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EDGE OF THE WEDGE THEORY IN INVOLUTIVE STRUCTURES∗

ZIAD ADWAN† AND SHIFERAW BERHANU†

Abstract. This paper describes the C∞ wave-front set of the boundary values of approximate
solutions in wedges W of involutive structures (M,V) that are not necessarily locally integrable. It
is shown that the C∞ wave-front set of the boundary value is contained in the polar of a certain
cone ΓT (W) contained in ℜV ∩ TX where X is a maximally real edge of W . A converse result is
also established.
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1. Introduction. Let M be a C∞ manifold and V ⊆ CTM a subbundle of rank
n which is involutive, that is, the bracket of two smooth sections of V is also a section of
V . We will refer to the pair (M,V) as an involutive structure. The involutive structure
(M,V) is called locally integrable if the orthogonal of V in CT ∗M is locally generated
by exact forms. In [EG] assuming that (M,V) is locally integrable, the authors proved
some microlocal regularity results for a distribution u on certain submanifolds E of
M where u arises as the boundary value of a solution on a wedge W in M with
edge E. These results were expressed in terms of the hypo-analytic wave-front set
developed in [BCT]. In this article we prove some analogous results in the setting
of involutive structures that are not necessarily locally integrable, and for boundary
values of approximate solutions (Definition 2.4) in wedges.

In section 2 we summarize some of the notions from [EG] that we need to state
our main results, Theorems 3.1 and 3.2. Section 3 is devoted to the proofs of these
results. Finally, in section 4 we present a sufficient condition for the existence of
boundary values that is used in the proof of Theorem 3.2.

2. Preliminaries. In this section we will briefly recall some of the notions and
results we will need about involutive structures. The reader is referred to [EG] for
more details.

We assume (M,V) is an involutive structure and the fiber dimension of V equals
n. A distribution f on M is called a solution if Lf = 0 for all smooth sections L of
V . A real cotangent vector σ ∈ T ∗

pM is said to be characteristic for the involutive
structure (M,V) if σ(L) = 0 for all L ∈ Vp and we let

T 0
p = {σ ∈ T ∗

pM : σ is characteristic for (M,V)}.

Even when V is a line bundle, the dimension of T 0
p may not be constant as p varies.

However, when V is a CR structure, that is, V ∩V = {0}, then T 0 is a vector bundle.

Definition 2.1. A smooth submanifold X of M is called maximally real if
CTpM = Vp ⊕ CTpX for each p ∈ X.

If X is a maximally real submanifold and p ∈ X, define

VX
p = {L ∈ Vp : ℜL ∈ TpX}.
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We recall the following result from [EG] which is also valid for a general involutive
structure.

Proposition 2.1. (Lemma II.1 in [EG]) VX is a real subbundle of V|X of rank
n. The map

ℑ : V|X → TM

which takes the imaginary part induces an isomorphism

VX ∼= TM |X�TX.

Proposition 2.1 shows that when X is maximally real, for p ∈ X, ℑ defines an
isomorphism from VX

p to an n−dimensional subspace Np of TpM which is a canonical
complement to TpX in the sense that

TpM = TpX ⊕Np.

Definition 2.2. Let E be a submanifold of M, dimR E = k. We say an open
set W is a wedge in M at p ∈ E with edge E if the following holds: there exists a
diffeomorphism F of a neighborhood V of 0 in RN (N = dimR M) onto a neighborhood
U of p in M with F (0) = p and a set B × Γ ⊆ V with B a ball centered at 0 ∈ Rk

and Γ a truncated, open convex cone in RN−k with vertex at 0 such that

F (B × Γ) = W and F (B × {0}) = E ∩ U.

Definition 2.3. Let E, W and p ∈ E be as in the previous definition. The
direction wedge Γp(W) ⊆ TpM is defined as the interior of the set

{c′(0)| c : [0, 1) → M is C∞, c(0) = p, c(t) ∈ W ∀t > 0}.

It is easy to see that Γp(W) is a linear wedge in TpM with edge TpE. Set

Γ(W) =
⋃

p∈E

Γp(W).

Suppose W is a wedge in M with a maximally real edge X. As observed in [EG],
since Γp(W) is determined by its image in TpM�TpX, the isomorphism ℑ can be
used to define a corresponding wedge in VX

p by setting

ΓV
p (W) =

{
L ∈ VX

p : ℑL ∈ Γp(W)
}
.

ΓV
p (W) is a linear wedge in VX

p with edge {0}, that is, it is a cone. Define also

ΓT
p (W) =

{
ℜL : L ∈ ΓV

p (W)
}
.

ΓT
p (W) is an open cone in (ℜVp) ∩ TpX (see [EG]). Set

ΓV(W) =
⋃

p∈X

ΓV
p (W) and ΓT (W) =

⋃

p∈X

ΓT
p (W).
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Definition 2.4. Let W be a wedge in M with edge a maximally real submanifold
X. We say a distribution f ∈ D′(W) is an approximate solution if Lf ∈ L1

loc
(W) and

Lf(p) = O(dist(p,X))l ∀l = 1, 2, 3, ...,

and for all smooth sections L of V .

Let W and X be as in Definition 2.4, f ∈ D′(W) and u ∈ D′(X). Near a point
p ∈ X let (x′, x′′) ∈ B×Γ be a coordinate system where B and Γ are as in Definition
2.2. We say that f has a boundary value u if at each p and in each such coordinate
system, f is a smooth function on Γ with values in D′(B), extends continuously to
Γ ∪ {0} and equals u at x′′ = 0.

3. Main results and proofs.

Theorem 3.1. Let (M,V) be an involutive structure, dimR M = m+ n, rank of
V = n, X ⊂ M a maximally real submanifold, and W a wedge in M with edge X.
Suppose that u ∈ D′(X) is the boundary value of an approximate solution f ∈ D′(W).
Then

WF (u) ⊂
(
ΓT (W)

)0
.

(Here WF (u) denotes the C∞ wave-front set of u and
(
ΓT (W)

)0
denotes the polar

of ΓT (W) in the cotangent space T ∗X).

Proof. Since W is a wedge in M with edge X , in a neighborhood Ω of a point
p ∈ X , there are coordinates (x, t) = (x1, . . . , xm, t1, . . . , tn) vanishing at p so that in
Ω

X = {(x, 0) : |x| < r} = Br(0),

W = X × Γ for some open convex cone Γ ⊂ Rn
t .

Since X is maximally real,

CTM = CTX ⊕ V

and so for each j = 1, . . . , n, there exists a smooth section Lj of V ( near 0 ) and
smooth functions ajk(x, t), 1 ≤ j ≤ n, 1 ≤ k ≤ m such that

Lj =
∂

∂tj
+

m∑

k=1

ajk(x, t)
∂

∂xk

(1 ≤ j ≤ n).

Observe that the Lj’s are linearly independent over C, and so

V = spanC{Lj : 1 ≤ j ≤ n}.

Let

{Z1(x, t), ..., Zm(x, t)}

be smooth functions satisfying the following properties (see [T]): for all N ∈ N there
exists CN > 0 such that

|LjZl(x, t)| ≤ CN |t|
N
, and Zl(x, 0) = xl, for 1 ≤ l ≤ m. (3.1)
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For l = 1, ...,m, and (x, t) ∈ Ω, we can write

Zl(x, t) = xl +
n∑

s=1

tsψls(x, t), (3.2)

where ψls(x, t) = ψ
(1)
ls (x, t) + iψ

(2)
ls (x, t), ψ

(1)
ls and ψ

(2)
ls real-valued. Set

Z(x, t) = (Z1(x, t), . . . , Zm(x, t)), and A(x, t) = (ψij(x, t))1≤i≤m, 1≤j≤n
.

Then we can rewrite (3.2) in the matrix form

Z(x, t) = x+A(x, t)t.

From (3.1), for all 1 ≤ j ≤ n, 1 ≤ l ≤ m

−ajl(0, 0) = ψlj(0, 0).

Hence, for all 1 ≤ j ≤ n, 1 ≤ l ≤ m

−ℑajl(0, 0) = ψ
(2)
lj (0, 0). (3.3)

We have:

VX
0 = {L ∈ V0 : ℜL ∈ T0X} = spanR{iLj|0 : 1 ≤ j ≤ n}.

Indeed, the above span is contained in VX
0 and since its dimension over R is n, by

Proposition 2.1, it equals VX
0 . The direction wedge

Γ0(W) =





m∑

j=1

aj

∂

∂xj

|0 +

n∑

j=1

bj
∂

∂tj
|0 : a ∈ Rm, b ∈ Γ



 ≃ Rm × Γ.

Hence,

ΓV
0 (W) =

{
L ∈ VX

0 : ℑL ∈ Γ0(W)
}

=





n∑

j=1

ibjLj|0 : b ∈ Γ



 ,

and

ΓT
0 (W) =

{
ℜL : L ∈ ΓV

0 (W)
}

=





n∑

j=1

bj

(
m∑

k=1

−ℑajk(0, 0)
∂

∂xk

|0

)
: b ∈ Γ





=





n∑

j=1

bj

(
m∑

k=1

ψ
(2)
kj (0, 0)

∂

∂xk

|0

)
: b ∈ Γ





=





m∑

k=1




n∑

j=1

bjψ
(2)
kj (0, 0)


 ∂

∂xk

|0 : b ∈ Γ



 ⊂ T0X.
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Hence,

(
ΓT

0 (W)
)0

=
{
ξ ∈ T ∗

0X\{0} ≃ Rm\{0} : ξ · v ≥ 0 for all v ∈ ΓT
0 (W)

}

= {ξ ∈ Rm\{0} : ξ · ℑA(0, 0)b ≥ 0 for all b ∈ Γ} . (3.4)

Therefore, since
(
ΓT

0 (W)
)0

is closed in Rm\{0}, we obtain

ξ0 /∈
(
ΓT

0 (W)
)0

⇔ ∃ an open convex cone Γ̃ ⊂⊂ Γ : ξ0 · ℑA(0, 0)Γ̃ < 0. (3.5)

For j = 1, ..., n, define the vector fields

L′
j = Lj −

m∑

k=1

LjZk(x, t)Mk,

where M1, ...,Mm are C∞ complex vector fields involving differentiation in the x
variables only such that

MkZl = δkl for all 1 ≤ k ≤ m, 1 ≤ l ≤ m.

Note that

L′
jZl = 0 for all 1 ≤ j ≤ n, 1 ≤ l ≤ m. (3.6)

If g(x, t) is any C1 function defined in Ω, observe that the differential

dg(x, t) =
n∑

j=1

L′
jg(x, t)dtj +

m∑

k=1

Mkg(x, t)dZk.

Hence, if we consider the m-form

ω(x, t) = g(x, t) dZ(x, t) = g(x, t) dZ1 ∧ · · · ∧ dZm(x, t),

its differential becomes

dω(x, t) =

n∑

j=1

L′
jg(x, t)dtj ∧ dZ(x, t). (3.7)

Since f(x, t) is an approximate solution of V in W ,

∀N ∈ N ∃CN > 0 : |Ljf(x, t)| ≤ CN |t|N for all (x, t) ∈ W . (3.8)

We also know that

lim
Γ∋t→0

∫

X

f(x, t)ϕ(x) dx = 〈u, ϕ〉 exists for all ϕ ∈ C∞
0 (X).

Let η(x) ∈ C∞
0 (Rm), η(x) ≡ 1 for |x| ≤ r, and η(x) ≡ 0 when |x| ≥ 2r (r small). We

will consider the following FBI transform of ηf :

Fηf (t; y, ξ) =

∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)f(x, t) (detZx(x, t)) dx.
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where for z ∈ Cm, we write 〈z〉2 = z2
1 + · · · + z2

m. Since the boundary value bf = u
exists, we have

Fηf (0; y, ξ) =

∫

X

eiξ·(y−x)−|ξ|〈y−x〉2η(x)u(x) dx

= Fηu(y, ξ).

Let ξ0 ∈ Rm\{0} be such that ξ0 /∈
(
ΓT

0 (W)
)0
. Then, by (3.5), we can get an open

convex cone Γ̃ ⊂⊂ Γ such that

ξ0 · ℑA(0, 0)Γ̃ < 0.

Fix T ∈ Γ̃ and let

γ(s) = sT for 0 ≤ s ≤ 1.

Consider the m-form ω(x, t) = g(x, t) dZ(x, t), where

g(x, t) = eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)f(x, t),

and it is to be understood that y and ξ are parameters. We now avail ourselves of
Stokes’ theorem

∫

γ

∫

X

dω(x, t) =

∫

∂(X×γ)

ω(x, t). (3.9)

Using (3.7), equation (3.9) becomes

∫

γ

∫

X

n∑

j=1

L′
jg(x, t)dtj ∧ dZ(x, t) =

∫

X

ω(x, T ) −

∫

X

ω(x, 0). (3.10)

Note that by (3.6),

L′
jg(x, t) = eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)L′

jf(x, t)

+ eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2f(x, t)L′
jη(x, t),

ω(x, T ) = g(x, T ) (detZx(x, T )) dx

= eiξ·(y−Z(x,T ))−|ξ|〈y−Z(x,T )〉2η(x)f(x, T ) (detZx(x, T )) dx, and

ω(x, 0) = g(x, 0) dx = eiξ·(y−x)−|ξ|〈y−x〉2η(x)u(x) dx.

Hence, together with (3.10), the above equations imply

|Fηu(y, ξ)| ≤

∣∣∣∣
∫

X

eQ(x,T,y,ξ)η(x)f(x, T ) (detZx(x, T )) dx

∣∣∣∣

+

n∑

j=1

∣∣∣∣
∫

γ

∫

X

eQ(x,t,y,ξ)η(x)L′
jf(x, t)(detZx(x, t)) dxdtj

∣∣∣∣

+

n∑

j=1

∣∣∣∣
∫

γ

∫

X

eQ(x,t,y,ξ)f(x, t)L′
jη(x) detZx dxdtj

∣∣∣∣ (3.11)
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where

Q(x, t, y, ξ) = iξ · (y − Z(x, t)) − |ξ| 〈y − Z(x, t)〉2 . (3.12)

We have

ℜQ(x, t, y, ξ) = ξ · ℑA(x, t)t − |ξ| [|y − x|2 + |ℜA(x, t)t|2 − |ℑA(x, t)t|2

−2〈y − x,ℜA(x, t)t〉].

Let M > 0 such that

‖A(x, t) −A(0, 0)‖ ≤M (|x| + |t|) for all (x, t) ∈ Ω

and so, for all (x, t) ∈ Ω :

ξ · ℑA(x, t)t ≤ ξ · ℑA(0, 0)t+M |ξ| |t| (|x| + |t|) .

Therefore, for some C > 0,

ℜQ(x, t, y, ξ) ≤ ξ · ℑA(0, 0)t+M(|x| + |t|)|t||ξ|

+C|t|2|ξ| −
|y − x|2

2
|ξ|.

Since ξ0 · (ℑA(0, 0)T ) < 0, there is a conic neighborhood C of ξ0 and c > 0 such that

ξ · (ℑA(0, 0)t) ≤ −2c|t||ξ| ∀ξ ∈ C, ∀t ∈ γ.

Hence for r small enough, |x| ≤ r, and |t| small,

ℜQ(x, t, y, ξ) ≤ −c|t||ξ| ∀ξ ∈ C, ∀t ∈ γ.

Thus, there are δ > 0, C0 > 0, an open neighborhood O ⊂ Rm of the origin and an
open conic neighborhood C ⊂ Rm\{0} of ξ0 such that for all t ∈ γ and all (y, ξ) ∈
O × C :

ℜQ(x, t, y, ξ) ≤ −
1

4
C0 |t| |ξ| .

We are now ready to conclude the proof. We consider each term in (3.11). Since
f(., T ) is a distribution, and

ℜQ(x, T, y, ξ) ≤ −
1

4
C0 |T | |ξ| ,

for some C,C′
0 > 0, we have:
∣∣∣∣
∫

X

eiξ·(y−Z(x,T ))−|ξ|〈y−Z(x,T )〉2η(x)f(x, T ) (detZx(x, T )) dx

∣∣∣∣

≤ Ce−
1

4
C′

0
|ξ| for all (y, ξ) ∈ O × C.

Since L′
jη(x) ≡ 0 for |x| ≤ r, the term

∣∣∣∣
∫

γ

∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2L′
jη(x)f(x, t) (detZx(x, t)) dxdtj

∣∣∣∣
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has an exponential decay for y near 0 and ξ in a conic neighborhood of ξ0. To estimate
the third term, for N a positive integer,

|ξ|
N

∫

γ

∣∣∣∣
∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)L′
jf(x, t)dx

∣∣∣∣ dtj

≤ C |ξ|N
∫

γ

∣∣∣∣
∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)Ljf(x, t)dx

∣∣∣∣ dtj

+C|ξ|N
m∑

k=1

∫

γ

∣∣∣∣
∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)LjZk(x, t)Mkf(x, t)dx

∣∣∣∣ dtj .

Since f is an approximate solution of the Lj ’s, we obtain

C |ξ|
N

∫

γ

∣∣∣∣
∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)Ljf(x, t)dx

∣∣∣∣ dtj

≤ CCN

∫

γ

∫

X

e−
1

4
C0|t||ξ| |ξ|

N
|t|

N
dxdtj

≤ C′ for all (y, ξ) ∈ O × C.

Since bf = u exists, so does b (Mkf) for all k = 1, ...,m. Hence, after decreasing δ, we
can find a positive integer J independent of N such that

C |ξ|
N

m∑

k=1

∫

γ

∣∣∣∣
∫

X

eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)LjZk(x, t)Mkf(x, t)dx

∣∣∣∣ dtj

≤ K1 |ξ|
N

m∑

k=1

∫

γ

∑

|α|≤J

sup
∣∣∣Dα

x

{
eiξ·(y−Z(x,t))−|ξ|〈y−Z(x,t)〉2η(x)LjZk(x, t)

}∣∣∣ dtj

≤ K2e
− 1

4
C0|t||ξ| |ξ|

N
|t|

N

≤ C′′ for all (y, ξ) ∈ O × C.

Therefore, for each N ∈ N there exists a constant CN > 0 such that for all (y, ξ) ∈
O × C :

|Fηu(y, ξ)| ≤
CN

|ξ|
N
.

This shows that the FBI transform of u, Fηu(x, ξ), has rapid decay in ξ for all (x, ξ) ∈
O × C. It is well known (see [BH1] for example) that this implies

(
0, ξ0

)
/∈WF (u).

This concludes the proof.

Corollary 3.1. (Edge-of-the-Wedge Theorem) Let W+ and W− be wedges in
Ω with edge X whose directions are opposite: Γp(W

+) = −Γp(W
−). If u ∈ D′(X) is

the boundary value of an approximate solution f+ of V on W+ and also the boundary
value of an approximate solution f− of V on W−, then WFp(u) ⊂ i∗X(T 0

p ).

Proof. By Theorem 3.1,

WFp(u) ⊂
(
ΓT

p

(
W+

))0
∩
(
ΓT

p

(
W−

))0
.
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Note that

ΓT
p

(
W+

)
= −ΓT

p

(
W−

)
.

Thus, if ξ0 ∈WFp(u), then

ξ0 · ΓT
p

(
W+

)
≥ 0 and ξ0 · ΓT

p

(
W−

)
≥ 0.

This implies that

ξ0 · ΓT
p

(
W+

)
= 0.

Since ΓT
p (W+) is open in ℜVp ∩ TpX, we conclude that

ξ0 ∈ (ℜVp ∩ TpX)
⊥

= i∗X(T 0
p ).

Thus, WFp(u) ⊂ i∗X(T 0
p Ω).

Corollary 3.2. If (M,V) is an elliptic structure and we have the same hypoth-
esis as in the previous corollary, then u is C∞ in X.

We will next prove the converse of Theorem 3.1.

Theorem 3.2. Let (M,V) be an involutive structure, dimR M = m+ n, rank of
V = n, X ⊂ M a maximally real submanifold, and W a wedge in M with edge X.
Suppose u ∈ E ′(X) is such that

WF (u) ⊂
(
ΓT (W)

)0
.

Then in a slightly smaller wedge W ′ ⊂⊂ W with edge X, there exists an approximate
solution f ∈ D′(W ′) such that

u = bf on X.

Proof. We take off from (3.4). For some open convex cone Γ′ ⊂⊂ Γ, one can write

W ′ = Br(0) × Γ′.

If ΓT (W)0 = {0}, then u is C∞, in which case the conclusion of Theorem 3.2 is well
known. We may therefore assume that ΓT (W)0 6= {0}. Using (3.4) and the fact that

Γ′ ⊂⊂ Γ, one can find an open convex cone C ⊂ Rm\{0} containing
(
ΓT

0 (W)
)0

and a
constant c > 0 such that

ξ · ℑA(0, 0)t ≥ c |ξ| |t| for all (ξ, t) ∈ C × Γ′. (3.13)

For (x, t) ∈ W ′ and ξ ∈ C, define

Q(x, t, ξ) = iξ · Z(x, t)

= iξ · (x+ ℜA(x, t)t) − ξ · ℑA(x, t)t.

From (3.13) and the fact that ℑA(x, t) is of class C1 near (0, 0), one obtains for some
M > 0 and for all (x, t) ∈ W ′ and ξ ∈ C :

ℜQ(x, t, ξ) = −ξ · ℑA(x, t)t

≤ −ξ · ℑA(0, 0)t+M |ξ| |t| (|x| + |t|)

≤ −c |ξ| |t| +M |ξ| |t| (|x| + |t|)
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Choosing 0 < r, δ < c
4M

, we can insure that

ℜQ(x, t, ξ) ≤ −
c

2
|ξ| |t| for all (x, t, ξ) ∈ Br(0) × Γ′

δ × C. (3.14)

Since u ∈ E ′(X), there exists a constant C > 0 and a positive integer N such that the
Fourier transform

|û(ξ)| ≤ C(1 + |ξ|)N for all ξ ∈ Rm. (3.15)

This allows us to define for (x, t) ∈ Br(0) × Γ′
δ the continuous function

f1(x, t) =
1

(2π)
m

∫

C

eQ(x,t,ξ) û(ξ) dξ

=
1

(2π)
m

∫

C

eiξ·Z(x,t) û(ξ) dξ.

We claim that (i) f1 is an approximate solution of V and for some C > 0, (ii)

|f1(x, t)| |t|
N

≤ C where N is the same as the one in (3.15). Assuming that the
claims are true for the moment, we can use Theorem 4.1 from Section 4 to guarantee
the existence of the boundary value bf1 = lim

Γ′

δ
∋t→0

f1(., t) in D′(Br(0)) and moreover,

bf1(x) =
1

(2π)
m

∫

C

eiξ·x û(ξ) dξ. (3.16)

To show (i), we fix t0 ∈ Γ′
δ and we consider a small open neighborhood of t0 in Γ′

δ. In
this small neighborhood, estimate (3.14) allows us to pass Lj under the integral sign

Ljf1(x, t) =
1

(2π)
m

∫

C

i(ξ · LjZ(x, t)) eiξ·Z(x,t) û(ξ) dξ.

Since the Zk(x, t) are approximate first integrals for V , for each l = 1, 2, . . . there
exists a constant Cl > 0 such that

|LjZk(x, t)| ≤ Cl |t|
l for all (x, t) ∈ Br(0) ×Bδ(0), ∀k. (3.17)

From (3.14) and (3.17), for each l = 1, 2, . . . , there exists a constant Kl > 0 such that

|Ljf1(x, t)| ≤ Kl |t|
l

for all (x, t) ∈ Br(0) × Γ′
δ.

Hence, f1 is an approximate solution of V and claim (i) is proved. Claim (ii) follows
from (3.14) and (3.15)which imply that there is a constant C′ > 0 such that

|f1(x, t)| |t|
N

≤ C′ for all (x, t) ∈ Br(0) × Γ′
δ.

For x ∈ Br(0) define

v(x) =
1

(2π)
m

∫

Rm\C

eiξ·x û(ξ) dξ. (3.18)

Using the fact that WF0(u) ⊂
(
ΓT

0 (W)
)0

, compactness of (Rm\C) ∩ Sm−1, and the
characterization of the C∞ wavefront set by the rapid decay of the Fourier transform,
we get that v ∈ C∞(Br(0)). It is well known (see [A] for example) that in this case,
one can find a C∞ function f2 ∈ C∞(Br(0) ×Bδ(0)) such that f2 is an approximate
solution of V and bf2 = v on X. Thus, from (3.16) and (3.18) we get

u = bf1 + bf2 = bf,

where f = f1 + f2 is an approximate solution of V in the wedge W ′. This completes
the proof.
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4. Existence of Boundary Values. In this section we present a sufficient
condition for a function defined on a wedge to have a boundary value on the edge of
the wedge. The result is more general than what was needed in the proof of Theorem
3.2.
We will consider a system of smooth complex vector fields

Lj =
∂

∂tj
+

m∑

k=1

ajk(x, t)
∂

∂xk

in a neighborhood U of the origin in Rm
x ×Rn

t . For simplicity, say U = Br(0)×Bδ(0)
and let W = Br(0)× Γδ be a wedge where Γδ ⊂ Rn

t is a truncated open convex cone.
For analogues of the following theorem for a single vector field see Theorem 1.1 in
[BH2] and Theorem VI.1.3 in [BCH]:

Theorem 4.1. Let W = Br(0)×Γδ be as above and suppose that f(x, t) ∈ C(W)
satisfies: for some C > 0 and some N ∈ N

(i)

∫

Br(0)

|Ljf(x, t)| dx ≤ C

and (ii)

|f(x, t)| |t|N ≤ C.

Then bf = lim
Γδ∋t→0

f(., t) exists in D′(Br(0)).

Proof. Let Z1, ..., Zm : U → C be smooth functions near the origin in U satisfying

LjZk(x, t) = O(|t|
l
) for l = 1, 2, ..., and Zk(x, 0) = xk, 1 ≤ k ≤ m. (4.1)

Define

bjk(x, t) = LjZk(x, t). (4.2)

Write

Z(x, t) = (Z1(x, t), ..., Zm(x, t)) and Zk(x, t) = Ψ1k(x, t) + iΨ2k(x, t),

where Ψ1k(x, t) and Ψ2k(x, t) are real-valued. For j = 1, ...,m, let

Mj =
m∑

k=1

cjk(x, t)
∂

∂xk

be vector fields in x-space satisfying

MjZk = δjk, [Mj,Mk] = 0.

Note that for each j, k,

[Mj , Lk] =
m∑

l=1

djkl(x, t)Ml,
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where each djkl(x, t) = O(|t|
s
) for s = 1, 2, .... Indeed, the latter can be seen by

expressing [Mj , Lk] in terms of the basis {L1, ..., Ln,M1, ...,Mm} and applying both
sides to the n + m functions {t1, ..., tn, Z1, ..., Zm}. Equations (4.1) and (4.2) imply
that

Mkbjk = O(|t|
s
) for s = 1, 2, ....

If g(x, t) is any C1 function defined in U, observe that the differential

dg =

m∑

k=1

Mk (g) dZk +

n∑

j=1

Lj (g) dtj −

n∑

j=1

m∑

k=1

Mk (g) bjkdtj .

Hence, if we consider the m-form ω = g dZ, we get

dω = dg ∧ dZ =

n∑

j=1

Lj (g)dtj ∧ dZ −

n∑

j=1

m∑

k=1

Mk (g) bjk dtj ∧ dZ. (4.3)

Observe that hypothesis (ii) in the theorem together with the fact that

bjk(x, t) = O(|t|s), Mkbjk(x, t) = O(|t|s) ∀s

imply that ∀ϕ ∈ C∞
0 (Br(0)),

∣∣∣∣∣

∫

Γδ

∫

Br(0)

bjk(x, t)Mkf(x, t)ϕ(x)dxdt

∣∣∣∣∣ ≤ C2, (4.4)

where C2 > 0 is a constant that depends only on sup
x∈Br(0)

∑
|α|≤1 ‖D

αϕ(x)‖. Let

Ψ1 = (Ψ11, . . . ,Ψ1m) and Ψ2 = (Ψ12, . . . ,Ψ2m).

For ϕ ∈ C∞
0 (Br(0)) and k a nonnegative integer, define

Tkϕ(x, t) =
∑

|α|≤k

i|α|

α!

[(
∂

∂x

)α

ϕ(Ψ1(x, t))

]
(Ψ2(x, t))

α
.

We will first show that lim
Γδ∋t→0

∫
Br(0)

f(x, t) (TNϕ) (x, t)dZ(x, t) exists. To prove this,

fix T ∈ Γδ and let δ′ = δ − |T | . For s ∈ Γδ′ , define γs(τ) = (1 − τ) s+ τT , 0 ≤ τ ≤ 1.
Let ω = (fTNϕ) dZ. Using (4.3) and Stokes’ theorem, we get

∫

Br(0)

f(x, s) (TNϕ) (x, s) dZ(x, s) =

∫

Br(0)

f(x, T ) (TNϕ) (x, T ) dZ(x, T )

−

n∑

j=1

∫

Br(0)

∫

γs

(
Ljf −

m∑

k=1

Mk (f) bjk

)
TNϕdtj ∧ dZ

−

n∑

j=1

∫

Br(0)

∫

γs

(
LjTNϕ−

m∑

k=1

Mk (TNϕ) bjk

)
f dtj ∧ dZ.
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The second integral on the RHS has a limit as s→ 0 by hypothesis (i) of the theorem
and an argument similar to the one used to get (4.4). For the third integral, consider

LjTNϕ =
∑

|α|≤N

i|α|

α!

[
Lj

(
∂

∂x

)α

ϕ(Ψ1)

]
(Ψ2)

α

+
∑

|α|≤N

i|α|

α!

[(
∂

∂x

)α

ϕ(Ψ1)

]
Lj (Ψ2)

α

=
∑

|α|≤N

m∑

l=1

i|α|

α!

((
∂

∂x

)α+el

ϕ(Ψ1)

)
(LjΨ1l) (Ψ2)

α

+
∑

1≤|α|≤N

m∑

l=1

i|α|

α!

(
∂

∂x

)α

ϕ(Ψ1)
[
αl (Ψ2)

α−el LjΨ2l

]

=
∑

|α|≤N

m∑

l=1

i|α|

α!

((
∂

∂x

)α+el

ϕ(Ψ1)

)
(LjΨ1l) (Ψ2)

α

+
∑

|α|≤N−1

m∑

l=1

i|α|+1

α!

(
∂

∂x

)α+el

ϕ(Ψ1) (LjΨ2l) (Ψ2)
α

=
∑

|α|=N

m∑

l=1

i|α|

α!

((
∂

∂x

)α+el

ϕ(Ψ1)

)
(LjΨ1l) (Ψ2)

α

+
∑

|α|≤N−1

m∑

l=1

i|α|

α!

(
∂

∂x

)α+el

ϕ(Ψ1) (Ψ2)
α
Lj(Zl).

Since Z(x, 0) = x, |Ψ2(x, t)| = |Ψ2(x, t) − Ψ2(x, 0)| ≤ C′ |t| and so, recalling that the
Zl are approximate solutions, we conclude that

|LjTNϕ(x, t)| ≤ C′
j |t|

N
.

Hence,

lim
Γδ∋t→0

∫

Br(0)

f(x, t)TNϕ(x, t)dZ(x, t) exists. (4.5)

We will next use the existence of

lim
Γδ∋t→0

∫

Br(0)

f(x, t) (TNg) (x, t)dZ(x, t)

to show that

lim
Γδ∋t→0

∫

Br(0)

f(x, t) (TN−1g) (x, t)dZ(x, t) exists.

To do so, let ψ(x, t) ∈ C∞
0 (Br(0)×Bδ(0)) and for a fixed multi-index β with |β| = N

let

g(x, t) = ψ̃(x, t)Ψ̃2(x, t)
β ,
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where ψ̃(x, t) = ψ(Ψ1(x, t), t) and Ψ̃2(x, t) = Ψ2(Ψ1(x, t), t). The functions ψ̃ and

Ψ̃2(x, t) exist since the map (x, t) → (Ψ1(x, t), t) is a diffeomorphism. Note that we
may write

TN

(
ψ̃Ψ̃β

2

)
(x, t) = ψ(x, t)Ψ2(x, t)

β + ψ(x, t)
∑

|α|=N

aα(x, t)Ψ2(x, t)
α

+
∑

|γ|>N

bγ(x, t)Ψ2(x, t)
γ

(t is treated as a parameter in TNg(x, t) and TN acts on x → g(x, t)) where aα(x, t)
and bγ(x, t) are smooth and aα(x, 0) ≡ 0. The assumption on the growth of f implies
that the limit of

∫

Br(0)

f(x, t)


ψ(x, t)

∑

|α|=N

aα(x, t)Ψ2(x, t)
α +

∑

|γ|>N

bγ(x, t)Ψ2(x, t)
γ


 dZ

exists as t→ 0, t ∈ Γδ. From (4.5), it follows that for any ψ(x, t) ∈ C∞
0 (Br(0)×Bδ(0))

and any multi-index β with |β| = N ,

lim
Γδ∋t→0

∫

Br(0)

f(x, t)ψ(x, t)Ψ2(x, t)
β dZ(x, t) (4.6)

exists. Note next that for any g(x, t) ∈ C∞
0 (Br(0) ×Bδ(0)),

TNg(x, t) = TN−1g(x, t) +
∑

|β|=N

ψβ(x, t)Ψ2(x, t)
β

for some smooth ψβ of compact support. Hence, from (4.5) and (4.6),

lim
Γδ∋t→0

∫

Br(0)

f(x, t) (TN−1g) (x, t) dZ(x, t) exists. (4.7)

We will prove by descending induction that for any
g(x, t) ∈ C∞

0 (Br(0) ×Bδ(0)) and 0 ≤ k ≤ N ,

lim
t→0

∫

Br(0)

f(x, t)Tkg(x, t) dZ(x, t) exists,

which for k = 0 and g(x, t) = ψ(x) ∈ C∞
0 (Br(0)) proves the Theorem. To proceed by

induction, suppose 1 ≤ k ≤ N and assume that for any multi-index β with |β| = k,
the limits

lim
t→0

∫

Br(0)

f(x, t)Ψ2(x, t)
βg(x, t) dZ(x, t) and

lim
t→0

∫

Br(0)

f(x, t)Tk−1g(x, t) dZ(x, t)

(4.8)

both exist for any g(x, t) ∈ C∞
0 (Br(0)×B0(r)). We have already seen in (4.6) and (4.7)

that (4.8) is true for k = N . Fix β′ with |β′| = k − 1. Plug g(x, t) = ψ̃(x, t)Ψ̃2(x, t)
β′

in the limit on the right in (4.8) and observe that Tk−1g may be written as

Tk−1g(x, t) = ψ(x, t)Ψ2(x, t)
β′ + ψ(x, t)

∑

|α|=k−1

cα(x, t)Ψ2(x, t)
α

+
∑

|γ|≥k

dγ(x, t)Ψ2(x, t)
γ
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where cα(x, t) and dγ(x, t) are smooth and cα(x, 0) ≡ 0. From the existence of the
two limits in (4.8) we derive that

lim
t→0

∫

Br(0)

f(x, t)(ψ(x, t)Ψ2(x, t)
β′ + ψ(x, t)

∑

|α|=k−1

cα(x, t)Ψ2(x, t)
α) dZ(x, t)

exists. Observe next that since each cα(x, 0) ≡ 0, given any collection {ψβ(x, t) : |β| =
k − 1} of compactly supported functions, we can find compactly supported functions
{ηβ′(x, t) : |β′| = k − 1} such that

∑

β′

ηβ′Ψβ′

2 +
∑

β′

ηβ′

(
∑

α

cαΨα
2

)
=
∑

β

ψβΨβ
2 .

We conclude that

lim
t→0

∫

Br(0)

f(x, t)Ψ2(x, t)
βψ(x, t) dZ(x, t) exists (4.9)

for all β with |β| = k− 1 and ψ(x, t) ∈ C∞(Br(0)×Br(0)). Hence, taking account of
(4.8) and (4.9) we conclude that

lim
t→0

∫

Br(0)

f(x, t)Tk−2g(x, t) dZ(x, t) exists.

We have thus proved that (4.8) holds for k−1, completing the inductive step. There-
fore,

lim
t→0

∫

Br(0)

f(x, t)ψ(x) dZ(x, t) exists

and thus bf = limt→0 f(., t) exists.
For the rest of this section, let (M,V) be Rm+n = Rm

x ×Rn
t with a CR structure V

near the origin; i.e., V∩V = {0} in a neighborhood U = Br(0)×Bδ(0) of the origin in
Rm

x ×Rn
t . Suppose that V is generated in U by the complex vector fields {L1, ..., Ln},

where

Lj =
∂

∂tj
+

m∑

k=1

ajk(x, t)
∂

∂xk

.

Let Z1, ..., Zm : U → C be a complete set of smooth approximate first integrals for V
in U such that

Zl(x, 0) = xl, 1 ≤ l ≤ m.

For each l = 1, ...,m, we may write

Zl(x, t) = xl +

n∑

s=1

tsψls(x, t),

where ψls(x, t) = ψ
(1)
ls (x, t) + iψ

(2)
ls (x, t). Since V is CR in U, for each 1 ≤ j ≤ n there

exists 1 ≤ j′ ≤ m such that

ℑajj′ (0, 0) 6= 0.
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Observe that

ℑajl(0, 0) = −ψ
(2)
lj (0, 0).

Indeed,

LjZl(x, t) =
∂Zl

∂tj
(x, t) +

m∑

k=1

ajk(x, t)
∂Zl

∂xk

(x, t)

=

(
n∑

s=1

ts
∂ψls

∂tj
(x, t) + ψlj(x, t)

)

+

(
m∑

k=1

ajk(x, t)

(
δkl +

n∑

s=1

ts
∂ψls

∂xk

(x, t)

))
.

Evaluating this at (0, 0), we get

0 = ψlj(0, 0) + ajl(0, 0).

Corollary 4.1. Let W = Br(0)×Γδ be a wedge with edge Br(0), where Γ ⊂ Rn
t

is an open cone with vertex at the origin, and suppose that f(x, t) ∈ C(W) satisfies:
for some C > 0 and some N ∈ N,

(i)

∫

Br(0)

|Ljf(x, t)| dx ≤ C

and

(ii) |f(x, t)| |Z(x, t) − Z(x, 0)|
N

≤ C.

Then bf = lim
Γδ∋t→0

f(., t) exists in D′(Br(0)).

Proof. Write Z(x, t) = (Z1(x, t), ..., Zm(x, t)), x = (x1, ..., xm), t = (t1, ..., tn),
and A(x, t) = (ψij(x, t))1≤i≤m, 1≤j≤n

so that

Z(x, t) = x+A(x, t)t.

Since V is CR in U , ℑA(x, t) has rank n at and hence near the origin. Without loss
of generality, suppose that

B(x, t) =
(
ℑψij(x, t)

)
1≤i,j≤n

is invertible near the origin.

Then

|A(x, t)t| ≥ |B(x, t)t| ≥ |Bl(x, t) · t| for all (x, t) near (0, 0) ,

where Bl(x, t) is the l-th row of B(x, t). Fix t0 ∈ Γ. Since B(0, 0) is invertible, one
can find a row Bl(0, 0) of B(0, 0) such that

∣∣∣∣Bl(0, 0) ·
t0

|t0|

∣∣∣∣ = C0 > 0.
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Hence, we can find an open convex cone Γ̃ ⊂⊂ Γ containing t0 such that

∣∣∣∣Bl(0, 0) ·
t

|t|

∣∣∣∣ ≥
1

2
C0 for all t ∈ Γ̃.

Therefore, we can find a wedge W̃ = Ber(0) × Γ̃δ ⊂⊂ W (where 0 < r̃ < r ) such that

∣∣∣∣Bl(x, t) ·
t

|t|

∣∣∣∣ ≥
1

4
C0 for all (x, t) ∈ W̃ .

This implies that for all (x, t) ∈ W̃

|Z(x, t) − Z(x, 0)| = |A(x, t)t| ≥
1

4
C0 |t| .

Thus,

|f(x, t)| |t|
N

≤ const. |f(x, t)| |Z(x, t) − Z(x, 0)|
N

≤ C.

Hence, by Theorem 4.1, bf = lim
Γδ∋t→0

f(., t) exists in D′(Br(0)).
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