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1. Introduction. Throughout this paper, let nO or C{z1, . . . , zn} be the ring of

convergent power series at the origin in C
n. Equisingular or topological classification

of plane curve singularities is well-understood by([Za1],[Za2]). In this paper, we only

consider an analytic family of plane curves with isolated singularity defined as follows:

ft = f(y, z, t) = zn + a1z
n−1 + · · · + an for sufficiently small t where the ai =

ai(y, t) ∈ C{y, t}, ai(0, t) = 0 and f(y, z, t) is square-free for each t.
O. Zariski gave a discriminant criterion for any analytic family of plane curve

singularities of the above type to be equivalent, which is as follows:

Theorem([Za2], Theorem 7, p.529). Consider an analytic family of plane

curve singularities Ct : ft = f(y, z, t) = zn + a1z
n−1 + · · ·+ an for sufficiently small t

where the ai = ai(y, t) ∈ C{y, t}, ai(0, t) = 0 and f(y, z, t) is square-free for each t.
(a) A sufficient condition that C0 and Ct be equivalent is that the z-discriminant

∆(y, t) of f(z, y, t) be of the form ε(y, t)yN where ε(y, t) is a unit in C{y, t} and N is

a positive integer.

(b) If the line y = 0 is not a tangent of C0, then the above condition on ∆(y, t)
is also necessary for the equivalence of Ct and C0.

The aim in this paper is to generalize this discriminant criterion, and it is very

interesting to prove a generalized criterion, without using the proof of Zariski’s dis-

criminant criterion. In preparation for the generalization of Zariski’s discriminant

criterion, first of all, we need to prove the following:

Theorem 3.2. Let g = g(y, z) be a Weierstrass polynomial in z at the origin of

the form zn + b1z
n−1 + · · ·+ bn where bi are nonunits in C{y} for 1 ≤ i ≤ n and g is

square-free. Let the z-discriminant of g be ε(y)yN(g) where ε(y) is a unit in C{y} and

N(g) is a positive integer. Then we prove that N(g) = µ(g) + n− 1 where µ(g) is the

Milnor number of the plane curve {g = 0} with an isolated singularity at the origin.

If n is the multiplicity of g(y, z) at the origin, then it was known by Theorem

2.8([Te1, Proposition 1.2, p.317]) that N(g) = µ(g) + n − 1.
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For the proof of Theorem 3.2, it is enough to use Theorem 2.8([Te1]), Theorem

2.7([Le-Ra]), which says that the invariance of Milnor’s number implies the invariance

of the topological type, and Theorem 2.5([Mi]) for the computation formula of the

Milnor number, and the classical topological classification theorems for plane curve

singularities, and Theorem 2.10([Ka]) for an equivalence of irreducible parametriza-

tion.

As an application of Theorem 3.2, replacing the condition that the line y = 0 is

not tangent to the plane curve C0 by the condition that the regular order of f(y, z, t)
in z at the origin in terms of Weierstrass polynomials is independent of t, we generalize

Zariski’s discriminant criterion as follows: The proof just follows from Theorem 3.2
and Theorem 2.7([Le-Ra]), again.

Theorem 3.3. Consider an analytic family of plane curve singularities Ct : ft =

f(y, z, t) = zn + a1z
n−1 + · · · + an for sufficiently small t where the ai = ai(y, t) ∈

C{y, t}, ai(0, t) = 0 and f(y, z, t) is square-free for each t. Then ft is equisingular to

f0 if and only if the z-discriminant of ft is yN up to a unit factor in C{y, t} where N
is some positive integer not depending on t.

As another application of Theorem 3.2, a necessary condition of local irreducibility

of plane curves with singularities can be easily found as follows:

Theorem 4.1. Assume that g = g(y, z) = zn +b1z
n−1 + · · ·+bn is a Weierstrass

polynomial in z where the bi are nonunits in C{y} and g is square-free. Let the z-
discriminant of g be yN(g) up to a unit in C{y} where N(g) is a positive integer. If g
is irreducible in C{y, z}, then we get

N(g) 6≡ 0 (mod n).

In other words, if N(g) ≡ 0 (mod n), then g is reducible in C{y, z}.

2. Known Preliminaries. Let nO or C{z1, . . . , zn} be the ring of convergent

power series at the origin in C
n.

Definition 2.1. Let V = {z ∈ C
n+1 : f(z) = 0} and W = {z ∈ C

n+1 : g(z) = 0}
be germs of complex analytic hypersurfaces with isolated singularity at the origin.

f and g are said to have the same topological type of singularity at the origin

if there is a germ at the origin of homeomorphisms φ : (U1, 0) → (U2, 0) such that

φ(V ) = W and φ(0) = 0 where U1 and U2 are open subsets in C
n+1.

Lemma 2.2 (Hensel’s Lemma). Let f(y, z) = a0z
n + a1y

ℓ1zn−1 + · · · + anyℓn

be irreducible in C{y, z} where each ai is a unit in C{y, z}, if exists, and the ℓi are

positive integers. Let m be the multiplicity of f at the origin. Then, m = n or ℓn.

If n = ℓi + n − i for some i, then n = ℓi + n − i for all i = 1, . . . , n, and so f can

be written as follows: f = fn(y, z)+ terms of degree> n, where fn is a homogeneous

polynomials of degree n with fn = (ay + bz)n for some a, b ∈ C.

Theorem 2.3([Br], [Bu], [Za1]). As far as arbitrary Puiseux expansion of

irreducible plane curve singularities is concerned, any two irreducible plane curve sin-

gularities have the same topological types if and only if they have the same type of the

standard Puiseux expansion(or the same Puiseux pairs). In more detail, let f(y, z) be

irreducible in 2O with an isolated singularity at the origin in C
2. Then the standard
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Puiseux expansion topologically equisingular to the curve defined by f at the origin

can be described by y = tn and z = tα1 + · · · + tαp where n < α1 < · · · < αp and

n > gcd(n, α1) > · · · > gcd(n, α1, . . . , αp) = 1. If for a given f there is another

homeomorphic standard Puiseux expansion defined by y = tm and z = tβ1 + · · · + tβq

where m < β1 < · · · < βq and m > gcd(m, β1) > · · · > gcd(m, β1, · · ·βq) = 1, then

n = m, p = q and αi = βi for 1 ≤ i ≤ p.

Theorem 2.4([Lej], [Za3]). Let f(y, z) be in 2O with an isolated singularity at

the origin in C
2. Then the topological type of the plane curve singularity defined by f

is determined by the topological type of every irreducible component of f at O and all

the pairs of intersection multiplicity of these two components.

Theorem 2.5([Mi]).

(1) Let C be an irreducible curve parametrized by the Puiseux expansion

(2.5.1) C :=

{

y = tn

z = λ1t
a1 + λ2t

a2 + λ3t
a3 + · · · ,

where

(1a) the exponents aj are positive integers with greatest common divisor one and

with 2 ≤ n < a1 < a2 < a3 < · · · , and the coefficients λj are nonzero complex

numbers,

(1b) let d1 = gcd(n, a1), d2 = gcd(n, a1, a2),. . . , dj = gcd(n, a1, a2, . . . , aj) for

each j, and then dr = 1 for sufficiently large r such that n = d0 ≥ d1 ≥ d2 ≥ · · · ≥
dr = 1.

Then, the Milnor number µ(C) = 2δ =
∑

j≥1
(aj − 1)(dj−1 − dj) with d0 = n.

Corollary 2.5.1([Mi]). First, let C1 be the curve parametrized by the Puiseux

expansion

(2.5.1.1) C1 :=

{

y = tn

z = tα1 + tα2 + · · · + tαr ,

where

(1a) 2 ≤ n < α1 < α2 < · · · < αr,

(1b) n ≥ gcd(n, α1) > gcd(n, α1, α2) > · · · > gcd(n, α1, α2, . . . , αr) = 1, and n
may be a divisor of α1,

(1c) write d1 = gcd(n, α1), d2 = gcd(n, α1, α2), . . . , dr−1 = gcd(n, α1, . . . , αr−1),

dr = gcd(n, α1, . . . , αr) = 1.

In particular, if n > gcd(n, α1), note that the above parametrization is called the

standard Puiseux expansion for the curve C1.

As a conclusion, the Milnor number µ(C1) =
∑r

j=1
(αj−1)(dj−1−dj) with d0 = n.

Theorem 2.6([Mi]). Let f(y, z) be in C{y, z} with an isolated singularity at

the origin in C
2. Let f(y, z) be a Weierstrass polynomial in z at the origin of the

form zn + a1z
n−1 + · · · + an where ai are nonunits in C{y} for 1 ≤ i ≤ n. If f is

reducible in C{y, z}, then f can be written as f = f1 · · · fh where the fi are distinct

irreducible Weierstrass polynomials in z at the origin such that the fi are regular in
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z. By Milnor’s formula ([Mi], Theorem 10.5, p. 85),

µ(f) = µ(f1) + · · · + µ(fh) + 2
∑

i<j

I(fi, fj) − h + 1,

(2.6.1)

where I(fi, fj) is the intersection number of two distinct plane curves {fi = 0}

and {fj = 0}, and h is the number of irreducible branches of f at the origin.

Theorem 2.7([Le-Ra]). Let F (t, z) be a polynomial in z = (z0, . . . , zn) with

coefficients which are smooth complex valued functions of t ∈ I = [0, 1] such that

F (t, 0) = 0 and such that for each t ∈ I, the polynomials (∂F/∂zi)(t, z) in z have an

isolated zero at 0. Assume moreover that the integer

(2.7.1) µt = dim
C
Cz/(

∂f

∂z0

(t, z), . . . ,
∂f

∂zn
(t, z))

is independent of t. Then, the monodromy fibrations of the singularities of F (0, z) = 0

and F (1, z) = 0 at 0 are of the same fiber homotopy. If further n 6= 2, there fiberations

are even differentiably isomorphic and the topological types of the singularities are the

same.

Theorem 2.8 ([Te1, Proposition 1.2, p.317] or [Te2, Proposition,

p.609]). Let (X, 0) ⊂ (Cn+1, 0) be a germ of hypersurface with an isolated singularity,

and let p : (Cn+1, 0) → (C, 0) be a projection such that the fiber (X0, 0) of π = p ↾ X
again has an isolated singularity. Then, the multiplicity of the discriminant Dπ of π,

denoted by ∆, satisfies the following equality:

∆ = µ(n+1)(X, 0) + µ(n)(X0, 0).(2.8.1)

Note that the assumptions imply that the branch locus for a discriminant Dπ of π is

{0}, i. e., if we take a coordinate z0 in (C, 0), then an equation for Dπ is z0

∆ = 0

with the following diagram:

(X0, 0) −−−−→ (X, 0)




y





y
π = p|X

{0} −−−−→ (Dπ, 0)

Remark. µ(n+1)(X, 0) = µ(X, 0) and µ(1)(X, 0) = m(X, 0) − 1 where µ(X, 0) is

the Milnor number of (X, 0) and m(X, 0) is the multiplicity of X at 0.

Corollary 2.8.1 ([Te1, Corollary 1.5, p.320] or [Te2, Proposition,

p.613]). Let (X0, 0) ⊂ (Cn+1, 0) be a germ of hypersurace with an isolated singular-

ity, which is defined by an equation f(z0, . . . , zn) = 0 in C{z0, . . . , zn}. Then, the

multiplicity in OX0,0 of the jacobian ideal j′(= j(f) · OX0,0) generated by the images

of ( ∂f
∂zi

) 0 ≤ i ≤ n, is µ(n+1)(X0, 0) + µ(n)(X0, 0).
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Lemma 2.9 (The rearrangement of an irreducible parametrization,

[Ka]).

Assumption Let the curve V defined by f(y, z) ∈ C{y, z} have an irreducible

parametrization as follows:

y = tn and z = c1t
k1 + c2t

k2 + · · ·(2.9.1)

where the ci are nonzero complex numbers and 1 ≤ n, 1 ≤ k1 < k2 < · · · , and

n ≥ gcd(n, k1) ≥ gcd(n, k1, k2) ≥ · · · ≥ gcd(n, k1, k2, . . . ) = 1. To get a desired

rearrangement of y = tn and z =
∑∞

i=1
cit

ki in the conclusion of this lemma, first we

can define a finite sequence {α1, α2, . . . , αr+1} from the sequence {ki : i = 1, 2, . . . }
consisting of the exponents ki in (2.9.1) as follows:

(1) Let α1 = k1, and then note that n ≥ gcd(n, α1). That is, either n =

gcd(n, α1) or n > gcd(n, α1).

(2) Let α2 be the smallest positive integer among the exponents ki such that

n ≥ gcd(n, α1) > gcd(n, α1, ki).

(3) Let α3 be the smallest positive integer among the exponents ki such that

n ≥ gcd(n, α1) > gcd(n, α1, α2) > gcd(n, α1, α2, ki).

. . . . . .
(r+1) Let αr+1 be the smallest positive integer among the exponents ki such that

n ≥ gcd(n, α1) > gcd(n, α1, α2) > · · · > gcd(n, α1, α2, . . . , αr) > gcd(n, α1, α2, . . . ,
αr, ki)= 1.

Let d and k be arbitrary positive integers. For brevity of notation, if k is divisible by

d, then we write d|k. Otherwise, we write d 6 |k.

Now, let di = gcd(n, α1, . . . , αi) for 1 ≤ i ≤ r + 1,and then n ≥ d1 > d2 > · · · >
dr+1. Note that di|(αi − α1), di 6 |(αi+1 − α1), and di+1|di.

Conclusion The given irreducible parametrization of V can be rearranged in t
as follows:

y =tn(2.9.2)

z =c1t
α1{(1 + c11t

d1 + c12t
2d1 + · · · + c1p1

tp1d1)

+ tα2−α1(c20 + c21t
d2 + c22t

2d2 + · · · + c2p2
tp2d2)

+ . . . . . .

+ tαr−α1(cr0 + cr1t
dr + cr2t

2dr + · · · + crpr
tprdr)

+ tαr+1−α1(cr+1,0 +

∞
∑

k+1

cr+1,ktk)}

satisfying the properties (i), (ii) and (iii).

(i) c10 = 1, c20, c30, . . . , cr+1,0 are all nonzero complex numbers.

(ii) p1, p2, . . . , pr are nonnegative integers such that

α1 + p1d1 < α2 < α1 + (p1 + 1)d1,(2.9.3)

α2 + p2d2 < α3 < α2 + (p2 + 1)d2,

. . . . . .

αr−1 + pr−1dr−1 < αr < αr−1 + (pr−1 + 1)dr−1,

αr + prdr < αr+1 < αr + (pr + 1)dr.
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(iii) Let S be the set which consists of the remaining coefficients in t, that is,

S ={c11, c12, . . . , c1,p1
} ∪ {c21, c22, . . . , c2,p2

} ∪ · · ·(2.9.4)

∪ {cr1, cr2, . . . , cr,pr
} ∪ {cr+1,k : k = 1, 2, . . . }.

Then, any element of S is either zero or nonzero.

Note that pi may be zero for some i, 1 ≤ i ≤ r. In particular, if pi = 0 for

1 ≤ i ≤ r, then note that ci1, ci2, . . . , ci,pi
are all zero except for ci0.

Theorem 2.10 (An equivalence of irreducible parametrization, [Ka]).

Assumption We may assume without loss of generality that the curve V defined

by f(y, z) ∈ C{y, z} at the origin has an irreducible parametrization as follows:

y =tn,
(2.10.1)

z =ctα1{(1 + D1(t)) + tα2−α1(c20 + D2(t)) + · · ·

+ tαr−α1(cr0 + Dr(t)) + tαr+1−α1(cr+1,0 + Dr+1(t))}

=ctα1(1 + H(t)) or

y =tn,

z =ctα1{1 + D1(t)} + ctα2{c20 + D2(t)} + · · ·

+ ctαr{cr0 + Dr(t)} + ctαr+1{cr+1,0 + Dr+1(t)}

where

(i) 1 ≤ n and 1 ≤ α1 < α2 < · · · < αr+1,

(ii) n ≥ d1 > d2 > · · · > dr+1 = 1 with gcd(n, α1, α2, . . . , αi) = di for 1 ≤ i ≤
r + 1,

(iii) p1, p2, . . . , pr are nonnegative integers such that

α1 + p1d1 < α2 < α1 + (p1 + 1)d1,

α2 + p2d2 < α3 < α2 + (p2 + 1)d2,

. . . . . .

αr−1 + pr−1dr−1 < αr < αr−1 + (pr−1 + 1)dr−1,

αr + prdr < αr+1 < αr + (pr + 1)dr,
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(iv) let

D1(t) =

p1
∑

i=1

c1it
id1 ∈ C[t],

(2.10.2)

D2(t) =

p2
∑

i=1

c2it
id2 ∈ C[t],

. . . . . .

Dr(t) =

pr
∑

i=1

crit
idr ∈ C[t],

Dr+1(t) =

∞
∑

k=1

cr+1,ktk ∈ C{t},

1 + H(t) = 1 + D1(t) + tα2−α1(c20 + D2(t)) + · · ·

+ tαr−α1(cr0 + Dr(t)) + tαr+1−α1(cr+1,0 + Dr+1(t)),

(v) c, c10 = 1, c20, c30, . . . , cr+1,0 are all nonzero complex numbers.

Conclusion We have the followings: Observe that (I) of two statements (I)

and (II) below may be omitted, in order to simplify the statements for Conclusion, if

necessary.

(I) In preparation for the construction of an equivalent irreducible parametrization of

V , let s be the new parameter defined by

(2.10.3) s(t) = c
1

α1 t(1 + H(t))
1

α1

where

(i) c
1

α1 is a complex root such that ωα1 = c,
(ii) s = s(t) is a conformal mapping of t at the origin,

(iii) z = sα1 .

Then t = c
− 1

α1 s(1 + H(t))
− 1

α1 , as t = φ(s) ∈ C{s}, can be written as follows:

Note that y = (φ(s))n.

t =φ(s)

(2.10.4)

=c−
1

α1 s{1 + Q1(s) + sα2−α1(B20 + Q2(s))

+ · · · + sαr−α1(Br0 + Qr(s)) + sαr+1−α1(Br+1,0 + Qr+1(s))},
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where

B20 =
c20

−α1

(c
− 1

α1 )α2−α1 , B30 =
c30

−α1

(c
− 1

α1 )α3−α1 , . . . ,(2.10.5)

Br+1,0 =
cr+1,0

−α1

(c−
1

α1 )αr+1−α1 ,

Q1(s) =B11s
d1 + B12s

2d1 + · · · + B1,p1
sp1d1 ∈ C[s],

Q2(s) =B21s
d2 + B22s

2d2 + · · · + B2,p2
sp2d2 ∈ C[s],

. . . . . .

Qr(s) =Br1s
dr + Br2s

2dr + · · · + Br,pr
sprdr ∈ C[s],

Qr+1(s) =

∞
∑

k=1

Br+1,ksk ∈ C{s}

such that all the Bij are complex numbers and that in particular the Bi0 are nonzero

for 2 ≤ i ≤ r + 1. Note that Qi(0) = 0 for 1 ≤ i ≤ r + 1.

(II) The equivalent parametrization with the new parameter s for V can be analytically

written in the following form:

z =sα1 ,
(2.10.6)

y =c
− n

α1 sn{1 + Q∗
1
(s) + sα2−α1(b20 + Q∗

2
(s))

+ sα3−α1(b30 + Q∗
3
(s)) + · · · + sαr+1−α1(br+1,0 + Q∗

r+1
(s))},

where

b20 =
n

−α1

c20c
1

−α1
(α2−α1), b30 =

n

−α1

c30c
1

−α1
(α3−α1), . . . ,(2.10.7)

br+1,0 =
n

−α1

cr+1,0c
1

−α1
(αr+1−α1),

Q∗
1
(s) =b11s

d1 + b12s
2d1 + · · · + b1,p1

sp1d1 ∈ C[s],

Q∗
2
(s) =b21s

d2 + b22s
2d2 + · · · + b2,p2

sp2d2 ∈ C[s],

. . . . . .

Q∗
r(s) =br1s

dr + br2s
2dr + · · · + br,pr

sprdr ∈ C[s],

Q∗
r+1

(s) =

∞
∑

k=1

br+1,ksk ∈ C{s}

such that all the bij are complex numbers and that in particular the bi0 are nonzero

for 2 ≤ i ≤ r + 1. Note that Q∗
i (0) = 0 for all i = 2, 3, . . . , r + 1.

Remark: Observe by (2.10.5) and (2.10.7) that

(2.10.7∗) b20 = nB20, b30 = nB30, . . . , br+1,0 = nBr+1,0.

Theorem 2.11([Ka]). Suppose that the curve V defined by f(y, z) ∈ C{y, z} at

the origin satisfies the same assumptions and notations as in Theorem 2.10. First, let

C1 be the curve parametrized by the Puiseux expansion

(2.11.1) C1 :=

{

y = tn

z = tα1 + tα2 + · · · + tαr+1 ,
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where

(1a) 2 ≤ n and 2 ≤ α1 < α2 < · · · < αr+1,

(1b) n ≥ gcd(n, α1) > gcd(n, α1, α2) > · · · > gcd(n, α1, α2, . . . , αr+1) = 1, and n
may be a divisor of α1,

(1c) write d1 = gcd(n, α1), d2 = gcd(n, α1, α2), . . . , dr = gcd(n, α1, . . . , αr),

dr+1 = gcd(n, α1, . . . , αr+1) = 1.

Next, let C2 be the curve parametrized by the Puiseux expansion

(2.11.2) C2 :=

{

y = tn + tn+α2−α1 + tn+α3−α1 + · · · + tn+αr+1−α1

z = tα1 .

As a conclusion, V (f), C1 and C2 have the same topological type of singularity

at the origin, satisfying the following property:

(i) If n < α1 and n > gcd(n, α1), then C1 is the standard Puiseux expansion for

the curve V .

(ii) If n < α1 and n = gcd(n, α1), then the parametrization defined by y = tn and

z = tα2 + · · · + tαr+1 is the standard Puiseux expansion for the curve V .

(iii) If n > α1 and α1 > gcd(n, α1), then C2 is the standard Puiseux expansion

for the curve V .

(iv) If n > α1 and α1 = gcd(n, α1), then the parametrization defined by y =

tn+α2−α1 + tn+α3−α1 + · · ·+ tn+αr+1−α1 and z = tα1 is the standard Puiseux expansion

for the curve V .

Thus, the standard Puiseux expansion which is topologically equivalent to the

Puiseux expansion of the curve V (f) is uniquely determined.

The proof of Theorem 2.11 just follows from Theorem 2.3 and Theorem 2.10.

3. A discriminant criterion for an analytic family of an equivalence of

plane curve singularities. Let nO or C{z1, . . . , zn} be the ring of convergent power

series at the origin in C
n.

Definition 3.0. Let C{y}[z] be the polynomial ring in z with coefficients in C{y}
where C{y} is the ring of convergent power series centered at the origin. f ∈ C{y}[z]

is said to be a Weierstrass polynomial of degree n > 0 in z if f = zn +
∑n

i=1
biz

n−i

where for 1 ≤ i ≤ n, the bi are nonunits in C{y}. If n is also the multiplicity of f at

the origin in C
2, then it is said that f is a Weierstrass polynomial of multiplicity n in

z.

Remark 3.0.1. Let f ∈ C{y}[z] be a Weierstrass polynomial of degree n > 0 in

z. Observe that irreducibility in C{y}[z] is the same as irreducibility in C{y, z}. If f
is reducible in C{y, z}, then f = f1 · · · fk where the fi are Weierstrass polynomials in

z and irreducible in C{y, z}. Let fi = zni + b1z
ni−1 + · · · + bni

for 1 ≤ i ≤ k, where

the bi are nonunits in C{y}. Then, n1 + n2 + · · · + nk = n.

As an application of Theorem 2.8([Te2]), we have the following proposition:

Proposition 3.1. Let f be a Weierstrass polynomial of multiplicity n in z which

has the form f = f(y, z) = zn+a1z
n−1+ · · ·+an where the ai = ai(y) are holomorphic

near y = 0 and ai(0) = 0 for i = 1, · · · , n. Let the line {z = 0} be tangent to the

plane curve {f = 0} at the origin in C
2. Assume that the discriminant of f with

respect to z is not identically zero. Let the z-discriminant of f be yN(f) up to a unit
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in C{y} where C{y} is the ring of convergent power series centered at the origin. Then

N(f) = µ(f) + n − 1 where µ(f) is the Milnor number of the plane curve {f = 0} at

the origin.

Proof of Proposition 3.1. In order to apply Theorem 2.8 to this proposition, let

us look at the projection p : (C2, 0) → (C, 0) defined by (y, z) 7→ y. For convenience

of proof, we may assume that (X, 0) is a germ of reduced plane curve in (C2, 0) where

X = {(y, z) : f(y, z) = 0}. Note that the multiplicity of the plane curve X at 0 is

equal to the degree n of a Weierstrass polynomial f in z at the origin. Then, π = p ↾

X : (X, 0) → (C, 0) implies that the branch locus for a discriminant Dπ of π is {0}.
Now, let us consider a line H = {y = 0} in (C2, 0) parallel to the projection π. Follow

the same notations as in the proof of Theorem 2.8. Since H is transversal to (X, 0)

by Hensel’s lemma, then ∆ = µ(2)(X, 0) + µ(1)(X ∩ H, 0) = µ(2)(X, 0) + µ(1)(X, 0) =

µ(2)(X, 0)+m(X, 0)−1 by Proposition 2.8 and Corollary 2.8.1 where µ(2)(X, 0) = µ(f)

and m(X, 0) is the multiplicity of X at 0 for notation. Note by construction that

∆ = dim
C

C{y,z}
(f,fz)

is equal to an integer N(f) and µ(1)(X ∩H, 0) = dim
C

C{z}
fz(0,z)

is equal

to an integer n − 1 and m(X, 0) is equal to an integer n. Thus, the proof is done.

First we extend the above proposition, just replace mult(f) by the regular order of

f in z. We start to define the regular order of f in z. If f is a Weierstrass polynomial

of the form f = zn + a1z
n−1 + · · · + an where the ai = ai(y) are nonunits in C{y},

then f is said to be regular of order n in z at the origin. Observe that regular order

is just degree of f relative to z, which may not be equal to the multiplicity of f .

The main aim in this paper is to prove the following theorem, which generalize

the above proposition.

Theorem 3.2. Let C{y} be the ring of convergent power series centered at the

origin. Let f be a Weierstrass polynomial such that f = zn + a1z
n−1 + · · · + an is

regular of order n in z at the origin where the ai are nonunits in C{y} and square-free.

Let the z-discriminant of f be yN up to a unit in C{y}. Then N = µ(f)+n−1 where

µ(f) is the Milnor number of the plane curve {f = 0} at the origin.

In preparation for the proof of Theorem 3.2, first we consider the case when f of

Theorem 3.2 is irreducible in C{y, z}.

Proposition 3.2.1. Assume that f = zn + a1z
n−1 + · · ·+ an is regular of order

n in z at the origin where the ai are nonunits in C{y} and square-free. Assume that

f is irreducible in C{y}[z]. Let the z-discriminant Rf,fz
of f be yN(f) up to a unit in

C{y}. Then N(f) = µ(f)+ n− 1 where µ(f) is the Milnor number of the plane curve

{f = 0} at the origin.

Proof of Proposition 3.2.1. Rewrite f in the form:

(3.2.1) f = zn + b1y
ℓ1zn−1 + · · · + biy

ℓizn−i + · · · + bnyℓn

where bi are units in C{y} and ℓi are positive integers for 1 ≤ i ≤ n. If the line {z = 0}
is tangent to the plane curve {f = 0}, there is nothing to prove by Proposition 3.1.

For the remaining of the proof, we may assume that the line {z = 0} is not

tangent to the plane curve {f = 0}, that is, ℓn ≤ n by Hensel’ Lemma.

Put

(3.2.2) g = zn + b1y
ℓ1+1zn−1 + · · · + biy

ℓi+izn−i + · · · + bnyℓn+n.
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Since the line {z = 0} is tangent to the plane curve {g = 0}, it is clear by Proposition

3.1 that N(g) = µ(g) + n − 1 where the z-discriminant Rg,gz
of g is defined to be

yN(g) up to a unit in C{y}, noting that µ(g) is the Milnor number of the plane curve

{g = 0} at the origin. We use quadratic transformations or blow-ups ([L], Chap 1).

Blowing up {g = 0} at (0, 0), we can get one and only one proper transform {f = 0}
of the plane curve {g = 0}. Observe that g is also square-free.

Then, we claim the following:

claim[1] N(f) = N(g) − n(n − 1).

claim[2] µ(f) = µ(g) − n(n − 1).

If two claims are proved, then it is clear that N(f)−µ(f) = N(g)−µ(g) = n−1,

and so the proof will be completely finished.

The proof of claim[1]: Observe that the proof of the claim[1] will be finished by

Sublemma 1 and Sublemma 2.

Sublemma 1. Let

F = A0x
n
k + A1x

n−1

k + · · · + An,

G = B0x
m
k + B1x

m−1

k + · · · + Bm,

where Ai and Bj are homogeneous polynomials in C[x0, x1, . . . , xk−1], with degrees of

i and j, respectively. As a conclusion, if RF,G ∈ C[x0, x1, . . . , xk−1] is the resultant of

F and G, then either RF,G is identically zero or RF,G is a homogeneous polynomial

of degree of nm.

For the proof of Sublemma 1, see [BK, Proposition 8, p. 202].

An Example for Sublemma 1. In order to apply the result of Sublemma 1 to

the proof of claim[1], consider the following example:

Let

F = A0z
n + A1z

n−1 + · · · + An,

G = nA0z
n−1 + (n − 1)A1z

n−2 + · · · + An−1,

where G = Fz , and Ai are homogeneous polynomials in C[x0, x1, . . . , xk−1], with

degrees of i, for 0 ≤ i ≤ n. By Sublemma 1, it can be easily shown that if RF,Fz
is

viewed as a polynomial in C[A0, A1, . . . , An], then RF,Fz
has one and only one of the

following:

(i) RF,Fz
is identically zero.

(ii) Any nonzero monomial Ap0

0
Ap1

1
Ap2

2
· · ·Apn

n of RF,Fz
has p1 +2p2 + · · ·+npn =

n(n − 1) where all the pi are nonnegative integers.

Sublemma 2. Rewrite f in the form:

(3.2.3) f = zn + b1y
ℓ1zn−1 + · · · + biy

ℓizn−i + · · · + bnyℓn ,

where the bi are units in C{y} and the ℓi are positive integers for 1 ≤ i ≤ n. Suppose

the line {z = 0} is not tangent to the plane curve {f = 0} or ℓn ≤ n. Put

(3.2.4) g = zn + b1y
ℓ1+1zn−1 + · · · + biy

ℓi+izn−i + · · · + bnyℓn+n.
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Since the line {z = 0} is tangent to the plane curve {g = 0}. Let the z-discriminants of

f and g be denoted by Rf,fz
and Rg,gz

. As a conclusion, we have Rg,gz
= yn(n−1)Rf,fz

Proof of Sublemma 2. Put b0 = 1. For any nonzero monomial
∏n

i=0
(biy

ℓi)pi in

Rf,fz
in the sense of an example for Sublemma 1, then we can choose

∏n
i=0

(biy
ℓiyi)pi

in Rg,gz
, and conversely. Whenever biy

ℓiyizn−i in g is viewed as ciy
izn−i, then it is

clear by the above remark that p1 + 2p2 + · · · + npn = n(n − 1), and so the proof of

Sublemma 2 is done.

Thus, we can prove claim[1] by Sublemma 1 and Sublemma 2.

The proof of claim[2]: The proof of claim[2] just follows from Sublemma 3.

Sublemma 3. Suppose that the same assumption as in Proposition 3.2.1 holds.

First, we construct the curve C1 parametrized by the standard Puiseux expansion which

is equisingular to g(y, z) = 0 at the origin with the same tangent line z = 0. Let C1

be the curve parametrized by the standard Puiseux expansion

(3.2.5) C1 :=

{

y = tn

z = tβ1 + tβ2 + · · · + tβr+1 ,

where

(1a) 2 ≤ n < β1 < β2 < · · · < βr+1,

(1b) n > gcd(n, β1) > gcd(n, β1, β2) > · · · > gcd(n, β1, β2, . . . , βr+1) = 1,

(1c) write d1 = gcd(n, β1), d2 = gcd(n, β1, β2), . . . , dr = gcd(n, β1, . . . , βr),

dr+1 = gcd(n, β1, . . . , βr+1) = 1.

Let π : M → C
2 be a blow-up of C

2 at (0, 0). Let (v, u) and (v′, u′) be the local

coordinates for M with π(v, u) = (y, z) = (v, vu) and π(v′, u′) = (y, z) = (v′u′, v′)
where u′ = 1

u and v′ = vu.

Let C2 be the curve defined by the proper transform of C1. Then, the curve C2

can be parametrized by the Puiseux expansion

(3.2.6) C2 :=

{

v = tn

u = tβ1−n + tβ2−n + tβ3−n + · · · + tβr+1−n.

Since the curve C2 and f(y, z) = 0 at the origin have the same topological type of

singularity, and also the line {z = 0} is not tangent to the plane curve {f = 0}, then

β1 − n ≤ n.

As a conclusion, µ(C1) − µ(C2) = n(n − 1).

Proof of Sublemma 3. By Theorem 2.10 and Theorem 2.11, the curve C2 can be

topologically reparametrized by the Puiseux expansion

(3.2.7) C2 :=

{

v = tn + tn+β2−β1 + tn+β3−β1 + · · · + tn+βr−β1

u = tβ1−n.

By Corollary 2.5.1,

µ(C1) = (β1 − 1)(n − d1) + (β2 − 1)(d1 − d2) + (β3 − 1)(d2 − d3)

+ · · · + (βn − 1)(dn−1 − dn),

µ(C2) = (n − 1)(β1 − n − d1) + (n + β2 − β1 − 1)(d1 − d2)

+ (n + β3 − β1 − 1)(d2 − d3) + · · · + (n + βn − β1 − 1)(dn−1 − dn).
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Compute µ(C1) − µ(C2). Then,

µ(C1) − µ(C2) = {(β1 − 1)(n − d1) − (n − 1)(β1 − n − d1)}

+ {(β2 − 1)(d1 − d2) − (n + β2 − β1 − 1)(d1 − d2)}

+ {(β3 − 1)(d2 − d3) − (n + β3 − β1 − 1)(d2 − d3)} + · · ·

+ {(βn − 1)(dn−1 − dn) − (n + βn − β1 − 1)(dn−1 − dn)}

= {(β1 − 1)(n − d1) − (n − 1)(β1 − n − d1)}

− {(n − β1)(d1 − d2) + (n − β1)(d2 − d3) + · · ·

+ (n − β1)(dn−1 − dn)}

= (β1 − 1)(n − d1) − (n − 1)(β1 − n − d1) − (n − β1)(d1 − 1)

= (β1 − 1)(n − d1) − (n − 1)(β1 − n) + (n − 1)d1 − (n − β1)(d1 − 1)

= n(n − 1).

Thus, the proof of Sublemma 3 is done. So, we can prove claim[2].

Therefore, the proof of Proposition 3.2.1 is completely finished.

Proof of Theorem 3.2. Rewrite f in the form:

(3.2.8) f = zn + b1y
ℓ1zn−1 + · · · + biy

ℓizn−i + · · · + bnyℓn ,

where bi are units in C{y} and ℓi are positive integers for 1 ≤ i ≤ n. If the line {z = 0}
is tangent to the plane curve {f = 0}, there is nothing to prove by Proposition 3.1.

For the remaining of the proof, we may start to assume that the line {z = 0} is

not tangent to the plane curve {f = 0} or ℓn ≤ n.

Put

(3.2.9) g = zn + b1y
ℓ1+1zn−1 + · · · + biy

ℓi+izn−i + · · · + bnyℓn+n.

But, note that the line {z = 0} is tangent to the plane curve {g = 0}. We use

quadratic transformations or blow-ups ([La], Chap 1). Blowing up {g = 0} at (0, 0),

we get one and only one proper transform {f = 0} of the plane curve {g = 0}. Observe

that g is also square-free. Let the z-discriminant of g be yN(g) up to a unit factor in

C{y} where N(g) is some positive integer.

We claim the following:

(1) N(g) = µ(g) + n − 1 where g is irreducible in C{y, z} and the line {z = 0} is

tangent to the plane curve {g = 0} at the origin, which is trivial to prove.

(2) N(f) = N(g) − n(n − 1).

(3) µ(f) = µ(g) − n(n − 1).

If f is irreducible in C{y, z}, then it was already proved by Proposition 3.2.1.

Let the line {z = 0} be not tangent to the plane curve {f = 0} and f be reducible

in C{y, z}. Then f can be written as f = f1 · · · fh where the fi are irreducible

Weierstrass polynomials and regular in z. From the construction of g in (3.2.9), g can

be written as g = g1 · · · gh where the gi are irreducible Weierstrass polynomials and

regular in z. Moreover, if {fi = 0} is the corresponding proper transform of {gi = 0}
for each i, then note that the intersection number of {gi = 0} and {gj = 0} decreases

by (mult(gi)) · (mult(gj)) for i 6= j, after one time blow-up. See [Fu, p.74] for the

definition of the intersection number. Let N(fi) be the total order of the zero to the
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z-discriminant of fi at y = 0, and N(gi), that of gi, 1 ≤ i ≤ h. Let µ(fi) be the Milnor

number of fi and µ(gi), that of gi for i = 1, . . . , h.

So, we get the following:

N(fi) = µ(fi) + ni − 1 by Proposition 3.2.1,(3.2.10)

N(gi) = µ(gi) + ni − 1 by Proposition 3.2.1,

µ(gi) − µ(fi) = ni(ni − 1) by Sublemma 3,

and n1 + · · ·+ nh = n where the ni is the multiplicity of gi at the origin, and also the

regular order of fi in z at the origin. By Milnor’s formula (Theorem 2.6),

(3.2.11) µ(g) = µ(g1) + · · · + µ(gh) + 2
∑

i<j

I(gi, gj) − h + 1,

where I(gi, gj) is the intersection number of two distinct plane curves {gi = 0} and

{gj = 0}, and h is the number of irreducible branches of g at the origin.

By (3.2.10) and (3.2.11), we get

µ(g) = µ(f1) + n1(n1 − 1) + · · · + µ(fh) + nh(nh − 1)(3.2.12)

+ 2
∑

i<j

I(fi, fj) + 2
∑

i<j

ninj − h + 1.

Observe that

n1(n1 − 1) + · · · + nh(nh − 1) + 2
∑

i<j

ninj(3.2.13)

= (n1 + · · · + nh)2 − (n1 + · · · + nh) = n(n − 1).

By (3.2.12) and (3.2.13), we get that µ(g) = µ(f)+n(n−1) using Milnor’s formula

for µ(f) = µ(f1 · · · fh) in the sense of (3.2.11). Since N(g) = N(f) + n(n − 1) by the

proof of claim[1] or Sublemma 2, then we have N(f) − µ(f) = N(g) − µ(g), which

must be equal to n − 1. Thus, the proof of the theorem is completely finished.

Theorem 3.3. Consider an analytic family of plane curve singularities Ct : ft =

f(y, z, t) = zn + a1z
n−1 + · · · + an for sufficiently small t where the ai = ai(y, t) ∈

C{y, t}, ai(0, t) = 0 and f(y, z, t) is square-free for each t. Then ft is equisingular to

f0 if and only if the z-discriminant of ft is yN up to a unit factor in C{y, t} where N
is some integer not depending on t.

Proof of Theorem 3.3. It just follows from Theorem 3.2 and Theorem 2.7([Le-

Ra]).

4. A necessary condition of local irreducibility of plane curves with

singularities.

Theorem 4.1. Assume that f = zn + a1z
n−1 + · · · + an is a Weierstrass poly-

nomial in z where the ai are nonunits in C{y} and f is square-free. Let the z-
discriminant of f be ε(y)yN(f) where N(f) is a positive integer and ε(y) is a unit

in C{y}. If f is irreducible in C{y, z}, then we get

(4.1.1) N(f) 6≡ 0 (mod n).
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Proof of Theorem 4.1. In order to compute the number N , it suffices to consider

two cases, respectively:

Case (i): The line {z = 0} is tangent to the plane curve {f = 0}.
Case (ii): The line {z = 0} is not tangent to the plane curve {f = 0}.

Case (i): Let the line {z = 0} be tangent to the plane curve {f = 0}. To compute

the number N(f), then we may assume by Theorem 2.3, Theorem 2.10 and Theorem

2.11 that {f = 0} has the same topological type near the origin as the curve defined

by the Puiseux expansion, that is,
{

y = tn

z = tα1 + tα2 + · · · + tαr+1 ,
(4.1.2)

where 2 ≤ n < α1 < α2 < · · · < αr+1 and d0 = n ≥ d1 = gcd(n, α1) > d2 =

gcd(n, α1, α2) > · · · > dr+1 = gcd(n, α1, · · · , αr+1) = 1. Note that n may be a divisor

of α1.

Now, since f is irreducible in C{y, z} together with the same hypotheses as in

Proposition 3.1, using Corollary 2.5.1, we compute N(f) = µ(f) + n − 1 as follows:

(a) Let r + 1 = 1 or r = 0. Then N(f) = µ(f) + n − 1 = (α1 − 1)(n − 1) +

n − 1 = (α1 − 1)n + n − α1. Since d1 = gcd(n, α1) = 1, there is nothing to prove for

N(f) 6≡ 0 (mod n).

(b) Let r + 1 ≥ 2. Then, we have

N(f) = µ(f) + n − 1(4.1.3)

= (α1 − 1)(d0 − d1) + (α2 − 1)(d1 − d2) + · · ·

+ (αr+1 − 1)(dr − dr+1) + n − 1

= some multiple of dr − (αr+1 − 1) + n − 1

= some multiple of dr + n − αr+1.

Since αr+1 is relatively prime to dr = gcd(n, α1, · · · , αr), we get

N(f) 6≡ 0 (mod gcd(n, α1, · · · , αr)).

So, N(f) 6≡ 0 (mod n). Thus, the proof of Case (i) is done.

Case (ii): Let the line {z = 0} is not tangent to the plane curve {f = 0}.
Rewrite f in the form

f = zn + b1y
ℓ1zn−1 + · · · + biy

ℓizn−i + · · · + bnyℓn ,

where bi are units in C{y} and ℓi are positive integers for 1 ≤ i ≤ n.

As in the proof of Theorem 3.2, put

g = zn + b1y
ℓ1+1zn−1 + · · · + biy

ℓi+izn−i + · · · + bnyℓn+n.

Note that the line {z = 0} is tangent to the plane curve {g = 0}. We use

quadratic transformations or blow-ups ([La], Chap 1). Blowing up {g = 0} at (0, 0),

we get one and only one proper transform {f = 0} of the plane curve {g = 0}. Observe

that g is also square-free. Let the z-discriminant of g be yN(g) up to a unit factor in

C{y} where N(g) is some positive integer. By Case (i), N(g) 6≡ 0 (mod n). Since
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N(f) = N(g)−n(n−1) by Sublemma 2 of Proposition 3.2.1, there is nothing to prove.

Thus, the proof of Case (ii) is done, and so the proof of the theorem is finished.

Corollary 4.2. Under the same hypotheses of Theorem 4.1, if N(f) ≡ 0 (mod n)

then f is reducible in C{y, z}.

Now we give some examples:

(1) Let f = (z3 + y4)2 + y7z2 or let f be topologically and parametrically given by

y = t6 and z = t8 + t13. Then µ(f) = 40 and the z-discriminant of f is yN(f) up

to a unit factor in C{y} with N(f) = 45. Note that f is irreducible in C{y, z} and

N(f) 6≡ 0 (mod 6).

(2) Let f = (z2 + y7)(z3 + y4). Then the z-discriminant of f is yN(f) up to a unit

factor in C{y} with N(f) = 31. But, N(f) 6≡ 0 (mod 5).
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