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PERIODIC SOLUTIONS FOR A FAMILY OF
EULER-LAGRANGE SYSTEMS∗

OVIDIU CALIN† , DER-CHEN CHANG‡ , AND STEPHEN S.-T. YAU§

Dedicated to Professor Salah Baouendi on his seventieth birthday

Abstract. In this article we study the geometry induced by the sub-Laplacian X2
1 +X2

2 with
X1 = ∂x1

+ A1(x)∂t and X2 = ∂x2
− A2(x)∂t. Here A1, A2 are two smooth functions defined on

R
3 such that ϕ(x) := ∂A1

∂x2
+ ∂A2

∂x1
6= 0. We first characterize necessary and sufficient conditions for

horizontal curves. Then we solve the Euler-Lagrange system explicitly when ϕ is linear. Moreover,
we show that the solutions for the system is periodic and the Lagrange multipliers depend on the
1-connection form ω = dt − A1(x)dx1 + A2(x)dx2. Therefore, the arc lengths of geodesics can be
computed explicitly. We also study abnormal minimizers in the last section.
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1. Introduction and Background. LetX1, . . . , Xm bem linearly independent
vector fields defined on an n-dimensional real manifold M with m ≤ n. To induce a
geometry on M we assume that the set of “horizontal” vector fields, or given direc-
tions, X = {X1, . . . , Xm} is an orthonormal set. More precisely, let h be a positive
definite inner product defined on D = span{X1, . . . , Xm} such that h(Xj , Xk) = δjk

with 1 ≤ j, k ≤ m. If m = n, this yields a Riemannian metric on M. If m < n, we
need further assumptions on the vector fields {X1, . . . , Xm}. A subRiemannian man-
ifold (M,D, h) is called a Heisenberg manifold if for any 1-form ω with ker(ω) = D,
one has

det ω([Xj , Xk])jk 6= 0 (1.1)

on M. It is easy to see that the distribution D is not integrable because otherwise it
would be involutive and hence ω([Xj, Xk]) = 0. Hence, the equation (1.1) won’t hold.
The vectors V ∈ Dp are called horizontal vectors at p ∈ M. The distribution D is also
called horizontal distribution. The sections of the horizontal bundle D are called vector
fields X ∈ Γ(D). In other words, X is a smooth assignment M ∋ p → Xp ∈ Dp. A
curve γ : [0, τ ] → M is called a horizontal curve if γ̇(s) ∈ Dγ(s) for all s ∈ [0, τ ], i.e.,

γ̇(s) =

m∑

j=1

aj(s)Xj .
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It can be shown that any Heisenberg manifold has constant step 2, i.e.,
X1, . . . , Xm and their first brackets generate the tangent bundle TM. The first
concrete example of Heisenberg manifold is the Heisenberg group which was stud-
ied by Gaveau [12] and Strichartz [20]. A rather complete description of the geometry
of Heisenberg group can be found in Beals, Gaveau, Greiner [2] and Calin, Chang,
Greiner [8]. Moreover, if (M,D, h) is a Heisenberg manifold then dimM = n must
be odd and m must be even. The 2-form Ω = dω is called the curvature 2-form. It is
known that if the distribution D is non-integrable then Ω 6= 0.

The subRiemannian geometry deals with the geometry induced by the second
order operator ∆X =

∑m
j=1X

2
j . When m = n, ∆X is the usual Laplace-Beltrami

operator. It is well known that the Newtonian potential is

N(x,x0) =
1

(2 − n)|σn(x0)|dn−2(x,x0)
, n > 2

where |σn(x0)| is the surface measure of the induced ball centered at x0 and d(x,x0) is
the Riemannian distance between x and x0. It is known that d(x,x0) ≈ |x−x0| when
x and x0 are sufficiently closed where |x−x0| is the Euclidean distance between x and
x0. When m < n, the operator ∆X is not elliptic. However, if X1, . . . , Xm and a finite
number of their Lie brackets generate TM, then by a theorem of Hörmander [16] we
know that ∆X is hypoelliptic. In fact, Chow’s theorem [10] ensures that every 2 points
of M may be connected by a piecewise C1 horizontal curve. This yields a distance
and therefore a geometry which we shall call subRiemannian geometry. To see how re-
markable Chow’s theorem is, note that given two vector fields X1 = ∂x1

and X2 = ∂x2

in R
3, there is no horizontal curve joining any two points (x1, x2, t) and (y1, y2, u) with

t 6= u. For more general discussion of subRiemannian geometry, readers may consult
the papers [6], [ 7], [10], [13] and [15]. Let D = span{X1, X2} with X1 = ∂x1

+A1(x)∂t

and X2 = ∂x2
−A2(x)∂t be two vector fields in R

3. Here A1, A2 are two smooth func-
tions defined on M = R

3 such that ϕ(x) := ∂A1

∂x2
+ ∂A2

∂x1
6= 0. Hence (M,D, h)

is a Heisenberg manifold since ω([X1, X2]) = −ϕ(x) with ω = dt − A1(x)dx1 +
A2(x)dx2. In this and in a subsequent article, we shall study the following question:

“How many geodesics induced by X1 and X2 join two given points of M”?
By a geodesic we mean the projection of a bicharacteristic on the base. Bichar-
acteristics (x1(s), x2(s), t(s), ξ1(s), ξ2(s), θ(s)) are solutions of Hamilton’s differential
equations (see e.g., [2], [8] and [13]). The paper is written in two parts. In the first
part, we first derive the Euler-Lagrange system which are induced by the operator
∆X in section 2. Then we obtain solutions of the system in section 3. We especially
study the periodic solutions of the Euler-Lagrange system when ϕ(x) is linear and
the Lagrange multiplier formula in sections 4 and 5.

In the second part of the article, we investigate the difference between normal
and abnormal geodesics. As we mention before, according to Chow’s theorem that for
every two points P andQ ∈ M there is a piecewise C1 horizontal curve γ : [0, 1] → M
such that γ(0) = P and γ(1) = Q. Denote Γ(P,Q) the set of such curves. For γ ∈ Γ,
we let

E(γ) =
1

2

∫ 1

0

[
ẋ2(s) + ẏ2(s)

]
ds

denote its energy. We are interested in the following variational problem:
“find a curve γ(s) of minimal energy in Γ(P,Q)”.

In other words we are looking for a horizontal curve γ(s) such that γ(0) = P , γ(1) = Q
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and E(γ) = min
{
E(γ̃) : γ̃ ∈ Γ(P,Q)

}
. This is a control problem. In sections 6 and

7, we find conditions on a horizontal curve which satisfies Euler-Lagrange system but
not the Hamilton’s system. However, the solution indeed minimize the energy (and
hence the arc-length) among all curves γ ∈ Γ(P,Q), for points P and Q close enough.

2. A general 2-vector case. Let A1, A2 ∈ C1(R3) such that

ϕ(x) :=
∂A1

∂x2
+
∂A2

∂x1
6= 0.

Consider D = span{X1, X2}, with

X1 = ∂x1
+A1(x)∂t, X2 = ∂x2

−A2(x)∂t. (2.2)

Since [X1, X2] = −ϕ(x)∂t /∈ D, the distribution D is not involutive and hence non-
integrable. The 1-connection form is

ω = dt−A1(x)dx1 +A2(x)dx2. (2.3)

Since ω
(
[X1, X2]

)
= −ϕ(x) 6= 0, the non-vanishing condition holds. Hence the vector

fields (2.2) define a Heisenberg manifold on R
3.

Let γ = (x1, x2, t) be a curve in R
3. Since

γ̇ = ẋ1∂x1
+ ẋ2∂x2

+ ṫ∂t

= ẋ1

(
∂x1

+A1(x)∂t

)
+ ẋ2

(
∂x2

−A2(x)∂t

)

+
(
ṫ−A1(x)ẋ1 +A2(x)ẋ2

)
∂t

= ẋ1X1 + ẋ2X2 + ω(γ̇).

If γ is a horizontal curve then γ̇ = ẋ1X1 + ẋ2X2. The subRiemannian metric g is
chosen such that the vector fields X1 and X2 are orthonormal, so that the energy of
the horizontal curve c : [0, τ ] → R

3 will be

E(c) =

∫ τ

0

1

2
g(ċ(s), ċ(s)) ds =

1

2

∫ τ

0

(
ẋ2

1(s) + ẋ2(s)
2
)
ds.

Since we assume the curve horizontal, i.e., the curve satisfies the non-holonomic con-
straint ω(ċ) = 0, standard techniques regarding Lagrange multipliers yields the vari-
ational problem with the Lagrangian

L(x, t, ẋ, ṫ) =
1

2

(
ẋ2

1 + ẋ2
2

)
+ λ(s)ω(ċ)

=
1

2

(
ẋ2

1 + ẋ2
2

)
+ λ(s)

(
ṫ(s) −A1(x)ẋ1 +A2(x)ẋ2

)
.

For the general case of several Lagrange multipliers, see theorems 6.1 and 6.5. We are
interested in the curves which are minimizers for the integral action

c→
∫ τ

0

L(x, t, ẋ, ṫ) ds.

These curves will be called normal geodesics. Their equations can be obtained from
the Euler-Lagrange system of equations. Since

λ̇ =
d

ds

∂L

∂ṫ
=
∂L

∂t
= 0,
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it follows that the Lagrange multiplier λ is constant along the solutions. The other
two Euler-Lagrange equations

d

ds

∂L

∂ẋi
=
∂L

∂xi
, i = 1, 2

lead to the following ODE system:

ẍ1(s) = λϕ(x)ẋ2(s) (2.4)

ẍ2(s) = −λϕ(x)ẋ1(s), (2.5)

where

ϕ(x) =
∂A1

∂x2
+
∂A2

∂x1
.

The t-component can be found by integrating in the horizontal constraint

ṫ(s) = A1(x)ẋ1(s) −A2(x)ẋ2(s). (2.6)

For general functions Ai(x) an explicit solution for the system (2.4)-(2.5) is hard
to find, unless the coefficient ϕ(x) is of particular type. The case when ϕ(x) has
rotational symmetry or it is a constant can be found in [6]. Here we consider a
different case where ϕ(x) is linear.

3. Solving the Euler-Lagrange system with ϕ(x) linear. In this section
we shall solve the Euler-Lagrange system (2.4-2.5) explicitly in the case when ϕ(x) =
ax1 + bx2 + c is a linear function with a, b, c real constants. We shall show that the
system can be reduced to the well-known pendulum equation

θ̈ = −ω2 sin θ, (3.7)

where θ is the angle between the pendulum string and the downward vertical. The
constant ω2 is equal to the quotient between the gravitational acceleration and the
length of the pendulum string. The solution of the equation (3.7) satisfies the following
expressions involving elliptic functions.

sin
θ

2
= ksn(ωs, k) (3.8)

cos
θ

2
= dn(ω, k), (3.9)

where k = sin α
2 is the modulus of the elliptic functions. The positive constant α

denotes the amplitude of the swing, i.e., −α ≤ θ(s) ≤ α.
The qualitative features of the solution of the pendulum equation (3.7) are illus-

trated in the Figure 1. The reader may find more about this equation on p.35 in Calin
and Chang [10].

The case when ϕ(x) is linear covers a great deal of distributions which are spanned
by the vector fields

X1 = ∂x1
+A1(x)∂t, X2 = ∂x2

−A2(x)∂t,
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Fig. 1. The solution of θ̈ = −3 sin θ, with initial conditions θ(0) = 0, θ̇(0) = 1.

with

∂A1

∂x2
+
∂A2

∂x1
= ax1 + bx2 + c.

In particular, when c = 0, this covers two important families of vector fields

X1 = ∂x1
+
(
ax1x2 + f(x1)

)
∂t,

X2 = ∂x2
−
(
bx1x2 + g(x2)

)
∂t

and

X1 = ∂x1
+
(1

2
bx2

2 + f(x1)
)
∂t,

X2 = ∂x2
−
(1

2
ax2

1 + g(x2)
)
∂t,

with f , g arbitrary smooth real-valued functions. We note that the second pair of
vector fields have quadratic coefficients in x1 and x2, which makes the model more
interesting.

When a = b = 0 and c 6= 0, choosing A1 =
c

2
x2 and A2 =

c

2
x1 leads to the

Heisenberg group case. In this case, the Euler-Lagrange system becomes

ẍ1 = cλẋ2, ẍ2 = −cλẋ1, ṫ =
c

2
(x2ẋ1 − x1ẋ2).

All the above cases can be solved using the following method of conservation of

energy. The kinetic energy E =
1

2
(ẋ2

1 + ẋ2
2) is a first integral of motion for the system

(2.4-2.5). This follows if we multiply the first equation of the system by ẋ1 and the
second equation by ẋ2 and add

ẋ1ẍ1 + ẋ2ẍ2
︸ ︷︷ ︸

d

ds

( ẋ2
1 + ẋ2

2

2

)

= λϕ(x)ẋ1ẋ2 − λϕ(x)ẋ1ẋ2 = 0.
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Let s denote the arc length parameter. Then E = R2/2 and ẋ1(s)
2 + ẋ2(s)

2 = R2

with R > 0 constant. It follows that (ẋ1, ẋ2) belongs to the circle centered at the
origin with radius R and hence there is an argument function ψ such that

ẋ1(s) = R cosψ(s), ẋ2 = R sinψ(s). (3.10)

Substituting back in the system (2.4-2.5) yields

−R sinψψ̇ = λϕ(x)R sinψ

R cosψψ̇ = −λϕ(x)R cosψ.

Multiplying the first equation by sinψ and the second by cosψ we obtain

ψ̇ = −λϕ(x). (3.11)

Until this moment we haven’t use the particular form of ϕ(x) yet. Hence the equation
(3.11) works in the general case, but cannot be solved in all cases. In the case when
ϕ(x) = ax1 + bx2 + c (a2 + b2 6= 0), additional differentiation of equation (3.11)
together with the use of equations (3.10) leads to an ODE in ψ:

ψ̈ = −λ
(
aẋ1(s) + bẋ2(s)

)

= −λ
(
a cosψ(s) + b sinψ(s)

)

= −λ
√

a2 + b2(sinφ0 cosψ + cosφ0 sinψ)

= −λ
√

a2 + b2 sin(ψ + φ0), (3.12)

where φ0 = tan−1
(a

b

)

. Let ω2 := λ
√
a2 + b2 and set θ(s) = ψ(s) + φ0. Then the

equation (3.12) becomes the pendulum equation (3.7). The solution of the system
(2.4-2.5) can be obtained by integration in terms of the pendulum function:

x1(s) = x1(0) +

∫ s

0

cos
(
θ(u) − φ0

)
du (3.13)

x2(s) = x2(0) +

∫ s

0

sin
(
θ(u) − φ0

)
du. (3.14)

The t-component can also be obtained by integration in the equation (2.6):

t(s) = t(0) +

∫ s

0

[
A1(u) cos(θ(u) − φ0) −A2(u) sin(θ(u) − φ0)

]
du.

Proposition 3.1. Let ϕ(x) = ax1 + bx2 + c. Then the solution of the system
(2.4-2.5) is

x1(s) = x1(0) − 1√
a2 + b2

(

as− 2

ω

(

aE(ωs, k) + kb
(
cn(ωs, k) − 1

))
)

,

x2(s) = x2(0) +
1√

a2 + b2

(

bs− 2

ω

(

bE(ωs, k) + ka
(
cn(ωs, k) − 1

))
)

,
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where E(u, k) =
∫ u

0
dn2(s) du is the Jacobi’s epsilon function, ω2 = |λ|

√
a2 + b2 and

k = sin α
2 , with α = max θ(s).

Proof. We shall integrate in (3.13)-(3.14) using the following formulas (see Lawden
[17], p.36, p.62)

∫

dn2u du = u− k2

∫

sn2u du,

d

du
cnu = −snu dnu.

Using (3.8)-(3.9) yields

cos(θ − φ0) = cos θ cosφ0 + sin θ sinφ0

=
(
1 − 2 sin2 θ

2

)
cosφ0 + 2 sin

θ

2
cos

θ

2
sinφ0

=
(
1 − 2k2sn2(ωs, k)

)
cosφ0 + 2ksn(ωs, k)dn(ωs, k) sinφ0.

Integrating yields

∫ s

0

cos
(
θ(u) − φ0

)
du

= (cosφ0)s− 2k2 cosφ0

∫ s

0

sn2(ωu, k) du+ 2k sinφ0

∫ s

0

sn(ωu, k)dn(ωu, k) du

= (cosφ0)s−
2

ω
k2 cosφ0

∫ ωs

0

sn2(v, k) dv +
2

ω
k sinφ0

∫ ωs

0

sn(v, k)dn(v, k) dv

= (cosφ0)s+
2

ω
cosφ0

(

ωs− E(ωs, k)
)

− 2k

ω
sinφ0

(
cn(ωs, k) − 1

)

= −(cosφ0)s+
2

ω
cosφ0E(ωs, k) − 2k

ω
sinφ0

(

cn(ωs) − 1
)

= − 1√
a2 + b2

(

as− 2

ω

(

aE(ωs, k) + kb
(
cn(ωs, k) − 1

))
)

,

which leads to the expression of x1(s) given in the conclusion. In order to obtain the
expression for x2(s) we compute

sin(θ − φ0) = sin θ cosφ0 − cos θ sinφ0

= 2 sin
θ

2
cos

θ

2
cosφ0 − (1 − 2 sin2 θ

2
) sinφ0

= 2ksn(ωs, k)dn(ωs, k) cosφ0 − sinφ0 + 2k2 sinφ0sn
2(ωs, k).
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Integrating yields

∫ s

0

sin
(
θ(u) − φ0

)
du

= 2k cosφ0

∫ s

0

sn(ωu, k)dn(ωu, k) du− s sinφ0 + 2k2 sinφ0

∫ s

0

sn2(ωu, k) du

=
2k

ω
cosφ0

∫ ωs

0

sn(v, k)dn(v, k) dv − s sinφ0 +
2

ω
sinφ0 k

2

∫ ωs

0

sn2(ωs, k) dv

=
2k

ω
cosφ0

(
1 − cn(ωs, k)

)
+ s sinφ0 −

2

ω
sinφ0E(ωs, k)

=
1√

a2 + b2

(

2k

ω
a
(
1 − cn(ωs, k)

)
+ bs− 2

ω
bE(ωs, k)

)

=
1√

a2 + b2

(

bs− 2

ω

(

bE(ωs, k) + ka
(
cn(ωs, k) − 1

))
)

,

which leads to the expression of x2(s).

Remark 3.2. For the Heisenberg group case, one has

ẋ1(s) = R cosψ(s), ẋ2(s) = R sinψ(s).

Then

ẍ1(s) = −R sinψ(s)ψ̇(s), ẍ2(s) = R cosψ(s)ψ̇(s),

and the Euler-Lagrange system becomes

sinψ(s)(cλ+ ψ̇) = 0, cosψ(s)(cλ+ ψ̇) = 0.

Adding the squares, yields ψ̇(s) = −cλ. Integrating, we obtain

ψ(s) = −cλs− ψ(0) = −cλs− ψ0.

Hence one has

x1(s) =
R

cλ
sin(cλs+ ψ0) + x1(0), x2(s) =

R

cλ
cos(cλs+ ψ0) + x2(0).

This is a parametric equation of a circle centered at (x1(0), x2(0)) with radius R
cλ .

This tells us the projection of the solution of the Euler-Lagrange system is periodic.

4. Periodic solutions in the case ϕ(x) linear.

• The geometric interpretation of ψ. From the Physics point of view θ measures
the angle between the pendulum string and the vertical direction and it is a periodic
function.

Dividing the equations (3.10) yields

tanψ(s) =
ẋ2

ẋ1
=
dx2

dx1
, (4.15)
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i.e., ψ(s) is the angle between the tangent line to the graph of x2 = x2(x1) at the
point

(
x1(s), x2(s)

)
. Since θ(s) is periodic, using that θ(s) = ψ(s) + φ0, it follows

that the angle ψ(s) will be also periodic. We state this in the following:

Proposition 4.1. There is a positive constant T > 0 such that ψ(s+T ) = ψ(s),
for all s > 0.

The following result will be useful:

Lemma 4.2. Let f be a smooth real function with a periodic derivative, i.e.,
f ′(x) = f ′(x + T ), for all x ∈ R, with T > 0. Then

f(x+mT ) = f(x) +m
(
f(T )− f(0)

)
, ∀m ∈ Z.

In particular, if f(0) = f(T ), then the function f is periodic with the period T .

Proof. Let g(x) = f ′(x) be the derivative function. From the Fundamental
Theorem of Calculus we have

f(x) = f(0) +

∫ x

0

g(u) du.

Replacing x by x+mT and using that g is periodic yields

f(x+mT ) = f(0) +

∫ x+mT

0

g(u) du

= f(0) +

∫ x

0

g(u) du+

∫ x+mT

x

g(u) du

= f(x) +

∫ x+mT

x

g(u) du

= f(x) +

∫ mT

0

g(u) du

= f(x) +m

∫ T

0

g(u) du

= f(0) +m
(
f(T )− f(0)

)
.

The second part is obvious.

Proposition 4.3. (i) If x1(0) = x1(T ) and x2(0) = x2(T ) then the functions xi

are periodic with period T :

x1(s+mT ) = x1(s), x2(s+mT ) = x2(s), ∀s ≥ 0,m ∈ Z.

This corresponds to a closed solution in the x-plane, see Figure 2.

(ii) If x1(0) 6= x1(T ), x2(0) 6= x2(T ), we have

x1(s+mT ) = x1(s) +m
(
x1(T ) − x1(0)

)
,

x2(s+mT ) = x2(s) +m
(
x2(T ) − x2(0)

)
.

In particular, the solution is unbounded and not closed, see Figure 3.

Proof. Since ψ(s) is periodic with period T , then x1(s) = cos
(
ψ(s)

)
and x2(s) =

cos
(
ψ(s)

)
will be periodic with period T . Applying Lemma 4.2 we obtain the desired

results.
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Fig. 2. Closed solution. Fig. 3. Unbounded solution.

• Periodic solutions. Now we shall assume that ϕ(x) = ax1 + bx2 + c, with
a, b, c ∈ R. Using Propositions 4.3 and 3.1 we shall characterize the periodic solutions
x(s) =

(
x1(s), x2(s)

)
. In order to have periodic solutions we need to find T > 0 such

that

x1(T ) = x1(0), x2(T ) = x2(0).

Using Proposition 3.1, the period T must satisfy both equations

aT − 2

ω

(

aE(ωT, k) + kb
(
cn(ωT, k) − 1

))

= 0 (4.16)

bT − 2

ω

(

bE(ωT, k) + ka
(
cn(ωT, k) − 1

))

= 0. (4.17)

The solution θ(s) of the pendulum equation θ̈ = −ω2 sin θ satisfies

sin
θ

2
= ksn(ωs, k),

where k = sin α
2 . This means that sin θ

2 oscillates with amplitude sin α
2 and period

T =
4K

ω
⇔ ωT = 4K,

where

K = K(k) =

∫ π/2

0

du
√

1 − k2 sin2 u

is a complete elliptic integral. Using cn(4K, k) = 1 and the addition property for the
Jacobi’s epsilon function

E(2mK) = 2mE,
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where E = E(k) =
∫ K

0
dn2u du, both equations (4.16)-(4.17) can be reduced to the

equation

2E(k) −K(k) = 0, (4.18)

where we assumed a, b 6= 0. Since the function

[0, 1) ∋ k → K(k)

is increasing with K(0) = π/2, K(1,−) = +∞ (Figure 4), and the function

[0, 1] ∋ k → E(k)

is decreasing, with E(0) = π/2 and E(1) = 1 (Figure 5), it follows that the function

[0, 1) ∋ k → g(k) = 2E(k) −K(k)

is decreasing, having a vertical asymptote at k = 1 (Figure 6).
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0 0.2 0.4 0.6 0.8 1
k

Fig. 4. The graph of K(k). Fig. 5. The graph of E(k).

0

_

*
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0.25 0.5 0.75 0.91 1
k

Fig. 6. The solution of 2E(k) −K(k) = 0.

Since g(0) = π/2 and g(1,−) = −∞, it follows that the equation (4.18), i.e.,
g(k) = 0 has a unique solution k = k∗ ≈ 0.91, and using sin α

2 = k∗ yields the
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amplitude α∗ = 2 arcsink∗ ≈ 2.28. Proposition 3.1 provides now the equations for
the periodic solutions

x1(s) = x1(0) − 1√
a2 + b2

(

as− 2

ω

(

aE(ωs, k∗) + k∗b
(
cn(ωs, k∗) − 1

))
)

,

x2(s) = x2(0) +
1√

a2 + b2

(

bs− 2

ω

(

bE(ωs, k∗) + k∗a
(
cn(ωs, k∗) − 1

))
)

.

It is interesting that the period T = 4K(k∗)/ω, where K(k∗) ≈ 2.32, does not depend
on the initial point x(0).

In the next section we shall relate the Lagrange multiplier λ to the length of the
periodic solutions.

5. The Lagrange multiplier formula. We shall consider the case of general
periodic solutions. In this case an important feature is the total curvature of the unit
speed curve x(s) =

(
x1(s), x2(s)

)
: [0, L] → R

2 defined by

κT =

∫ L

0

κ(s) ds,

where κ(s) denotes the plane curvature of the plane curve x(s). 1 If x(s) is a plane,
closed curve, by Fenchel’s formula (see Millman and Parker [18]) we have

κT = 2mπ, m = 1, 2, . . . (5.19)

where m is the rotation index of the curve (see Figure 7).

(a) (b) (c)

Fig. 7. Plane closed curves with index m: (a) m = 1, (b) m = 2, (c) m = 3.

By Euler’s formula, the curvature of a plane unit-speed curve x(s) is given by

κ(s) =
dψ

ds
, (5.20)

where ψ(s) is the angle made by the velocity vector field along the curve with the
horizontal direction.

1The curvature of the plane unit speed curve x(s) is defined by κ(s) = |T ′(s)|, where T (s) = x′(s).
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x’(s)

x(s)

ψ(s)

Fig. 8. The angle ψ(s).

Using (5.20) and (3.11) yields the following formula for the plane curvature

κ(s) = −λϕ
(
x(s)

)
.

Integrating and using (5.19) we obtain

2mπ = −λm

∫ Lm

0

ϕ
(
x(s)

)
ds = −λm

∫ Lm

0

Ω12

(
x(s)

)
ds,

where Ω12 = Ω(X1, X2) = dω([X1, X2]) and Lm is the length of the solution which
corresponds to the Lagrange multiplier λm.

Proposition 5.1. The Lagrange multiplier λ has an extrinsic character, i.e.,
depends on the 1-connection form ω:

λm = − 1

2mπ

∫ Lm

0

dω(X1, X2)
(
x(s)

)
dx.

Example 5.1. In the three dimensional Heisenberg group case we have
dω(X1, X2) = Ω12 = 4 and the above formula provides

Lm =
mπ

2
|λm|, m = 1, 2, 3, . . .

which is a formula for the length of a closed solution in terms of Lagrange multiplier.
The smallest multipler λ1 yields the Carnot-Caratheodory distance, see Calin, Chang
and Greiner [5].

6. Abnormal minimizers. The subject of non-holonomic constraints in its La-
grangian formalism approach is the core of optimal control. Since we are dealing with
curves (one parameter maps), only the one-dimensional Lagrangian problems will be
of interest for us. For a more detailed approach of the subject the reader can con-
sult the works of, e.g., Bliss [3], Bolza [4], Funk [11], and Sagan [19]. The theory
of Lagrange’s multiplier rule for minimizers of single integrals is quite complete and



82 O. CALIN ET. AL.

we shall follow M. Giaquinta and S. Hildebrandt [14] in our brief presentation. The
reader can consult the proofs presented therein.

The variational problem consists in finding a mapping u ∈ C2([a, b],Rn), which
is a minimizer for the integral

F(u) =

∫ b

a

F (s, u(s), u̇(s)) ds,

under r (r < n) functionally independent non-holonomic constraints

Gi(s, u(s), u̇(s)) = 0, i = 1, . . . , r, (6.21)

i.e., constraints which satisfy the condition

rank
(∂Gi

∂u̇j

)

i,j
= r. (6.22)

The existence of the Lagrange multipliers functions is stated in the following result
(see p.117 in [14]).

Theorem 6.1 (Lagrange multiplier rule I). Let u ∈ C2([a, b],Rn) be a min-
imizer of the above integral functional F(u) under the non-holonomic constraints
(6.21) satisfying condition (6.22), and suppose that F,G1, . . . , Gr are of class C3.
Then there exist a constant ℓ0 (which can be taken zero or one) and functions
λ1(s), . . . , λr(s) ∈ C1([a, b]) such that u is an extremal of the unconstrained varia-
tional integral

F∗(u) =

∫ b

a

F ∗(s, u, u̇) ds,

with the Lagrangian

F ∗(s, z, p) = ℓ0F (s, z, p) +

r∑

j=1

λj(s)G
j(s, z, p).

The case ℓ0 = 1 is called the principal case, and it is of particular importance. In
this case the minimizer u satisfies the Euler-Lagrange equations

d

ds

(∂F ∗

∂u̇i

)

=
∂F ∗

∂ui
, i = 1, . . . , n.

In the exceptional case ℓ0 = 0 the Lagrangian F does not appear in the Euler-
Lagrange equations and we obtain the following equations

d

ds

( r∑

j=1

λj(s)G
j
u̇i

)

=

r∑

j=1

λj(s)G
j
ui
, i = 1, . . . , n. (6.23)

where

Gj
ui

=
∂Gj

∂ui
, Gj

u̇i
=
∂Gj

∂u̇i
.

We have the following result (see p.117 in [14]).
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Lemma 6.2. If ℓ0 = 0, then there is a nontrivial solution λ(s) =
(
λ1(s), . . . , λr(s)

)
of (6.23).

Motivated by the previous result Hahn introduced the following terminology (see
p.118 of [14]).

Definition 6.3. A minimizer of F under the constraints Gj(x, u, u̇) = 0, j =
1, . . . , r, is said to be abnormal if there is a nontrivial C1-solution λ = (λ1, . . . , λr) of
(6.23). Otherwise u is called a normal minimizer.

Lemma 6.2 can be also stated as follows:

Proposition 6.4. If ℓ0 = 0, then u is an abnormal minimizer. The abnor-
mal minimizers are solutions of (6.23), which satisfy the non-holonomic constraints
Gj(s, u, u̇) = 0, j = 1, . . . , r.

The following result deals with the normal minimizers which was originally proved
by Hahn and Bolza. The reference can be found in p.118 in [14].

Theorem 6.5 (Lagrange multiplier rule II). If u is a normal minimizer of F
under the constraints Gj(s, u, u̇) = 0, j = 1, . . . , r, then u is an F ∗-extremal for the
Lagrangian

F ∗(s, z, p) = F (s, z, p) +

r∑

j=1

λj(s)G
j(s, z, p),

and the multipliers λ1, . . . , λr are uniquely determined by u.

In the case of subRiemannian geometry the minimizers u are elements of
C2([0, τ ],Rn), while the non-holonomic constraints are given by r one-forms θj as
follows

Gj(u, u̇) = θj(u̇).

If θj = θj
i dxi, is a representation in local coordinates, then the condition (6.22)

becomes rank(θi
j) = r, i.e., the one-forms are functionally independent.

The Lagrangian F is the energy in the subRiemannian metric h and it does not
depend explicitly on s

F (u, u̇) =
1

2
h(u̇, u̇),

with horizontal velocity vector field u̇(s) ∈ Du(s). The normal minimizers are ex-
tremals for the Lagrangian

F ∗(u, u̇) =
1

2
h(u̇, u̇) +

r∑

j=1

λjθ
j(u̇),

while the abnormal minimizers are extremals for

F ∗(u, u̇) =

r∑

j=1

λjθ
j(u̇),

where λj ∈ C1([0, τ ]) are Lagrange multipliers functions, not necessary constant.
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Proposition 6.6. In the case of the non-holonomic constraints θj(u̇) = 0, j =
1, . . . , r, the equations of the abnormal minimizers are

r∑

j=1

λ̇j(s)θ
j
i (u(s)) = 2

r∑

j=1

λj(s)Θ
j
ir(u(s))u̇

r, i = 1, . . . , n, (6.24)

where Θj = dθj and Θj
ir = Θj(∂i, ∂r).

Proof. Since the non-holonomic constraints are Gj(u) = θj(u̇) = θj
ku̇

k we have

Gj
ui

=
∂θj

k

∂xi
u̇k and Gj

u̇i
= θj

i and the left side of equation (6.23) becomes

d

ds

(∑

j

λj(s)θ
j
i (u(s))

)

=
∑

j

λ̇j(s)θ
j
i (u(s)) +

∑

j

λj(s)
∂θj

r

∂xr
u̇r. (6.25)

The right side of equation (6.23) can be written as

∑

j,k

λj(s)G
j
ui

=
∑

j,k

λj(s)
∂θj

r

∂xi
u̇r. (6.26)

Equating the expressions (6.25) and (6.26) and using that the components Θj
ir =

∂θj
r

∂xr

are skew-symmetric in the lower indices, yields equations (6.24).

Corollary 6.7. (i) The abnormal minimizers are horizontal curves which sat-
isfy the equation

λ̇(s)θi(u(s)) = 2λ(s)Θir(u(s))u̇
r(s), i = 1, . . . , n, (6.27)

for some Lagrange multiplier function λ(s).

(ii) If there is (i0, r0) such that the component Θi0r0
≡ 0, then the Lagrange

multiplier function λ is a constant.

(iii) If besides the conditions in (ii), we have det Θij(x) 6= 0 for any x, then there
are no abnormal minimizers.

Proof. (i) It follows from the above proposition in the case of only one non-
holonomic constraint given by the one-form θ, with the exterior derivative Θ = dθ.

(ii) Since the right hand side of (6.27) vanishes for (i, r) = (i0, r0) and λ does not
depend on the pair of indices (i, r), it follows that the left hand side of (6.27) vanishes
too, so that λ̇(s) = 0, i.e., λ is a constant.

(iii) If λ is a non-zero constant, then Θir(u)u̇
r = 0 with the unique solution

u̇(s) = 0, which means that u(s) is a constant, contradiction. Hence λ = 0 and there
are no abnormal minimizers.

Example 6.1. Let θ = 2x1dx2 + 2x2dx3 + 2x3dx1. Then

Θ = dθ = 2dx1 ∧ dx2 + 2dx2 ∧ dx3 + 2dx3 ∧ dx1,

with the non-singular components matrix

Θij =





0 1 1
−1 0 1
−1 −1 0



 .

Hence there are no abnormal minimizers subject to the non-holonomic constraint
θ(u̇) = 0.
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7. Abnormal minimizers (continued). We shall investigate the abnormal
minimizers in the case of the vector fields

X1 = ∂x1
+A1(x)∂t, X2 = ∂x2

−A2(x)∂t.

The Lagrangian is

L(x, t, ẋ, ṫ) =
ℓ0
2

(ẋ2
1 + ẋ2

2) + λ(s)
(
ṫ−A1(x)ẋ1 +A2(x)ẋ2

)

and in order to obtain the abnormal minimizers we set ℓ0 = 0 and write the Euler-
Lagrange equations for the Lagrangian

L∗(x, t, ẋ, ṫ) = λ(s)
(
ṫ−A1(x)ẋ1 +A2(x)ẋ2

)
.

From λ(s) =
∂L∗

∂ṫ
and

∂L∗

∂t
= 0 it follows that λ̇(s) = 0 i.e., the Lagrange multiplier

λ is constant. Using that

∂L∗

∂ẋ1
= −λA1,

∂L∗

∂ẋ2
= −λA2,

∂L∗

∂x1
= −λ∂A1

∂x1
ẋ1 + λ

∂A2

∂x1
ẋ2,

∂L∗

∂x2
= −λ∂A1

∂x2
ẋ1 + λ

∂A2

∂x2
ẋ2,

the Euler-Lagrange equations

d

ds

(∂L∗

∂ẋi

)

=
∂L∗

∂xi
, i = 1, 2

become

λ
(∂A1

∂x2
+
∂A2

∂x1

)

ẋ1 = 0

λ
(∂A1

∂x2
+
∂A2

∂x1

)

ẋ2 = 0.

Let λ 6= 0. If ẋ1 = ẋ2 = 0, from the horizontality constraint

ṫ = A1(x)ẋ1 −A2(x)ẋ2

it follows that ṫ = 0 and hence the curve
(
x1(s), x2(s), t(s)

)
degenerates to a point.

Hence ẋ1 and ẋ2 do not vanish simultaneously and using that

Ω =
(∂A1

∂x2
+
∂A2

∂x1

)

dx1 ∧ dx2

we have obtained the following result:

Proposition 7.1. The abnormal geodesics are horizontal curves γ(s) with van-
ishing curvature

Ω(γ(s)) = 0.

Remark 7.2. The one-form ω has the meaning of a magnetic potential, while
the two form Ω = dω is the magnetic field. Then if the magnetic fields is vanishing
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along a horizontal direction, then the integral curve of that direction is an abnormal
minimizer.

It is worthwhile to look at few particular cases.

• If θ = dt − 2x2dx1 + 2x1dx2, i.e., for A1(x) = 2x2, A2(x) = 2x1 the 2-form of
curvature never vanishes, Ω 6= 0, so there are no abnormal geodesics in the Heisenberg
case.

• In the case when θ = dt − ex2dx1 we also have no abnormal geodesics since
Ω = dθ 6= 0.

• In the case of the Martinet distribution, which is defined by the Pfaff form
θ = dt− 1

2 (x2)
2dx1, we have that the abnormal geodesics are horizontal curves along

which x2 = 0. Hence ṫ = 0 and hence the abnormal geodesics are given by (s, 0, c),
c ∈ R, where we choose x1(s) = s. For c = 0 we obtain the abnormal minimizer
quoted in Agrachev, Bonnai, Chuba and Kupka [1].

• The normal geodesics of the following model was first investigated in Calin [5]
and later developed in Calin, Chang, Greiner [8]. Consider

ω = dt+ k|x|2(k−1)(x1dx2 − x2dx1),

where k ∈ N, which defines the distribution spanned by the vector fields

X1 = ∂x1
+ 2kx2|x|2(k−1)∂t, X2 = ∂x2

− 2kx1|x|2(k−1)∂t.

Since Ω = dω = 4k2|x|2(k−1)dx1 ∧ dx2, it follows that the curvature form vanishes
along the t-axis, where x = 0. Since the t-axis is not a horizontal curve, it follows
that in this case there are no abnormal geodesics.

Remark 7.3. When ℓ0 = 1, we are dealing with only normal geodesics. In
this case, we may also use Hamilton function to obtain the Euler-Lagrange system,
i.e., the Hamiltonian formalism and Lagrange formalism are equivalent. Since X1 =
∂x1

+A1(x)∂t and X2 = ∂x1
−A2(x)∂t, the Hamiltonian for the operator X2

1 +X2
2 is

H =
1

2

[
(ξ1 +A1(x)λ)

2 + (ξ2 −A2(x)λ)
2
]
.

The Hamiltonian system is

ẋ1 = Hξ1
= ξ1 +A1(x)λ

ẋ2 = Hξ2
= ξ2 −A2(x)λ

ξ̇1 = −Hx1
= λ

(∂A2

∂x1
ẋ2 −

∂A1

∂x1
ẋ1

)

ξ̇2 = −Hx2
= λ

(∂A2

∂x2
ẋ2 −

∂A1

∂x2
ẋ1

)

.

Differentiating the first two equations and substituting the last two yields the system
(2.4)-(2.5) obtained by means of Lagrangian formalism.
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