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THE BAOUENDI-TREVES APPROXIMATION

THEOREM FOR CONTINUOUS VECTOR FIELDS∗
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Abstract. This article establishes the Baouendi-Treves approximation theorem for locally inte-
grable structures whose vector fields have continuous coefficients. As a consequence, some uniqueness
results are derived.
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1. Introduction. Let M be a C∞ manifold of dimension N and suppose L is
a continuous vector subbundle of CT (M) with fiber dimension 1 ≤ n < N and set
m = N − n. We will say that L is locally integrable if every p ∈ M is contained in an
open set Ω such that there exist m functions Zj : Ω −→ C, 1 ≤ j ≤ m, of class C1,
satisfying:

(1) If L is a local section of L defined on Ω, then LZj = 0, 1 ≤ j ≤ m;
(2) dZ1(p) ∧ · · · ∧ dZm(p) 6= 0.

When L and the first integrals Z1, . . . , Zm are of class C∞, the approximation theorem
of Baouendi and Treves ([BT]) states that every distribution solution u of the sections
of L is locally the limit of a sequence of smooth solutions of the form Pk ◦ Z where
Z = (Z1, . . . , Zm) and the Pk are holomorphic polynomials. In this latter smooth
category, the approximation theorem has had many consequences and has been a tool
in dozens of papers, mainly dealing with CR theory (approximation of CR distribu-
tions, extension of CR distributions, propagation of analyticity), local behavior of
solutions (local solvability, hypoellipticity, boundary behavior of solutions of homoge-
neous equations, uniqueness in the Cauchy problem) and miscellaneous topics like the
similarity principle, the F. and M. Riesz theorem, representation of solutions, etc. To
discuss uniqueness results, we recall that a submanifold Σ ⊆ M is called maximally
real if for each p ∈ Σ,

CTp(M) = CTp(Σ) ⊕ Lp.

In the CR case, that is, when L ∩ L = 0, Σ is maximally real if and only if it is
totally real of maximal dimension. In the smooth case, if Σ is a maximally real
submanifold and u is a distribution solution, the approximating functions Pk ◦ Z
in the Baouendi-Treves approximation theorem are expressed in terms of the trace
of u on Σ. Consequently, if u vanishes on Σ, then it vanishes in a neighborhood
of Σ. In particular, if N ⊆ M is a noncharacteristic hypersurface and a solution
u vanishes on N , then it vanishes in a neighborhood of N since each p ∈ N is
contained in a maximally real submanifold Σ ⊆ N . The unique determination of a
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solution by its trace on a noncharacteristic hypersurface has the further consequence
that the support of a solution propagates along the Sussmann orbits of ReL = {X :
X = ReL, L a smooth section ofL} ([T]). In this paper we explore the validity of
the approximation theorem and the uniqueness results stated above for L that is
assumed to be only continuous with C1 local first integrals. When L is only continuous,
we consider solutions u that are measures. In the smooth case, whenever Σ is a
maximally real submanifold and u is a distribution solution, it is well known that u is
a smooth function of variables transversal to Σ valued in the spaces of distributions on
maximally real submanifolds. In particular, the trace of u on Σ —a key ingredient in
the approximation theorem— is well defined. When L is assumed to be only continuous
and u is a measure solution, we show in section 2 that near each p ∈ M, there is a
nonvanishing continuous function a such that the trace of au on each noncharacteristic
hypersurface N is well defined. We also show that if the trace of au on N vanishes,
then u vanishes in a neighborhood of N . This implies the propagation of the support
of u along the orbits of ReL. In section 3 we establish the approximation theorem for
measure solutions. The results in this article extend some previous work done in [CR]
(see Remark 2.6 for more on this).

2. Regularity and uniqueness for measure solutions. Since the problems
we study are local, we will assume that M is an open subset of RN . Consider a
continuous vector subbundle L of CT (M) with fiber dimension 1 ≤ n < N and set
m = N − n.

Definition 2.1. We say that L is locally integrable if every p ∈ M is contained
in an open set Ω such that there exist m functions Zj : Ω −→ C, 1 ≤ j ≤ m, of class
C1 satisfying:

(1) if L is a local section of L defined on Ω, then LZj = 0, 1 ≤ j ≤ m;
(2) dZ1(p) ∧ · · · ∧ dZm(p) 6= 0.

The functions Z1, . . . , Zm are called a complete set of first integrals. Notice that (1)
and (2) imply that dZ1, . . . , dZm span the orthogonal bundle L⊥ ⊂ CT ∗(RN ).

Let p ∈ M. In a neighborhood Ω of p, we may find C1 coordinates x1, . . . , xm,
t1, . . . , tn that vanish at p so that in these coordinates, a complete set of first integrals
has the form

Zj(x, t) = xj + iϕj(x, t), j = 1, . . . ,m,

with ϕj real satisfying ∂ϕj/∂xk(0, 0) = 0. By continuity, we may also assume that
|∂ϕj/∂xk(0, 0)| remain small on Ω. In particular, we may assume that the square
matrix Zx = [∂Zℓ/∂xk] is nonsingular and hence find continuous function λjk(x, t)
such that

∂Zℓ
∂tj

+

m∑

k=1

λjk
∂Zℓ
∂xk

= 0, j = 1, . . . , n, ℓ = 1, . . . ,m,

which means that the vector fields

∂

∂tj
+

m∑

k=1

λjk
∂

∂xk
, j = 1, . . . , n,

are local generators of L in Ω. It will be convenient to use another set of generators,
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namely,

Lj = detZx
∂

∂tj
+ detZx

m∑

k=1

λjk
∂

∂xk
, j = 1, . . . , n,

which have the advantage of being antisymmetric, that is,
∫

(Lju) v dxdt = −

∫
uLjv dxdt, j = 1, . . . ,m, u, v ∈ C∞

c (Ω),

and may be written as partial differential operators in divergence form

Lju =
∂(detZxu)

∂tj
+

m∑

k=1

∂(detZx λjku)

∂xk
, u ∈ C∞

c (Ω).

Thus, denoting by 〈u, v〉 =
∫
uv dxdt the usual duality pairing, if u ∈ D′

0(Ω), we have
that Lju may be defined by

〈Lju, v〉 = −〈u, Ljv〉, v ∈ C1
c (Ω),

and Lju ∈ D′
1(Ω). The fact that u satisfies the set of equations

(2.2) Lju = 0, j = 1, . . . , n,

has the following interpretation. Since we are interested in local questions, we may
identify top forms ψ(x) dx1 ∧ · · · ∧ dxN with functions ψ(x), view a measure as acting
continuously on top forms with continuous coefficients, and state

Definition 2.2. We say the measure u is a solution of Lu = 0 if for each p and
some complete set of C1 first integrals Z1, . . . , Zm near p,

(2.3) 〈u, dZ1 ∧ · · · ∧ dZm ∧ dω〉 = 0

for any ω which is an (n− 1)-form of class C1 with compact support.

If we take

ω = v dt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dtn, v ∈ C1
c (Ω),

where the hat means that the factor dtj has been omitted, and express dv in the basis
dt1, . . . , dtn, dZ1, . . . , dZm, we see that

dZ1 ∧ · · · ∧ dZm ∧ dω = (−1)j−1(detZx)
−1Ljv dZ1 ∧ · · · ∧ dZm ∧ dt1 ∧ · · · ∧ dtn

= (−1)j−1Ljv dx1 ∧ · · · ∧ dxm ∧ dt1 ∧ · · · ∧ dtn.(2.4)

Thus, using (2.4) for j = 1, . . . , n, it is easy to check that (2.2) and (2.3) are equivalent
conditions for u ∈ D′

0(Ω) in a neighborhood of p. Furthermore, we note that if (2.3)
holds for some {Z1, . . . , Zm}, then it also holds for any other complete set of C1 first
integrals {W1, . . . ,Wm}. Indeed, by the approximation theorem (which is valid for C1

functions) there exist holomorphic functions F jk such that for each j = 1, . . . , n, we

may write Wj = limk→∞ F jk (Z1, . . . , Zm) in the C1 topology and so dW1∧· · ·∧dWm =
λdZ1 ∧ · · · ∧ dZm for some continuous function λ = limk→∞Hk(Z1, . . . , Zm) with Hk

holomorphic. Since this process can be reversed, expressing dZ1 ∧ · · · ∧ dZm as a
multiple of dW1 ∧ · · · ∧ dWm, it follows that λ 6= 0 on a neighborhood of p. Observe
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next that, since Hk is holomorphic, for any (n − 1)-form of class C1 with compact
support ω,

Hk(Z) dZ1 ∧ · · · ∧ dZm ∧ dω = dZ1 ∧ · · · ∧ dZm ∧ d(Hk(Z)ω)

and therefore,

〈u, dW1 ∧ · · · ∧ dWm ∧ dω〉 = lim
k→∞

〈u,Hk(Z)dZ1 ∧ · · · ∧ dZm ∧ dω〉

= lim
k→∞

〈u, dZ1 ∧ · · · ∧ dZm ∧ d(Hk(Z)ω)〉 = 0.

Hence 〈u, dW1 ∧ · · · ∧ dWm ∧ dω〉 = 0 for all (n− 1)-forms ω of class C1 with compact
support in a convenient neighborhood of p. Assume now that n = 1, so L is locally
spanned by a single vector field

L = detZx
∂

∂t
+ detZx

m∑

k=1

λk
∂

∂xk

and let u ∈ D′
0(Ω) satisfy the equation

(2.5) Lu = 0

in the sense given by (2.3), so 〈u, Lv〉 = 0, v ∈ C∞
c (Ω). We will prove that Zx(x, t)u

may be identified with a function of t valued in D′(QR) for a convenient ball QR ⊂ Rm.
Since the statement is local it will be enough to restrict our attention to a neighborhood
of the form ΩR = QR × IR, where IR is the interval (−R,R) and QR denotes a
ball of radius R centered at the origin of Rm. Given ψ(x) ∈ C∞

c (QR), consider the
distribution uψ ∈ D′(R) defined by

〈uψ, φ〉 = 〈u, ψ ⊗ φ〉, φ ∈ C∞
c (IR),

where (ψ ⊗ φ)(x, t) = ψ(x)φ(t). We first point out that uψ ∈ D′
0(IR) for ψ fixed.

Indeed, writing U = uψ,

|〈U, φ〉| = |〈u, ψ ⊗ φ〉| ≤ C‖ψ ⊗ φ‖C0 ≤ C′(R,ψ)‖φ‖C0

showing that U ∈ D′
0(IR). Set

V = (detZx u)ψ and W = −
m∑

k=1

(detZx λku)ψxj
.

Reasoning as before, we conclude that V and W ∈ D′
0(R); furthermore (2.5) implies

that
dV

dt
= W

holds in the sense of distributions. Thus, there exists a unique function fψ(t), t ∈ R,
continuous from the right and, after shrinking IR if necessary, of bounded variation
on IR, such that

〈V, φ〉 =

∫
fψ(t)φ(t) dt.

Since ψ 7→ fψ is linear and continuous in C1
c (IR), we may write fψ(t) = 〈f(t), ψ〉 and

consider f(t) as an element of D′
1(QR) for each fixed t. If ψ belongs to a bounded
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subset B of C1
c (R) and |t| ≤ R, the variation of fψ(t) is bounded by a constant

depending only on B and R. Thus

〈detZx u, φ⊗ ψ〉 =

∫
〈f(t), ψ〉φ(t) dt, φ(t) ∈ C∞

c (IR), ψ(x) ∈ C∞
c (QR).

More generally, we have that

〈detZx u, φ〉 =

∫
〈f(t), φ(·, t)〉 dt, φ(x, t) ∈ C∞

c (ΩR).

Next for φ(x, t) a C1 function we wish to understand the Leibnitz rule for

d

dt
〈f(t), φ(·, t)〉.

First fix ψ(x) ∈ C1
c (R

m). Then we know that in the weak sense (which is what we
will always mean)

d

dt
〈f(t), ψ(·)〉 = Wψ(t)

where for ϕ(t) ∈ C0
c (R),

〈Wψ , ϕ(t)〉 =
∑

k

∫∫
(λk detZxu)

∂ψ

∂xk
(x)ϕ(t) dxdt.

We also know that there exists C > 0 such that ∀ψ(x) ∈ C1
c (Br), and |t| ≤ R,

(2.6) |〈f(t), ψ〉| ≤ C||ψ||C1 .

Let φ(x, t) ∈ C1
c . Consider F (t) = 〈f(t), φ(·, t)〉. We will show that F (t) is a function

of bounded variation and write a formula for its weak derivative. Clearly, F (t) is a
measurable function. From (2.6) we see that F (t) is a bounded function and so it
defines a distribution. Suppose now φ(x, t) = ψ(x)φ(t) ∈ C1

c . Then

d

dt
〈f(t), φ(·, t)〉 = φ′(t) 〈f(t), ψ(·)〉 + φ(t)Wψ

and so for any h(t) ∈ C0
c ,

(
d

dt
〈f(t), φ(·, t)〉

)
(h) =

∫∫
detZxuψ(x)φ′(t)h(t) dxdt

+

m∑

k=1

∫∫
(λk detZxu)

∂ψ

∂xk
(x)φ(t)h(t) dxdt.(2.7)

More generally, we claim that for any φ(x, t) ∈ C1
c , the formula

(2.8)
d

dt
〈f(t), φ(·, t)〉 = (det Zxu)φt

+
m∑

k=1

(λk detZxu)φxk

holds where in the right hand side, (det Zxu)φt
is the distribution in t space defined

by

〈(det Zxu)φt
, h(t)〉 =

∫∫
(detZxu)(x, t)φt(x, t)h(t) dxdt
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and likewise for
∑

k(λk detZxu)φxk
. Equation (2.7) shows that (2.8) easily holds for

C1 functions of the form
N∑

j=1

M∑

k=1

ψj(x)φk(t).

The general case follows by approximating a given C1 function φ(x, t) by such finite
sums and observing that each side of (2.8) is a continuous operator on the space of C1

functions. Observe that (2.8) in particular shows that when φ(x, t) is a C1 function,
d
dt〈f(t), φ(·, t)〉 is a measure and hence 〈f(t), φ(·, t)〉 is a function of bounded variation.

Recall that for every t0 ∈ R, |t0| < R, detZx u has a trace at t = t0 which
is a distribution of order one. This trace is given by f(t0) and satisfies the one-
sided continuity property limεց0 f(t0 + ε) = f(t0). We may also denote this trace
by Zx(·, t0)u(·, t0) or Zx(x, t0)u(x, t0) rather than f(t0). We now recall the basic
operators in the Baouendi-Treves approximation formula, namely

Eτu(x, t) = (τ/π)m/2
∫

Rm

e−τ [Z(x,t)−Z(x′,0)]2 detZx(x
′, 0)u(x′, 0)h(x′) dx′,

Gτu(x, t) = (τ/π)m/2
∫

Rm

e−τ [Z(x,t)−Z(x′,t)]2 detZx(x
′, t)u(x′, t)h(x′) dx′,

Rτu(x, t) = Gτu(x, t) − Eτu(x, t),

where the notation [Z(x, t) − Z(x′, t′)]2 means
∑m
j=1

(
Zj(x, t) − Zj(x

′, t′)
)2

and the

function h(x) ∈ C∞
c (QR) is supported in a conveniently small ball and it is identically

equal to 1 on a neighborhood of the origin. In the classical case, when L and Z(x, t) are
smooth and u is a distribution solution of Lu = 0, it can be proved that Rτu(x, t) → 0
as τ → ∞ on a small neighborhood of the origin, with convergence in the C∞ topology.
We now adapt some of the classical arguments to the present situation, where u ∈ D′

0

and L is of class C0, to show that Rτu(x, t) → 0 uniformly as τ → ∞ on some
neighborhood of the origin. Write, for ζ ∈ Cm and t ∈ IR,

G̃τu(ζ, t) =
〈
f(t), e−τ [ζ−Z(·,t)]2h(·)

〉
=
〈

detZx(·, t)u(·, t), e
−τ [ζ−Z(·,t)]2h(·)

〉

=

∫

Rm

e−τ [ζ−Z(x′,t)]2 detZx(x
′, t)u(x′, t)h(x′) dx′,

and

R̃τu(ζ, t) = G̃τu(ζ, t) − G̃τu(ζ, 0),

so we have

Rτu(x, t) = (τ/π)m/2R̃τu(Z(x, t), t).

If F : IR −→ R is a function of bounded variation with weak derivative F ′ = µ, the
fundamental theorem of calculus for F states that

µ
(
(a, b]

)
=

∫

(a,b]

dµ = F (b+) − F (a+), −R < a < b < R.

Let F (t) = G̃τu(ζ, t). Since the function e−τ [ζ−Z(x,t)]2h(x) is C1, we have seen that
F (t) is a function of bounded variation, continuous from the right, and formula (2.8)
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leads to

R̃τu(ζ, t) = F (t) − F (0)

=

m∑

k=1

∫ t

0

∫

Rm

λk(x
′, t′) detZx u(x

′, t′)∂x′

k

(
h(x′)e−τ [ζ−Z(x′,t′)]2

)
dx′dt′

+

∫ t

0

∫

Rm

(detZx′u)(x′, t′)h(x′)∂t′
(
e−τ [ζ−Z(x′,t′]2

)
dx′dt′

where
∫ t
0

must be understood as
∫
(0,t]

for t ≥ 0 and as −
∫
(t,0]

for t < 0. Using the

fact that (
∂t′ +

m∑

k=1

λk∂x′

k

)
e−τ [ζ−Z(x′,t′)]2 = 0

we get

(2.6) R̃τu(ζ, t) =

∫ t

0

∫

Rm

u(x′, t′)e−τ [ζ−Z(x′,t′)]2Lh(x′, t′) dx′dt′

which, for ζ = Z(x, t) gives

Rτu(x, t) = (τ/π)m/2
∫ t

0

dt′
∫

Rm

e−τ [Z(x,t)−Z(x′,t′)]2 u(x′, t′)Lh(x′, t′) dx′,

which extends the classical expression for Rτu. If δ > 0 is chosen so that h(x′) ≡ 1
for |x′| ≤ 2δ, and we take |x| ≤ δ and t sufficiently small, the exponential in the
expression of Rτu(x, t) can be majorized by e−cτ for some c > 0, allowing us to
conclude that the estimate |Rτu(x, t)| ≤ Ce−cτ holds in a neighborhood Ω of the
origin and, in particular, Rτu(x, t) → 0 uniformly on Ω as τ → ∞. On the other
hand, standard arguments show that, Gτu(x, t) converges weakly to the measure u. It
follows that Eτu(x, t) → u(x, t) in D′

0(Ω) as τ → ∞. If we assume now that the trace
detZx(x, 0)u(x, 0) ≡ 0, we see that Eτu(x, t) ≡ 0 showing that u = 0 on Ω. Suppose
next the left hand limit limt→0− Zx(x, t)u(x, t) = (Zxu)(x, 0−) = 0. Then the equation
µ([b, 0)) = F (0−)− F (b−) for b < 0 implies that (Zxu)(x, b−) = 0 for b < 0. Since F
is continuous except possibly on a countable set, we can get b < 0 arbitrarily close to
0 where F is continuous and hence where the trace Zx(x, b)u(x, b) = 0. We can then
use the approximation scheme as above by using the trace at such b (with b sufficiently
small) in the definition of the operators Eτu(x, t) to conclude that u(x, t) ≡ 0 in a
neighborhood of the origin. This shows that a function of bounded variation f(t)
satisfying

〈detZx u, φ⊗ ψ〉 =

∫
〈f(t), ψ〉φ(t) dt, φ(t) ∈ C∞

c (IR), ψ(x) ∈ C∞
c (QR),

cannot have a jump at a point t = t0 unless both f(t0+) 6= 0 and f(t0−) 6= 0. Notice
that the value f(t) is completely determined outside the at most countable set at which
jumps occur and that at the jumps the value of f is arbitrary, unless one imposes, say,
that f is continuous from the right or continuous from the left. We may now state
and prove
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Theorem 2.3. Let L be a locally integrable continuous subbundle of CT (M).
Let u ∈ D′

0 be a Radon measure such that Lu = 0, and let Σ be a C1 hypersurface
noncharacteristic with respect to L. Let p ∈ Σ and let N = N(p) be a unit vector
normal to Σ at p. There exists a nonvanishing continuous function D defined in a
neighborhood Ω of p such that u1 = Du has a well defined trace Tτu1 defined on the
translates (τN + Σ) ∩ Ω along N satisfying the following properties:

(1) lim
εց0

Tτ+εu1 = Tτu1 (one-sided continuity);

(2) if T0u1 = 0 on Σ ∩ Ω then u vanishes identically on a neighborhood of p
(uniqueness).

Proof. We may find local C1 coordinates x1, . . . , xm, t1, . . . , tn, defined in a neigh-
borhood Ω of p so that xk(p) = tj(p) = 0, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and a complete set
of first integrals is of the form

Zj(x, t) = xj + iϕj(x, t), j = 1, . . . ,m,

with ∂ϕj/∂xk(0, 0) = 0. Furthermore, we may assume that Σ ∩ Ω is given by t1 = 0
and that N points in the direction of increasing t1. If n = 1, we have just seen
that taking D = detZx the conclusions of the theorem are obtained. For n > 1 we
discard the vector fields L2, . . . , Ln and rename the coordinates as follows: t′ = t1,
x′k = xk, 1 ≤ k ≤ m, x′m+k = tk+1, 1 ≤ k ≤ n − 1. Then we add new first integrals
Zm+1(x

′, t′) = x′m+1, . . . , Zm+n−1(x
′, t′) = x′m+n−1. This leads us to a new locally

integrable structure L̃ of dimension 1 spanned by L = L1 such that L̃u = 0. Hence,
we may reason as before and conclude that detZxu has a trace on Σ with the required
properties.

Note that we may as well define a trace that possesses the uniqueness property
(2) but instead of (1) satisfies lim

εց0
Tτ−εu1 = Tτu1.

If u vanishes as a distribution above a noncharacteristic hypersurface Σ it is clear
that Tτu1 = 0 for τ > 0 and sufficiently small. Then the continuity property (1) of
the trace Tτu1 implies that T0u1 = 0, so the support of u cannot meet Σ by property
(2). If u vanishes below Σ we reach the same conclusion by using the trace that is
continuous from the left. It follows from Theorem 2.3 that the support of u propagates
along the normal of noncharacteristic hypersurfaces, which implies in a standard way
that the support of u is a union of orbits of L.

Corollary 2.4. Let L be a locally integrable continuous subbundle of CT (Ω),
Ω ⊂ RN open. Let u ∈ D′

0(Ω) be a Radon measure such that Lu = 0. Then the support
of u is a union of orbits of L in Ω.

For the case of a CR structure on a generic CR submanifold M ⊂ Cn of class C1,
we recover a result of [CR]:

Corollary 2.5. ([CR]) Let M be a generic CR submanifold of Cn of class C1.
Then the support of a CR distribution u ∈ D′

0(M) is a union of orbits.

Remark 2.6. In the CR case, there are two differences between our results here
and the ones proved in the paper [CR]. First, in [CR], Corollary 2.5 is deduced from
a weaker uniqueness result (Lemma A.5 in [CR]) than the one stated in part 2 of
Theorem 2.3. Second, the results in [CR] do not show that a measure solution can be
approximated by C1 solutions as is done in section 3 here (see Theorem 3.2).
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Remark 2.7. If µ is a Radon measure that has a trace defined at a family of trans-
lates of a hypersurface Σ and f is a continuous function, it is not true, in general,
that the product fµ also has a trace. For instance, the function µ(x, t) = 1/(x+ it) ∈
L1

loc(R
2) has a trace Ttµ, continuous from the right, given by the locally integrable

function R ∋ x 7→ 1/(x+it) for t 6= 0 and equal to the distribution T0µ = pv(1/x)−iπδ
for t = 0. Consider the continuous function defined by f(x, t) = 0 for x ≤ 0 and
f(x, t) = 1/| lnx| for x > 0 and set ν(x, t) = (fµ)(x, t). Thus, ν ∈ L1

loc(R
2) is contin-

uous off the origin and has a natural restriction to the straight lines t =constant6= 0
given by restriction. On the other hand, if v(x) ∈ C∞

c (R) is real and v(0) 6= 0 we see
that

lim
t→0

Re

∫
ν(x, t)v(x) dx =

∫ ∞

0

v(x)

x| ln x|
dx = ∞,

so it is not possible to define a one-sided continuous trace for ν that coincides with
restriction for t 6= 0.

3. Approximation of measure solutions by smoother solutions.. Assume
as in section 2 that L is a continuous locally integrable structure defined in an open
subset Ω of RN that contains the origin, with fiber dimension n, and that u ∈ D′

0(Ω)
satisfies the equation Lu = 0. Shrinking Ω we may assume that u is a finite measure
and choosing appropriate C1 coordinates x1, . . . , xm, t1, . . . , tn, we may assume that
a complete set of first integrals are of the form

Zj(x, t) = xj + iϕj(x, t), j = 1, . . . ,m,

with ϕj real satisfying ∂ϕj/∂xk(0, 0) = 0 and |∂ϕj/∂xk(0, 0)| small throughout Ω.
Consider balls B1 ⊂ Rm, B2 ⊂ Rn, B1 = B(0, r1), B2 = B(0, r2), such that B1×B2 ⊂
Ω, and for ψ(x) ∈ C1

c (B1) set

〈(detZxu)ψ, φ〉 = 〈detZxu, ψ ⊗ φ〉, φ(t) ∈ C1
c (B2).

If follows from the discussion in section 2 that (detZxu)ψ is a finite measure on
B2 such that its exterior derivative dt(detZxu)ψ is also a finite measure. In other
words, (detZxu)ψ may be identified with a function of bounded variation fψ(t) =
〈f(t), ψ〉 ∈ BV (W ), B̄2 ⊂ W . We now recall some general properties of functions
of bounded variation (see, e.g., [G]): if g(t) ∈ BV (W ) then g(t) ∈ L1(W ) and its
derivatives ∂g/∂tj = µj are measures with total bounded variation ‖µj‖ = |µj |(W ),
where |µ| is the variation of µ. In fact, g(t) belongs to the smaller space Lp(B2), with
p = p(n) = n/(n− 1), and the generalized Poincaré inequality holds: if we denote by

gB2
=

1

|B2|

∫

B2

g(t) dt

the mean value of g on B2, then

‖g − gB2
‖Lp(B2) ≤ C

n∑

j=1

|µj |(B2),

where C > 0 depends on the dimension n but neither on the radius of B2 nor on g. A
pointwise estimate related to the Poincaré inequality is given in the following lemma.
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Lemma 3.1. Let g be of bounded variation on an open set W ⊂ Rn that contains
B̄2 and set ∂g/∂tj = µj, |µ| =

∑n
j=1 |µj |. Then

(3.1) |g(t) − gB2
| ≤ C

∫

B2

|t− s|1−nd|µ|(s), a.e. t ∈ B2

where C depends only on n.

Proof. For g ∈ W 1,1(B2) the lemma is well known (see, e.g., [GT,Lemma 7.16]).
Let g be as in the lemma. Let η(s) ∈ C∞

c (Rn) such that η(s) is nonnegative, its
support lies in the unit ball B1(0) and

∫
Rn η(s) ds = 1. Set ηǫ(s) = ǫ−n η(s/ǫ). If

gǫ(t) = ηǫ ∗ g(t),

then gǫ → g in L1 and gǫ(t) → g(t) a.e. For t ∈ B2, and for any ǫ > 0, we have

(3.2) |gǫ(t) − (gǫ)B2
| ≤ C

∫

B2

|Dgǫ(s)|

|s− t|n−1
ds.

Note that

Dgǫ(s) = ηǫ ∗ µ(s)

where µ = (µ1, . . . , µn). It follows from (3.2) that

(3.3) |gǫ(t) − (gǫ)B2
| ≤ C

∫

Br2+ǫ

(∫

B2

ηǫ(s
′ − s)

|s− t|n−1
ds

)
d|µ|(s′).

We will estimate the inner integral which after a change of variables is dominated by
∫

|s|≤1

1

|s′ − t− ǫs|n−1
ds.

For y ∈ Rn fixed, y 6= 0, consider therefore the integral

(3.4)

∫

|s|≤1

1

|y − ǫs|n−1
ds.

If |y| ≥ 2ǫ, then for all |s| ≤ 1, |y − ǫs| ≥ |y|
2 and so for such y,

∫

|s|≤1

1

|y − ǫs|n−1
ds ≤

cn
|y|n−1

.

Suppose |y| ≤ 2ǫ. In the integral in (3.4), change variables t′ = ǫs. We then get
∫

|s|≤1

1

|y − ǫs|n−1
ds =

1

ǫn

∫

|t′|≤ǫ

1

|y − t′|n−1
dt′

≤
1

ǫn

∫

|t′|≤3ǫ

1

|t′|n−1
dt′

≤
c

ǫn−1
≤

cn
|y|n−1

.

It now follows that for some dimensional constant Cn,

(3.5)

∫

B2

ηǫ(s
′ − s)

|s− t|n−1
ds ≤

∫

|s|≤1

1

|s′ − t− ǫs|n−1
ds ≤

Cn
|s′ − t|n−1

.
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To prove (3.1) for a fixed t ∈ B2, we may assume —and we will do so— that the
function s 7→ |t− s|1−n ∈ L1(B2, d|µ|), otherwise the right hand side would be infinity
and the inequality trivial. By the Dominated Convergence Theorem, it follows that

lim
ǫ→0

∫

Br2+ǫ

(∫

B2

ηǫ(s
′ − s)

|s− t|n−1
ds

)
d|µ|(s′)

=

∫

s′
lim
ǫ→0

χBr2+ǫ
(s′)

(∫

B2

ηǫ(s
′ − s)

|s− t|n−1
ds

)
d|µ|(s′)

=

∫

B̄2

(∫

t′

η(t′)

|s′ − t|n−1
dt′
)
d|µ|(s′)

=

∫

B̄2

1

|s′ − t|n−1
d|µ|(s′)

where χBr2+ǫ
(s′) denotes the characteristic function of the ball Br2+ǫ. Thus, letting

ǫց 0 in (3.3), we obtain estimate (3.1) with the integral on the right hand side taken
over B̄2 instead of B2. But then we obtain (3.1) by expressing B2 = B(0, r2) as an
increasing countable union of closed balls of radius < r2 and applying the weaker
estimate to the smaller closed balls. This proves the lemma.

Remark. It is known that (3.2) holds with C = γn = 2n−1Γ(n/2)/πn/2. Then the
trivial estimate |Dgǫ(s)| ≤

∑n
j=1 |Djgǫ(s)| implies that we may take C = γn in (3.3)

and the proof of the lemma shows that (3.1) is valid with C = γn.
We will now introduce a variation of the Baouendi-Treves approximation formula

that does not require a continuous trace of the solution to maximally real submanifolds.
For (x, t) ∈ B1 × B2, τ ≥ 1, and a fixed bump function h(x) ∈ C∞

c (B1) that is
identically 1 on a neighborhood of the origin, set

Fτu(x, t) = (τ/π)m/2
1

|B2|

∫

Rm×B2

e−τ [Z(x,t)−Z(y,s)]2 detZy(y, s)u(y, s)h(y) dy ds.

The integral
∫

Rm×B2

e−τ [Z(x,t)−Z(y,s)]2 detZy(y, s)u(y, s)h(y) dy ds

in the definition of Fτu(x, t) is understood as
∫

B2

〈
f(s), e−τ [Z(x,t)−Z(·,s)]2h(·)

〉
ds.

It is clear that, for fixed τ ≥ 1, Fτu(x, t) is an entire function of Z(x, t), in particular,
it satisfies the equation LEτu = 0 in the classical sense and is of class C1. We wish
to show that, for r2 sufficiently small, Fτu(x, t) → u(x, t) in the weak-∗ topology of
C0
c (U)∗ as τ → ∞ for a convenient neighborhood of the origin U ⊂ Rm × Rn. More

precisely, we will show that, given v ∈ C0
c (U),

〈u− Fτu, v〉 −→ 0 as τ → ∞.

For s ∈ B2 and ζ ∈ C
m consider the function

gτ (s, ζ) = (τ/π)m/2
∫

Rm

e−τ [ζ−Z(y,s)]2 detZy(y, s)u(y, s)h(y) dy.
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Notice that gτ (s, ζ) is of the form (detZx u)ψ for a convenient ψ depending on τ and
ζ so gτ (s, ζ) is defined for all τ ≥ 1, all ζ ∈ C and all s ∈ B2 \ E, with |E| = 0, and
belongs to Lp(B2) for τ, ζ fixed. To see that E can be taken independently of ζ and
τ , we may replace the exponential by its Taylor series, obtaining a power series in ζ
and τ with coefficients that are linear combinations of functions of the form

cα(s) =

∫

Rm

Z(y, s)α detZy(y, s)u(y, s)h(y) dy, α ∈ Z
n
+,

defined for s ∈ B2 \ Eα, |Eα|=0. Then we take E =
⋃
αEα. The norm of cα(s) in

BV (B2) is dominated by the C1 norm of Z(y, s)αh(y), which has polynomial growth
in α, so the argument shows that we may regard (ζ, τ) 7→ gτ (s, ζ) as an entire holo-
morphic function with values in BV (B2). Using (3.1) we get

(3.6) |gτ (t, ζ) − gτB2
(ζ)| ≤ C

∫

B2

|t− s|1−nd|µτ |(s, ζ), a.e. t ∈ B2.

For ζ = Z(x, t) we get

gτ (t, Z(x, t)) = Gτu(x, t)

gτB2
(Z(x, t)) = Fτu(x, t)

so (3.6) yields

(3.7) |Gτu(x, t) − Fτu(x, t)| ≤ C

∫

B2

|t− s|1−nd|µτ |(s, Z(x, t)),

for a.e. t ∈ B2. To take advantage of estimate (3.7) we need to compute

µτj (t, ζ) =
∂

∂tj
gτ (t, ζ)

=
∂

∂tj

∫

Rm

e−τ [ζ−Z(y,t)]2 detZx(y, t)u(y, t)h(y) dy.

Differentiating under the integral sign, using the equation Lju = 0 in order to replace
∂tj (detZx u) by −

∑m
k=1 ∂yk

(detZx λjku) in the first term on the right, integrating by
parts with respect to y and using the fact that

(
∂tj +

m∑

k=1

λjk∂yk

)
e−τ [ζ−Z(y,t)]2 = 0

we get

µτj (t, ζ) =

∫

Rm

e−τ [ζ−Z(y,t)]2 (detZx u)(y, t)

m∑

k=1

λjk
∂h(y)

∂yk
dy.

=

∫

Rm

e−τ [ζ−Z(y,t)]2 (detZx u)(y, t)hj(y, t) dy.

To estimate the variation |µτj (ζ)| of µτj (·, ζ) on B2 observe that if φ(t) ∈ L∞(B2),

∫
µτj (t, ζ)φ(t) dt =

∫
e−τ [ζ−Z(y,t)]2 detZx(y, t)hj(y, t)φ(t) du(y, t)
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so, for any Borel set E ⊂ B2,
∫

E

d|µτj |(ζ) ≤ C sup
(y,s)∈suppdh×B2

e−τℜ[ζ−Z(y,s)]2
∫

B1×E

d|u|

where |u| denotes the variation of u. For ζ = Z(x, t) we get

(3.8)

∫

E

d|µτj |(Z(x, t)) ≤ C sup
{2δ≤|y|<r1}×B2

e−τℜ[Z(x,t)−Z(y,s)]2
∫

B1×E

d|u|

if we assume that h(y) has been chosen to satisfy h(y) ≡ 1 for |y| ≤ 2δ < r1. Let
v(x, t) ∈ C0

c

(
B(0, δ) ×B2

)
and consider

Iτ (v) =

∫ (
Gτu(x, t) − Fτu(x, t)

)
v(x, t) dxdt.

If (x, t) is in the support of v(x, t) and r2 is chosen conveniently small (depending on δ)
we verify that, in the exponent on the right hand side of (3.8), ℜ[Z(x, t)−Z(y, s)]2 ≥
c > 0. Thus, in view of (3.7) and (3.8),

|Iτ (v)| ≤ C‖v‖L∞e−cτ
∫

B1×B2

∫

B1×B2

dxdt

|t− s|n−1
d|u|(y, s)

≤ C‖v‖L∞ |u|(B1 ×B2) e
−cτ .

This shows that Iτ (v) → 0 as τ → ∞. On the other hand, adapting the arguments
in [HM] (where Z(x, t) is smooth) there is no difficulty in proving that, since u(x, t)
is a bounded measure, there is a neighborhood U of the origin in Rm × Rn such that
Gτu→ u in the weak-∗ topology of C0

c (U)∗. Thus,

〈u− Fτu, v〉 −→ 0 as τ → ∞,

as we wished to prove.

Remark. Integrating (3.7) with respect to dxdt on B1 × B2 and taking account
of (3.8) we see that

‖Gτu− Fτ‖L1(U) ≤ C, τ ≥ 1.

Since, it is known that ‖Gτu‖L1(U) ≤ C it follows that ‖Fτu‖L1(U) ≤ C as well.
We have proved:

Theorem 3.2. Let L be a locally integrable continuous subbundle of CT (M).
Let u ∈ D′

0 be a Radon measure such that Lu = 0. Then for each p ∈ M, there
is a neighborhood Ω and a sequence Pk of holomorphic polynomials such that u =
limk→∞ Pk(Z) in the weak-∗ topology of C0

c (Ω)∗ where Z = (Z1, . . . , Zm) is a complete
set of first integrals on Ω.
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