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1. Introduction. Let G be a connected affine algebraic group and let X be
a regular G-variety in the sense of [BDP] (recalled in Definition 2.2 below). The
variety X contains an open orbit G/H whose complement D is a strictly normal
crossing divisor in X . In this note we show the following vanishing result for rational
equivariant Chern classes of the bundle of logarithmic differentials on the variety X :

cG
i (Ω1

X(log D)) = 0 for i > dim(X) − rk(G) + rk(H).

The motivation for this vanishing result originated in the second author’s interest
in a higher rank generalization of Gieseker’s proof [G] of the Newstead-Ramanan
conjecture. The conjecture (or rather its higher rank generalization) says that for
coprime r and d and for g ≥ 1 the Chern classes of the tangent bundle of the moduli
space of stable vector bundles of rank r and degree d on a curve of genus g vanish in
degrees larger than r(r − 1)(g − 1) (cf. [EK], bottom of page 844).

In order to explain the relationship between this conjecture and the result proven
here let us first sketch Gieseker’s degeneration of moduli spaces of vector bundles.

Let B a smooth curve, which serves as the base scheme of the degeneration. Let
X → B be a proper flat family of algebraic curves of genus g ≥ 2 which is smooth
outside a point x ∈ B. Assume that the fiber X over x is irreducible with a unique
singular point p which is an ordinary double point. Let X̃ be the normalization of
X . Let r be a positive integer and let d be an integer prime to r. Then there exists
a variety M(X/B) proper and flat over B such that

• the fiber of M(X/B) → B over any point y ∈ B \ {x} is the moduli space
M(Y ) of stable vector bundles of rank r and degree d on the curve Y = Xy,

• the variety M(X/B) is nonsingular and its fiber M(X) over x is a normal
crossing divisor in M(X/B).

• Let M(X̃) be the moduli space of rank r degree d vector bundles on the curve
X̃. Then there is a principal GLr ×GLr-bundle P on M(X̃), and a smooth
GLr ×GLr-equivariant compactification of GLr = (GLr ×GLr)/ diag(GLr)
which we denote by KGLr, such that the normalization M̃ of M(X) is bira-
tionally equivalent to the locally trivial KGLr-fibration

f : M ′ := P ×GLr ×GLr KGLr → M(X̃)

associated to the principal bundle P → M(X̃).
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(cf. [NS], [Se], [K2], [KL]). Summarizing, we have a diagram of varieties as follows:

P ×GLr ×GLr KGLr M ′

f

��

oo birat. //____ M̃

normalization

��

M(X̃) M(X)

��

� � // M(X/B)

��

M(Y )

��

? _oo

{x}
� � // B {y}? _oo

The conjecture of Newstead-Ramanan holds trivially for g = 1, since the moduli
space of vector bundles of rank r and degree d on an elliptic curve E is isomorphic to
E itself (cf. [T]). Gieseker’s idea was to use the above diagram (in the rank two case)
to make induction on the genus g (observe that the genus of X̃ is g − 1).

Let D′ be the complement of P ×GLr ×GLr GLr in M ′ and let D̃ be the preimage
of the singular locus of M(X). Then D′ and D̃ are normal crossing divisors in M ′

and M̃ respectively and they are proper transforms of each other by the birational
correspondence M ′ ↔ M̃ .

The induction step consists in proving the following three implications:

Induction hypothesis
(1)
=> Vanishing of Chern classes of Ω1

M ′(log D′) in degrees larger than r(r − 1)(g − 1)

(2)
=> Vanishing of Chern classes of Ω1

M̃
(log D̃) in degrees larger than r(r − 1)(g − 1)

(3)
=> Vanishing of Chern classes of Ω1

Y in degrees larger than r(r − 1)(g − 1)

The third implication is not difficult and follows from results already proven by
Gieseker [G]. The most difficult part is the second implication. It has been proven
up to now only in the case r = 2 by Gieseker [G]. In the case r = 3 Kiem and Li [KL]
were only able to prove the second implication with the slightly weaker bound 6g − 5
instead of 6(g − 1). In both papers [G] and [KL] the step (2) is carried through by
means of a detailed study of flips connecting the varieties M ′ and M̃ .

It is the first implication, where the result of this note comes to a bearing. Namely,
by Example 2.3 the GLr ×GLr-equivariant embedding GLr ⊂ KGLr is regular, and
applying Corollary 2.6 to this case it follows that ci(Ω

1
M ′/M(X̃)

(log D′)) = 0 for i >

r(r − 1). On the other hand, the induction hypothesis implies ci(Ω
1
M(X̃)

) = 0 for

i > r(r− 1)(g− 2). Thus the vanishing of the Chern classes of Ω1
M ′ (log D′) in degrees

larger than r(r − 1)(g − 1) follows from the exact sequence

0 → f∗Ω1
M(X̃)

→ Ω1
M ′(log D′) → Ω1

M ′/M(X̃)
(log D′) → 0.

It should be noted that in the papers [G] and [KL] the implication (1) is proved
(in the rank two and three case) in a rather ad hoc way by using the fact that f :
M ′ → M(X̃) can be represented as a succession of blowing ups of a projective bundle.
In principle this could be done also in the higher rank case, but as can be seen from
the rank three case treated in [KL], the computations become very involved with
increasing rank.
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Our Corollary 2.7 establishes the vanishing in the given range of the usual (non-
equivariant) Chern classes of the bundle of logarithmic differential forms on a regular
group embedding G →֒ X . This statement is proven by different methods in a recent
paper of Valentina Kiritchenko (cf. [Ki] Lemma 3.6 and Proposition 4.4) where also
the non-equivariant case of our Theorem 2.4 is mentioned (cf. [Ki] §5).

2. Definitions and statement of the Theorem.

Definition 2.1. Let G be a topological group and let X be a topological G-space.
Let F → X be a G-linearized complex topological vector bundle. Let EG → BG be
the universal G-bundle over the classifying space of G. The G-equivariant rational

Chern class

cG
i (F ) ∈ H2i

G (X) := H2i(EG ×G X, Q)

of the bundle F is by definition the Chern class of the vector bundle

EG ×G F → EG ×G X,

where EG ×G F and EG ×G X are the quotients of EG × F and EG ×X respectively
by the diagonal action of G.

By construction, the pull-back of cG
i (F ) to X (regarded as a fiber of the map

EG ×G X → BG) is the usual Chern class ci(F ).

Definition 2.2. Let G be a connected affine algebraic group and let X be an
algebraic variety on which G acts with an open dense orbit Ω. The G-variety X is
called regular, if it satisfies the following conditions (see [BDP]):

1. The closure of every G-orbit is smooth.
2. Any orbit closure Y 6= X is the transversal intersection of the orbit closures

of codimension one containing Y .
3. The isotropy group of any point x ∈ X has a dense orbit in the normal space

to the orbit G · x in X .

Example 2.3. Let r ≥ 1 and let G = GLr ×GLr. We claim that the compacti-
fication X := KGLr of GLr defined in [K1] is regular in the above sense if considered
as a G-variety. Indeed, properties (1) and (2) follow directly from loc. cit. §9.

It remains to show property (3). For this let S ⊆ GLr be the maximal torus of
diagonal matrices and let S ⊂ S̄0 be the smooth torus embedding which in loc. cit.
§4 we denoted by T ⊂ T̃ and which is an S-invariant open subset of the closure S̄
in X . From the description of the orbits in loc. cit. §9 and the results in loc. cit.
§4 it follows immediately that the intersection with S̄0 of any G-orbit of a certain
codimension in X is a unique S-orbit of the same codimension in S̄0 (or S̄).

Therefore, to check property (3) it suffices to consider points x ∈ S̄0. Furthermore,
it follows that the canonical map

(NS·x/S̄0
)x → (NG·x/X)x

of normal spaces at x is an Sx-equivariant isomorphism. Being a smooth torus em-
bedding, the S-variety S̄0 is regular in the above sense. Indeed, to see this one is
immediately reduced to the case Gn

m →֒ An where the assertion is clear. In particu-
lar, the isotropy subgroup Sx acts with a dense orbit on (NS·x/S̄0

)x. Thus also Gx

acts with a dense orbit on (NG·x/X)x.
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Let X be a regular G-variety. Then the complement D ⊂ X of the open orbit
in X is a strict normal crossing divisor. Recall that the sheaf of logarithmic differ-
ential forms Ω1

X(log D) is the locally free subsheaf of Ω1
X ⊗OX

C(X) generated in a
neighbourhood of a point x ∈ X by the differentials

df1

f1
, . . . ,

dfm

fm
, dfm+1, . . . , dfn,

where f1, . . . , fn are local coordinates at the point x such that the divisor D is given
by the equation f1f2 . . . fm = 0. As can be easily seen, this definition is independent
of the choice of the coordinate system.

The dual of Ω1
X(log D) is the subsheaf TX(− logD) of the tangent sheaf TX locally

at x generated by the vector fields

f1
∂

∂f1
, . . . , fm

∂

∂fm
,

∂

∂fm+1
, . . . ,

∂

∂fn
.

In more geometric terms, it is the subsheaf of the tangent sheaf whose sections consist
of vector fields which are tangent to all the components of D. Since the components of
D are G-invariant, it is clear from this description that TX(− log D) inherits a natural
G-linearization from the one on TX . Thus Ω1

X(log D) is G-linearized as well.

The main result of this note is the following:

Theorem 2.4. Let G be a connected affine algebraic group over the field of

complex numbers and let X be a complex regular G-variety. Let H ⊆ G be the isotropy

group of a point in the open orbit Ω ⊆ X and let D := X \Ω be the boundary divisor.

Then the G-equivariant rational Chern classes of the bundle Ω1
X(log D) of logarithmic

differentials vanish in degrees larger than

dim(X) − rk(G) + rk(H).

The proof will be given in the next section. We note that the corresponding
statement over an algebraically closed field of arbitrary characteristic holds true as
well with the same proof if one replaces rational equivariant cohomology with the
equivariant Chow ring with rational coefficients.

The following is an immediate consequence:

Corollary 2.5. Let G be a complex connected affine algebraic group and let

G = (G×G)/ diag(G) →֒ X be a regular G×G-equivariant embedding with boundary

divisor D. Then we have cG×G
i (Ω1

X(log D)) = 0 for i > dim(G) − rk(G).

For the application mentioned in the introduction, we state the following

Corollary 2.6. Let G, X and D be as in 2.5. Let M be a complex variety and

let P be a principal G × G-bundle over M . Let

X := P ×G×G X and D := P ×G×G D ⊂ X

be the associated locally trivial X-fibration and D-fibration over M respectively. Then

the Chern classes of Ω1
X/M (logD) vanish in degrees larger than dim(G) − rk(G).
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Proof. Let M → BG×G be a classifying map for the bundle P . Then we have
cartesian diagrams

X

��

f
// EG×G ×G×G X

��

M // BG×G

D

��

// EG×G ×G×G D

��

M // BG×G

and Ω1
X/M (logD) is the pull back via f of the vector bundle

EG×G ×G×G Ω1
X(log D).

Therefore we have

ci(Ω
1
X/M (logD)) = f∗ci(EG×G ×G×G Ω1

X(log D)) = f∗cG×G
i (Ω1

X(log D))

and the result follows from Corollary 2.5.

Corollary 2.7. With the notation of Corollary 2.5, the usual Chern classes of

Ω1
X(log D) vanish in degrees > dim(G) − rk(G).

Proof. This is a special case of Corollary 2.6: Take M to be a point.

3. Proof of the theorem. The first step in the proof of the theorem is the case
of empty boundary divisor:

Proposition 3.1. Theorem 2.4 holds in the case when X = G/H.

Proof. We have to show the vanishing of the G-equivariant Chern classes of the
cotangent bundle Ω1

X in the given range. Let x ∈ X be the point represented by the
unit element in G. The fiber V of Ω1

X at x is an H-module. In fact we have

V = (Lie(G)/ Lie(H))∨,

where the action of H on the right hand side is induced by the adjoint action of H
on Lie(G).

Since H operates freely on the contractible space EG, we may take EH = EG and
BH = EG/H = EG ×G X . Since Ω1

X = G ×H V , it follows that the vector bundle
EG ×G Ω1

X → EG ×G X can be identified with the vector bundle

V := EH ×H V → BH .

Thus we have to show the vanishing of the Chern classes of V in degrees larger than

dim(X) − rk(G) + rk(H).

Let SH be a maximal torus of H and let X∗(SH) be its character group. By the
results of [H] Chapter III, §1, the map BSH

→ BH induces an injection

H∗(BH , Q) →֒ H∗(BSH
, Q)

∼
→ Sym Q(X∗(SH) ⊗ Q).

Now if we denote by α1, . . . , αdim X ∈ X∗(SH) the weights of V considered as an
SH -module, then the total Chern class of V is mapped to the product

dim X∏

i=1

(1 + αi) ∈ Sym Q(X∗(SH) ⊗ Q).
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But SH acts trivially on the subspace

Lie(SG)/ Lie(SH) ⊆ Lie(G)/ Lie(H) = V ∨,

where SG denotes a maximal torus of G containing SH . Therefore at least as many
as dim(Lie(SG)/ Lie(SH)) of the αi vanish and the total Chern class of V is of degree
at most

dim(X) − dim(Lie(SG)/ Lie(SH)) = dim(X) − rk(G) + rk(H).

Proposition 3.2. Let G be a connected affine algebraic group and let X be a

regular G-variety. Let x, y ∈ X be two points and let G·x and G·y be the corresponding

G-orbits in X. Assume that the orbit closure G · y is contained in G · x as a divisor.

Let Gx and Gy be the isotropy subgroups of the points x and y. Then

rk(Gx) ≥ rk(Gy) − 1.

Proof. Since G · x is again a regular G-variety, we may assume without loss of
generality that G · x = X . This simplifies notation a bit.

Let Sy be a maximal subtorus of Gy . It acts on the tangent space Ty(X) and
leaves the codimension-one subspace Ty(G · y) invariant. Therefore there is a one-
dimensional Sy-invariant subspace ℓ in Ty(X) such that

Ty(X) = Ty(G · y) ⊕ ℓ.

Let χ : Sy → C× be the character associated to the one-dimensional Sy-module ℓ
and let S be the connected component of the identity in ker(χ). We claim that there
is a point x0 ∈ G · x which is fixed by S.

Indeed, since X is normal, by a result of Sumihiro ([Su]) there is an affine open
neighbourhood U ∼= Spec (R) of y in X which is invariant under the action of S. Let
m ⊂ R be the maximal ideal corresponding to the point y ∈ U . Since S is a torus,
there is an S-equivariant section

ϕ : m/m
2 → m

of the surjection m → m/m
2. The map ϕ induces an S-equivariant map

Sym (m/m
2) → R and thus an S-equivariant morphism

f : U = Spec (R) → Spec (Sym (m/m
2)) = Ty(X).

By construction, f induces an isomorphism from the tangent space of U at y to
the tangent space of Ty(X) at 0. Therefore after possibly restricting f to a smaller
S-invariant neighbourhood of y, we may assume that f is étale.

Let Z be the preimage by f of the line ℓ. Since ℓ is transversal to the tangent
directions of G · y, it follows that Z is not contained in G · y. Let x0 ∈ Z \ G · y.

Let us collect what we know about the point x0. The image f(x0) of x0 in Ty(X)
is contained in ℓ and is thus fixed by S. Since f is S-equivariant, the group S acts
on the fiber of f at f(x0). But this fiber contains only finitely many points and S is
connected, so S must act trivially on the fiber. In particular, x0 is a fixed point of S
contained in G · x. This proves our claim.
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It follows that S ⊆ Gx0
and consequently we have

rk(Gx) = rk(Gx0
) ≥ dim(S) ≥ dim(Sy) − 1 = rk(Gy) − 1.

Corollary 3.3. Let G be a connected affine algebraic group and let X be a

regular G-variety. Let H ⊂ G be the isotropy group of a point in the open orbit. Then

for any point y ∈ X with isotropy group Gy we have the inequality

dim(H) − rk(H) ≤ dim(Gy) − rk(Gy).

Proof. Let c be the codimension in X of the orbit G · y. There is a sequence of
points x0, x1, . . . , xc in X such that x0 is contained in the open orbit and xc = y, and
such that for i = 1, . . . , c the orbit closure G · xi is a divisor in G · xi−1. Applying
Proposition 3.2 c times, it follows that

rk(H) ≥ rk(Gy) − c .

On the other hand we have

dim(G) − dim(H) − c = dim(X) − c = dim(G · y) = dim(G) − dim(Gy)

and therefore dim(H) = dim(Gy) − c. From this the inequality of Corollary 3.3 is
immediate.

Proposition 3.4. Let G be a connected affine algebraic group and let X be a

regular G-variety. Let D ⊂ X be the boundary divisor. Let Y = G · y be a G-orbit of

codimension c in X. Then there is an exact sequence of G-linearized bundles on Y as

follows:

0 → Ω1
Y → Ω1

X(log D)|Y → O⊕c
Y → 0.

Proof. This follows from [BB], 2.4.2.

Now we can prove Theorem 2.4. For each G-orbit Y ⊆ X we have the restriction
map H∗

G(X) → H∗
G(Y ). Thus we get a homomorphism

H∗
G(X) →

∏

Y

H∗
G(Y )

where Y runs through all G-orbits of X . By [BDP] Theorem 7 this map is injective.
Therefore it suffices to show that for any

i > dim(G) − dim(H) − rk(G) + rk(H)

and any G-orbit Y = G · y in X the i-th G-equivariant rational Chern class of
Ω1

X(log D)|Y vanishes. By Proposition 3.4 this is equivalent to the vanishing of the
i-th G-equivariant rational Chern class of Ω1

Y .
Let Gy be the isotropy group of the point y. From Corollary 3.3 we know that

i > dim(G) − dim(H) − rk(G) + rk(H) ≥ dim(G) − dim(Gy) − rk(G) + rk(Gy).

Proposition 3.1 yields now the vanishing of cG
i (Ω1

Y ) as required.
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4. Added in Proof. After this paper has been written, Teleman and Woodward
[TW] have published a proof of the Newstead-Ramanan conjecture by a different
approach than the one we outlined in the introduction.
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