PAIRS OF INVOLUTIONS OF GLANCING HYPERSURFACES*

PATRICK AHERN ${ }^{\dagger}$ AND XIANGHONG GONG ${ }^{\dagger}$

Dedicated to Salah M. Baouendi on the occasion of his seventieth birthday

Key words. moduli space, normal form, glancing hypersurfaces
AMS subject classifications. Primary 32B10, 32F25

1. Introduction. Let ω be the standard symplectic 2-form on $\mathbf{R}^{2 n}$, given by

$$
\omega=\sum_{j=1}^{n} d \xi_{j} \wedge d x_{j}, \quad(\xi, x)=\left(\xi_{1}, \cdots, \xi_{n}, x_{1}, \cdots, x_{n}\right) \in \mathbf{R}^{2 n} .
$$

Consider two real analytic hypersurfaces in $\mathbf{R}^{2 n}(n \geq 2)$ defined by

$$
F: f(\xi, x)=0, \quad G: g(\xi, x)=0
$$

where f, g are real analytic functions. F and G are said to be glancing at $p \in F \cap G$ if

$$
\begin{array}{r}
\{f, g\}(p)=0, \quad d f \wedge d g(p) \neq 0 \\
\{f,\{f, g\}\}(p) \neq 0 \neq\{g,\{g, f\}\}(p)
\end{array}
$$

in which $\{f, g\}$ is the Poisson bracket of f, g with respect to ω, defined by

$$
\{f, g\}=X_{f} g, \quad X_{f}=\sum \frac{\partial f}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}}-\frac{\partial f}{\partial \xi_{j}} \frac{\partial}{\partial x_{j}}
$$

A (local) map from $\mathbf{R}^{2 n}$ to $\mathbf{R}^{2 n}$ is said to be symplectic if it preserves ω. Given two pairs of hypersurfaces $\left\{F_{j}, G_{j}\right\}$ glancing at $p_{j}(j=1,2)$ respectively, they are equivalent if there exists a real analytic symplectic mapping ϕ defined near p_{1} such that

$$
\phi\left(p_{1}\right)=p_{2}, \quad \phi\left(F_{1}\right)=F_{2}, \quad \phi\left(G_{1}\right)=G_{2}
$$

Since we consider local equivalence only, we assume that $p_{1}=p_{2}=0$.
In [5], Melrose showed that each pair of glancing smooth hypersurfaces in $\mathbf{R}^{2 n}(n \geq$ 2) is equivalent to the pair

$$
\begin{equation*}
\widehat{F}: x_{1}=0, \quad \widehat{G}: \xi_{2}=\xi_{1}^{2}+x_{1} \tag{1.1}
\end{equation*}
$$

under a $\left(C^{\infty}\right)$ smooth change of coordinates; Melrose's argument also shows that all real analytic glancing hypersurfaces are equivalent to the above normal form by formal symplectic maps. It was proved by Oshima [6] for $n \geq 3$ and by the second author [3] for $n \geq 2$ that for some pairs of real analytic glancing hypersurfaces, the normal form cannot be achieved by any convergent symplectic map.

[^0]A pair of glancing hypersurfaces F and G generates a pair of involutions on $J=F \cap G$. This pair of involutions plays an important role in Melrose's approach, which we now describe. Melrose first showed that in suitable real analytic symplectic coordinates, $F=\widehat{F}: x_{1}=0$ and G is of the form

$$
\begin{equation*}
\xi_{2}=\xi_{1}^{2}+x_{1} b\left(\xi_{2}, \ldots, \xi_{n}, x\right), \quad b(0)=1 \tag{1.2}
\end{equation*}
$$

In particular $J=F \cap G: x_{1}=0, \xi_{2}=\xi_{1}^{2}$. Put ' $\xi=\left(\xi_{3}, \ldots, \xi_{n}\right),{ }^{\prime} x=\left(x_{3}, \ldots, x_{n}\right)$. Choose $\xi_{1}, x_{2},{ }^{\prime} \xi$, 'x as coordinates on J. We have $\left.\omega\right|_{J}=d \xi_{1}^{2} \wedge d x_{2}+\sum_{j=3}^{n} d \xi_{j} \wedge$ $d x_{j}$. Each solution curve of Hamiltonian vector field X_{f} on F is tangent to $K \subset$ $J:\{f, g\}=0$ or intersects $J \backslash K$ at two distinct points. It turns out that the map, which interchanges two intersection points, extends to a real analytic involution I_{F} on J, fixing K pointwise. Note that $\left.\omega^{n-1}\right|_{J}$ vanishes precisely on $K \subset J$ and that K is defined by $\xi_{1}=0$ on J.

Analogously, one can define glancing holomorphic hypersurfaces of $\mathbf{C}^{2 n}(n \geq 2)$, for which $\omega=\sum_{j=1}^{n} d \xi_{j} \wedge d x_{j}$ is the holomorphic symplectic 2-form.

In fact, we will treat the complex case, and the real case is treated via a reality condition. From now on (ξ, x) will be the coordinates of $\mathbf{C}^{2 n}$. We regard $\mathbf{R}^{2 n}$ as the set of fixed points of anti-holomorphic involution $\rho: \xi \rightarrow \bar{\xi}, x \rightarrow \bar{x}$.

As mentioned above, there are examples of pairs of real analytic glancing hypersurfaces for which the normal form cannot be achieved by any convergent symplectic change of coordinates (although such a formal change of coordinates always exists). In [8], Voronin describes a method of showing that divergence not only can happen but it is generic. His results are based on his theory of moduli space in several variables [7]. As usual when this method is applicable it actually shows not only that the generic pair of glancing hypersurfaces is not convergently equivalent to the normal form but that the set of equivalence classes is infinite dimensional (not just infinite).

Paper [7] is rich in detail but [8] has no proofs at all. It is our opinion that providing the details for Voronin's program, [8], requires some more ideas than those included in his earlier paper, [7]. The purpose of this paper is to give a self contained and detailed proof about the infinite dimensionality of equivalence classes of glancing hypersurfaces, part of results announced in [8].
2. Realizing pairs of involutions for glancing hypersurfaces. In this section, we will show that two pairs of glancing hypersurfaces are equivalent if (and only if) their pairs of involutions are equivalent under some holomorphic mapping preserving the degenerate 2 -form $d \xi_{1}^{2} \wedge d x_{2}+d \xi_{3} \wedge d x_{3}+\cdots+d \xi_{n} \wedge d x_{n}$. We will also find a pair of glancing hypersurfaces for a given pair of involutions satisfying some conditions. See Proposition 2.4 for conditions on the involutions. Therefore, we identity the classification of glancing hypersurfaces in $\mathbf{C}^{2 n}$ with that of pairs of involutions in $\mathbf{C}^{2 n-2}$ equipped with the degenerate 2 -form.

Recall that ${ }^{\prime} \xi=\left(\xi_{3}, \ldots, \xi_{n}\right),^{\prime} x=\left(x_{3}, \ldots, x_{n}\right)$. When a pair of glancing hypersurfaces is given by

$$
\hat{F}: x_{1}=0, \quad \hat{G}: \xi_{2}=\xi_{1}^{2}+x_{1}
$$

its pair of involutions, defined on $\left(\xi_{1}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)$-space, is

$$
\widehat{I}_{1}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=-\xi_{1}, \\
x_{2}^{\prime}=x_{2}, \\
\xi_{\alpha}^{\prime}=\xi_{\alpha}, \quad 2<\alpha \leq n, \\
x_{\alpha}^{\prime}=x_{\alpha}
\end{array} \quad \widehat{I}_{2}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=-\xi_{1} \\
x_{2}^{\prime}=x_{2}-2 \xi_{1} \\
\xi_{\alpha}^{\prime}=\xi_{\alpha} \\
x_{\alpha}^{\prime}=x_{\alpha}
\end{array}\right.\right.
$$

(Throughout the note the α runs from 3 through n.) The composition $\widehat{I}_{2} \widehat{I}_{1}$ is

$$
\widehat{\sigma}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1}, \quad x_{2}^{\prime}=x_{2}+2 \xi_{1} \\
\xi_{\alpha}^{\prime}=\xi_{\alpha}, \quad x_{\alpha}^{\prime}=x_{\alpha}
\end{array}\right.
$$

For an arbitrary pair of glancing hypersurfaces, we always assume, after a preliminary change of coordinates ([5], [3]), that it is in the form

$$
F=\widehat{F}: x_{1}=0, \quad G: \xi_{2}=\xi_{1}^{2}+x_{1} b\left(\xi_{2}, \ldots, \xi_{n}, x\right), \quad b(0)=1
$$

Their involutions have the form

$$
I_{1}=\widehat{I}_{1}, \quad I_{2}=\widehat{I}_{2}+O(2),\left.\quad I_{2}\right|_{\xi_{1}=0}=\left.\widehat{I}_{2}\right|_{\xi_{1}=0}
$$

Hence $\sigma=I_{2} I_{1}=I_{1} \sigma^{-1} I_{1}$ has the form

$$
\sigma: \begin{cases}\xi_{1}^{\prime}=\xi_{1}+\xi_{1}^{2} p_{1}, & q_{1}(0)=0 \\ x_{2}^{\prime}=x_{2}+2 \xi_{1}+\xi_{1} q_{1}, & p_{\alpha}(0)=0 \\ \xi_{\alpha}^{\prime}=\xi_{\alpha}+\xi_{1} p_{\alpha}, & q_{\alpha}(0)=0 \\ x_{\alpha}^{\prime}=x_{\alpha}+\xi_{1} q_{\alpha}, & \end{cases}
$$

where p_{j}, q_{j} are holomorphic functions defined near $0 \in J=F \cap G$. On J, we also have a holomorphic two-form

$$
\left.\omega\right|_{J}=\left.\left(\sum_{1 \leq j \leq n} d \xi_{j} \wedge d x_{j}\right)\right|_{J}=2 \xi_{1} d \xi_{1} \wedge d x_{2}+\sum_{2<\alpha \leq n} d \xi_{\alpha} \wedge d x_{\alpha}
$$

It is obvious that $\left.I_{1}^{*} \omega\right|_{J}=\left.\omega\right|_{J}$. We also have $\left.I_{2}^{*} \omega\right|_{J}=\left.\omega\right|_{J}$, since by a change holomorphic symplectic coordinates, we can transform \widehat{F}, G into $\widetilde{G}, \widehat{F}$.

In the real case the restriction of ρ on J is

$$
\rho: \xi_{1}^{\prime}=\bar{\xi}_{1}, \quad x_{2}^{\prime}=\bar{x}_{2}, \quad \xi_{\alpha}^{\prime}=\bar{\xi}_{\alpha}, \quad x_{\alpha}^{\prime}=\bar{x}_{\alpha}
$$

The corresponding holomorphic involutions then satisfy the reality condition

$$
I_{j}=\rho I_{j} \rho, \quad \sigma=\rho \sigma \rho
$$

We also have $\left.\rho^{*} \omega\right|_{J}=\left.\bar{\omega}\right|_{J}$.
It is obvious that if two pairs of glancing hypersurfaces $\left\{F_{j}, G_{j}\right\}, j=1,2$ are equivalent by some holomorphic map f preserving ω, their corresponding pairs of involutions are also equivalent by a holomorphic map preserving $\left.\omega\right|_{J}$.

Next we want to show the converse is true.

Throughout the note, $\left.\omega\right|_{F}$ stands for the pull-back of a differential form ω on $\mathbf{C}^{2 n}$ by the inclusion $F \hookrightarrow \mathbf{C}^{2 n}$. We need the following version of relative Darboux lemma.

Lemma 2.1. Let ω_{0}, ω_{1} be two closed holomorphic 2 -forms defined in a neighborhood of the origin in $\mathbf{C}^{2 n}$. Assume that $(1-t) \omega_{0}+t \omega_{1}$ are non-degenerate at the origin for all $t \in[0,1]$.
(i) If $S \subset \mathbf{C}^{2 n}$ is a germ of holomorphic submanifold at 0 with $\left.\omega_{1}\right|_{S}=\left.\omega_{0}\right|_{S}$ there exists a holomorphic mapping f, defined near the origin and fixing S pointwise, such that $f^{*} \omega_{1}=\omega_{0}$.
(ii) If F and G are two smooth holomorphic hypersurfaces intersecting transversely at the origin and if $\left.\omega_{1}\right|_{F}=\left.\omega_{0}\right|_{F}$ and $\left.\omega_{1}\right|_{G}=\left.\omega_{0}\right|_{G}$, there exists a germ of holomorphic mapping f at 0 , fixing F pointwise, such that $f(G)=G$ and $f^{*} \omega_{1}=\omega_{0}$.
In both cases, if all coefficients of $\omega_{1}-\omega_{0}$ vanish at the origin, one can achieve $f=\mathrm{id}+O(2)$ additionally.

Proof. The proof is based on Moser's homotopy method. The first part is due to Givental'. We shall modify the proof in [2] to show the second part. Note that one would not expect to find f that fixes both F and G pointwise.
(i) Without loss of generality, one may assume that S is given by $x_{1}=\cdots=x_{k}=$ 0 , with $\left(x_{1}, \ldots, x_{2 n}\right)$ being coordinates of $\mathbf{C}^{2 n}$. Write $\omega_{j}=d \alpha_{j}$ on $\mathbf{C}^{2 n}$. We need to find the flow ϕ_{t} of a time-dependent holomorphic vector field v_{t} defined near $0 \in \mathbf{C}^{2 n}$ such that

$$
0=\frac{d}{d t} \phi_{t}^{*} \omega_{t}=\phi_{t}^{*}\left(L_{v_{t}} \omega_{t}+\frac{d}{d t} \omega_{t}\right)=\phi_{t}^{*} d\left(\iota_{v_{t}} \omega_{t}+\alpha_{1}-\alpha_{0}\right)
$$

where $L_{v_{t}}=d \iota_{v_{t}}+\iota_{v_{t}} d$ is the Lie derivative. Then we will set $\iota_{v_{t}} \omega_{t}+\alpha_{1}-\alpha_{0}=0$. We also need the coefficients of v_{t} to vanish on S, i.e. the vanishing of the coefficients of $\alpha_{1}-\alpha_{0}$ on S, so $\left.\phi_{t}\right|_{S}=$ id as required.

Starting with $\left.d\left(\alpha_{1}-\alpha_{0}\right)\right|_{S}=0$, we get a holomorphic function g_{0} in $x_{k+1}, \ldots, x_{2 n}$ such that $\left.\left(\alpha_{1}-\alpha_{0}\right)\right|_{S}=d g_{0}$. Thus on $\mathbf{C}^{2 n}$ we can write

$$
\begin{aligned}
\alpha_{1}-\alpha_{0} & =d g_{0}+\sum_{i=1}^{k} x_{i} \theta_{i}+\sum_{i=1}^{k} b_{i}\left(x_{k+1}, \ldots, x_{2 n}\right) d x_{i} \\
& =d\left(g_{0}+\sum_{i} x_{i} b_{i}\right)+\theta, \quad \theta=\sum_{i=1}^{k} x_{i}\left(\theta_{i}-d b_{i}\right)
\end{aligned}
$$

Thus $\omega_{1}-\omega_{0}=d \theta$. Since $\omega_{t}=\sum_{i, j} u_{i j}(x, t) d x_{i} \wedge d x_{j}$ and $\left(u_{i j}\right)=-\left(u_{j i}\right)$ is nondegenerate, there is a unique holomorphic vector field $v_{t}=\sum v_{j} \frac{\partial}{\partial x_{k}}$ on $\mathbf{C}^{2 n}$ such that

$$
\iota_{v_{t}} \omega_{t}=2 \sum_{j, k} u_{j k} v_{j} d x_{k}=-\theta
$$

Since the coefficients of θ vanish on S, the coefficients of vector field v_{t} vanish on S too.
(ii) Without loss of generality, one may assume that F and G are hyperplanes given by $x_{1}=0, x_{2}=0$, respectively. Again we are looking for a particular vector field v_{t} such that its flow ϕ_{t} will fulfill the requirements.

As above, write $\omega_{j}=d \alpha_{j}$. We first want to find a holomorphic function g such that

$$
\begin{equation*}
\alpha_{1}-\alpha_{0}=d g+x_{1} x_{2} \beta+x_{1} c(x) d x_{2} \tag{2.1}
\end{equation*}
$$

where c is holomorphic near $0 \in \mathbf{C}^{2 n}$. Starting with $\left.d\left(\alpha_{1}-\alpha_{0}\right)\right|_{x_{1}=0}=0$, we get a holomorphic function g_{0} in $x_{2}, \ldots, x_{2 n}$ such that $\left.\left(\alpha_{1}-\alpha_{0}\right)\right|_{F}=d g_{0}$. Write

$$
\begin{aligned}
\alpha_{1}-\alpha_{0} & =d g_{0}+x_{1} \sum a_{k}(x) d x_{k}+b\left(x_{2}, \ldots, x_{2 n}\right) d x_{1} \\
& =d\left(g_{0}+x_{1} b\right)+x_{1} \sum a_{k}^{*}(x) d x_{k} \\
& =d g_{1}+x_{1} x_{2} \sum \widetilde{a}_{k}(x) d x_{k}+x_{1} \sum b_{k}\left(x_{1}, x_{3}, \ldots, x_{2 n}\right) d x_{k} \\
& =d g_{2}+x_{1} x_{2} \sum \widetilde{a}_{k}(x) d x_{k}+x_{1} b_{2}\left(x_{1}, x_{3}, \ldots, x_{2 n}\right) d x_{2}
\end{aligned}
$$

where $x_{1} \sum_{k \neq 2} b_{k}\left(x_{1}, x_{3}, \ldots, x_{2 n}\right) d x_{k}$ is absorbed into g_{2} via

$$
\left.d\left(\alpha_{1}-\alpha_{0}\right)\right|_{x_{2}=0}=d\left\{x_{1} \sum_{k \neq 2} b_{k}\left(x_{1}, x_{3}, \ldots, x_{2 n}\right) d x_{k}\right\}=0
$$

Thus, the decomposition (2.1) is obtained. As before there is a unique holomorphic vector field $v_{t}=\sum v_{j} \frac{\partial}{\partial x_{k}}$ on $\mathbf{C}^{2 n}$ such that

$$
2 \sum_{j k} u_{j k} v_{j} d x_{k}=\iota_{v_{t}} \omega_{t}=-x_{1} x_{2} \beta-x_{1} c(x) d x_{2}
$$

The diagonal elements of $\left(u_{k j}\right)^{-1}=\left(\tilde{u}_{k j}\right)$ are zero. Hence

$$
v_{t}=x_{1} \frac{c}{2} \sum_{j \neq 2} \tilde{u}_{j 2}(x, t) \frac{\partial}{\partial x_{j}}+x_{1} x_{2} \sum_{j} q_{j}(x, t) \frac{\partial}{\partial x_{j}}
$$

Therefore the flow of v_{t} fixes the hyperplane $x_{1}=0$ pointwise and preserves $x_{2}=0$.
Assume now that $\omega_{1}-\omega_{0}=O(1)$, i.e. it vanishes at the origin. Let $\tilde{\theta}$ be the linear part of $\sum_{i=1}^{k} x_{i}\left(\theta_{i}-d b_{i}\right)$ for (i), and $\tilde{\theta}=x_{1} c(0) d x_{2}$ for (ii). Then $d \tilde{\theta}=0$. Replace θ by $\theta-\tilde{\theta}=O(2)$. Then $v_{t}=O(2)$ and $\phi_{t}=\mathrm{id}+O(2)$.

Lemma 2.2. Let φ be a local biholomorphic mapping of J that preserves $\left.\omega\right|_{J}$. Assume that φ commutes with $I_{\widehat{F}}$ and its linear part $\varphi^{\prime}(0)$ commutes with $I_{\widehat{G}}$. Write

$$
\varphi:\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} \widetilde{A}_{1}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right) \\
\xi_{\alpha}^{\prime}=\widetilde{A}_{\alpha}\left(\xi_{1}^{2}, x_{2}, ' \xi,^{\prime} x\right), \quad 2<\alpha \leq n \\
x_{k}^{\prime}=\widetilde{B}_{k}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right), \quad 2 \leq k \leq n
\end{array}\right.
$$

where $\tilde{A}_{1}, \tilde{A}_{\alpha}, \tilde{B}_{k}$ are holomorphic functions. Then φ extends to a biholomorphic mapping φ_{1} of \widehat{F} such that φ_{1} preserves $\left.\omega\right|_{\widehat{F}}$ and has the linear part

$$
\varphi_{1}^{\prime}(0):\left\{\begin{aligned}
\xi_{1}^{\prime} & =\mu \xi_{1}, \quad \xi_{2}^{\prime}=\mu^{2} \xi_{2}, \quad \mu=\tilde{A}_{1}(0), \mu^{3}=1 \\
x_{2}^{\prime} & =B_{2}\left(x_{2},{ }^{\prime} \xi, ' x\right) \\
& =\mu x_{2}+\sum_{2<\alpha \leq n}\left(a_{\alpha} \xi_{\alpha}+b_{\alpha} x_{\alpha}\right) \\
\xi_{\alpha}^{\prime} & =A_{\alpha}\left({ }^{\prime} \xi,^{\prime} x\right), \quad x_{\alpha}^{\prime}=B_{\alpha}\left({ }^{\prime} \xi,^{\prime} x\right)
\end{aligned}\right.
$$

in which $B_{2}\left(x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right), A_{\alpha}\left({ }^{\prime} \xi, ' x\right)$, and $B_{\alpha}\left({ }^{\prime} \xi, ' x\right)$ are the linear parts of $\tilde{B}_{2}\left(0, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)$, $\tilde{A}_{\alpha}\left(0, x_{2},{ }^{\prime} \xi, ' x\right)$ and $\tilde{B}_{\alpha}\left(0, x_{2}, ' \xi, ' x\right)$, respectively.

Proof. Since $\varphi^{\prime}(0)$ commutes with $I_{\widehat{G}}: \xi_{1}^{\prime}=-\xi_{1}, x_{2}^{\prime}=x_{2}-2 \xi_{1}, \xi_{\alpha}^{\prime}=\xi_{\alpha}, x_{\alpha}^{\prime}=x_{\alpha}$ then the linear parts of $\varphi I_{\widehat{G}}=I_{\widehat{G}} \varphi$ yield

$$
\begin{aligned}
& \widetilde{B}_{2}\left(0, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)=\mu x_{2}+\sum_{2<\alpha \leq n} a_{\alpha} \xi_{\alpha}+b_{\alpha} x_{\alpha}+O(2), \\
& \widetilde{A}_{\alpha}\left(0, x_{2},{ }^{\prime} \xi,^{\prime} x\right)=A_{\alpha}\left({ }^{\prime} \xi,^{\prime} x\right)+O(2), \quad 2<\alpha \leq n, \\
& \widetilde{B}_{\alpha}\left(0, x_{2},{ }^{\prime} \xi,^{\prime} x\right)=B_{\alpha}\left({ }^{\prime} \xi,^{\prime} x\right)+O(2)
\end{aligned}
$$

We have

$$
\begin{align*}
d \xi_{1}^{2} \wedge d x_{2} & +\sum_{2<\alpha \leq n} d \xi_{\alpha} \wedge d x_{\alpha}=d\left(\xi_{1} \widetilde{A}_{1}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)\right)^{2} \wedge d \widetilde{B}_{2}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \tag{2.2}\\
& +\sum_{2<\alpha \leq n} d \widetilde{A}_{\alpha}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \wedge d \widetilde{B}_{\alpha}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)
\end{align*}
$$

Note that the last summation does not contribute $\xi_{1} d \xi_{1} \wedge d x_{2}$ due to the absence of x_{2} in the linear parts of $\widetilde{A}_{j}, \widetilde{B}_{j}$ for $2<\alpha \leq n$. Comparing the coefficients of $\xi_{1} d \xi_{1} \wedge d x_{2}$ gives us $\mu^{3}=1$. Define φ_{1} by

$$
\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} \widetilde{A}_{1}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \\
\xi_{2}^{\prime}=\xi_{2} \widetilde{A}_{1}^{2}\left(\xi_{2}, x_{2},{ }^{\prime} \xi, ' x\right) \\
\xi_{\alpha}^{\prime}=\widetilde{A}_{\alpha}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right) \\
x_{k}^{\prime}=\widetilde{B}_{k}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right), \quad 2 \leq k \leq n
\end{array}\right.
$$

Replacing ξ_{1}^{2} by ξ_{2} in (2.2), we obtain $\left.\varphi_{1}^{*} \omega\right|_{\widehat{F}}=\left.\omega\right|_{\widehat{F}}$.
Lemma 2.3. Let $\left\{F_{j}, G_{j}\right\}, j=1,2$ be two pairs of holomorphic glancing hypersurfaces with $J_{j}=F_{j} \cap G_{j}$. Let $\varphi: J_{1} \rightarrow J_{2}$ be a local biholomorphic mapping satisfying $\varphi^{*}\left(\left.\omega\right|_{J_{2}}\right)=\left.\omega\right|_{J_{1}}, I_{F_{2}}=\varphi I_{F_{1}} \varphi^{-1}$ and $I_{G_{2}}=\varphi I_{G_{1}} \varphi^{-1}$. Then φ extends to a holomorphic symplectic mapping on $\mathbf{C}^{2 n}$, sending F_{1}, G_{1} into F_{2}, G_{2}, respectively.

Proof. By Melrose's preliminary normalization (see also [3]) and by two changes of symplectic coordinates, we may assume that $F_{1}=F_{2}=\widehat{F}: x_{1}=0$, and

$$
G_{j}: \xi_{2}=\xi_{1}^{2}+x_{1} b_{j}\left(\xi_{2}, \ldots, \xi_{n}, x\right), \quad b_{j}(0)=1
$$

By applying Lemma 2.2 twice, we first extend φ to some biholomorphic map $\varphi_{1}: F_{1} \rightarrow$ F_{2} and to some biholomorphic map $\varphi_{2}: G_{1} \rightarrow G_{2}$ satisfying $\left.\varphi_{1}^{*} \omega\right|_{F_{2}}=\left.\omega\right|_{F_{1}}$ and $\left.\varphi_{2}^{*} \omega\right|_{G_{2}}=\left.\omega\right|_{G_{1}}$. We then extend φ_{1}, φ_{2} to some biholomorphic mapping φ_{3} on $\mathbf{C}^{2 n}$. The existence of such extension φ_{3} is elementary, which can be verified by two changes of holomorphic coordinates sending both $\left\{F_{1}, G_{1}\right\}$ and $\left\{F_{2}, G_{2}\right\}$ to $x_{1}=0$ and $x_{2}=0$.

Let $\omega=d \xi_{1} \wedge d x_{1}+\cdots+d \xi_{n} \wedge d x_{n}$ and $\widetilde{\omega}=\varphi_{3}^{-1 *} \omega$. We want to show that $(1-t) \omega+t \widetilde{\omega}$ is non-degenerate at the origin. At the origin, i.e. as 2 -forms on $T_{0} \hat{F} \times T_{0} \hat{F}$ we have $\left.\omega\right|_{\hat{F}}=d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}$. Since $\tilde{\omega}=\varphi_{3}^{-1 *} \omega=\omega$ on \hat{F}, then $\tilde{\omega}=\omega+d x_{1} \wedge \theta$ at $0 \in \mathbf{C}^{2 n}$, where θ is a 1 -from with constant coefficients. Note that $T_{0} G_{j}=T_{0} \hat{G}$. Hence $\tilde{\omega}=\omega$, i.e., $d x_{1} \wedge \theta=0$ on $T_{0} \hat{G} \times T_{0} \hat{G} . T_{0} \hat{G} \subset T_{0} \mathbf{C}^{2 n}$ is given by $d\left(\xi_{2}-x_{1}\right)=0$. We obtain $d x_{1} \wedge \theta=c d x_{1} \wedge d\left(\xi_{2}-x_{1}\right)=c d x_{1} \wedge d \xi_{2}$ for some
constant c. It is obvious that $t \tilde{\omega}+(1-t) \omega=d \xi_{2} \wedge d\left(x_{2}-t c x_{1}\right)+\sum_{j \neq 2} d \xi_{j} \wedge d x_{j}$ is non-degenerate.

By Lemma 2.1 (ii) there is a holomorphic map φ_{4} fixing F_{2} pointwise and sending G_{2} into itself so that $\varphi_{4}^{*} \omega=\varphi_{3}^{-1 *} \omega$. Now $\varphi_{4} \varphi_{3}$ is a holomorphic symplectic extension of φ, transforming F_{1} into F_{2} and G_{1} into G_{2}.

We now prove a realization result.
Proposition 2.4. Let $J=\widehat{F} \cap \widehat{G}$ and $K \subset J: \xi_{1}=0$. Let $\left.\omega\right|_{J}=d \xi_{1}^{2} \wedge d x_{2}+$ $d \xi_{3} \wedge d x_{3}+\cdots+d \xi_{n} \wedge d x_{n}$. Let I_{1}, I_{2} be a pair of holomorphic involutions on J satisfying $I_{j} \neq \mathrm{id}, I_{2} \neq I_{1}+O(2),\left.I_{j}\right|_{K}=\mathrm{id}$ and $\left.I_{j}^{*} \omega\right|_{J}=\left.\omega\right|_{J}$. Then $\left\{I_{1}, I_{2}\right\}$ is the pair of involutions of some glancing holomorphic hypersurfaces F, G.

Proof. The realization is outlined as follows: We shall first find φ_{1} which is symplectic on $\mathbf{C}^{2 n}$, preserves J and its restriction to J transforms I_{1} into $I_{\widehat{F}}$. Then F is the pull-back of \hat{F} by φ_{1}. Construct G in the same way. We will verify that F, G form a pair of glancing hypersurfaces with $F \cap G=J$, by ensuring $T_{0} F=T_{0} \hat{F}$ and $T_{0} G=T_{0} \hat{G}$.

Let $I=I_{1}$. The linear part \widehat{I} of I fixes K pointwise. So \widehat{I} is given by

$$
\xi_{1}^{\prime}=a \xi_{1}, x_{2}^{\prime}=x_{2}+b \xi_{1}, \xi_{\alpha}^{\prime}=\xi_{\alpha}+p_{\alpha} \xi_{1}, x_{\alpha}^{\prime}=x_{\alpha}+q_{\alpha} \xi_{1}, 2<\alpha \leq n
$$

Since I preserves $\left.\omega\right|_{J}, \widehat{I}=I^{\prime}(0)$ preserves $d \xi_{3} \wedge d x_{3}+\cdots+d \xi_{n} \wedge d x_{n}$, i.e.

$$
\sum_{2<\alpha \leq n} d\left(\xi_{\alpha}+p_{\alpha} \xi_{1}\right) \wedge d\left(x_{\alpha}+q_{\alpha} \xi_{1}\right)=\sum_{2<\alpha \leq n} d \xi_{\alpha} \wedge d x_{\alpha}
$$

which implies that $p_{\alpha}=q_{\alpha}=0$. Now coefficients of $\left.I^{*} \omega\right|_{J}=\left.\omega\right|_{J}$ that are linear in $\xi_{1}, x_{2}, \xi_{\alpha}, x_{\alpha}$ give us

$$
d\left(a \xi_{1}\right)^{2} \wedge d\left(x_{2}+b \xi_{1}\right)+\sum_{\alpha=3}^{n}\left(d \xi_{\alpha} \wedge \theta_{\alpha}+d x_{\alpha} \wedge \theta_{\alpha}^{\prime}\right)=d \xi_{1}^{2} \wedge d x_{2}
$$

which implies that $a^{2}=1$. Since $I^{2}=\mathrm{id} \neq I$ then $a=-1$ and the linear part of I_{1} is $\xi_{1}^{\prime}=-\xi_{1}, x_{2}^{\prime}=x_{2}+b_{1} \xi_{1}, \xi_{\alpha}^{\prime}=\xi_{\alpha}, x_{\alpha}^{\prime}=x_{\alpha}$. This also shows that the linear part of I_{2} is $\xi_{1}^{\prime}=-\xi_{1}, x_{2}^{\prime}=x_{2}+b_{2} \xi_{1}, \xi_{\alpha}^{\prime}=\xi_{\alpha}, x_{\alpha}^{\prime}=x_{\alpha}$.

By a change of coordinates $\xi_{1}^{\prime}=\xi_{1}, x_{2}^{\prime}=x_{2}+c_{1} \xi_{1}, \xi_{\alpha}^{\prime}=\xi_{\alpha}, x_{\alpha}^{\prime}=x_{\alpha}$, one may assume that $b_{1}=0$. Then $b_{2} \neq 0$, since linear parts of I_{1}, I_{2} are distinct. By a further change of coordinates of the form $\xi_{1}^{\prime}=c \xi_{1}, x_{2}^{\prime}=c^{-2} x_{2}, \xi_{\alpha}^{\prime}=\xi_{\alpha}, x_{\alpha}^{\prime}=x_{\alpha}$, we obtain $b_{2}=-2$. Note that both changes of coordinates for J extend to maps preserving ω. For the first map is the restriction of $\xi_{1}^{\prime}=\xi_{1}, x_{1}^{\prime}=x_{1}+c_{1}\left(\xi_{2}-\xi_{1}^{2}\right), \xi_{2}^{\prime}=$ $\xi_{2}, x_{2}^{\prime}=x_{2}+c_{1} \xi_{1},{ }^{\prime} x^{\prime}=' x$ to $J=\hat{F} \cap \hat{G}$. The second map is the restriction of $\xi_{1}^{\prime}=c \xi_{1}, x_{1}^{\prime}=c^{-1} x_{1}, \xi_{2}^{\prime}=c^{2} \xi_{2}, x_{2}^{\prime}=c^{-2} x_{2},{ }^{\prime} \xi^{\prime}={ }^{\prime} \xi,{ }^{\prime} x^{\prime}={ }^{\prime} x$ to J.

Therefore, we may assume that I_{1}, I_{2} are tangent to $I_{\widehat{F}}, I_{\widehat{G}}$, respectively.
Return to $I_{1}=\widehat{I}+O(2)$ with $\widehat{I}=I_{\widehat{F}}$. On J define $\psi_{0}=(\widehat{I} I+\mathrm{id}) / 2$. Then $\widehat{I} \psi_{0}=\psi_{0} I$. Since $\psi_{0}=\mathrm{id}+O(2)$ fixes $K \subset J: \xi_{1}=0$ pointwise, then

$$
\psi_{0}^{-1}:\left\{\begin{array}{lc}
\xi_{j}^{\prime}=\xi_{j}+\xi_{1} A_{j}, & A_{j}(0)=0, \tag{2.3}\\
x_{j}^{\prime}=x_{j}+\xi_{1} B_{j}, & B_{j}(0)=0, \\
j=2, \ldots, n
\end{array}\right.
$$

where A_{j}, B_{j} are convergent power series in $\xi_{1}, x_{2}, \xi_{\alpha}, x_{\alpha}$. Let $\widetilde{\omega}=\left.\psi_{0}^{-1 *} \omega\right|_{J}$. Then

$$
\begin{align*}
\widetilde{\omega} & =d\left(\xi_{1}+\xi_{1} A_{1}\right)^{2} \wedge d\left(x_{2}+\xi_{1} B_{2}\right)+\sum_{2<\alpha \leq n} d\left(\xi_{\alpha}+\xi_{1} A_{\alpha}\right) \wedge d\left(x_{\alpha}+\xi_{1} B_{\alpha}\right) \tag{2.4}\\
& =\xi_{1} \omega_{0}+d \xi_{1} \wedge \sum_{2<\alpha \leq n}\left(p_{\alpha} d \xi_{\alpha}+q_{\alpha} d x_{\alpha}\right)+\sum_{2<\alpha \leq n} d \xi_{\alpha} \wedge d x_{\alpha}
\end{align*}
$$

where $p_{\alpha}=-\left.B_{\alpha}\right|_{\xi_{1}=0}, q_{\alpha}=\left.A_{\alpha}\right|_{\xi_{1}=0}$. Since $\left.I^{*} \omega\right|_{J}=\left.\omega\right|_{J}$ then $\widehat{I}^{*} \widetilde{\omega}=\widetilde{\omega}$. Hence $p_{\alpha}=q_{\alpha}=0$ and $\widehat{I}^{*} \omega_{0}=-\omega_{0}$. The former implies that $A_{\alpha}=\xi_{1} \tilde{A}_{\alpha}$ and $B_{\alpha}=\xi_{1} \tilde{B}_{\alpha}$ for $\alpha>2$, and the latter implies that

$$
\begin{aligned}
& \xi_{1} \omega_{0}=d \xi_{1}^{2} \wedge\left\{\sum_{j \geq 2} a_{j}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d x_{j}+\sum_{j>2} b_{j}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{j}\right\} \\
& \quad+\xi_{1}^{2}\left\{\sum_{i>2, j>1} \gamma_{i j}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{i} \wedge d x_{j}+\sum_{i>j>2} \gamma_{i j}^{\prime}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{i} \wedge d \xi_{j}\right. \\
& \left.\quad+\sum_{i>j>1} \gamma_{i j}^{\prime \prime}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d x_{i} \wedge d x_{j}\right\}
\end{aligned}
$$

Looking at (2.4) again, we see that

$$
a_{\alpha}(0)=\tilde{A}_{\alpha}(0), \quad b_{\alpha}(0)=-\tilde{B}_{\alpha}(0), \quad a_{2}(0)=\left(1+A_{1}(0)\right)^{2}=1
$$

This shows that using the two-to-one branched covering $T:\left(\xi_{2}^{\prime}, x_{2}^{\prime},{ }^{\prime} \xi^{\prime},{ }^{\prime} x^{\prime}\right)=$ $\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi, ' x\right)$ we can write $\tilde{\omega}=T^{*} \omega_{1}$, where

$$
\begin{aligned}
\omega_{1}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \equiv & d \xi_{2} \wedge\left\{\sum_{j \geq 2} a_{j}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d x_{j}+\sum_{j>2} b_{j}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{j}\right\} \\
& +\xi_{2}\left\{\sum_{i>2, j>1} \gamma_{i j}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{i} \wedge d x_{j}+\sum_{i>j>2} \gamma_{i j}^{\prime}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d \xi_{i} \wedge d \xi_{j}\right. \\
& \left.+\sum_{i>j>1} \gamma_{i j}^{\prime \prime}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) d x_{i} \wedge d x_{j}\right\}+d \xi_{3} \wedge d x_{3}+\cdots+d \xi_{n} \wedge d x_{n} \\
= & d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n} \\
& +d \xi_{2} \wedge\left(\sum_{\alpha>2} \tilde{A}_{\alpha}(0) d x_{\alpha}-\tilde{B}_{\alpha}(0) d \xi_{\alpha}\right)+e,\left.\quad e\right|_{\xi_{2}=0}=0
\end{aligned}
$$

and e is a 2 -form in $\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x$ whose coefficients vanish at the origin. Let $\psi_{1}\left(\xi_{2},{ }^{\prime} \xi, x_{2}, ' x\right)=\left(\xi_{2},{ }^{\prime} \xi, x_{2}-\sum_{\alpha>2}\left(\tilde{A}_{\alpha}(0) x_{\alpha}-\tilde{B}_{\alpha}(0) \xi_{\alpha}\right),{ }^{\prime} x\right)$. Then $\psi_{1}^{*} \omega_{1}=d \xi_{2} \wedge$ $d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}+\psi_{1}^{*} e=d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}+0(1)$. Since ψ_{1} preserves $\xi_{2}=0$ and $\left.e\right|_{\xi_{2}=0}=0$ then $\left.\psi_{1}^{*} \omega_{1}\right|_{\xi_{2}=0}=\left.\left(d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}\right)\right|_{\xi_{2}=0}$. By the result of Givental' (Lemma 2.1 (i)), there exists a biholomorphic mapping ψ_{2} on $\mathbf{C}^{2 n-2}$ such that $\psi_{2}^{*} \psi_{1}^{*} \omega_{1}=d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}$. Moreover, ψ_{2} is tangent to the identity and fixes $\xi_{2}=0$ pointwise. Thus we can write

$$
\psi_{1} \psi_{2}:\left\{\begin{array}{l}
\xi_{2}=\xi_{2} u_{2}^{2}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right) \\
\xi_{j}^{\prime}=\xi_{j}+\xi_{2} u_{j}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right), \quad j>2 \\
x_{2}^{\prime}=x_{2}-\sum_{\alpha>2}\left(\tilde{A}_{\alpha}(0) x_{\alpha}-\tilde{B}_{\alpha}(0) \xi_{\alpha}\right)+\xi_{2} v_{2}\left(\xi_{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \\
x_{j}^{\prime}=x_{j}+\xi_{2} v_{j}\left(\xi_{2}, x_{2},^{\prime} \xi,^{\prime} x\right), \quad j>2
\end{array}\right.
$$

with $u_{2}(0)=1, u_{3}(0)=\cdots=u_{n}(0)=v_{2}(0)=\cdots=v_{n}(0)=0$. Define $\psi_{3}: J \rightarrow J$ by

$$
\psi_{3}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} u_{2}\left(\xi_{1}^{2}, x_{2}, ' \xi, ' x\right), \\
\xi_{j}^{\prime}=\xi_{j}+\xi_{1}^{2} u_{j}\left(\xi_{1}^{2}, x_{2}, ' \xi, ' x\right), \quad j>2 \\
x_{2}^{\prime}=x_{2}-\sum_{\alpha>2}\left(\tilde{A}_{\alpha}(0) x_{\alpha}-\tilde{B}_{\alpha}(0) \xi_{\alpha}\right)+\xi_{1}^{2} v_{2}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right) \\
x_{j}^{\prime}=x_{j}+\xi_{1}^{2} v_{j}\left(\xi_{1}^{2}, x_{2},,^{\prime},^{\prime} x\right), \quad j>2
\end{array}\right.
$$

Recall the map $T:\left(\xi_{2}^{\prime}, x_{2}^{\prime}, \xi^{\prime},^{\prime} x^{\prime}\right)=\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)$. Then $\psi_{1} \psi_{2} T=T \psi_{3}$. Now $\psi_{2}^{*} \psi_{1}^{*} \omega_{1}=d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}$ and $\tilde{\omega}=T^{*} \omega_{1}$ imply that $\left.\psi_{3}^{*} \psi_{0}^{-1 *} \omega\right|_{J}=$ $\psi_{3}^{*} \tilde{\omega}=\psi_{3}^{*} T^{*} \omega_{1}=T^{*} \psi_{2}^{*} \psi_{1}^{*} \omega_{1}=T^{*}\left(d \xi_{2} \wedge d x_{2}+\cdots+d \xi_{n} \wedge d x_{n}\right)=\left.\omega\right|_{J}$. Return to (2.3) and recall that $A_{\alpha}=\xi_{1} \tilde{A}_{\alpha}$ and $B_{\alpha}=\xi_{1} \tilde{B}_{\alpha}$ for $\alpha>2$. We extend ψ_{0}^{-1} to $\mathbf{C}^{2 n}$ by

$$
\tilde{\psi}_{0}^{-1}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1}+\xi_{1} A_{1}\left(\xi_{1},{ }^{\prime} \xi, x_{2},{ }^{\prime} x\right), \quad x_{1}^{\prime}=x_{1} \\
\xi_{2}^{\prime}=\xi_{2}\left(1+A_{1}\left(\xi_{1},{ }^{\prime} \xi, x_{2},{ }^{\prime} x\right)\right)^{2} \\
x_{2}^{\prime}=x_{2}+\xi_{1} B_{2}\left(\xi_{1}, ' \xi, x_{2}, ' x\right) \\
\xi_{\alpha}^{\prime}=\xi_{\alpha}+\xi_{2} \tilde{A}_{\alpha}\left(\xi_{1},{ }^{\prime} \xi, x_{2}, ' x\right) \\
x_{\alpha}^{\prime}=x_{\alpha}+\xi_{2} \tilde{B}_{\alpha}\left(\xi_{1},{ }^{\prime} \xi, x_{2}, ' x\right)
\end{array}\right.
$$

Extend ψ_{3} to $\tilde{\psi}_{3}$ in $\mathbf{C}^{2 n}$ by

$$
\tilde{\psi}_{3}:\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} u_{2}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi, ' x\right), \quad x_{1}^{\prime}=x_{1} \\
\xi_{2}=\xi_{2} u_{2}^{2}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi, ' x\right), \\
x_{2}^{\prime}=x_{2}-\sum_{\alpha>2}\left(\tilde{A}_{\alpha}(0) x_{\alpha}-\tilde{B}_{\alpha}(0) \xi_{\alpha}\right)+\xi_{1}^{2} v_{2}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right) \\
\xi_{j}^{\prime}=\xi_{j}+\xi_{1}^{2} v_{j}\left(\xi_{1}^{2}, x_{2},,^{\prime},^{\prime} x\right), \quad j>2 \\
x_{j}^{\prime}=x_{j}+\xi_{1}^{2} v_{j}\left(\xi_{1}^{2}, x_{2},{ }^{\prime} \xi,^{\prime} x\right), \quad j>2
\end{array}\right.
$$

Recall that $A_{1}(0)=B_{2}(0)=0$ and $u_{2}(0)=1$. A simple computation shows that

$$
\tilde{\psi}_{3}^{*} \tilde{\psi}_{0}^{-1 *} \omega=\omega+O(1)
$$

Since $\tilde{\psi}_{3}, \tilde{\psi}_{0}$ are extensions, we still have $\left.\tilde{\psi}_{3}^{*} \tilde{\psi}_{0}^{-1 *} \omega\right|_{J}=\left.\omega\right|_{J}$. By the result of Givental' (Lemma 2.1 (i)), there exists a biholomorphic mapping $\psi_{4}=\mathrm{id}+O(2)$ on $\mathbf{C}^{2 n}$ such that ψ_{4} fixes J pointwise and $\psi_{4}^{*} \tilde{\psi}_{3}^{*} \tilde{\psi}_{0}^{-1 *} \omega=\omega$.

Set $\varphi_{1}=\psi_{4}^{-1} \tilde{\psi}_{3}^{-1} \tilde{\psi}_{0}$. Since ψ_{4} is tangent to the identity, looking at the above formulas of $\tilde{\psi}_{0}, \tilde{\psi}_{3}$ we conclude that $F=\varphi_{1}^{-1}(\hat{F})$ is tangent to $\hat{F}: x_{1}=0$. Since $\left.\psi_{4}\right|_{J}=\mathrm{id}$ and $\left.\tilde{\psi}_{3}\right|_{J}=\psi_{3}$ commute with $I_{\hat{F}}$ and $\left.\tilde{\psi}_{0}\right|_{J}=\psi_{0}$ transforms I into $I_{\hat{F}}$, we have $\varphi_{1} I \varphi_{1}^{-1}=I_{\hat{F}}$. It is obvious that $I_{F}=I_{1}$, for any \tilde{G} such that F, \tilde{G} form a pair of glancing hypersurfaces with $F \cap \tilde{G}=J$.

Applying the above to I_{2}, we find G, tangent to \hat{G}, such that $I_{G}=I_{2}$ for any \tilde{F} such that \tilde{F}, G form a pair of glancing hypersurfaces with $\tilde{F} \cap G=J$.

Let us show that F, G form a pair of glancing hypersurface. We have $J \subset F \cap G$. Let f, g with $d f \neq 0, d g \neq 0$ be some defining functions of F, G respectively. Let \hat{f}, \hat{g} be the defining functions of \hat{F}, \hat{G} respectively. Since f, g vanish on $J=\hat{F} \cap \hat{G}$, then $f=a \hat{f}+b \hat{g}$ and $g=c \hat{f}+d \hat{g}$. Since F is tangent to \hat{F}, then $b(0)=0$. Also $c(0)=0$. Without loss of generality, we may assume that $f=\hat{f}+b \hat{g}$ and $g=\hat{g}+c \hat{f}$. Since
$b \hat{g}=O(2)$ and $c \hat{f}=O(2)$, then at the origin we have $d f \wedge d g=d \hat{f} \wedge d \hat{g} \neq 0$. Recall that $\{f, g\}=X_{f} g$. At the origin, we have $\{f, g\}=\{\hat{f}+b \hat{g}, \hat{g}+c \hat{f}\}=\{\hat{f}, \hat{g}\}=0$, and

$$
\begin{aligned}
\{f,\{f, g\}\} & =\{\hat{f},\{\hat{f}, \hat{g}\}\}+\{\hat{f},\{\hat{f}, c \hat{f}\}+\{b \hat{g}, \hat{g}\}\} \\
& =2+\{\hat{f}, \hat{f}\{\hat{f}, c\}-\hat{g}\{\hat{g}, b\}\} \\
& =2+\hat{f}\{\hat{f},\{\hat{f}, c\}\}-\{\hat{f}, \hat{g}\}\{\hat{g}, b\}-\hat{g}\{\hat{f},\{\hat{g}, b\}\}=2
\end{aligned}
$$

A similar computation shows $\{g,\{g, f\}\}(0)=-2$.
3. Realizing moduli functions for pairs of involutions $(n=2)$. The realization for moduli functions by pairs of involutions is essentially contained in [7], with some obvious changes. The one-dimension case is due to Malgrange [4].

Let $V_{\alpha, \beta, r}=\{x: \arg x \in(\alpha, \beta), 0<|x|<r\} \subset \mathbf{C}^{2}$ and $S_{\alpha, \beta, r}=V_{\alpha, \beta, r} \times \Delta_{r} \subset \mathbf{C}^{2}$, where $\beta-\alpha<2 \pi$ is called the opening of $V_{\alpha, \beta, r}$ or $S_{\alpha, \beta, r}$. A semi-formal power series $F(x, y)$ on $S_{\alpha, \beta, r}$ is a formal power series in x whose coefficients are holomorphic in y on disc Δ_{r}. A holomorphic function f defined on $S_{\alpha, \beta, r}$ is said to admit an asymptotic expansion by a semi-formal power series $F(x, y)=\sum_{k} F_{k}(y) x^{k}$, denoted by $f \sim F$, if for each positive integer N

$$
\lim _{V_{\alpha, \beta, r} \ni x \rightarrow 0} x^{-N}\left\{f(x, y)-\sum_{k=0}^{N} F_{k}(y) x^{k}\right\}=0
$$

uniformly for $|y|<r^{\prime}$ for some $0<r^{\prime}<r$. We say that a holomorphic map H on $S_{\alpha, \beta, r}$ admits an asymptotic expansion Φ of semi-formal map if each component of Φ is the asymptotic expansion of the corresponding component of H on $S_{\alpha, \beta, r}$. It is an elementary result that if a holomorphic map H is asymptotic to the identity map on $S_{\alpha, \beta, r}$. Then for each $\epsilon \in\left(0, \frac{\beta-\alpha}{6}\right)$ there exists $0<r^{\prime}<r$ such that $H: S_{\alpha+2 \epsilon, \beta-2 \epsilon, r^{\prime} / 2} \rightarrow S_{\alpha+\epsilon, \beta-\epsilon, r^{\prime}}$ is injective and $H\left(S_{\alpha+2 \epsilon, \beta-2 \epsilon, r^{\prime} / 2}\right) \supset S_{\alpha+3 \epsilon, \beta-3 \epsilon, r^{\prime} / 4}$ (see [1]).

Let $0<\alpha<\frac{\pi}{32}$. Consider 4 sectorial domains $S_{j+1}=S_{\alpha_{j}, \beta_{j}, r}$ with

$$
\begin{gather*}
\alpha_{1}=-\frac{\pi}{2}+2 \alpha, \quad \beta_{1}=\frac{\pi}{2}-2 \alpha, \quad \alpha_{2}=-\frac{\pi}{2}-\alpha, \quad \beta_{2}=-\frac{\pi}{2}+\alpha, \\
\alpha_{3}=-\frac{3 \pi}{2}+2 \alpha, \quad \beta_{3}=-\frac{\pi}{2}-2 \alpha, \quad \alpha_{4}=-\frac{3 \pi}{2}-\alpha, \quad \beta_{4}=-\frac{3 \pi}{2}+\alpha \tag{3.1}
\end{gather*}
$$

Let $H_{j+1}\left(=H_{j+4 j+5}\right)$ be holomorphic maps which are asymptotic to the identity on $S_{j j+1}$. Suppose also that

$$
\begin{gather*}
H_{j j+1} \hat{\sigma}=\hat{\sigma} H_{j j+1}, \quad H_{j+2 j+3}=I H_{j j+1} I \tag{3.2}\\
\hat{\sigma}(x, y)=(x, y+2 x), I(x, y)=(-x, y), \rho(x, y)=(\bar{x}, \bar{y}), \\
H_{j j+1}^{*} d x^{2} \wedge d y=d x^{2} \wedge d y \tag{3.3}\\
H_{12}=\rho H_{12} \rho, \quad H_{23}=\rho H_{41} \rho \tag{3.4}
\end{gather*}
$$

By the realization, we mean a biholomorphic map σ, defined in a neighborhood of the origin in J and satisfying $\sigma=\hat{\sigma}+O(2),\left.\sigma\right|_{x=0}=\mathrm{id}, \sigma=I \sigma^{-1} I=\rho \sigma \rho$ and $\sigma^{*} d x^{2} \wedge d y=$ $d x^{2} \wedge d y$, and biholomorphic mappings H_{j} defined on some sectorial domains and satisfying $H_{j}^{-1} \sigma H_{j}=\hat{\sigma}, H_{2}=\rho H_{1} \rho, H_{4}=\rho H_{3} \rho$, and $H_{j+2}=I H_{j} I, H_{j}^{*} d x^{2} \wedge$ $d y=d x^{2} \wedge d y$. Moreover, H_{j} are asymptotic to the same semi-formal biholomorphic
map Φ, and finally $H_{j}^{-1} H_{j+1}=H_{j j+1}$ on a sectorial domain $S_{\alpha_{j}^{\prime}, \beta_{j}^{\prime}, r^{\prime}}$ with opening shrunk slightly from the sectorial domain $S_{\alpha_{j}, \beta_{j}, r}$ on which $H_{j j+1}$ is defined and with $0<r^{\prime} \leq r$. Without the reality conditions (3.4), one drops $\rho \sigma \rho=\sigma, H_{2}=\rho H_{1} \rho$ and $H_{4}=\rho H_{3} \rho$.

Fix $0<\epsilon<\frac{\alpha}{20}$. Choose $0<r_{3}<r_{2}<r_{1}$ sufficiently small such that the first component $h_{j j+1}$ of $H_{j j+1}$ satisfies $\arg \left\{x^{-1} h_{j j+1}(x, y)\right\}<\epsilon$ on $S_{\alpha_{j}, \beta_{j}, r_{1}}$,

$$
\begin{equation*}
H_{j j+1}: A_{j} \equiv S_{\alpha_{j}+2 \epsilon, \beta_{j}-2 \epsilon, r_{2}} \rightarrow \widetilde{C}_{j} \equiv H_{j j+1}\left(A_{j}\right) \tag{3.5}
\end{equation*}
$$

is biholomorphic and A_{j} is now the domain of $H_{j j+1}$. Moreover,

$$
\begin{equation*}
S_{\alpha_{j}+3 \epsilon, \beta_{j}-3 \epsilon, r_{3}} \subset \tilde{C}_{j} \subset S_{\alpha_{j}+\epsilon, \beta_{j}-\epsilon, r_{1}} \tag{3.6}
\end{equation*}
$$

Set $\alpha_{0}=\alpha_{4}+2 \pi$ and $\beta_{0}=\beta_{4}+2 \pi$. For $j=1,2,3,4$, let $S_{j}=A_{j-1} \cup B_{j} \cup \tilde{C}_{j}$ with $B_{j}=S_{\alpha_{j}+3 \epsilon, \beta_{j-1}-3 \epsilon, r_{3}}$. Let X_{0} be the disjoint union $\sqcup_{j=1}^{4} S_{j}$. We identify $p \in A_{j}$ with $H_{j+1}(p) \in \widetilde{C}_{j}$, which defines an equivalence relation on X_{0} since \widetilde{C}_{j} does not intersect A_{k} for $k \neq j \bmod 4$ by the choice of ϵ and by (3.5) and (3.6). Let X be the quotient space of X_{0} by the equivalence relation, and $\pi: X_{0} \rightarrow X$ be the projection. So $U \subset X$ is open if and only if $\pi^{-1}(U) \cap S_{j}$ are open for all j; in particular, if V is open in S_{j} then $\pi^{-1}(\pi(V))=V \cup H_{j-1 j}\left(V \cap A_{j-1}\right) \cup H_{j j+1}^{-1}\left(V \cap \widetilde{C}_{j}\right)$ is open and hence $\pi(V)$ is open. We need to show that X is Hausdorff. Let p, q be in X_{0} with $\pi(p) \neq \pi(q)$. If p, q are in the same S_{j}, take disjoint open sets $U_{p} \ni p, U_{q} \ni q$ in S_{j}. Since $H_{j j+1}$ is one-to-one then $\pi\left(U_{p}\right), \pi\left(U_{q}\right)$ are also disjoint open sets. If p is in S_{j} and q is in S_{k} for $k \neq j, j-1, j+1 \bmod 4$, then $\pi\left(S_{j}\right), \pi\left(S_{k}\right)$ separate p and q. Finally it remains to check the case that $p \in S_{j}$ and $q \in S_{j+1}$. If $q \in A_{j}$, then p and $H_{j j+1}(q)$ are both in S_{j}, which is reduced to a previous case. The same argument applies if $p \in \widetilde{C}_{j}$. Assume now that $p=\left(p_{1}, p_{2}\right)$ is in $S_{j} \backslash \widetilde{C}_{j}$ and $q=\left(q_{1}, q_{2}\right)$ is in $S_{j+1} \backslash A_{j}$. Since $\left|\arg \left\{x^{-1} h_{j j+1}(x, y)\right\}\right|<\epsilon$ on $S_{\alpha_{j}, \beta_{j}, r_{1}}$ and $\left|\arg \left\{q_{1}^{-1} p_{1}\right\}\right|>\epsilon$, we can choose open sets $U_{p} \ni p$ and $U_{q} \ni q$ such that $H_{j j+1}\left(U_{q} \cap A_{j}\right)$ does not intersect U_{p}. Therefore, $\pi\left(U_{p}\right) \cap \pi\left(U_{q}\right)$ is empty and X is Hausdorff.

Now X is a complex manifold with the coordinate map $\pi_{j}^{-1}=\left(x_{j}, y_{j}\right)$ defined on $\pi\left(S_{j}\right)$ and with value in $S_{j} \subset \mathbf{C}^{2}$, and we also have its inverse $\pi_{j}: S_{j} \hookrightarrow X_{0} \xrightarrow{\pi} X$. Note that $H_{j j+1}=\pi_{j}^{-1} \pi_{j+1}$ on A_{j}. On $\pi\left(X_{0} / 4\right)$ define $\tilde{\sigma}, \tilde{I}_{1}, \tilde{\omega}, \tilde{\rho}$ in coordinates as follows

$$
\begin{gathered}
\tilde{\sigma}:\left(x_{j}, y_{j}\right) \rightarrow\left(x_{j}, y_{j}+2 x_{j}\right), \quad \tilde{\omega}=d x_{j}^{2} \wedge d y_{j}, \\
\widetilde{I}_{1}:\left(x_{j}, y_{j}\right) \rightarrow\left(x_{j+2}, y_{j+2}\right)=\left(-x_{j}, y_{j}\right), \\
\widetilde{\rho}=\widetilde{\rho}^{-1}:\left\{\begin{array}{l}
\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=\left(\bar{x}_{1}, \bar{y}_{1}\right), \\
\left(x_{3}, y_{3}\right) \rightarrow\left(x_{4}, y_{4}\right)=\left(\bar{x}_{3}, \bar{y}_{3}\right) .
\end{array}\right.
\end{gathered}
$$

Take a smooth non-negative smooth function $\chi_{j}(x, y) \equiv \chi_{j}(x /|x|)$ such that it equals 1 for $\arg x \in\left((1-j) \frac{\pi}{2}+\epsilon,(2-j) \frac{\pi}{2}-\epsilon\right)$ and zero for $\arg x \notin\left((1-j) \frac{\pi}{2}-\epsilon,(2-j) \frac{\pi}{2}+\epsilon\right)$, and such that $\chi_{1}+\cdots+\chi_{4}=1$. Set $\chi_{k}\left(\pi_{k}(p)\right)=0$ when $p \in X \backslash \pi\left(S_{k}\right)$ and define

$$
K(p)=\sum_{k=1}^{4} \chi_{k}\left(x_{k}(p), y_{k}(p)\right)\left(x_{k}(p), y_{k}(p)\right)
$$

Then $K(X)=D \cap\left(\mathbf{C}^{*} \times \mathbf{C}\right)$, where D is an open neighborhood of the origin in \mathbf{C}^{2}, and K is a diffeomorphism for possibly smaller r_{2}, r_{3}. Thus one gets a complex structure
on $K(X)$ defined by $K_{j *} \frac{\partial}{\partial x_{j}}, K_{j^{*}} \frac{\partial}{\partial y_{j}}$, where $K_{j} \circ \pi_{j}^{-1}=K$ on $\pi\left(S_{j}\right)$. Note that $\left(x_{k}(p), y_{k}(p)\right)=\pi_{k}^{-1}(p)=H_{k j}\left(x_{j}(p), y_{j}(p)\right)$ when $\chi_{k}\left(x_{k}(p), y_{k}(p)\right) \chi_{j}\left(x_{j}(p), x_{j}(p)\right) \neq$ 0 . Thus

$$
\begin{aligned}
K_{j}(t) & =\sum_{k=1}^{4} \chi_{k}\left(H_{k j}(t)\right) H_{k j}(t) \sim \sum_{k=1}^{4} \chi_{k}(t) H_{k j}(t) \\
& \sim \sum_{k=1}^{4} \chi_{k}(t) t=t, \quad t=\left(x_{j}(p), y_{j}(p)\right) \in S_{j} .
\end{aligned}
$$

Hence the complex structure extends to D and agrees with the standard one along $x=$ 0 to infinitely order. By the Newlander-Nirenberg theorem, there is a diffeomorphism $\psi: \widetilde{D}(\subset D) \rightarrow \Omega \subset \mathbf{C}^{2}$ with $\psi(0)=0$ such that ψK is biholomorphic. Now the inverse ψ^{-1}, expanded as formal power series in x, \bar{x}, is a formal power series in x only and has coefficients holomorphic in y in a fixed domain. Using a finite order Taylor expansion of ψ^{-1} if necessary, one may also assume that $\psi(x, y)=(x, y)+O\left(|x|^{2}\right)$. On $\Omega \cap\left(\mathbf{C}^{*} \times \mathbf{C}\right)$ define $\sigma^{\prime}=\psi K \widetilde{\sigma} K^{-1} \psi^{-1}, I^{\prime}=\psi K \widetilde{I}_{1} K^{-1} \psi^{-1}, \omega^{\prime}=(\psi K)^{-1 *} d x^{2} \wedge d y$ and $\rho^{\prime}=\psi K \widetilde{\rho} K^{-1} \psi^{-1}$. Again, since $H_{j j+1} \sim \operatorname{id}$ then $\sigma^{\prime}, I_{j}^{\prime}, \omega^{\prime}, \rho^{\prime}$ extend to Ω with $\sigma^{\prime}(x, y)=\hat{\sigma}(x, y)+O\left(|x|^{2}\right)$ and $\hat{\sigma}(x, y)=(x, y+2 x), I^{\prime}(x, y)=I(x, y)+O\left(|x|^{2}\right), \omega^{\prime}=$ $A_{0}(x, y) d x^{2} \wedge d y, A_{0}(0)=1$ and $\rho^{\prime}(x, y)=\rho(x, y)+O\left(|x|^{2}\right)$. We need to apply holomorphic changes of coordinates that are tangent to the identity and preserve $x=0$ to transform $\left\{\sigma^{\prime}, I^{\prime}, \omega^{\prime}, \rho^{\prime}\right\}$ into $\{\sigma, I, \omega, \rho\}$.

Let $\varphi_{0}=\left(\operatorname{id}+\rho \rho^{\prime}\right) / 2$. Then φ_{0} is tangent to the identity and fixes $x=0$ pointwise, and $\rho=\varphi_{0} \rho^{\prime} \varphi_{0}^{-1}$. Put $I^{+}=\varphi_{0} I^{\prime} \varphi_{0}^{-1}$ and $\sigma^{+}=\varphi_{0} \sigma^{\prime} \varphi_{0}^{-1}$. Note that $\tilde{I} \tilde{\rho}=\tilde{\rho} \tilde{I}$ implies that $I^{\prime} \rho^{\prime}=\rho^{\prime} I^{\prime}$. Hence $I^{+} \rho=\rho I^{+}$. Let $\varphi_{1}=\left(\mathrm{id}+I I^{+}\right) / 2$. Then $\varphi_{1} \rho=\rho \varphi_{1}$ and $\varphi_{1} I^{+}=I \varphi_{1}$. Since $\tilde{I}^{*} \tilde{\omega}=\tilde{\omega}=\overline{\tilde{\rho}^{*} \tilde{\omega}}$, then $\omega_{1}=\left(\varphi_{1} \varphi_{0} \psi K\right)^{-1 *} \tilde{\omega}$ satisfies $I^{*} \omega_{1}=\omega_{1}=$ $\overline{\rho^{*} \omega_{1}}$. Moreover, $\omega_{1}=A_{1}(x, y) d x^{2} \wedge d y$ with $A_{1}(0)=1$. Thus $A_{1}(-x, y)=A_{1}(x, y)=$ $\bar{A}_{1}(x, y)$. Hence $A_{1}(x, y) d x^{2} \wedge d y=d\left(x A\left(x^{2}, y\right)\right)^{2} \wedge d y$ with $A(x, y)=\bar{A}(x, y)$ and $A(0)=1$. Let $\varphi_{2}(x, y)=\left(x A\left(x^{2}, y\right), y\right)$. Then φ_{2} preserves I, ρ. Now $\varphi_{2}^{*} d x^{2} \wedge d y=\omega_{1}$.

Take $H_{j}=\varphi_{2} \varphi_{1} \varphi_{0} \psi K_{j}=\varphi_{2} \varphi_{1} \varphi_{0} \psi K \pi_{j}$, which is holomorphic on S_{j}. As formal power series in x, y, H_{j} preserves $x=0$. On S_{j} recall that $K_{j} \sim$ id and we have

$$
H_{j}(t)=\varphi_{2} \varphi_{1} \varphi_{0} \psi K_{j}(t) \sim \varphi_{2} \varphi_{1} \varphi_{0} \hat{\psi}(t) \equiv \Phi(t)=\mathrm{id}+O(2), \quad t=\left(x_{j}, y_{j}\right),
$$

where $\hat{\psi}(x, y)$ is the Taylor series expansion of $\psi(x, y)$ in x, \bar{x}. As mentioned above, $\hat{\psi}^{-1}(x, y)$ and hence $\hat{\psi}(x, y)$ is a power series in x only and whose coefficients are holomorphic in y on a fixed domain. Finally, $H_{j}^{-1} \sigma H_{j}=\hat{\sigma}, H_{j}^{*} d x^{2} \wedge d y=d x^{2} \wedge d y$, $I H_{j} I=H_{j+2}, \rho H_{1} \rho=H_{2}, \rho H_{2} \rho=H_{4}$, and $H_{j}^{-1} H_{j+1}=H_{j, j+1}$ on A_{j}. When the reality condition (3.4) is not imposed on $H_{j j+1}$, one drops the correction map φ_{0} and all requirements involving anti-holomorphic involutions. The proof of the realization is complete.

Note that the realization for $H_{j j+1}$ is achieved by shrinking the openings of sectorial domains slightly. (The radius of the sectorial domains could be small.) In particular, if the opening of the sectorial domain is larger than $\frac{\pi}{2}$, the opening of the shrunk sectorial domain is still bigger than $\frac{\pi}{2}$.

Let us recall a special family of moduli functions [7]: $H_{j j+1}$ are defined on sectorial domains $S_{j j+1}$, and $H_{41}=\mathrm{id}=H_{23}$. And the opening of S_{12}, S_{34} is $\pi-4 \alpha>\frac{\pi}{2}$ by
fixing $\alpha<\frac{\pi}{32}$. In the real case, the last requirement is not needed. We still assume that $H_{j j+1}$ satisfy (3.2)-(3.4) (in the complex case we drop (3.4)).

Next we want to discuss the equivalence relation on moduli functions. Let σ and $\tilde{\sigma}$ be two realizations, constructed above, corresponding to $\left\{H_{j j+1}\right\}$ on $S_{j j+1}=S_{\alpha_{j}, \beta_{j}, r}$, $\left\{\tilde{H}_{j j+1}\right\}$ on $\tilde{S}_{j j+1}=S_{\tilde{\alpha}_{j}, \tilde{\beta}_{j}, \tilde{r}}$, respectively, where $\alpha_{j}, \beta_{j}, \tilde{\alpha}_{j}, \tilde{\beta}_{j}$ are of the form (3.1). We still assume that the openings of $S_{12}, \tilde{S}_{12}, S_{34}, \tilde{S}_{34}$ are bigger than $\frac{\pi}{2}$. Suppose also that $H_{23}=H_{41}=\tilde{H}_{23}=\tilde{H}_{41}=$ id. So there exist normalizing transformations H_{j} such that $H_{j}^{-1} \sigma H_{j}=\hat{\sigma}$. Moreover, $H_{j}^{-1} H_{j+1}=H_{j j+1}$ on $S_{j j+1}$ (by shrinking the opening slightly and by choosing a smaller radius). Also $\tilde{H}_{j}^{-1} \tilde{H}_{j+1}=\tilde{H}_{j j+1}$ on a sector $\tilde{S}_{j j+1}$. Assume now that $g \sigma g^{-1}=\tilde{\sigma}$ and $g I=I g$. Then g preserves $x=0$, since the latter is the set of fixed points of $\sigma, \tilde{\sigma}$. Write $g(x, y)=\left(x g_{1}(x, y), g_{2}(x, y)\right)$. Let $g_{1}(0)=\mu=|\mu| e^{i \gamma}$. There are two cases: $\operatorname{Im} \mu \geq 0$ and $\operatorname{Im} \mu<0$. When $\operatorname{Im} \mu \geq 0$, say $0 \leq \gamma \leq \frac{\pi}{2}$, we take sectorial domains $S_{j}^{*}=i^{1-j} S_{1}^{*}, \widetilde{S}_{j}^{*}$ with

$$
\begin{equation*}
S_{1}^{*}=\left\{x:-\epsilon<\arg x+\frac{\gamma}{2}<\frac{\pi}{2}+\epsilon, 0<|x|<r^{\prime}\right\} \times \Delta_{r^{\prime}}, \widetilde{S}_{j}^{*}=\mu S_{j}^{*} \tag{3.7}
\end{equation*}
$$

Note that $S_{1}^{*} \subset S_{1}$ and $S_{2}^{*} \subset S_{2} \cup S_{3}$, if ϵ and r^{\prime} are sufficiently small. Also $S_{3}^{*} \subset S_{3}$ and $S_{4}^{*} \subset S_{4} \cup S_{1}$. Since $H_{1}=H_{4}$ and $H_{2}=H_{3}$ we can define $H_{j}^{*}=\left.H_{j}\right|_{S_{j}^{*}}$ and we still have $H_{4}^{*}=H_{1}^{*}$ and $H_{2}^{*}=H_{3}^{*}$ on the overlaps. We can also define $\tilde{H}_{j}^{*}=\left.\tilde{H}_{j}\right|_{\tilde{S}_{j}^{*}}$. When $\frac{\pi}{2} \leq \gamma<\pi$, we take $S_{j}^{*}=i^{1-j} S_{1}^{*}, \widetilde{S}_{j}^{*}$ with

$$
\begin{equation*}
S_{1}^{*}=\left\{x:-\epsilon<\arg x-\frac{\gamma}{4}<\frac{\pi}{2}+\epsilon, 0<|x|<r^{\prime}\right\} \times \Delta_{r^{\prime}}, \quad \widetilde{S}_{j+2}^{*}=\mu S_{j}^{*} \tag{3.8}
\end{equation*}
$$

We still define $H_{j}^{*}=\left.H_{j}\right|_{S_{j}^{*}}$ and $\tilde{H}_{j}=\left.\tilde{H}_{j}\right|_{\tilde{S}_{j}^{*}}$. With the above choice of $S_{j}^{*}, \tilde{S}_{j}^{*}$, the restriction of H_{j+1} to a possibly smaller intersection is still a transition function. Rename H_{j}^{*} by H_{j} and \tilde{H}_{j}^{*} by \tilde{H}_{j}. We retain $H_{23}=H_{41}=\tilde{H}_{23}=\tilde{H}_{41}=\mathrm{id}$. When $\Im \mu<0$, one can rearrange the intersections to meet this requirement (by reversing the roles of $H, \tilde{H})$. Recall $H_{j} \hat{\sigma} H_{j}^{-1}=\sigma$ on S_{j}^{*} and $H_{j j+1}=H_{j}^{-1} H_{j+1}$ on $S_{j}^{*} \cap S_{j+1}^{*}$. (As usual, it holds on a smaller sector.) Let $G_{j}=\tilde{H}_{j}^{-1} g H_{j}$ when $\Re \mu \geq 0$, and let $G_{j}=\tilde{H}_{j+2}^{-1} g H_{j}$ when $\Re \mu<0$. Then for both cases of (3.7) and (3.8) we have $G_{1}=G_{4}, G_{2}=G_{3}$, and $I G_{j} I=G_{j+2}$. For the real case we have $G_{2}=\rho G_{1} \rho, G_{3}=\rho G_{2} \rho$ additionally. Then we get the equivalence relation

$$
G_{j} H_{j j+1} G_{j+1}^{-1}=\tilde{H}_{j j+1}, \forall j ; \quad \text { or } \quad G_{j} H_{j j+1} G_{j+1}^{-1}=\tilde{H}_{j+2 j+3}, \forall j
$$

Recall that $I(x, y)=(-x, y), \hat{\sigma}(x, y)=(x, y+2 x)$, and $\rho(x, y)=(\bar{x}, \bar{y})$. To deal with mappings, defined on a sectorial domain $S=V \times \Delta_{r}$, that commute with $\hat{\sigma}(x, y)=(x, y+2 x)$, it is convenient to work on the quotient space $S / \hat{\sigma}$ obtained by the projection $(x, t)=\pi(x, y)=\left(x, e^{\frac{\pi i y}{x}}\right)$. More specifically, if H commutes with $\hat{\sigma}$ then it has the form $H(x, y)=(x a(x, y), y a(x, y)+b(x, y))$ with $a \hat{\sigma}=a$ and $b \hat{\sigma}=b$, which yields a mapping in the (x, t)-space defined for $x \in V$ and $e^{-\frac{\pi r}{|x|}}<|t|<e^{\frac{\pi r}{|x|}}$ by

$$
\begin{gathered}
\tilde{H}: x^{\prime}=x \tilde{a}(x, t), \quad t^{\prime}=t \lambda(x, t) \\
\tilde{a}(x, t)=a\left(x, \frac{x \log t}{\pi i}\right), \quad \lambda(x, t)=e^{d(x, t)}, \quad d(x, t)=\frac{\pi i b\left(x, \frac{x \log t}{\pi i}\right)}{x a\left(a, \frac{x \log t}{\pi i}\right)} .
\end{gathered}
$$

When H is asymptotic to the identity on the sectorial domain $V \times \Delta_{r}$, such as a mapping $H_{j j+1}$ in $\left\{H_{j j+1}\right\}$, we have $|a(x, y)-1|<c|x|$ and $|y(a(x, y)-1)+b(x, y)|<$ $c|x|^{2}$ for $x \in V \cap \Delta_{\delta}$ and $y \in \Delta_{\epsilon}$, which implies that

$$
|d(x, t)| \leq 2 \pi c|x|+2 \pi c|y|<\pi
$$

for $|x|,|y|$ sufficiently small. Hence \tilde{H} determines H uniquely. We will also consider mappings G, such as a mapping G_{j} appeared in the equivalence relation of moduli space, defined on a sectorial domain $V \times \Delta_{r}$, which commutes with $\hat{\sigma}$ and admits an asymptotic expansion $\Psi(x, y)=(x A(x, y), y A(x, y)+B(x, y)), A(0) \neq 0=B(0)$. Note that the semi-formal map Ψ still commutes with $\hat{\sigma}$, so $A \hat{\sigma}=A$ and $B \hat{\sigma}=B$. However, G is not uniquely determined by $\tilde{G} ; \tilde{G}=\tilde{G}^{\prime}$ if and only if

$$
A^{\prime}=A, \quad B^{\prime}(x, y)=B(x, y)+2 k x A(x, y), \quad k \in \mathbf{Z}
$$

i.e. $G^{\prime}=\hat{\sigma}^{k} G$. Therefore, the asymptotic expansion of G determines k; in particular, the equivalence class of $\left\{H_{j j+1}\right\}$ is determined by its equivalence class in the (x, t) space. Of course, on the (x, t)-space the moduli functions $\left\{H_{j j+1}\right\}$ and mappings $\left\{G_{j}\right\}$ are required to satisfy asymptotic expansion conditions, and by definition those asymptotic expansion conditions mean the ones described in the (x, y)-space. Note that H, or G, preserves $d x^{2} \wedge d y$ if and only if in the quotient space it preserves

$$
d x^{3} \wedge d \log t \equiv \hat{\omega}
$$

In (x, t)-space, define $I(x, t)=\left(-x, t^{-1}\right)$, and $\rho(x, t)=\left(\bar{x}, \bar{t}^{-1}\right)$. Then moduli functions $H_{j+1}, j=1, \ldots, 4$ will still satisfy the conditions (3.2) and (3.4) (with the new I and ρ). Condition (3.3) becomes $H_{j j+1}^{*} \hat{\omega}=\hat{\omega}$. For the above moduli functions, if they are equivalent by $\left\{G_{j}\right\}$ then $G_{1}=G_{4}, G_{2}=G_{3}$ satisfy

$$
G_{j+2}=I G_{j} I, \quad G_{2}=\rho G_{1} \rho, \quad G_{4}=\rho G_{2} \rho, \quad G_{j}^{*} \hat{\omega}=\hat{\omega}
$$

Moreover, $G_{j}(x, t)=\left(x a_{j}(x), t \lambda_{j}(x)\right)$, where $a_{j}(x)$ admits the same asymptotic expansion $a(x)$ with $a(0) \neq 0$, and $\lambda_{j}(x)$ admit the same asymptotic expansion $\lambda(x)$ with $\lambda(0) \neq 0$. (See [7], Corollary 3, p. 207.)
4. A family of non-equivalent glancing hypersurfaces. We want to show that the space of equivalence classes is infinite dimensional. We will also drop the 2 -form in the equivalence relations for pairs of involutions. This is needed in order to obtain our results in higher dimension.

Recall 4 sectorial domains $S_{12}=S_{12}(\alpha, r)=S_{-\frac{\pi}{2}+2 \alpha, \frac{\pi}{2}-2 \alpha, r}, \quad S_{23}=$ $S_{-\frac{\pi}{2}-\alpha,-\frac{\pi}{2}+\alpha, r}, S_{34}=-S_{12}$ and $S_{41}=-S_{23}$. We will choose $\alpha \in\left(0, \frac{\pi}{32}\right)$ later.

We want to find a family of $\left\{H_{j j+1}\right\}$ on $S_{j j+1}$ in the (x, t)-space, which are not equivalent. We will take $H_{41}=H_{23}=$ id and $H_{34}=I H_{12} I$. So we need only to describe H_{12}. Now H_{12} needs to satisfy

$$
H_{12}^{*} \hat{\omega}=\hat{\omega}, \quad \hat{\omega}=d x^{3} \wedge d \log t
$$

Also H_{12} must be asymptotic to the identity in the (x, y)-space, and for the real case we need $H_{12}=\rho H_{12} \rho$ additionally.

Complex case. Using the local generating function $x^{3} \log \hat{t}+\hat{t} p(x) e^{-\frac{1}{x}}$ with a meromorphic function $p(x)$ on \mathbf{C}^{*}, we want to define $H_{12}=K$ and $K(x, t)=(\hat{x}, \hat{t})$ by the identity

$$
\log t d x^{3}+\hat{x}^{3} d \log \hat{t}=d\left\{x^{3} \log \hat{t}+\hat{t} p(x) e^{-1 / x}\right\}
$$

Equivalently,

$$
\begin{aligned}
\hat{x}^{3} & =x^{3}+\hat{t} p(x) e^{-1 / x} \\
\log t & =\log \hat{t}+\hat{t} p^{*}(x) e^{-1 / x}, \quad p^{*}(x)=\frac{1}{3 x^{4}} p(x)+\frac{1}{3 x^{2}} p^{\prime}(x)
\end{aligned}
$$

So K preserves $d x^{3} \wedge d \log t$, if K defines a biholomorphic map. We will consider meromorphic functions on \mathbf{C}^{*} of the form

$$
\begin{equation*}
p(x)=\sum_{k=1}^{\infty} \frac{\epsilon_{k}}{\left(k^{2} x^{2}+1\right)^{k}}, \quad 0<\left|\epsilon_{k}\right|<\frac{k^{2 k}}{k!} \tag{4.1}
\end{equation*}
$$

Thus we need to find where K and K^{-1} are defined. We also need to find coefficients of its Laurent series expansion in t. We first rewrite the above identities as

$$
\begin{align*}
\hat{x} & =x\left(1+\hat{t} p_{1}(x) e^{-\frac{1}{x}}\right)^{1 / 3}, \quad p_{1}(x)=x^{-3} p(x) \tag{4.2}\\
\hat{t} & =t e^{-\hat{t} p^{*}(x) e^{-\frac{1}{x}}} \tag{4.3}
\end{align*}
$$

If $|\arg x|<\frac{\pi}{2}-\alpha$ then $\left|k^{2} x^{2}+1\right| \geq k^{2}|x|^{2} \sin 2 \alpha$. Hence for $\left|\epsilon_{k}\right|<\frac{\delta^{2 k} k^{2 k}}{(2 k)!}$, we have

$$
|p(x)|<e^{\frac{\delta}{|x| \sqrt{\sin 2 \alpha}}}, \quad|\arg x|<\frac{\pi}{2}-\alpha .
$$

Fix $\alpha=\frac{\pi}{100}$. Note that $\frac{1}{|x|^{N}} \leq N!e^{\frac{1}{|x|}}$. There exists δ_{*} depending only on $\epsilon>0$ such that p is meromorphic on \mathbf{C}^{*} and

$$
\begin{equation*}
\max \left\{\left|p_{1}(x)\right|,\left|p_{1}^{\prime}(x)\right|,\left|p^{*}(x)\right|,\left|p^{* \prime}(x)\right|\right\}<|x|^{3} e^{\frac{\epsilon}{|x|}} \tag{4.4}
\end{equation*}
$$

if

$$
|\arg x|<\frac{\pi}{2}-\alpha, \quad 0<|x|<r=r_{\epsilon}, \quad \epsilon_{k}<\frac{\delta_{*}^{k} k^{2 k}}{(2 k)!}
$$

Using identities (4.2)-(4.3), we first define a map K on $\{(x, y): 0<|x|<$ $\left.r,|\arg x|<\frac{\pi}{2}-\alpha, e^{-\frac{\epsilon}{|x|}}<|t|<e^{\frac{\epsilon}{|x|}}\right\}$, and a map K^{-1} on $\{(x, y): 0<|x|<r,|\arg x|<$ $\left.\frac{\pi}{2}-2 \alpha, e^{-\frac{\epsilon}{|x|}}<|t|<e^{\frac{\epsilon}{|x|}}\right\}$ for some positive constant r, where r is sufficiently small but dependent of ϵ. The two maps are inverses of each other, when restricted to suitable sectorial domains. We take $\epsilon=\frac{\sin \alpha}{100}$ such that $\left|e^{\frac{100 \epsilon}{|x|}-\frac{1}{x}}\right|<1$ for $|\arg x|<\frac{\pi}{2}-\alpha$.

Let us start with equation (4.3). By the contraction map theorem, for some small $r_{0}>0$ the equation $T=e^{-\omega T}$ admits a unique solution $T=T(\omega)$ which is holomorphic in ω for $|\omega|<r_{0}$, by requiring $|T|<8$. Note that

$$
\begin{gather*}
T=T(\omega)=1-\omega+O\left(\omega^{2}\right) \tag{4.5}\\
|T(\omega)-1|=\left|e^{-\omega T(\omega)}-1\right| \leq \frac{|\omega T(\omega)|}{1-|\omega T(\omega)|} \leq 2|\omega T(\omega)|
\end{gather*}
$$

Hence (4.3) admits a unique solution

$$
\begin{equation*}
\hat{t}=t T\left(t p^{*}(x) e^{-\frac{1}{x}}\right) \tag{4.6}
\end{equation*}
$$

with $\left|T\left(t p^{*}(x) e^{-\frac{1}{x}}\right)-1\right| \leq 16\left|t p^{*}(x) e^{-\frac{1}{x}}\right| \leq\left|e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right|$ for $|t|<e^{\frac{\epsilon}{|x|}}$. Substituting $t T\left(t p^{*}(x) e^{-\frac{1}{x}}\right)$ for \hat{t} in (4.2), we get

$$
\hat{x}=x\left[1+t T\left(t p^{*}(x) e^{-\frac{1}{x}}\right) p_{1}(x) e^{-\frac{1}{x}}\right]^{1 / 3}
$$

Also $\left|\left[1+t T\left(t p^{*}(x) e^{-\frac{1}{x}}\right) p_{1}(x) e^{-\frac{1}{x}}\right]^{1 / 3}-1\right| \leq\left|t T\left(t p^{*}(x) e^{-\frac{1}{x}}\right) p_{1}(x) e^{-\frac{1}{x}}\right|<\left|e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right|$. Therefore, K is defined on

$$
S_{\alpha, r, \epsilon} \equiv\left\{(x, t):|x|<r,|\arg x|<\frac{\pi}{2}-\alpha,|t|<e^{\frac{\epsilon}{|x|}}\right\}
$$

Moreover, $K\left(S_{\alpha, r, \epsilon}\right) \subset S_{\alpha / 2,2 r, 2 \epsilon}$, if $r<r_{0}$.
From (4.6) and (4.5) we get

$$
\begin{equation*}
\hat{t}=t\left(1-p^{*}(x) e^{-\frac{1}{x}} t+O\left(t^{2} e^{-\frac{2}{x}+\frac{2 \epsilon}{|x|}}\right)\right) \tag{4.7}
\end{equation*}
$$

where $O\left(t^{2} e^{-\frac{2}{x}+\frac{2 \epsilon}{|x|}}\right)$ stands for a term with absolute value bounded by $c \left\lvert\, t^{2} e^{-\frac{2}{x}+\frac{2 \epsilon}{|x|}}\right.$ and its Laurent series (and hence Taylor series) expansion in t has no t^{k} terms for $k<2$. Now (4.2) and (4.7) imply that

$$
\hat{x}=x\left(1+\frac{1}{3} p_{1}(x) e^{-\frac{1}{x}} t+O\left(\left(t e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right)
$$

By (4.4) we see that K is asymptotic to the identity on $\left\{x:|\arg x|<\frac{\pi}{2}-\alpha,|x|<\right.$ $r\} \times\left\{y:|y|<\frac{\epsilon}{\pi}\right\}$.

To find where K^{-1} is defined, we start with (4.2). Let $x=\hat{x}(1+u)$ and rewrite the equation as

$$
u=\left\{1+\hat{t} e^{-\frac{1}{x}} p_{1}(\hat{x}(1+u)) e^{\frac{u}{\bar{x}(1+u)}}\right\}^{-1 / 3}-1 \equiv L(u)
$$

Using (4.4), one can verify that for $|\hat{t}|<e^{\frac{\epsilon}{\hat{x}}},|\arg \hat{x}|<\pi / 2-2 \alpha$ and $0<|\hat{x}|<$ $r_{\epsilon}^{\prime}<r_{\epsilon} / 2, L$ is a contraction map sending the $\operatorname{disc}\left\{u:|u|<\min \left\{\epsilon, \frac{2}{\pi} \alpha\right\}\right\}$ into itself. Hence there is a unique holomorphic solution $u=u(\hat{x}, \hat{t})$ satisfying $|u|<\min \left\{\epsilon, \frac{2}{\pi} \alpha\right\}$. Solving t in (4.3), we get

$$
t=\hat{t} e^{\hat{t} p^{*}\left(\hat{x}(1+u(\hat{x}, \hat{t})) e^{-\frac{1}{\hat{x}(1+u(\hat{x}, t))}} . . .\right.}
$$

We see that K^{-1} sends $S_{2 \alpha, r / 2, \epsilon / 2}$ into $S_{\alpha, r, \epsilon}$. Recall that K sends $S_{\alpha, r, \epsilon}$ into $S_{\alpha / 2,2 r, 2 \epsilon}$. The uniqueness of solutions implies that $K K^{-1}=\mathrm{id}$ on $S_{2 \alpha, r / 2, \epsilon / 2}$. Hence K is a biholomorphic map from $K^{-1}\left(S_{2 \alpha, r / 2, \epsilon}\right)$ into $S_{2 \alpha, r / 2, \epsilon}$. We can also obtain $K^{-1}\left(S_{2 \alpha, r / 2, \epsilon}\right) \supset S_{3 \alpha, r / 4, \epsilon / 2}$ by showing $K\left(S_{3 \alpha, r / 4, \epsilon / 2}\right) \subset S_{2 \alpha, r / 2, \epsilon}$ and $K^{-1} K=\mathrm{id}$.

In summary, we define a biholomorphic map

$$
H_{12}=K:\left\{\begin{array}{l}
\hat{x}=x\left(1+\frac{t}{3} p_{1}(x) e^{-\frac{1}{x}}+O\left(\left(t e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right) \\
\hat{t}=t\left(1-t p^{*}(x) e^{-\frac{1}{x}}+O\left(t^{2} e^{-\frac{2}{x}+\frac{2 \epsilon}{|x|}}\right)\right)
\end{array}\right.
$$

Recall $I(x, t)=I\left(-x, t^{-1}\right)$, and $p_{1}(-x)=-p_{1}(x)$. For $H_{34}=I H_{12} I$ we have

$$
H_{34}:\left\{\begin{array}{l}
\hat{x}=x\left(1-\frac{t^{-1}}{3} p_{1}(x) e^{\frac{1}{x}}+O\left(\left(t^{-1} e^{\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right) \\
\hat{t}=t\left(1+t^{-1} p^{*}(-x) e^{\frac{1}{x}}+O\left(t^{-2} e^{\frac{2}{x}+\frac{2 \epsilon}{|x|}}\right)\right)
\end{array}\right.
$$

Let $\tilde{H}_{j j+1}$ have the same form with p being \tilde{p}. From section 3, we then find realizations $\sigma=I \sigma^{-1} I, \tilde{\sigma}=I \tilde{\sigma}^{-1} I$ for H, \tilde{H} (defined on the (x, y)-space and being asymptotic to the identity), respectively. Assume that $g \sigma g^{-1}=\tilde{\sigma}$ for some biholomorphic map $g=I g I$. As discussed in section 3, we have $g(x, y)=\left(x g_{1}(x, y), g_{2}(x, y)\right)$. Let $\mu=g_{1}(0)$. When $\operatorname{Im} \mu \geq 0$ define $S_{j}^{*}, \tilde{S}_{j}^{*}$ in the (x, y)-space by (3.7) or (3.8). When $\operatorname{Im} \mu<0$, reverse the roles of H, \tilde{H} and define $S_{j}^{*}, \tilde{S}_{j}^{*}$ by (3.7) or (3.8) again. Then H, \tilde{H} are equivalent by $\left\{G_{j}\right\}$ (see section 3). We have $G_{1}=G_{4}, G_{2}=G_{3}$ and $G_{j+2}=I G_{j} I$. We now return to the (x, t)-space. In the (x, t)-space we have

$$
G_{j}(x, t)=\left(x a_{j}(x), t \lambda_{j}(x)\right), \quad a_{j} \sim a, a(0)=\mu \neq 0, \lambda_{j} \sim \lambda, \lambda(0) \neq 0
$$

Let us first consider $G_{1} H_{12}=\tilde{H}_{12} G_{2}$ on $S_{1}^{*} \cap S_{2}^{*}$. From x-components on both sides we get

$$
\begin{align*}
(1+ & \left.\frac{t}{3} p_{1}(x) e^{-\frac{1}{x}}+O\left(\left(t e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right) a_{1}\left(x \left(1+\frac{t}{3} p_{1}(x) e^{-\frac{1}{x}}+O\left(\left(t e^{\left.\left.\left.\left.-\frac{1}{x}+\frac{2 \epsilon}{|x|}\right)^{2}\right)\right)\right)}\right.\right.\right.\right. \tag{4.8}\\
& =a_{2}(x)\left(1+\frac{t \lambda_{2}(x)}{3} \tilde{p}_{1}\left(x a_{2}(x)\right) e^{-\frac{1}{x a_{2}(x)}}+O\left(\left(t \lambda_{2}(x) e^{\left.\left.\left.-\frac{1}{x a_{2}(x)}+\frac{2 \epsilon}{\left|x a_{2}(x)\right|}\right)^{2}\right)\right)}\right.\right.\right.
\end{align*}
$$

 both sides as Laurent series in t (actually a Taylor series in t). The constant terms give us $a_{1}(x)=a_{2}(x)$. From the x-components of $G_{3} H_{34}=\tilde{H}_{34} G_{4}$ we get

$$
\begin{align*}
& \left(1-\frac{t^{-1}}{3} p_{1}(x) e^{\frac{1}{x}}+O\left(\left(t^{-1} e^{\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right) a_{3}\left(x\left(1-\frac{t^{-1}}{3} p_{1}(x) e^{\frac{1}{x}}+O\left(\left(t^{-1} e^{\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right)\right) \tag{4.9}\\
& \quad=a_{4}(x)\left(1-\frac{t^{-1} \lambda_{4}(x)^{-1}}{3} \tilde{p}_{1}\left(x a_{4}(x)\right) e^{\frac{1}{x a_{4}(x)}}+O\left(\left(t^{-1} \lambda_{4}(x)^{-1} e^{\frac{1}{x a_{4}(x)}+\frac{2 \epsilon}{\mid x a_{4}(x)}}\right)^{2}\right)\right)
\end{align*}
$$

The same argument yields $a_{3}=a_{4}$ on $-V$. Since a_{j} are bounded then $a_{1}=a_{2}=a$ is a holomorphic function defined near the origin. We fix x again and look at the coefficients of t^{1} in (4.8). We get

$$
p_{1}(x) e^{-\frac{1}{x}}\left(a(x)+x a^{\prime}(x)\right)=a(x) \lambda_{2}(x) \tilde{p}_{1}(x a(x)) e^{-\frac{1}{x a(x)}} .
$$

The identity holds on $S_{1}^{*} \cap S_{2}^{*}$ and hence on S_{2}^{*}. On S_{2}^{*}, λ_{2} is holomorphic. If $a^{2} \not \equiv 1$, then the orders of poles of both sides indicate that $a+x a^{\prime} \equiv 0$, which is impossible because the right hand side is not identically zero. Consequently, $a^{2} \equiv 1$, i.e. $a \equiv 1$ since $\Re a(0) \geq 0$. Now we have

$$
p_{1}(x)=\lambda_{2}(x) \tilde{p}_{1}(x)
$$

From coefficients of t^{-1} in (4.9) (for which we now know $a_{3}=a_{1}=1$) we get

$$
p_{1}(x)=\lambda_{4}(x)^{-1} \tilde{p}_{1}(x)
$$

Therefore, λ_{j} extend to meromorphic functions on a punctured neighborhood of the origin with $\lambda_{1} \lambda_{2}=1$. From the t-components of $G_{1} H_{12}=\tilde{H}_{12} G_{2}$ we get

$$
(1+O(t)) \lambda_{1}\left(x(1+O(t))=\lambda_{2}(x)(1+O(t))\right.
$$

Hence $\lambda_{1}=\lambda_{2}$ on a sector and hence in a punctured neighborhood of the origin since there are meromorphic on \mathbf{C}^{*}. Now $\lambda^{2}=1$, i.e. $\lambda= \pm 1$. Consequently $p= \pm \tilde{p}$. When $\tilde{p}=p$, we get $\lambda=1$.

Consider the second case where $G_{1} H_{12}=\tilde{H}_{34} G_{2}$. From x-components we get

$$
\begin{aligned}
(1+ & \left.\frac{t}{3} p_{1}(x) e^{-\frac{1}{x}}+O\left(\left(t e^{-\frac{1}{x}+\frac{2 \epsilon}{|x|}}\right)^{2}\right)\right) a_{1}\left(x \left(1+\frac{t}{3} p_{1}(x) e^{-\frac{1}{x}}+O\left(\left(t e^{\left.\left.\left.\left.-\frac{1}{x}+\frac{2 \epsilon}{|x|}\right)^{2}\right)\right)\right)}\right.\right.\right.\right. \\
& =a_{2}(x)\left(1-\frac{t^{-1} \lambda_{2}(x)^{-1}}{3} \tilde{p}_{1}\left(x a_{2}(x)\right) e^{\frac{1}{x a_{2}(x)}}+O\left(\left(t^{-1} \lambda_{2}(x)^{-1} e^{\frac{1}{x a_{2}(x)}+\frac{2 \epsilon}{\mid x a_{2}(x)}}\right)^{2}\right)\right)
\end{aligned}
$$

Expand both sides as Laurent series expansion in t. The coefficient of t^{-1} on the right-hand side is non-zero, while the coefficient on the left-hand side is zero. We rule out this case immediately.

From (4.2)-(4.3), one sees that σ_{p} is equivalent to σ_{-p} by $(x, t) \rightarrow(x,-t)$. When $p=\tilde{p} \not \equiv 0$, the above argument shows that $G_{j}=\mathrm{id}$ in the (x, t)-space. In the (x, y) space, we conclude that $G_{j}(x, y)=\hat{\sigma}^{k}$, so $g=H_{j} \hat{\sigma}^{k} H_{j}^{-1}=\sigma^{k}$. Since I reverses σ, we conclude $g=$ id if g preserves I and σ.

The following proposition gives our reduction from higher dimension case to the case of \mathbf{C}^{4} at the expense of symplectic 2-form for the involutions.

Proposition 4.1. Let $\left\{\widehat{F}, G_{j}\right\}, j=1,2$ be two pairs of glancing hypersurfaces in \mathbf{C}^{4} given by

$$
G_{j}: \xi_{2}=\xi_{1}^{2}+x_{1} b_{j}\left(\xi_{2}, x\right), \quad b_{j}(0)=1
$$

If $\left\{\widehat{F} \times \mathbf{C}^{2 n-4}, G_{1} \times \mathbf{C}^{2 n-4}\right\}$ and $\left\{\widehat{F} \times \mathbf{C}^{2 n-4}, G_{2} \times \mathbf{C}^{2 n-4}\right\}$ are equivalent under a holomorphic symplectic mapping ψ of $\mathbf{C}^{2 n}$, the corresponding pairs of involutions of $\left\{\widehat{F}, G_{1}\right\}\left\{\widehat{F}, G_{2}\right\}$ are equivalent under some biholomorphic map ϕ of $\mathbf{C}^{2} \equiv \widehat{F} \cap \widehat{G}$. If ψ is a real map, the ϕ is real too.

Proof. Let \mathbf{C}^{4} be the $\left(\xi_{1}, \xi_{2}, x_{1}, x_{2}\right)$-space and $\mathbf{C}^{2 n-4}$ the ($\left.{ }^{\prime} \xi,{ }^{\prime} x\right)$-space. Let $\mathbf{C}^{2 n}=\mathbf{C}^{4} \times \mathbf{C}^{2 n-4}$. Let $\tilde{F}=\hat{F} \times \mathbf{C}^{2 n-4}$ and $\tilde{G}_{k}=G_{k} \times \mathbf{C}^{2 n-4}$. Let $\left\{I, I_{k}\right\}$ be the pair of involutions of $\left\{\widehat{F}, G_{k}\right\}$, and $\left\{\tilde{I}, \tilde{I}_{k}\right\}$ the pair of involutions of $\{\hat{F} \times$ $\left.\mathbf{C}^{2 n-4}, G_{k} \times \mathbf{C}^{2 n-4}\right\}$. Assume that a biholomorphic mapping $\tilde{\phi}$ in $\left(\xi_{1}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x\right)$-space sends the pair of involutions $\left\{\tilde{I}, \tilde{I}_{1}\right\}$ into $\left\{\tilde{I}, \tilde{I}_{2}\right\}$. Let π_{1} be the projection from the ($\xi_{1}, x_{2},{ }^{\prime} \xi,{ }^{\prime} x$)-space onto (ξ_{1}, x_{2})-subspace. Looking at the flows of Hamiltonian vector fields of x_{1} and $\xi_{2}-\xi_{1}^{2}-x_{1} b\left(\xi_{2}, x_{1}, x_{2}\right)$ we get $\tilde{I}\left(\xi_{1}, x_{2},{ }^{\prime} \xi,{ }_{\tilde{\prime}} x\right)=\left(I\left(\xi_{1}, x_{2}\right),^{\prime} \xi,{ }^{\prime} x\right)$ and $\tilde{I}_{k}\left(\xi_{1}, x_{2},{ }^{\prime} \xi, ' x\right)=\left(I_{k}\left(\xi_{1}, x_{2}\right),{ }^{\prime} \xi,^{\prime} x\right)$. From $\tilde{\phi} \tilde{I}=\tilde{I} \tilde{\phi}$ and $\tilde{\phi} \tilde{I}_{1}=\tilde{I}_{2} \tilde{\phi}$, we get easily that $\phi I=I \phi$ and $\phi I_{1}=I_{2} \phi$. Note that ϕ is a biholomorphic map, since $\phi^{\prime}(0)$ preserves the Jordan normal form

$$
\left(\tilde{I}_{1} \tilde{I}\right)^{\prime}(0): \xi_{1} \rightarrow \xi_{1}, x_{2} \rightarrow x_{2}+2 \xi_{1}, \xi_{\alpha} \rightarrow \xi_{\alpha}, x_{\alpha} \rightarrow x_{\alpha}, \alpha>2
$$

It is obvious that ϕ is real, if $\tilde{\phi}$ is real. \square
Summarizing the above results we obtain the following.

Proposition 4.2. Let $n \geq 2$. There exists $\delta>0$ such that each meromorphic function

$$
p(x)=\sum \frac{\epsilon_{k}}{\left(k^{2} x^{2}+1\right)^{k}}, \quad 0<\left|\epsilon_{k}\right|<\frac{\delta^{k} k^{k}}{k!}
$$

gives arise to a pair of holomorphic glancing hypersurfaces $\hat{F}, G=G_{p}$ in $\mathbf{C}^{2 n}$ with $\hat{F} \cap G_{p}: x_{1}=\xi_{n}-\xi_{1}^{2}=0$ such that the pair of involutions $I_{\hat{F}}, I_{G_{p}}$ and $\sigma_{p}=I_{G_{p}} I_{\hat{F}}$ satisfy
(i) σ_{p} and $\sigma_{\tilde{p}}$ are holomorphically equivalent on J, if and only if $\tilde{p} \equiv \pm p$. In particular the pairs $\left\{\hat{F}, G_{p}\right\}$ and $\left\{\hat{F}, G_{\tilde{p}}\right\}$ are not equivalent under holomorphic symplectic mappings of $\mathbf{C}^{2 n}$ if $\tilde{p} \not \equiv \pm p$.
(ii) if $n=2$ and $p \not \equiv 0, \sigma_{p}^{k}$ are the only local biholomorphic maps on J that commute with σ_{p}, where $k=0,1,-1,2,-2, \ldots$; in particular, the identity map is the only biholomorphic map that preserves both $I_{\hat{F}}$ and $I_{G_{p}}$.

Real case. Recall $I(x, y)=(-x, y), \hat{\sigma}(x, y)=(x, y+2 x)$, and $\rho(x, y)=(\bar{x}, \bar{y})$. In the (x, t)-space, we have $I(x, t)=\left(-x, t^{-1}\right)$, and $\rho(x, t)=\left(\bar{x}, \bar{t}^{-1}\right)$.

Consider

$$
p(x)=\sum_{k=1}^{\infty} \frac{\epsilon_{k}}{\left(k^{2} x^{2}+1\right)^{k}}, \quad 0<\epsilon_{k}<\frac{\delta^{2 k} k^{2 k}}{(2 k)!} .
$$

Note that $p(x)$ is a meromorphic function on $\mathbf{C} \backslash\{0\}$. If δ is sufficiently small,

$$
H_{12}: x^{\prime}=x, \quad t^{\prime}=t e^{i p(x) e^{-\frac{1}{x}}}, \quad|\arg x|<\frac{\pi}{4}
$$

is asymptotic to the identity. It is obvious that $H_{12}=\rho H_{12} \rho$ preserves $d x^{3} \wedge d \log t$. Let

$$
H_{34}=I H_{12} I: x^{\prime}=x, \quad t^{\prime}=t e^{-i p(x) e^{\frac{1}{x}}}, \quad|\arg x|>\frac{3 \pi}{4}
$$

Set $H_{41}=I H_{23} I=\mathrm{id}$ on $\left|\arg x-\frac{\pi}{2}\right|<\frac{\pi}{4}$. Let $\sigma=I \sigma^{-1} I=\rho \sigma \rho$ be a holomorphic map realizing moduli functions $\left\{H_{j j+1}\right\}$. Let $\tilde{\sigma}$ be another one corresponding to \tilde{p} that still have the above form. Note that in the real case it is not necessary to have openings of S_{12} and S_{34} to be bigger than $\frac{\pi}{2}$.

We want to show that $\tilde{\sigma}$ and σ are equivalent by some real analytic map preserves I if and only if $\tilde{p}(x)=p(x)$.

Assume that there is a real analytic map $g=I g I$ such that $g \sigma g^{-1}=\tilde{\sigma}$. Since g is real we know that $g(x, y)=\left(x g_{1}(x, y), g_{2}(x, y)\right)$ with $g_{1}(0) \in \mathbf{R}$. We still have $G_{j}^{-1} H_{j j+1} G_{j+1}=\tilde{H}_{j j+1}$ for all j or $G_{j}^{-1} H_{j j+1} G_{j+1}=\tilde{H}_{j+2 j+3}$ for all j, where G_{j} have the form

$$
\begin{gathered}
G_{j}(x, t)=\left(x a_{j}(x), t \lambda_{j}(x)\right), \quad G_{1}=G_{4}, \quad G_{2}=G_{3} \\
a_{j} \sim a, \quad a(0) \neq 0, \quad \lambda_{j} \sim \lambda, \quad \lambda(0) \neq 0 \\
a_{2}(x)=\overline{a_{1}(\bar{x})}, \quad a_{3}(x)=a_{1}(-x), \quad \lambda_{2}(x)={\overline{\lambda_{1}(\bar{x})}}^{-1}, \quad \lambda_{3}(x)=\lambda_{1}(-x)^{-1} .
\end{gathered}
$$

Let us look at the first case $a(0)>0$. Then we must have $H_{12} G_{2}=G_{1} \tilde{H}_{12}$, which implies that on $V=\left\{x:|\arg x|<\frac{\pi}{4}-\epsilon, 0<|x|<r\right\}$ we have $a_{1}=a_{2}$ and

$$
\begin{equation*}
\lambda_{2}(x) e^{i p\left(x a_{2}(x)\right) e^{-\frac{1}{x a_{2}(x)}}}=\lambda_{1}(x) e^{i \tilde{p}(x) e^{-\frac{1}{x}}} \tag{4.10}
\end{equation*}
$$

By $H_{34} G_{4}=G_{3} \tilde{H}_{34}$ on $-V$, we get $a_{2}=a_{3}=a_{4}=a_{1}$ on $-V$ and hence all a_{j} are the same. By removable singularity, we get $a_{j}=a$ is holomorphic at the origin. In (4.10), we take $x>0$ and conjugate both sides, and by $\lambda_{2}(x)={\overline{\lambda_{1}(x)}}^{-1}$ we get

$$
\lambda_{1}(x)^{-1} e^{-i \bar{p}(x a(x)) e^{-\frac{1}{x a(x)}}}=\lambda_{2}(x)^{-1} e^{-i \bar{p}(x) e^{-\frac{1}{x}}}
$$

Using (4.10) again and eliminating λ_{1}, λ_{2} from both sides, we get

$$
-\bar{p}(x a(x)) e^{-\frac{1}{x a(x)}}+\tilde{p}(x) e^{-\frac{1}{x}}=-\overline{\tilde{p}}(x) e^{-\frac{1}{x}}+p(x a(x)) e^{-\frac{1}{x a(x)}}
$$

Recall $p(x)=\bar{p}(x)$ and $\tilde{p}(x)=\bar{p}(x)$. We get

$$
p(x a(x)) e^{-\frac{1}{x a(x)}}=\tilde{p}(x) e^{-\frac{1}{x}}
$$

which now holds on \mathbf{C}^{*}. Looking at the orders of the poles we see $a \equiv 1$ and then $\tilde{p}=p$.

Consider now the case $a(0)<0$. We then have $\left(G_{j} I\right)^{-1} H_{j j+1} G_{j+1} I=\tilde{H}_{j j+1}$, which is reduced to the previous case. The conclusion is then $\tilde{p}(x)=p(-x)=p(x)$.

We have proved the following.
Proposition 4.3. Let $n \geq 2$. There exists $\delta>0$ such that each real analytic function

$$
p(x)=\sum \frac{\epsilon_{k}}{\left(k^{2} x^{2}+1\right)^{k}}, \quad x>0, \quad 0<\epsilon_{k}<\frac{\delta^{k} k^{k}}{k!}
$$

gives arise to a pair of real analytic glancing hypersurfaces $\hat{F}, G=G_{p}$ in $\mathbf{R}^{2 n}$ with $\hat{F} \cap G_{p}: x_{1}=\xi_{2}-\xi_{1}^{2}=0$ such that if $I_{\hat{F}}, I_{G_{p}}$ are the corresponding involutions on J, the pair $\left\{I_{\hat{F}}, I_{G_{p}}\right\}$ is equivalent to $\left\{I_{\hat{F}}, I_{G_{\vec{p}}}\right\}$ by a real analytic mapping on J, if and only if $p=\tilde{p}$.

REFERENCES

[1] P. Ahern and X. Gong, Real analytic manifolds in \mathbf{C}^{n} with parabolic complex tangents along a submanifold of codimension one, preprint.
[2] V.I. Arnol'd and A.B. Givental', Symplectic geometry, Dynamical systems, IV, 1-138, Encyclopaedia Math. Sci., vol. 4, Springer, Berlin, 2001.
[3] X. Gong, Divergence for the normalization of holomorphic glancing hypersurfaces, Commun. Partial Diff. Equations, 19:3 \& 4 (1994), pp. 643-654.
[4] B. Malgrange, Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, pp. 59-73, Astérisque, 92-93, Soc. Math. France, Paris, 1982.
[5] R.B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), pp. 165-191.
[6] T. Oshima, On analytic equivalence of glancing hypersurfaces, Sci. Papers College Gen Ed. Univ. Tokyo, 28:1 (1978), pp. 51-57.
[7] S.M. Voronin, The Darboux-Whitney theorem and related questions, in Nonlinear Stokes phenomena, pp. 139-233, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, 1993.
[8] S.M. Voronin, Analytic classification of germs of holomorphic mappings with nonisolated fixed points and constant multipliers, and its applications (Russian), Vestnik Chelyabinsk. Univ. Ser. 3 Mat. Mekh., 2:5 (1999), pp. 12-30.

[^0]: *Received August 2, 2006; accepted for publication March 9, 2007.
 \dagger Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (ahern@ math.wisc.edu; gong@math.wisc.edu).
 ${ }^{\ddagger}$ Research of the second author is supported in part by NSF grant DMS-0305474.

