1) and (3) in Lemma
1.1. From Theorem 1.2, we have the following Diederich-Fornaess Theorem [DF].

Theorem 1.4 (Diederich-Fornaess). Let Ω ⊂⊂ M be a pseudoconvex do-
main with C2 boundary in a Stein manifold M . Then there exists a defining function
ρ of class C2 and some number 0 < t < 1 such that δ̃ = −(−ρ)t is a strictly plurisub-
harmonic bounded exhaustion function on Ω.

Proof. Since M is Stein, M can be embedded in CN for some large N . Let
δ(x) = d(x, bΩ) be the distance function to bΩ with respect to metric ω induced by
the Euclidean metric in CN . From Oka’s Lemma, we have i∂∂̄(− log δ) ≥ 0 in a
neighborhood U of bΩ.

Let φ be a smooth strictly plurisubharmonic function on M . For any c0 > 0, we
can choose some large λ > 0 such that

i∂∂̄(− log(δe−λφ)) = −i∂∂̄ log δ + λω ≥ c0ω

where ω is the metric form induced by the Euclidean metric. Thus the strong Oka
condition (0.1) holds. The theorem follows from Corollary 1.3.

Remark. In the proof of Theorem 1.4, if Ω is in Cn, we can choose φ = |z|2.

When the complex manifold is Kähler with positive curvature, we have also the
following result of Ohsawa-Sibony [OS].

Theorem 1.5 (Ohsawa-Sibony). Let Ω ⊂⊂ CPn be a pseudoconvex domain
with C2 boundary bΩ and let δ(x) = d(x, bΩ) be the distance function to bΩ with the
Fubini-Study metric ω. Then there exists t0 = t0(Ω) with 0 < t0 ≤ 1 such that

i∂∂̄(−δt0) ≥ 0.

This follows easily from Takeuchi’s Theorem (see [Ta], also [CS1])

i∂∂̄(− log δ) ≥ c0ω

where c0 can be chosen to be equal to 1
2 .

Remarks. 1. The theorems above show that if either the complex manifold has
positive curvature or there is a positive line bundle, then the strong Oka’s lemma
holds. Both theorems do not hold without the positivity condition on the metric (see
the counterexample in [DF] and Theorem 1.2 in [OS]).
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2. If Ω is a Lipschitz bounded pseudoconvex domain in a Stein manifold, it is
proved in Demailly [De] that there exists a bounded strictly plurisubharmonic function
in Ω (see also Kerzman-Rosay [KeR] for the C1 case). It is not known if this is
true for pseudoconvex domains with Lipschitz boundary in CPn. We also remark
that strictly plurisubharmonic bounded exhaustion functions might not exist if the
Lipschitz boundary (as a graph) condition is dropped (see [DF]).

2. The ∂̄-Neumann problem on Kähler manifolds with nonnegative

curvature. Let M be a complex manifold with a hermitian metric ω and let Ω ⊂⊂ M

be a pseudoconvex domain. If M is Stein, the L2 existence theorems for ∂̄ and the
∂̄-Neumann problem follow from Hörmander’s theory [Hö2]. In the case when the
manifold M is Kähler with negative curvature, the distance function to a fixed point
is a strictly plurisubharmonic function and hence, M is Stein (see [GW]). In this
section we study the L2 ∂̄ theory when the manifold is not Stein and there is no
strictly plurisubharmonic weight function smooth up to the boundary. One has to
modify Hörmander’s weighted method to establish the L2 theory for ∂̄.

Suppose that the manifold has positive curvature, like CPn. Then there exists
some distance function δ for Ω which satisfies the strong Oka’s condition (0.1). Then
we can use φ = − log δ to be the weight function in Hörmander’s theory and study
the weighted ∂̄-Neumann problem (see [Si] or [CS]). However, φ is not continuous
up to the boundary. To establish the L2 theory without weights, we use an idea by
Berndtsson-Charpentier [BC] and streamlined in [CSW].

Let t be any real number and φ ∈ C2(Ω). Let L2(δt) denote the L2 space with
respect to the weight function e−tφ = δt and

‖f‖(t) ≡ ‖f‖2
L2(δt) =

∫

Ω

|f |2e−tφ =

∫

Ω

δt|f |2.

We use ∂̄∗

t to denote the adjoint of ∂̄ with respect to the weighted space. Then
∂̄∗

t = δ−tϑδt whenever it is defined, where ϑ denotes the formal adjoint with respect
to the unweighted L2-norm. The norm ‖.‖2

(t) is equivalent to the Sobolev norm on a

sub-space of W−
t
2 (Ω) for harmonic functions or solutions to elliptic equations.

Let δ be a distance function which satisfies the strong Oka condition (0.1). In-
troduce the following two asymmetric weighted norms. These new norms will be used
to obtain more refined L2 estimates.

For any (p, q)-form f on Ω, we decompose f into complex normal and tangential
parts by setting

{

fν = (fx(∂̄δ)#) ∧ ∂̄δ

f τ = f − fν .

The above decomposition is well-defined for any (p, q)-form f supported near the
boundary and can be extended to the whole domain.

We define the asymmetric weighted norm

|f |2A = |f τ |2 +
|fν |2
|δ|2 (2.1)

and its dual norm

|f |2A′ = |f τ |2 + |fν |2|δ|2. (2.2)
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For any t > 0, let L2
A(δt) and L2

A′(δt) denote the weighted L2 spaces on (p, q)-forms
defined by the norm

‖u‖2
L2

A
(δt) =

∫

Ω

δt|f |2A =

∫

Ω

δt(|f τ |2 +
|fν |2
|δ|2 ) (2.3)

and

‖u‖2
L2

A′
(δt) =

∫

Ω

δt|f |2A′ =

∫

Ω

δt(|f τ |2 + |fν |2|δ|2). (2.4)

Theorem 2.1. Let M be a complex Kähler manifold with nonnegative sectional
curvature. Let Ω ⊂⊂ M be a pseudoconvex domain with C2-smooth boundary bΩ. Let
δ(x) = d(x, bΩ) be the distance function such that δ satisfies the strong Oka condition
(0.1). For any f ∈ L2

A′(p,q)(Ω), where 0 ≤ p ≤ n and 1 ≤ q ≤ n, such that ∂̄f = 0 in

Ω, there exists u ∈ L2
(p,q−1)(Ω) satisfying ∂̄u = f and

∫

Ω

|u|2 ≤ C

∫

Ω

|f |2A′ .

Proof. We first show that for any t > 0 and any (p, q)-form f ∈ L2
A′(δt), 0 ≤ p ≤ n

and 1 ≤ q ≤ n, such that ∂̄f = 0 in Ω, there exists u ∈ L2
(p,q−1)(δ

t) satisfying ∂̄u = f

and

‖u‖2
L2(δt) ≤

C

t
‖f‖2

L2
A′

(δt). (2.5)

Let φ = −t log δ, where t > 0. By the Bochner-Hörmander-Kohn-Morrey formula
with weight function φ = −t log δ, for any (p, q)-form g ∈ Dom(∂̄) ∩ Dom(∂̄∗) with
q ≥ 1 on Ω, we have

‖∂̄g‖2
φ + ‖∂̄∗

φg‖2
φ = ‖∇g‖2

φ + (Θg, g)φ + ((i∂∂̄φ)g, g)φ +

∫

bΩ

〈(i∂∂̄ρ)g, g〉e−φ,

where ‖∇u‖2
φ =

∫

Ω

∑n
j=1 |DL̄j

u|2e−φ, {L1, ..., Ln} is a local unitary frame of T (1,0)(Ω)

and Θ is a curvature form. From our assumption, we have (Θu, u)φ ≥ 0.
Since Ω is pseudoconvex, we have that for any (p, q)-form g ∈ Dom(∂̄)∩Dom(∂̄∗

t ),

‖∂̄g‖2
(t) + ‖∂̄∗

t g‖2
(t) ≥ ((i∂∂̄φ)g, ḡ)(t) ≥ Ct‖g‖L2

A
(δt). (2.6)

Let (i∂∂̄φ)′ denote the dual norm for (p, q)-forms induced by i∂∂̄φ. It follows
that for any f ∈ L2

A′(δt), there exist u ∈ L2(δt) satisfying ∂̄u = f and
∫

Ω

|u|2δt ≤
∫

Ω

|∂̄u|2(i∂∂̄φ)′δ
t ≤ 1

Ct

∫

Ω

|∂̄u|2A′δ
t. (2.7)

This proves (2.5). To get rid of t, we use an argument used in [BC] (see also [HI] or
[CSW]). Let f ∈ L2

(p,q)(Ω). For any t > 0 , there exists u ∈ L2
(p,q−1)(δ

t) satisfying

∂̄u = f , such that u is perpendicular to Ker(∂̄) in L2(δt) and u satisfies (2.7).
Consider v = uδ−t. Then v ⊥ Ker(∂̄) in L2(δ2t). It follows from (2.7) that the

following holds:
∫

Ω

|u|2 =

∫

Ω

|v|2δ2t ≤ 1

2C0t

∫

Ω

|∂̄v|2
A

′ δ2t. (2.8)

Since
|∂̄v|2

A
′ δ2t ≤ C(|∂̄u|2A′ + 2t2|u|2), (2.9)
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choosing t sufficiently small and substituting (2.9) into (2.8), one obtains
∫

Ω

|u|2 ≤ Ct

∫

Ω

|∂̄u|2A′ . (2.10)

This proves the theorem.

Theorem 2.2. Let M be a complex Kähler manifold with nonnegative sectional
curvature. Let Ω ⊂⊂ M be a pseudoconvex domain with C2-smooth boundary bΩ. Let
δ(x) = d(x, bΩ) be the distance function such that δ satisfies the strong Oka condition
(0.1). Then �(p,q) has closed range and the ∂̄-Neumann operator N(p,q) : L2

(p,q)(Ω) →
L2

(p,q)(Ω) exists for every p, q such that 0 ≤ p ≤ n, 0 ≤ q ≤ n. Moreover, for any

f ∈ L2
(p,q)(Ω), we have

f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f, 1 ≤ q ≤ n − 1.

f = ∂̄∗∂̄N(p,0)f ⊕ Pf, q = 0,

where P is the orthogonal projection from L2
(p,0)(Ω) onto L2

(p,0)(Ω) ∩ Ker(∂̄) and

N(p,0) = ∂̄∗N2
(p,1)∂̄.

Furthermore, there exists 0 < t0 ≤ 1 such that the ∂̄-Neumann operator N, ∂̄N, ∂̄∗N

and the Bergman projection P are exactly regular on W s
(p,q)(Ω) for 0 ≤ s < 1

2 t0 with

respect to the W s(Ω)-Sobolev norms.

The L2-existence theorem for the ∂̄-Neumann operator N on Ω follows from the
L2-existence of the solution u for the ∂̄-equation proved in Theorem 2.1.

To show that N is regular in W s for s < 1
2 t0, let t = 2s in the Bochner-Hörmander-

Kohn-Morrey formula with weight function φ = −t log δ. After rearranging terms, we
have for any (p, q)-form g ∈ Dom(∂̄) ∩ Dom(∂̄∗),

‖∂̄g‖2
(t) + ‖∂̄∗g‖2

(t) − 2ℜ(∂̄∗g, gx(∂̄δt)♯
)

= ‖∇g‖2
(t) + (Θg, g)(t) − ((i∂∂̄(δt)g, g).

(2.11)

(see Proposition 3.1 in [CSW]). Since for any ǫ > 0 we have

|2ℜ(∂̄∗g, gx(∂̄δt)♯
)| ≤ 1

ǫ
‖∂̄∗g‖2

(t) + ǫt2‖gν

δ
‖2
(t), (2.12)

choosing ǫ small, we have from (2.11), (2.12) and (1.3) that

‖∂̄g‖2
(t) + ‖∂̄∗g‖2

(t) ≥ Ct(‖g‖2
(t) + ‖gν

δ
‖2
(t))

≥ Ct‖g‖2
(t).

The rest of the proof is similar to the proof of Theorem 2 in [CSW], and we
omit the details. When Ω ⊂⊂ Cn, the Sobolev regularity for ∂̄∗N and the Bergman
projection have been obtained earlier in [BC] (see also [Ko2]).

Remarks. 1. If t0 = 1 in Theorem 1.2, the domain Ω has a plurisubharmonic
defining function. It follows from Boas-Straube [BS] that the ∂̄-Neumann operator is
bounded in the Sobolev space W s for all s > 0 if Ω has smooth boundary. We also
mention that for any β > 0, there exists a smooth bounded pseudoconvex domain Ωβ
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in Cn such that the ∂̄-Neumann operator is not bounded on W s (see the paper by
Barrett [Ba]). It is not known if one can find a C∞(Ω) solution u satisfying ∂̄u = f

for f ∈ C∞

(0,1)(Ω) with ∂̄f = 0 in Ω. In fact, one obtains from Theorem 2.2 only a

W s(Ω) solution for some s > 0.
2. It is still not known if Theorems 2.1 or 2.2 hold for pseudoconvex domains

with C1 or Lipschitz boundary.

3. The Strong Oka Condition and Compactness of the ∂̄-Neumann

Operator. In this section, we consider the possibility that there exists a defining
function for Ω satisfying (0.1) in a stronger sense. More precisely, suppose that there
exists some defining function ρ for Ω satisfying:

i∂∂̄(− log(−ρ)) ≥ φ(−ρ)ω (3.1)

in the sense of currents for some continuous function φ such that limx→0+ φ(x) = +∞.
It is necessary to work with currents for such functions, since ρ satisfying (3.1) may
not be C2, even on smooth domains. If this is true on a C2 domain, we will show that
the ∂̄-Neumann operator is compact in W s

(p,q)(Ω) for all 0 ≤ s < 1
2 . Furthermore, if

we can take φ(x) = x−2ǫ, then the ∂̄-Neumann operator will have a subelliptic gain
of 2ǫ. First, we will need a stronger (local) form of Theorem 1.2.

Lemma 3.1. Let M be a complex hermitian manifold and let Ω ⊂⊂ M be a pseu-
doconvex domain with C2 boundary bΩ. Let ρ be a defining function for Ω satisfying
(3.1) in Ω. Then for any 0 < t < 1 and p ∈ bΩ, there exists a local defining function
ρp in a neighborhood U of p such that ρp satisfies:

i∂∂̄(−(−ρp)
t) ≥ C(−ρp)

tφ(−ρp)ω (3.2)

on Ω ∩ U in the sense of currents for some constant C > 0.

Proof. In the original proof of Theorem 1.4 in [DF], it is observed that for any
0 < t < 1 and p ∈ bΩ, there exists a neighborhood U of p and a local defining
function r such that −(−r)t is plurisubharmonic on U ∩ Ω. Let s = 1+t

2 and choose
a neighborhood U and defining function r such that −(−r)s is plurisubharmonic on
U ∩ Ω. Then, by Lemma 1.1:

i∂∂̄(− log(−r)) ≥ is
∂r ∧ ∂̄r

r2
(3.3)

Since r and ρ are both defining functions for bΩ on U , there must exist some
constant c > 1 such that 1

c
< ρ

r
< c on U . If we set h = log( cρ

r
), then we have

0 < h < 2 log c on U , so we can define a new defining function:

ρp = r(h + (s − t)−1)s−t (3.4)

For the sake of clarity, we initially assume that ρ (and hence ρp) is C2. The
general case can then be obtained by approximation (see [Ha]). Referring again to
Lemma 1.1, we wish to prove that:

i∂∂̄(− log(−ρp)) ≥ C0φ(−ρp)ω + it
∂ρp ∧ ∂̄ρp

ρ2
p

(3.5)
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By construction, we have:

i∂∂̄(− log(−ρp)) = i∂∂̄(− log(−r)) − i(s − t)∂∂̄ log(h + (s − t)−1) (3.6)

To evaluate the second term, we check:

i∂∂̄ log(h + (s − t)−1) = i∂

(

∂̄h

h + (s − t)−1

)

= i
∂∂̄h

h + (s − t)−1
− i

∂h ∧ ∂̄h

(h + (s − t)−1)2

(3.7)

Since:

i∂∂̄h = i∂∂̄(− log(−r)) − i∂∂̄(− log(−ρ)) (3.8)

we can combine (3.6), (3.7), and (3.8) to obtain:

i∂∂̄(− log(−ρp))

= i

(

1 − s − t

h + (s − t)−1

)

∂∂̄(− log(−r)) + i
s − t

h + (s − t)−1
∂∂̄(− log(−ρ))

+ i
s − t

(h + (s − t)−1)2
∂h ∧ ∂̄h

(3.9)

We need 1 − s−t
h+(s−t)−1 > 0 to proceed. Since h > 0, we have:

1 − s − t

h + (s − t)−1
> 1 − (s − t)2 (3.10)

Note that s− t = 1−t
2 , so 0 < s− t < 1

2 and hence (s− t)2 < 1
4 < 1. Thus the needed

inequality holds, and by substituting (3.3) and (3.10) we have, for some appropriate
value of C0:

i∂∂̄(− log(−ρp)) ≥ C0φ(−ρp)ω + i(1 − (s − t)2)s
∂r ∧ ∂̄r

r2

+ i
s − t

(h + (s − t)−1)2
∂h ∧ ∂̄h

(3.11)

Here we may assume that φ(−ρ) ≈ φ(−ρp), since φ(x) is at worst O( 1
x
) (in the strictly

pseudoconvex case).
To handle the remaining terms, we observe that:

∂ρp

ρp

= ∂(log(−ρp))

= ∂(log(−r)) + (s − t)∂ log(h + (s − t)−1)

=
∂r

r
+

(s − t)∂h

(h + (s − t)−1)

(3.12)

so:
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i
∂ρp ∧ ∂̄ρp

ρ2
p

= i
∂r ∧ ∂̄r

r2
+ i

(s − t)2∂h ∧ ∂̄h

(h + (s − t)−1)2

+ i
∂r

r
∧ (s − t)∂̄h

(h + (s − t)−1)
+ i

(s − t)∂h

(h + (s − t)−1)
∧ ∂̄r

r

(3.13)

Using (3.13) to compare the last term in (3.5) with the last two terms in (3.11),
we see that we need:

i((1 − (s − t)2)s − t)
∂r ∧ ∂̄r

r2
+ i(1 − t(s − t))(s − t)

∂h ∧ ∂̄h

(h + (s − t)−1)2

− it(s − t)
∂r

r
∧ ∂̄h

(h + (s − t)−1)
− it(s − t)

∂h

(h + (s − t)−1)
∧ ∂̄r

r
≥ 0

(3.14)

Checking the first coefficient, we have (1 − (s − t)2)s − t = s − t − s(s − t)2 =
(s − t)(1 − (s − t)2) > 0. For the second coefficient, we know 0 < s − t < 1

2 , so

(1 − t(s − t))(s − t) > (1 − t
2 )(s − t) > s−t

2 > 0. Viewing (3.14) as a 2 × 2 hermitian
matrix, we have shown that the diagonal elements are positive, so it remains to check
the determinant. If we first factor (s − t) from each term, we have a determinant of:

(s − t)2((1 − (s − t)2)(1 − t(s − t)) − t2)

= (s − t)2(1 − t2 − t(s − t) − (s − t)2 + t(s − t)3)
(3.15)

Since 1 − t = 2(s − t) and 1 + t = 2s, 1 − t2 = 4s(s − t), so (3.15) becomes:

(s − t)3(4s − t − (s − t) + t(s − t)2)

= (s − t)3(3s + t(s − t)2) > 0
(3.16)

A 2 × 2 matrix with positive entries on the diagonal and a positive determinant
is positive, hence (3.14) is positive and the right hand side of (3.11) is greater than
the right hand side of (3.5). The lemma follows.

We note that if φ(x) = x−2ǫ (the subelliptic case), then this lemma gives us a
defining function satisfying:

i∂∂̄(−(−ρp)
t) ≥ C(−ρp)

t−2ǫω

With the special defining function give by Lemma 3.1, we are now ready to prove
the main result of this section.

Theorem 3.2. Let M be a complex Kähler manifold with nonnegative sectional
curvature. Let Ω ⊂⊂ M be a pseudoconvex domain with C2 smooth boundary bΩ. Let
ρ be a defining function for Ω satisfying (3.1) in Ω. Then for every 0 ≤ s < 1

2 the

∂̄-Neumann operator N is compact in W s
(p,q)(Ω) for all 0 ≤ p ≤ n, 1 ≤ q ≤ n.

Proof. Cover bΩ with some finite collection of open sets Up such that for each
Up there is a defining function ρp satisfying the conclusions of Lemma 3.1 for t = 2s.
We may assume that the value of the constant C is uniform with respect to p. Let
ǫ > 0 be given, and choose any neighborhood V of bΩ such that Cφ(−ρp(z)) > 1

ǫ

on Up ∩ V for any p. Let χp ∈ C∞

0 (M) be a partition of unity with respect to the
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covering {Up}∪{Ω}, and choose γ ∈ C∞

0 (V ) such that γ ≡ 1 in a neighborhood of bΩ.
Then, for any (p, q)-form g ∈Dom(∂̄)∩Dom(∂̄∗) with q ≥ 1 on Ω, we may apply the
Bochner-Hörmander-Kohn-Morrey formula as in the proof of Theorem 2.2 to obtain:

‖∂̄(γχpg)‖2
(s) + ‖∂̄∗(γχpg)‖2

(s) ≥
1

ǫ
‖γχpg‖2

(s)

for all p. Since the χp are independent of ǫ, there is some constant c0 independent of
ǫ such that:

‖χp∂̄(γg)‖2
(s) + ‖χp∂̄

∗(γg)‖2
(s) + c0‖γg‖2

(s) ≥
1

ǫ
‖χpγg‖2

(s)

Summing over p, we can find some constants c1 and c2 independent of ǫ such that:

c1(‖∂̄(γg)‖2
(s) + ‖∂̄∗(γg)‖2

(s)) + c2‖γg‖2
(s) ≥

1

ǫ
‖γg‖2

(s)

Since all constants are independent of ǫ, we may replace ǫ with ǫ̃ and set 1
ǫ

=
(

1
ǫ̃
− c2

)

1
c1

to obtain:

ǫ(‖∂̄(γg)‖2
(s) + ‖∂̄∗(γg)‖2

(s)) ≥ ‖γg‖2
(s) (3.17)

In the interior we have G̊arding’s inequality, so for any ǫ > 0 we can always find
cǫ > 0 such that:

ǫ(‖∂̄((1 − γ)g)‖2
(s) + ‖∂̄∗((1 − γ)g)‖2

(s)) + cǫ‖(1 − γ)g‖2
−1 ≥ ‖(1 − γ)g‖2

(s) (3.18)

Hence, we can combine (3.17) and (3.18), adjust cǫ accordingly, and obtain:

ǫ(‖∂̄g‖2
(s) + ‖∂̄∗g‖2

(s)) + cǫ‖g‖2
−1 ≥ ‖g‖2

(s)

Such estimates are equivalent to compactness for the ∂̄-Neumann operator (see
[KN] or [FS]). As usual, we can pass from weighted estimates to W−s estimates since
this is an elliptic system. We have the dual estimates in W s as well, and can obtain
the L2 case by interpolation.

The subelliptic case is similar, and we omit the proof.

Theorem 3.3. Let M be a complex Kähler manifold with nonnegative sectional
curvature. Let Ω ⊂⊂ M be a pseudoconvex domain with C2 smooth boundary bΩ. Let
ρ be a defining function for Ω satisfying (3.1) in Ω for φ(x) = x−2ǫ, where 0 < ǫ < 1

2 .

Then for every 0 ≤ s < 1
2 − ǫ, the ∂̄-Neumann operator N is bounded from W s−ǫ

(p,q)(Ω)

to W s+ǫ
(p,q)(Ω) for all 0 ≤ p ≤ n, 1 ≤ q ≤ n.

We remark that in the Lipschitz case, the conclusions of Theorems 3.1 and 3.2
still hold for s = 0 (see [Ha]). However, it is unknown whether such results are possible
when s > 0, even for arbitrarily small s.
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