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1. Introduction. Let w be the standard symplectic 2-form on R*", given by

w:dej/\dCL'j7 (5,1') = (617"' 7§n7$17"' 75[:71) €R2n'

j=1
Consider two real analytic hypersurfaces in R?"(n > 2) defined by

F:f(§ ) =0, G:g(&x) =0,

where f, g are real analytic functions. F' and G are said to be glancing at p € FNG if

{f,g}(p) =0, df Nndg(p) #0,
1 Af 93 (p) #0# {g,{9, f}}(»),

in which {f, g} is the Poisson bracket of f, g with respect to w, defined by

af & af o
{fag}:nga szza—xja_gj_a_g]a_xj

A (local) map from R?" to R?" is said to be symplectic if it preserves w. Given
two pairs of hypersurfaces {F;, G;} glancing at p;(j = 1,2) respectively, they are
equivalent if there exists a real analytic symplectic mapping ¢ defined near p; such
that

d(p1) =p2, o(F1) =F2, ¢(G1) = Ga.

Since we consider local equivalence only, we assume that p; = po = 0.
In [5], Melrose showed that each pair of glancing smooth hypersurfaces in R?"(n >
2) is equivalent to the pair

(1.1) Fizy=0, G:&=8+n

under a (C*°) smooth change of coordinates; Melrose’s argument also shows that all
real analytic glancing hypersurfaces are equivalent to the above normal form by formal
symplectic maps. It was proved by Oshima [6] for n > 3 and by the second author [3]
for n > 2 that for some pairs of real analytic glancing hypersurfaces, the normal form
cannot be achieved by any convergent symplectic map.
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20 P. AHERN AND X. GONG

A pair of glancing hypersurfaces F' and G generates a pair of involutions on
J = FNG. This pair of involutions plays an important role in Melrose’s approach,
which we now describe. Melrose first showed that in suitable real analytic symplectic
coordinates, F' = F': x1 = 0 and G is of the form

(12) 52 :€%+1’1b(§2,-'-,€n,$)7 b(O):l

In particular J = FNG: 21 = 0,& = &7, Put € = (&,...,&), v = (23,...,2n).
Choose 1,2, €, 'v as coordinates on J. We have w|; = d&} A dag + 2?23 dg; A
dz;. Each solution curve of Hamiltonian vector field Xy on F' is tangent to K C
J: {f,g} = 0 or intersects J \ K at two distinct points. It turns out that the map,
which interchanges two intersection points, extends to a real analytic involution Ir
on J, fixing K pointwise. Note that w™~!|; vanishes precisely on K C J and that K
is defined by &, =0 on J.

Analogously, one can define glancing holomorphic hypersurfaces of C?" (n > 2),
for which w = Z?Zl dé; A dz; is the holomorphic symplectic 2-form.

In fact, we will treat the complex case, and the real case is treated via a reality
condition. From now on (£, z) will be the coordinates of 92". We regard R?" as the
set of fixed points of anti-holomorphic involution p: § — £, x — T.

As mentioned above, there are examples of pairs of real analytic glancing hyper-
surfaces for which the normal form cannot be achieved by any convergent symplectic
change of coordinates (although such a formal change of coordinates always exists).
In [8], Voronin describes a method of showing that divergence not only can happen
but it is generic. His results are based on his theory of moduli space in several vari-
ables [7]. As usual when this method is applicable it actually shows not only that the
generic pair of glancing hypersurfaces is not convergently equivalent to the normal
form but that the set of equivalence classes is infinite dimensional (not just infinite).

Paper [7] is rich in detail but [8] has no proofs at all. It is our opinion that
providing the details for Voronin’s program, [8], requires some more ideas than those
included in his earlier paper, [7]. The purpose of this paper is to give a self contained
and detailed proof about the infinite dimensionality of equivalence classes of glancing
hypersurfaces, part of results announced in [8].

2. Realizing pairs of involutions for glancing hypersurfaces. In this sec-
tion, we will show that two pairs of glancing hypersurfaces are equivalent if (and only
if) their pairs of involutions are equivalent under some holomorphic mapping preserv-
ing the degenerate 2-form dé3 A dza + dés A dxg + -+ - + dé, A dx,,. We will also find
a pair of glancing hypersurfaces for a given pair of involutions satisfying some condi-
tions. See Proposition 2.4 for conditions on the involutions. Therefore, we identity
the classification of glancing hypersurfaces in C?" with that of pairs of involutions in
C?7=2 equipped with the degenerate 2-form.

Recall that € = (&3,...,&), & = (23,...,T,). When a pair of glancing hypersur-
faces is given by

F:$1:07 G:§QZ§%+‘T17
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its pair of involutions, defined on (&1, x2, €, 'x)-space, is

& =&, &1 =&,

fli xh = g, fg: xh = xg — 264,
§o =8, 2<a<n, o = &a,
xl, = x4 xl, = To.

(Throughout the note the o runs from 3 through n.) The composition fgfl is
) G =&, zp =2 +26,
- f& = &a, :Eil = Tq-

For an arbitrary pair of glancing hypersurfaces, we always assume, after a preliminary
change of coordinates ([5], [3]), that it is in the form

F=F:21=0, G:&=8+mzb&,... .5 x), b0)=1.
Their involutions have the form
L=1, Li=L+0(2), Lle—o=Dle—o.
Hence o = I,I; = I;o~'I; has the form

& =& + &,

o zy =72 +26 + 611, q1(0) =0,
' 5& =&a +&1Pa, pa(o) =0,
T, = o + &14¢a, 4a(0) =0,

where p;,g; are holomorphic functions defined near 0 € J = FN G. On J, we also
have a holomorphic two-form

wly= (Y d&§ Ndaj)|y =26d6 Adza + Y déa Adz.

1<i<n 2<a<ln

It is obvious that Ifw|; = w|y. We also have Ijw|; = w|y, since by a change holo-
morphic symplectic coordinates, we can transform F', G into G, F'.
In the real case the restriction of p on J is

P 61 = 617 :EIQ = Ta, g(/x = 50(7 x:y =Tq.

The corresponding holomorphic involutions then satisfy the reality condition
I; = pljp, o= pop.
We also have p*w|; = w|;.

It is obvious that if two pairs of glancing hypersurfaces {Fj;,G;},j = 1,2 are
equivalent by some holomorphic map f preserving w, their corresponding pairs of
involutions are also equivalent by a holomorphic map preserving w| ;.

Next we want to show the converse is true.



22 P. AHERN AND X. GONG

Throughout the note, w|r stands for the pull-back of a differential form w on C?"
by the inclusion F' — C?". We need the following version of relative Darboux lemma.

LEMMA 2.1. Let wy,w1 be two closed holomorphic 2-forms defined in a neigh-
borhood of the origin in C?*. Assume that (1 —t)wo + twy are non-degenerate at the
origin for all t € [0,1].

(i) If S C C?" is a germ of holomorphic submanifold at 0 with wi|s = wols
there exists a holomorphic mapping f, defined near the origin and fizing S
pointwise, such that f*w; = wy.

(1) If F and G are two smooth holomorphic hypersurfaces intersecting trans-
versely at the origin and if wi|rp = wolr and wi|le = wolq, there exists a germ
of holomorphic mapping f at 0, fiving F pointwise, such that f(G) = G and
f*wl = wyp-

In both cases, if all coefficients of w1 — wg vanish at the origin, one can achieve

f=1d+0(2) additionally.

Proof. The proof is based on Moser’s homotopy method. The first part is due to
Givental’. We shall modify the proof in [2] to show the second part. Note that one
would not expect to find f that fixes both F' and G pointwise.

(i) Without loss of generality, one may assume that S is given by 21 = --- = a2, =
0, with (z1,...,72,) being coordinates of C?". Write w; = da;j on C?". We need to
find the flow ¢; of a time-dependent holomorphic vector field v; defined near 0 € C?»
such that

d . . d .
0= E(btwt = ¢; (Ly,wt + Ewt) = ¢y d(L,wi + a1 — ),

where L,, = dty, + ty,d is the Lie derivative. Then we will set ¢, w; + a1 — a9 = 0.
We also need the coefficients of v; to vanish on S, i.e. the vanishing of the coeflicients
of a1 —ag on S, S0 ¢t|s = id as required.

Starting with d(a; —ag)|s = 0, we get a holomorphic function gg in @g41,. ..,z
such that (a1 — ag)|s = dgo. Thus on C?" we can write

k k
o] — Qg = dgo =+ szﬁl + Zbi(:vk_H, - ,{Egn) dx;

i=1 i=1
k

=d(go + szbz) +6, 0= le(ﬁz —db;).
% i=1

Thus wi —wo = df. Since wy = 37, ;uy;(w,t)dx; A dry and (us;) = —(uyi) is non-
degenerate, there is a unique holomorphic vector field v; = Zvja%k on C?" such
that

by, wt =2 E U,V dey = —0.
J.k

Since the coefficients of # vanish on S, the coefficients of vector field v; vanish on S
too.

(ii) Without loss of generality, one may assume that F and G are hyperplanes
given by x7; = 0,22 = 0, respectively. Again we are looking for a particular vector
field vy such that its flow ¢; will fulfill the requirements.
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As above, write w; = da;. We first want to find a holomorphic function g such
that

(2.1) a1 — ap = dg + 1220 + x1¢(x) da,
where ¢ is holomorphic near 0 € C?". Starting with d(cq — ag)|z,—0 = 0, we get a
holomorphic function gg in 22, ..., za, such that (aq — ag)|r = dgo. Write
a1 — ag = dgo + 11 Zak(x) day + b(xa, ..., xapn) day
=d(go + 210) + 21 Y _ aj(x) day
=dg1 + r122 Zfik(m) dxy + 11 Z bi(z1, 3, ..., Tap) dry
= dgs + 122 Zfik(m) dxy, + x1ba(z1, 23, . . ., Tap) d2a,

where 1 Zk# br(x1,x3,. .., Ton) dry is absorbed into go via

d(Oél — 040)|m2:0 = d{xl Z bk($1,x3, e ,xgn) dl‘k} =0.
k#2

Thus, the decomposition (2.1) is obtained. As before there is a unique holomorphic
vector field v, = Uja%k on C?" such that

2 E :ujkvj dzg = Ly,wy = —21723 — x1(T) da.
ik

The diagonal elements of (ug;)~' = (iy;) are zero. Hence

c . 0 0
vy = :Eli Z’UJJQ({E,t)%j + 12 qu(x,t)%j.
72 J
Therefore the flow of v fixes the hyperplane z; = 0 pointwise and preserves z = 0.
Assume now that wq —wp = O(1), i.e. it vanishes at the origin. Let 6 be the linear
part of Zle x;(0; — db;) for (i), and 6 = z1¢(0)dxg for (ii). Then df = 0. Replace 6
by 6 — 6 = O(2). Then v; = O(2) and ¢, = id+0(2). O
LEMMA 2.2. Let ¢ be a local biholomorphic mapping of J that preserves w|;.
Assume that ¢ commutes with Iz and its linear part ©'(0) commutes with I5. Write

5{ = 5112[1(512,{E2, Ev /I)v
p: 8 €= Au(&3, 70,6, ), 2<a<n,
= Bi(&, a2, 6, 'w), 2<k<n,

where Al,AQ,Bak are holomorphic functions. Then ¢ extends to a biholomorphic
mapping @1 of I such that @1 preserves w|p and has the linear part

& =pb, &G=p, p=A4(0), g =1,
xh = Ba(x2, €, 'x)

= pre + Z2<a§n(a’0¢§0¢ + bata),
§o=4a(€ ), 2, = Ba(¥%, ),

©1(0):
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in which Bz (z2, €, 'v), Aa(, 'v), and B, (€, 'z) are the linear parts of Bo(0, 22, '€, '),
An(0,29, €, &) and B, (0, x2, €, 'z), respectively.

Proof. Since ¢'(0) commutes with I5: ] = —&1, 25 = 22 — 261,§, = &a, 7, = Ta
then the linear parts of plz = I5¢ yield

§2(va25 /57 /I) = px2 + Z aaéa + baxa + 0(2)7
2<a<n
Aa0,22, ¢, 'w) = Aa(€, 1) + O(2), 2<a<n,

Bo (0,22, €, 'r) = Ba(, ') + O(2).
We have

(22)  d§ Adwa+ Y déa Adze = d(E1AL(E], 72, €, '0))? NdBa(EF, 22, €, ')

2<a<ln

+ Z d;[a(gfax% I,§»7 Ix) A déa(é%v:p?a /57 /I)'

2<a<ln

Note that the last summation does not contribute §1d§; Adza due to the absence of zo
in the linear parts of A;, B; for 2 < a < n. Comparing the coefficients of £1d&; A dxa
gives us p? = 1. Define ¢, by

¢ = &A1 (&, 10, %, '),

&) = E2A3 (&2, 22, %, '),

€, = Aa(E2, 22, €, '),

z) = Br(&, 22,6, '), 2<k<n.

Replacing &% by & in (2.2), we obtain ¢jw|s = w|z. O

LEMMA 2.3. Let {F;,G,;},j = 1,2 be two pairs of holomorphic glancing hy-
persurfaces with J; = F; N Gj. Let ¢: J; — Ja be a local biholomorphic mapping
satisfying ©* (w]y,) = wls,, Ik, = @lp et and Ig, = plg, 1. Then ¢ estends to a
holomorphic symplectic mapping on C2", sending F1, G into Fy, G, respectively.

Proof. By Melrose’s preliminary normalization (see also [3]) and by two changes
of symplectic coordinates, we may assume that F; = Fy, = F': x1 = 0, and

Gj: & =€ +a1bj(&a,... &n, ), b;(0) =1,

By applying Lemma 2.2 twice, we first extend ¢ to some biholomorphic map ¢1: F; —
F5 and to some biholomorphic map ¢s: Gi — Gy satisfying pjw|p, = w|m and
oswla, = wlg,. We then extend 1, 2 to some biholomorphic mapping ¢3 on C?".
The existence of such extension (3 is elementary, which can be verified by two changes
of holomorphic coordinates sending both {Fy, G1} and {F3, G2} to 1 = 0 and 22 = 0.

Let w = d&§ ANdxy + -+ + d&, ANdx, and @ = cpgl*w. We want to show that
(1 — t)w + tw is non-degenerate at the origin. At the origin, i.e. as 2-forms on
ToF x ToF we have w|p = déa Ndwy + - + d&, A dxy,. Since @ = gpgl*w =w on F,
then & = w+dxy AQ at 0 € C?”, where 6 is a 1-from with constant coefficients. Note
that ToG,; = TOG'. Hence © = w, i.e., dey A =0 on TQG' X TOG'. Toé C ToC?" is
given by d(é —z1) = 0. We obtain dz; A0 = cdry Ad(&a — x1) = cdxy A dés for some
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constant c. It is obvious that t& + (1 — t)w = déa A d(x2 — texr) + 37, 40 d&j A dzj is
non-degenerate.

By Lemma 2.1 (ii) there is a holomorphic map ¢4 fixing F» pointwise and sending
G into itself so that pjw = @3 . Now @43 is a holomorphic symplectic extension
of ¢, transforming Fj into F» and G into Ga. O

We now prove a realization result.

PROPOSITION 2.4. Let J = FNG and K C J: & =0. Letw|y = dgf A dxy +
dés Ndxs + -+ + d&, AN dxy,. Let Iy, Iy be a pair of holomorphic involutions on J
satisfying I #1d, Io # I + O(2), I;|x =id and I;w|; = w|;. Then {I1, Iz} is the
pair of involutions of some glancing holomorphic hypersurfaces F,G.

Proof. The realization is outlined as follows: We shall first find ¢ which is
symplectic on C2", preserves J and its restriction to J transforms I into I 7 Then
F is the pull-back of F by ¢1. Construct G in the same way. We will verify that F, G
form a pair of glancing hypersurfaces with ' NG = J, by ensuring ToF' = ToF and
ToG = TvG.

Let I = I;. The linear part T of I fixes K pointwise. So Tis given by
51 = a’glu :EIQ = X2 + b§17 g(ll = ga +pa§17 ,’E; = T +Qa§17 2 <« S n.

Since I preserves w|y, 7= I'(0) preserves dés A dxs + - - - + d&, A day, i.e.

Z d(ga +pa€l) A d(l‘a + Qagl) = Z dga A dwau

2<a<ln 2<a<ln

which implies that p, = go = 0. Now coefficients of I*w|; = w|; that are linear in
61 y L2, 5017 Lo giVe us

n

d(a&1)? Ad(wy +b61) + Y (déa Ao + dag AO),) = dEF A daa,

a=3

which implies that a? = 1. Since I? = id # I then a = —1 and the linear part of I;
is & = —&,7h = o + 0161, &, = €4, ¥, = T This also shows that the linear part of
IQ is 51 = _5171:/2 =2 + b2§lu§g¢ = gouxla = Tq-

By a change of coordinates & = &1, 25 = x2 + ¢1£1,E, = &a, X, = Xo, OnE may
assume that by = 0. Then by # 0, since linear parts of I, I are distinct. By a
further change of coordinates of the form & = c&1,2h = ¢ 2x9,&, = &4, 7, = T4,
we obtain by = —2. Note that both changes of coordinates for J extend to maps
preserving w. For the first map is the restriction of & = &1, 7} = z1 +¢1(&2 —£2),¢h =
&,1h = x2 + 161, “' = 'w to J = FNG. The second map is the restriction of
& =cb,ah = ctay, & = A, ah =2y, € =6, = wto J.

Therefore, we may assume that I1, I are tangent to I, I, respectively.
Return to I; = I 4+ O(2) with I = Is. On J define ¢ = (IT + id)/2. Then
Tipo = ol Since 1y = id +0(2) fixes K C J: £ = 0 pointwise, then
! ¢ . . = | =
(23) wo—lz { 6_7 _6_] +§1A]7 A](O) 07 J 1,3,...”,

.I;:Ij—Fngj, BJ(O):O, j:2,...,n,
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where A;, B; are convergent power series in &1, 22,&qa, . Let 0 = 1/10_1*w|,]. Then

(24)  T=dG+&A) Nd@a+6B2)+ Y d(éa +614x) Ad(za + & Ba)

2<an
=Gwo+dG A Y (Padba + adre) + Y déa Adzg,
2<a<ln 2<a<n
where p, = —Balglzo,q(x = Aulg=0. Since I*w|; = w|; then I"& = &. Hence

Pa = qo = 0 and [*wy = —wgy. The former implies that A, = §1f~1a and B, = §1£~3a
for a > 2, and the latter implies that

fle = dff A {Z aj(gfv T2, Igv /J:)dl'] + ij(gf,l'g, /57 I$)d§]}

j=>2 ji>2
+ & Z v (&3, x2, €, 'v)d€; A daj + Z 7;j(€%7w27 €, 'w)dg; N dE;
i>2,5>1 52,
+ 3 A(ER w2, )dai A daj )

i>5>1
Looking at (2.4) again, we see that
a0 (0) = Aa(0),  ba(0) = —Ba(0), a2(0) = (1+A41(0))* = 1.

This shows that using the two-to-one branched covering T': (&), a%, ¢’ x') =
(€2 29, €, 'v) we can write © = T*w;, where

wi(&,m2, 6, 'w) = d& A{D_ a(&, w2, €, w)day + Y bj(&a, w0, €, '1)dE )

i>2 j>2

+ &l Y w(&we, € w)dE Ay + Y A6, o, 6, 'n)dSs A dE;
i>2,5>1 i>j>2

+ > (&, €, m)da; Aday} + d€s Adag + - - + dén Ady,

i>j>1
=dé& Ndzo + -+ dén A day,

+dée A (D Aa(0)dza — Ba(0)déa) +e,  ele—0 =0
a>2

and e is a 2-form in &3,x2, €, v whose coefficients vanish at the origin. Let
wl (527 %,(EQ, Ix) = (527 /é-uxQ - ZQ>Q(AQ(O)$Q - Ba(O)ﬁa), /$)- Then ’Q[Jiﬁwl = d§2 1A\
dzo + -+ - + d&, Ndzy, +Vie = déa Ndxo + - - - + dE,, A dx, + 0(1). Since 17 preserves
52 = 0 and 6|£2:0 = 0 then ’L/)Twlkzzo = (d§2 A dCCQ “+ -+ dfn A d$n)|§2:0. By
the result of Givental’ (Lemma 2.1 (i)), there exists a biholomorphic mapping 2 on
C?"~2 such that Y3¢iw; = déa Adxg + -+ + dé, A dxy,. Moreover, 19 is tangent to
the identity and fixes & = 0 pointwise. Thus we can write

&2 = Lo (&2, 22, €, '),

§ =&+ &ui(ée, 0, €, ), > 2,

I/2 = T2 — Ea>2(/ia(0)$a - Ba(o)ga) + &v2(&2, 22, €, '),
vl = x5 + §v;(€, 2, €, L), G > 2

P1tha:
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with u2(0) = 1,u3(0) = -+ - = up(0) = v2(0) = - - = v, (0) = 0. Define ¢3: J — J by
51 = 51”2(5%7$27 157 Ix)a
5_; = é.j +§%’Ug(§%,$27 /55 ! )7 ] > 27

xTh = x9 — Ea>2(A (0)xo — B, (0)€a) + E202(€2, 9, €, 'x),
x; =7y +€1'UJ(€1,$2, /57 I); j > 2.

Y3

Recall the map T: (&,ah, ¢, 2") = (62,22, %€, "2). Then 91927 = Ti3. Now

V3w = dég Adag + - + dé, A day, and @ = T*w; imply that iy Hw|; =

Y30 = P3Twy = T Y3hfwr = T*(déa Ndg +- - -+ d§, Ndxy) = w| . Return to (2.3)

and recall that A, = & A, and B, = & B, for oo > 2. We extend Vo ! to C?" by

=& +&A(&, a2, ), 27 =0,

fé - 52(1 + A1(§17 /57:[:2, /w))?,

—

1/}0 : x2_$2+€132(§l7%7x27l )7
é.a 504 + 52 (515 §,$2, )
.I _Ia+§2 (517 €5I27 I)

Extend 15 to 15 in C2" by

& = Gua(&F, 2, €, '), 2 =,
&2 = Lou3 (&7, 9, €, '),
Py Th = X9 — Za>2(/ia (0)za — Ba(o)ga) + 5%“2(55, T2, €, 1),
& =&+ &€, w2, €, '), 5> 2,
o =i+ v (6F, 2, €, ), 5> 2.

Recall that A;(0) = B3(0) = 0 and uz(0) = 1. A simple computation shows that
iy w =w+ O(1).

Since 13, 1y are extensions, we still have 1/~J§ 1/35 Yw| 7 = wl|s. By the result of Givental’
(Lemma 2.1 (i)), there exists a biholomorphic mapping 4 = id +0(2) on C*" such
that 1,4 fixes J pointwise and ¢4w3¢0 By =w.

Set 1 = ¢4 ¢3 LJo. Since th4 is tangent to the identity, looking at the above
formulas of 1/)0,1/)3 we conclude that F' = ¢} (ﬁ') is tangent to F: z; = 0. Since
4|y = id and ¢3| J = 13 commute with Iz and ¢0| 7 = 1o transforms I into I, we
have ¢ Igol = Ij. It is obvious that Ir = Iy, for any G such that F, G form a pair
of glancing hypersurfaces with F NG = J.

Applying the above to Iz, we find G, tangent to G, such that I = I, for any F
such that F', G form a pair of glancing hypersurfaces with F NG = J.

Let us show that F, G form a pair of glancing hypersurface. We have J C FFNG.
Let f,g with df # 0,dg # 0 be some defining functions of F, G respectively. Let f g
be the defining functions of F, @ respectively. Since [ g vanish on J = F NG, then
f=af +b§and g = cf + dg. Since F is tangent to F, then b(0) = 0. Also ¢(0 ) 0.
Without loss of generality, we may assume that f = f +bgand g =g+c f . Since
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bj = O(2) and ¢f = O(2), then at the origin we have df A dg = df A dg # 0. Recall
that {f,g} = Xyg. At the origin, we have {f,g} = {f+bg,§+cf} ={f,4} =0, and

{FAf o2y = {7 AF a0y + L A ef} + (b3, 91}
=2+{f. f{f,c} - 9{g.0}}
:2+f{fa{fac}}_{fag}{gvb}_g{fa{gvb}}:2
A similar computation shows {g,{g, f}}(0) = —2. O

3. Realizing moduli functions for pairs of involutions (n = 2). The re-
alization for moduli functions by pairs of involutions is essentially contained in [7],
with some obvious changes. The one-dimension case is due to Malgrange [4].

Let Vo g, = {z: argz € (o, 8),0 < |z| <7} C C?and Sy 5,r = Vo 5,r XA, C C?,
where § —a < 27 is called the opening of Vi, g, or S g,». A semi-formal power series
F(z,y) on Su ., is a formal power series in « whose coefficients are holomorphic in y
on disc A,. A holomorphic function f defined on S, g, is said to admit an asymptotic
expansion by a semi-formal power series F(z,y) = >, Fi(y)z", denoted by f ~ F, if
for each positive integer N

N

im e N {fe,y) - Y Fily)at} =0

Va,g,r22—0
\B, k=0

uniformly for |y| < ' for some 0 < 7' < r. We say that a holomorphic map H
on S, g, admits an asymptotic expansion ® of semi-formal map if each component
of @ is the asymptotic expansion of the corresponding component of H on S, 3 ,.
It is an elementary result that if a holomorphic map H is asymptotic to the iden-
tity map on S, 3. Then for each € € (0, 5;6(1) there exists 0 < r’ < r such that
H: Sa+25,ﬁ725,r’/2 - Sa-l—e,ﬁ—e,r’ is injective and H(Soc+25,ﬁ72é,r’/2) ) Sa+35,ﬁ735,r’/4

(see [1]).
Let 0 < a < 55. Consider 4 sectorial domains Sj ;11 = Sa;,g,,» With

Oélz_g+206, ﬁlzg_2a7 042:_1_(17 62:_K+O‘7

2 2
&y 37T+2 B T 9 5T B 37T+
g = —— « = —— — « Ny = ——— — (O = —— Q.
3 2 ) 3 2 ) 4 2 ) 4 2

Let Hjj11(= Hjtaj4+5) be holomorphic maps which are asymptotic to the identity
on Sjj41. Suppose also that

&(xvy) = (‘rvy+ 2I)3 I(.I,y) = (_‘rvy)a p(‘rvy) = (Tvy)a
(3.3) HYjda® Ady = da® A dy,
(3.4) Hyo =pHi2p, Haz=pHyip.

By the realization, we mean a biholomorphic map o, defined in a neighborhood of the
origin in J and satisfying 0 = 6+0(2),0|,—0 = id, 0 = [0~ = pop and o*dx> Ady =
dz® A dy, and biholomorphic mappings H; defined on some sectorial domains and
satisfying Hj_lon = 6, Hy = pHip, Hy = pH3p, and Hj; o = ITH;I, H;-‘dx2 A
dy = dz* A dy. Moreover, H; are asymptotic to the same semi-formal biholomorphic
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map P, and finally H; HJH = Hj ;41 on a sectorial domain SO/ Bl with opening
shrunk slightly from the sectorial domain Sy, g; » on which Hj ;11 is ‘defined and with
0 < r’ <r. Without the reality conditions (3 4), one drops pop = o, Hy = pH1p and
Hy = pH3p.

Fix 0 < e < 2%. Choose 0 < r3 < ro < rq sufficiently small such that the first
component hjj1 of Hj ;1 satisfies arg{z = h; j1(z,y)} < e on Sa, g,

(3.5) Hjji1: Aj = Sojt2e,8,—2e,m — Cj = Hjjr1(4;)
is biholomorphic and A; is now the domain of Hj ;1. Moreover,
(3'6) Saj+35xﬁj_357"'3 C éj C Saj"l'fxﬁj_exrl'

Set ap = g + 27 and fy = B4 + 2m. For j = 1,2,3,4,let S; = A;_; U B; UC; with
Bj = Sa;43¢,8;_1-3¢rs- Let Xo be the disjoint union Uj_;S;. We identify p € A;
with H;;11(p) € éj, which defines an equivalence relation on Xj since 6j does not
intersect Ay for k # j mod 4 by the choice of € and by (3.5) and (3.6). Let X be the
quotient space of Xy by the equivalence relation, and 7: Xy — X be the projection.
So U C X is open if and only if #=}(U) N S; are open for all j; in particular, if V
is open in S; then 7 (m(V)) =V UH;_1;(VNA;_1)UH; (VN C;) is open and
hence (V') is open. We need to show that X is Hausdorff. Let p,q be in X, with
w(p) # w(q). If p,q are in the same S;, take disjoint open sets Up 3 p, Uy 2 ¢ in
S;. Since Hj j+1 is one-to-one then mw(U,), w(U,) are also disjoint open sets. If p is in
S; and g is in Si for k # j,j — 1,5 +1 mod 4, then 7(5;), 7(Sk) separate p and gq.
Finally it remains to check the case that p € S; and ¢ € Sjy1. If ¢ € A, then p and
H; j+1(g) are both in S;, which is reduced to a previous case. The same argument
apphes if p e C Assurne now that p = (p1,p2) is in S; \C and q = (q1,42) is in
Sit1\ 4. Smce |arg{z "' h; jt1(z,y)}| < eon Sa, 8, and |arg{q; 'p1}| > €, we can
choose open sets U, > p and U, 3 ¢ such that H; ;11(U; N A;) does not intersect U,,.
Therefore, 7(Up) N 7(U,) is empty and X is Hausdorff.
Now X is a complex manifold with the coordinate map 7r;1 = (xj,y;) defined on

7(S;) and with value in S; C C2, and we also have its inverse 7;: S; — Xo — X.
Note that Hjjy1 = 7Tj_17rj+1 on Aj. On 7(Xo/4) define ¢, I;,®, p in coordinates as
follows

G: (z5,y5) — (z5,y; +2x;), @©= dz? A dy;,
I (w5,95) — (2542, Yi+2) = (=75, 95),
~ ~1 (:Eluyl) - (:I;27y2) = (fluyl)a
p=p": o
(:E?ny?)) — (T4,11) = (iﬂsays)-

Take a smooth non-negative smooth function x;(z,y) = x;(z/|z]) such that it equals
1 forargz € (1—-7)5 +¢€,(2—4)5 —¢) and zero for argz & ((1—7)5 —¢,(2—7)5 +¢),
and such that x1 + -+ 4+ x4 = 1. Set xx(mx(p)) = 0 when p € X \ 7(S;) and define

4
K(p) =Y xk(zr(p), ye(0)) (21 (p), vk (p)).
k=1

Then K(X) = DN(C* x C), where D is an open neighborhood of the origin in C?, and
K is a diffeomorphism for possibly smaller r5, 3. Thus one gets a complex structure
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on K(X) defined by Kj. 8‘3 ,Kj*aiy, where K o 7rj_1 = K on 7(S;). Note that
J7

(zk(p), yr(p)) = 7, ' (p) = Hk;(zj (), yj(p)) when xx(xx(p), Y& (p))x; (25 (p), z;(p)) #
0. Thus

4 4
Ki(t) = xe(Hij (0) Hyej () ~ > xi(t)Hi (1)
k=1

~ Y ot =t t=(z;(p),y;(p) € S;.
k=1

Hence the complex structure extends to D and agrees with the standard one along z =
0 to infinitely order. By the Newlander-Nirenberg theorem, there is a diffeomorphism
¥: D(C D) — Q C C? with 9(0) = 0 such that ¢ K is biholomorphic. Now the
inverse ¥~ !, expanded as formal power series in x, 7, is a formal power series in x only
and has coefficients holomorphic in y in a fixed domain. Using a finite order Taylor
expansion of ¢! if necessary, one may also assume that 1 (z,y) = (z,y)+O(]z]?). On
QN (C* x C) define o/ = pKoK =1 I' = YKL K =1 o = (YK)~*dx? A dy
and p' = YKpK ~1¢y~1. Again, since H; 41 ~ id then o ,Ij’,w',p' extend to Q with
o'(x,y) = 6(z,y) + O(|z|*) and 6(z,y) = (v,y +22), I'(z,y) = I(z,y) + O(|z]*),w" =
Ao(z,y)dz? A dy, Ag(0) = 1 and p'(z,y) = p(x,y) + O(|z|?). We need to apply
holomorphic changes of coordinates that are tangent to the identity and preserve
x = 0 to transform {o’, I',u’, p'} into {0, I,w, p}.

Let g = (id +pp')/2. Then pq is tangent to the identity and fixes x = 0 pointwise,
and p = pop'ey ' Put IT = pol'py ! and ot = @oo’py ' Note that I = pI implies
that I'p" = p'I'. Hence I'p = pI*. Let ¢ = (1d—|—II+)/2 Then ¢1p = pyp1 and
11T = Ip1. Since ro=0-= p*@, then wy = (P10 K)~1*& satisfies [*w; = wy =
p*wi. Moreover, wy = A (x,y)dx? Ady with A1(0) = 1. Thus A;(—2,y) = A1(z,y) =
Ay (z,y). Hence Ay(x,y)dz? A dy = d(zA(z?,y))? A dy with A(x, y) A(:v y) and
A(0) = 1. Let @a(z,y) = (wA(22,y),y). Then o, preserves I, p. Now pidz’ Ady = w.

Take H; = p2p01900¢V K; = pap19op K, which is holomorphic on S;. As formal
power series in x,y, H; preserves x = 0. On §; recall that K; ~ id and we have

Hj(t) = p2019000 K (1) ~ pa0100%(t) = (1) =id+0(2), t = (z;,y;),

where ¢ (z,y) is the Taylor series expansion of Y(z,y) in z,T. As mentioned above,
w Y(x,y) and hence w(:r y) is a power series 1n x only and whose coefficients are
holomorphic in y on a fixed domain. Finally, H; UH =0, H] *dx? Ady = dx? A dy,
1H;I = Hji o, pHip = Ho,pHop = Hy, and HJ HJ+1 = HM+1 on A;. When the
reality condition (3.4) is not imposed on Hj j 11, one drops the correction map o and
all requirements involving anti-holomorphic involutions. The proof of the realization
is complete.

Note that the realization for H; ;4,1 is achieved by shrinking the openings of
sectorial domains slightly. (The radius of the sectorial domains could be small.) In

particular, if the opening of the sectorial domain is larger than 7, the opening of the

shrunk sectorial domain is still bigger than 7.

Let us recall a special family of moduli functions [7]: H; ;11 are defined on sectorial
domains Sj j11, and Hy1 =id = Hz3. And the opening of S12,534 is 7 —4a > § by
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fixing @ < 55. In the real case, the last requirement is not needed. We still assume
that Hj ;11 satisfy (3.2)-(3.4) (in the complex case we drop (3.4)).

Next we want to discuss the equivalence relation on moduli functions. Let o and &
be two realizations, constructed above, corresponding to { H; J+1} on Sjjy1 = Sa, 6.
{Hjjs1}on Sjj41 = Sa, 3,7 respectively, where o, B;,@;, B; are of the form (3.1).

7T

We still assume that the openings of S, Sy, 854,834 are bigger than Z. Suppose
also that Ho3 = H4 1= H23 = H41 =id. So there exist normalizing transformatlons
Hj such that H; 'oH; = 6. Moreover, H; 'Hiy = Hj;41 on Sj;41 (by shrinking
the opening slightly and by choosing a smaller radius). Also Hj_lngrl = ﬁj j+1 on
a sector S’jo. Assume now that gog~! = ¢ and gI = Ig. Then g preserves = 0,
since the latter is the set of fixed points of o,5. Write g(z,y) = (zg1(z,y), 92(x, y)).
Let g1(0) = p = |pule?. There are two cases: Im y > 0 and Im p < 0. When Im 1 > 0,

say 0 <y < T, we take sectorial domains S} = it=18%, §J* with

Zieo< lz| < '} x Ay, §J* = pS;.

(3.7) ST = {x: —e<argw+%<2

Note that S7 C Sy and S5 C Sy U Ss, if € and 7 are sufficiently small. Also S5 C Ss
and S; C S4US;. Since Hy = Hy and Hy = Hj we can define H; = H; s and we

still have Hf = H{ and H5 = H3 on the overlaps. We can also define ﬁj* = ﬁj|§,f.
J
When § <y <, we take 57 = il=1 85, 57 with

(3.8) ST =Az: —e<arg:c—%< g+e,0< lz| < 7'} x A, §;+2:MS;-‘.

We still define Hj = Hj|s+ and H; = H;j 5:- With the above choice of 57, S'J*, the
restriction of Hj; ;41 to a possibly smaller intersection is still a transition function.
Rename H]* by H; and EIJ* by flj. We retain Hoz = Hyq = flgg = ﬁ41 = id.
When Sp < 0, one can rearrange the intersections to meet this requirement (by
reversing the roles of H, H). Recall Hj&Hj_l =oon S; and Hjjp = Hj_lHjH
on ST N S7 ;. (As usual, it holds on a smaller sector.) Let G; = ﬁ;lgHj when
Rp > 0, and let G; = ~j_+129Hj when Ru < 0. Then for both cases of (3.7) and
(3.8) we have G1 = G4, G2 = G3, and IG;I = Gj12. For the real case we have
Ga = pG1p, Gs = pGap additionally. Then we get the equivalence relation

GjH;j1Gyly = Hjj1, Vi or GiH;j1Gyly = Hjpoj13, V).

Recall that I(z,y) = (—z,y), 6(x,y) = (z,y + 2z), and p(z,y) = (T,7y). To
deal with mappings, defined on a sectorial domain S =V x A, that commute with
6(x,y) = (x,y + 2z), it is convenient to work on the quotient space S/6 obtained by
the projection (z,t) = m(z,y) = (x,e”= ). More specifically, if H commutes with &
then it has the form H(x,y) = (za(z,y),ya(x,y) + b(x,y)) with a6 = a and b = b,
which yields a mapping in the (z, t)-space defined for z € V and e I+1 < |t| < eI by

H:z2' =za(z,t), t' =t\(x,t),

mlogt)
uxs

logty *
o)

zlogt mwib(x,

i za(a,
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When H is asymptotic to the identity on the sectorial domain V' x A, such as a
mapping H; ;41 in {H; 511}, we have [a(z, y) — 1] < cla| and y(a(z,y) — 1)+b(z,y)| <
c|z|? for z € VN As and y € A, which implies that

|d(z,t)| < 2me|z| + 2mely| < 7

for ||, |y| sufficiently small. Hence H determines H uniquely. We will also consider
mappings G, such as a mapping G; appeared in the equivalence relation of moduli
space, defined on a sectorial domain V' x A,., which commutes with ¢ and admits
an asymptotic expansion ¥(z,y) = (zA(z,y), yA(z,y) + B(z,y)), A(0) # 0 = B(0).
Note that the semi-formal map ¥ still commutes with &, so A6 = A and B = B.
However, G is not uniquely determined by G; G = G if and only if

A=A, B'(z,y) = B(z,y) + 2kzA(z,y), keZ,

i.e. G' = 6*G. Therefore, the asymptotic expansion of G determines k; in particular,
the equivalence class of {H; j+1} is determined by its equivalence class in the (x,t)-
space. Of course, on the (z,t)-space the moduli functions {H; 11} and mappings
{G,} are required to satisfy asymptotic expansion conditions, and by definition those
asymptotic expansion conditions mean the ones described in the (x,y)-space. Note
that H, or G, preserves dz? A dy if and only if in the quotient space it preserves

dz3 ANdlogt = &.

In (x,t)-space, define I(x,t) = (—x,t 1), and p(z,t) = (T,ffl). Then moduli
functions Hj j11,7 = 1,...,4 will still satisfy the conditions (3.2) and (3.4) (with the
new [ and p). Condition (3.3) becomes H ;0 = @. For the above moduli functions,
if they are equivalent by {G;} then G1 = G4, G2 = G5 satisfy

Gijte =I1G;I, Gz =pGip, G4=pGap, G;0=0.
Moreover, G;(z,t) = (xza;j(z),tA;(z)), where a;(z) admits the same asymptotic ex-
pansion a(z) with a(0) # 0, and A;(z) admit the same asymptotic expansion A(z)
with A(0) # 0. (See [7], Corollary 3, p. 207.)

4. A family of non-equivalent glancing hypersurfaces. We want to show
that the space of equivalence classes is infinite dimensional. We will also drop the
2-form in the equivalence relations for pairs of involutions. This is needed in order to
obtain our results in higher dimension.

Recall 4 sectorial domains S12 = Sia(a,r) = S_zi20,2 20, S23 =
Sz o —2tamr S34=—S12 and Sy1 = —S23. We will choose a € (0, 55) later.

We want to find a family of {H; ; 11} on S;j ;41 in the (x,t)-space, which are not
equivalent. We will take Hy; = Ho3 = id and Hsy = IH12I. So we need only to
describe Hy 5. Now Hj o needs to satisfy

Hiyo =0, &=dx®Adlogt.

Also Hy2 must be asymptotic to the identity in the (x,y)-space, and for the real case
we need Hio = pHj2p additionally.



PAIRS OF INVOLUTIONS OF GLANCING HYPERSURFACES 33

Complex case. Using the local generating function z3log# + fp(z)e’é with a mero-
morphic function p(z) on C*, we want to define H; o = K and K (x,t) = (&,1) by the
identity

logtdz® + &3 dlogt = d{x>logt + tp(x)e™/*}.
Equivalently,

2% = 2% + ip(x)e™V/®,

A 1 1
— * —1/z * - i
logt = logt +tp*(w)e /", p*(z) 3I4p(w) +3 3P (z).

So K preserves dz® A dlogt, if K defines a biholomorphic map. We will consider
meromorphic functions on C* of the form

2k

k

_ k.
(K222 + 1)~

NE

(4.1) p(z) =

b
Il

1

Thus we need to find where K and K ! are defined. We also need to find coefficients
of its Laurent series expansion in t. We first rewrite the above identities as

(4.2) &=l +ipi(x)e )3, pi(z) = 273p(a),
S 1
(4.3) t=te P (@e =
If |argz| < § — a then |k2z? + 1| > k?|z|* sin 2o. Hence for || < %, we have

5
[p(z)| < elelVsimza  |arg x| < g —a.

L

Fix a = 1355- Note that ﬁ < NleTT. There exists J, depending only on € > 0 such
that p is meromorphic on C* and

(4.4) max{|p1(2)], [py ()], [p* (@)1, [p" (2)]} < [a’ePT,
if
T 5kk2k
|arg3:|<§—a, 0<|z| <r=r, €k<(*2—k)!'

Using identities (4.2)-(4.3), we first define a map K on {(z,y): 0 < |z| <
r,|argz| < %—a,e_ﬁ <|t| < e}, and amap K~'on {(z,y): 0 < |z| <r,|argz| <
5—2a, e T < |t| < eTT} for some positive constant 7, where r is sufficiently small but
dependent of €. The two maps are inverses of each other, when restricted to suitable
sectorial domains. We take ¢ = 322 such that |e%7%| <1for |argz| < § —a.

Let us start with equation (4.3). By the contraction map theorem, for some
small 79 > 0 the equation T' = e¢~*7 admits a unique solution 7' = T'(w) which is
holomorphic in w for |w| < 79, by requiring |T'| < 8. Note that

(4.5) T=Tw)=1-w+O0(w?),

|T(w) _ 1| — |e—wT(w) _ 1| < - |wT(w)|
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Hence (4.3) admits a unique solution

(4.6) t= tT(tp*(x)e_%)

Therefore, K is defined on
™ _e_
Sare ={(x,t): |z| <r |argz| < 5~ % [t] < eT=T}.

Moreover, K (Sa,r.c) C Saj2,2r2¢, if 7 < 70.
From (4.6) and (4.5) we get

4.0 f=t(1—p*(x)e st + O+ 1)),

where O(t2e_%+%) stands for a term with absolute value bounded by c|t2e_%+%|

and its Laurent series (and hence Taylor series) expansion in ¢ has no t* terms for
k < 2. Now (4.2) and (4.7) imply that

I3

z=xz(1+ %pl(x)efit + O((tefé+m)2)).

By (4.4) we see that K is asymptotic to the identity on {z: |argz| < § — o, |z| <

r}x{y: fyl < 2}
To find where K ! is defined, we start with (4.2). Let x = 2(1 + u) and rewrite
the equation as

w={1+1te Fp(&(1+u))esT0 } /3 _ 1= L(u).

Using (4.4), one can verify that for |f| < e, |argd| < 7/2 — 20 and 0 < |#] <
. < re/2, L is a contraction map sending the disc {u: [u| < min{e, 2a}} into itself.
Hence there is a unique holomorphic solution u = u(%, {) satisfying |u| < min{e, 2a}.
Solving ¢ in (4.3), we get

1
t — fetr” (@(4u(@ e FOFuED)

We see that K ! sends Soa,r/2,e/2 iNt0 So . Recall that K sends Sg .. into
Sa/2,2r,2¢- The uniqueness of solutions implies that KK~'=id on Soa,r/2,e/2- Hence
K is a biholomorphic map from Kﬁl(SQQ)T/z)E) into Sza,r/2,. We can also obtain
K71(82a,r/2,6) ) SSa,r/4,e/2 by ShOWing K(S?;a,r/4,e/2> C S20¢,7‘/2,e and KﬁlK = id.

In summary, we define a biholomorphic map

2e

Hi,=K: ?:x(l—’—%pl(x)e:% +O((te;%':!7)2)),
t=t(1—tp*(x)e = + O(th*Eer))'
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Recall I(z,t) = I(—x,t '), and p1(—z) = —p1(x). For Hs4 = I H; 21 we have

)?);
))-

2¢
x
€

8=

+
+

o

T=a(l- %pl(az)e% +O((t e
H34Z R 1
t=t(1+t1p*(—z)ew + Ot 2e

80
B

Let H ;j j+1 have the same form with p being p. From section 3, we then find realizations
o =1o"16 =151 for H H (defined on the (z,y)-space and being asymptotic
to the identity), respectively. Assume that gog~! = & for some biholomorphic map
g = Igl. As discussed in section 3, we have g(z,y) = (xg1(z,v), 92(z,y)). Let
= ¢1(0). When Im y > 0 define Sj,S’;‘ in the (x,y)-space by (3.7) or (3.8). When
Im e < 0, reverse the roles of H, H and define 57, S'J* by (3.7) or (3.8) again. Then
H,H are equivalent by {G,} (see section 3). We have G; = G4, G = G3 and
Gjt+2 = IG;I. We now return to the (x,t)-space. In the (z,t)-space we have

Gj(z,t) = (za;(x),tAj(x)), aj ~a, a(0)=p#0, A\j ~ A, A0) #0.
Let us first consider G1Hq9 = Hl 2G9 on ST N S5. From z-components on both sides
we get

(18) (1+ Spr@he™s +0((te™ BT )an (w1 + opr()e s +O((te+HE1)2)))
D)5, (an(w))e™ 7560 + O((Aa(a)e” o300 Tl 2)),

= ax(z)(1 +

The above identity holds for z in a sector V, and e T < [t] < el Fix 2 and expand
both sides as Laurent series in ¢ (actually a Taylor series in ¢). The constant terms
give us a1(x) = az(x). From the z-components of GsHs4 = H3 4G4 we get

(4.9)

-1 1 -1 1

(1= Som@)ed +0( e B))as(a(1 - op(a)e? +0(( e ET)R))

3
B til)\4($)71

= au(@)(1 s (@as(2))e AT + O((t™ Na(a) T TR ).

The same argument yields a3 = a4 on —V. Since a; are bounded then a; = as = a
is a holomorphic function defined near the origin. We fix = again and look at the
coefficients of t! in (4.8). We get

p1 (:v)e*% (a(z) + zd (z)) = a(x)X2(x)p1 (xa(:v))e_ﬁ.

The identity holds on Sj NS5 and hence on S;. On S3, A2 is holomorphic. If a® # 1,
then the orders of poles of both sides indicate that a + xza’ = 0, which is impossible
because the right hand side is not identically zero. Consequently, > =1, i.e. a =1
since Ra(0) > 0. Now we have

p1(x) = Ao ()pr (7).
From coefficients of =1 in (4.9) (for which we now know a3z = a; = 1) we get

pi() = Aa() " pr(a).
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Therefore, A\; extend to meromorphic functions on a punctured neighborhood of the
origin with Ay A2 = 1. From the ¢-components of G1H12 = H12G2 we get

14+ 0@)M(z(1+0()) = Aa(z)(1 + O()).

Hence A\; = Ay on a sector and hence in a punctured neighborhood of the origin since
there are meromorphic on C*. Now A\? = 1, i.e. A\ = 1. Consequently p = +p.
When p = p, we get A = 1.

Consider the second case where G1Hq9 = Hg 4G2. From z-components we get

2e
[E3

8=

P))an (o1 + i ()e* +O((te ™ E0)2)

B1(waz(2))e =T + O((t Aa() ™! eTRET TR )2).

t 1 _1
(1+ =pi(z)e™= +O((te” =T

3
= ()1 - 2

Expand both sides as Laurent series expansion in t. The coefficient of t~' on the
right-hand side is non-zero, while the coefficient on the left-hand side is zero. We rule
out this case immediately.

From (4.2)-(4.3), one sees that o, is equivalent to o_, by (z,t) — (x, —t). When
p = p % 0, the above argument shows that G; = id in the (x,t)-space. In the (z,y)-
space, we conclude that G;(z,y) = %, s0 g = Hj&kal = ¢*. Since I reverses o,
we conclude g = id if g preserves I and o.

The following proposition gives our reduction from higher dimension case to the
case of C* at the expense of symplectic 2-form for the involutions.

ProrosiTiON 4.1. Let {ﬁ, G}, 7 =1,2 be two pairs of glancing hypersurfaces in
C* given by

szfgzﬁf—i—:vlbj(fg,x), bj(O):l.

If {F x C2=4 Gy x C2"=4} and {F x C?"~* Gy x C?"~4} are equivalent under a
holomorphic symplectic mapping ¢ of C2", the corresponding pairs of involutions of
{F,G1} {F, Gy} are equivalent under some biholomorphic map ¢ of C2 = FNG. If
1 is a real map, the ¢ is real too.

Proof. TLet C* be the (£1,&,71,22)- space and C?"~% the (%, 'r)-space. Let
C2" = C'x C2 4, Let F = F x C2 % and Gy = Gy x C?"4. Let {I,I},}
be the pair of involutions of {F, Gy}, and {I, I} the pair of involutions of {F' x
C?"~4 G, x €274}, Assume that a biholomorphic mapping ¢ in (€1, zo, %, ‘z)-space
sends the pair of involutions {7, ;} into {I, I5}. Let m be the projection from the
(&1, 22, €, 'x)-space onto (&1, 22)-subspace. Looking at the flows of Hamiltonian vector
fields of T and 52 - 51 — Ilb(§2,$1,$2) we get I(fl, o, /5, ) (I(fl, IQ), /5, /{E) and
L&, @0, ¢, ') = (In(€1, 22), €, 'z). From ¢I = I¢ and ¢l = Irp, we get easily that
¢I = I¢ and ¢I; = I,¢. Note that ¢ is a biholomorphic map, since ¢'(0) preserves
the Jordan normal form

(LI (0): & — &, Ty — To + 261, Ea — Eay Ta — Ta, @ > 2.

It is obvious that ¢ is real, if¢? is real. O
Summarizing the above results we obtain the following.
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PROPOSITION 4.2. Let n > 2. There exists 6 > 0 such that each meromorphic
function

€k 5kkk
p(z) = Zma 0 <lex| < A

gives arise to a pair of holomorphic glancing hypersurfaces F,G = G, in C*™ with
Fn Gp: 1 = &, — & = 0 such that the pair of involutions Ip,Ig, and op = I, 1
satisfy
(i) op and o5 are holomorphically equivalent on J, if and only if p = +p. In par-
ticular the pairs {F,G,} and {F,G3} are not equivalent under holomorphic
symplectic mappings of C2™ if p # +p.
(#) if n = 2 and p £ 0, a’; are the only local biholomorphic maps on J that
commute with op, where k = 0,1,—-1,2,=2,...; in particular, the identity
map is the only biholomorphic map that preserves both I and Ig, .

Real case. Recall I(z,y) = (—z,v), 6(z,y) = (z,y + 2z), and p(z,y) = (Z,7). In
the (x,t)-space, we have I(z,t) = (—z,t™!), and p(z,t) = (T, 1).
Consider

0< < — -
=) GEE I TE k?:ﬂ + 1)k tS T2k
i
Note that p(z) is a meromorphic function on C\ {0}. If § is sufficiently small,
. _1
Hig:a' =z, ' =te?®° " Jargz| < %

is asymptotic to the identity. It is obvious that H;o = pHj2p preserves dz> A dlogt.
Let

Hyy=IHyol: o' =, =t P@e? 3

34 =1Hy20: 2 =z, =te ) |arga:|>4.

Set Hyy = IHys3I =id on |argz — 5| < §. Let 0 = Io~'I = pop be a holomorphic
map realizing moduli functions {Hj;11}. Let & be another one corresponding to p
that still have the above form. Note that in the real case it is not necessary to have
openings of S12 and S34 to be bigger than 7.

We want to show that ¢ and ¢ are equivalent by some real analytic map preserves
I if and only if p(z) = p(z).

Assume that there is a real analytic map g = Igl such that gog™' = 6. Since
g 1s real we know that g(z,y) = (zg1(z,y), g2(z,y)) with ¢1(0) € R. We still have
G H] J+1GJ+1 = H]]+1 for allj or G;lHjj+1Gj+1 = ﬁj+2j+3 for all j, where Gj
have the form

—1

Gj(x,t) = (za;(x), tA;(x)), Gi1=Gs G2 =Gs,
a; ~a, a(0)#0, X ~A A0)#0,

(
as(2) = (@), as(@) = ar(=), o(a) =M@ 5 Aslx) = M(—z) .

Let us look at the first case a(0) > 0. Then we must have Hy2Gy = G1H; o,
which implies that on V = {z: [argz| < § —¢,0 < |z| < r} we have a; = ay and

. T 1
(4.10) Ao (z)eP(waz(@))e 2(@) = i (2)eP@e %



38 P. AHERN AND X. GONG

By H34G4 = G3ﬁ34 on —V, we get az = a3 = a4 = a; on —V and hence all a; are
the same. By removable singularity, we get a; = a is holomorphic at the origin. In

.10), we take x > 0 and conjugate both sides, and by Aa(z) = A\ (z ! we get
4.10 k 0 and both sid d by A A
1 - _1
A () ~Lem el T _ ) () lemiB@eE,

Using (4.10) again and eliminating A1, A2 from both sides, we get

8=

—1_9(9“1(30))6_#(’) +p(r)e s = —]3(56)6_% +p(:ca(:6))e_#<z)
Recall p(x) = p(z) and p(z) = p(z). We get

plza(z))e” =@ = f(z)e 3,

8=

which now holds on C*. Looking at the orders of the poles we see a = 1 and then

pP=p. B
Consider now the case a(0) < 0. We then have (G;I) ' H; j41Gj411 = Hj 1,

which is reduced to the previous case. The conclusion is then p(z) = p(—z) = p(x).
We have proved the following.

PROPOSITION 4.3. Let n > 2. There exists § > 0 such that each real analytic
function

kkk

€k
p(.’I]):Zm, JI>O, 0<6k<T

gives arise to a pair of real analytic glancing hypersurfaces F,G = G, in R*™ with
Fn Gp: 1 =& — & = 0 such that if Iz, 1, are the corresponding involutions on J,
the pair {I5,1g,} is equivalent to {Ip,Iq,} by a real analytic mapping on J, if and
only if p=1p.
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