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Abstract. The paper considers a relationship between the Chern numbers K2
X

, c2(X) of a
smooth minimal surface X of general type and the dimension of the space of infinitesimal deformations
of X, i.e. h1(ΘX), where ΘX is the holomorphic tangent bundle of X. We prove that if the ratio of

the Chern numbers α(X) =
c2(X)

K2
X

≤ 3
8

and KX is ample then

h1(ΘX) ≤ 9(3c2 − K2).

On the geometric side it is shown that a smooth surface of general type X with α(X) ≤ 3
8

and

h1(ΘX) ≥ 3 has two distinguished effective divisors F and E such that H1(ΘX) admits a direct
sum decomposition H1(ΘX) = V1 ⊕ V0, where V1 is identified with a subspace of H0(OX(F )) while
V0 is identified with a subspace of H0(ΘX ⊗ OE(E)). This gives a geometric interpretation of the
cohomology classes in H1(ΘX) and allows to bound the dimension of V0 (resp. V1) in terms of
geometry of the divisor E (resp. F ).

The main idea of the paper is to use the natural identification

H1(ΘX ) = Ext1(ΩX ,OX)

where ΩX is the holomorphic cotangent bundle of X. Then the ”universal” extension gives rise to a
certain vector bundle whose study constitutes the essential part of the paper.

Key words. Surfaces of general type, vector bundles, stability

AMS subject classifications. 14F05, 14J29

0. Introduction. Two questions occupy an important place in the theory of
surfaces of general type: the problem of geography and the problem of moduli.
Recall, if X is a smooth minimal surface of general type, then its Chern numbers
K2
X , c2(X) are two fundamental discrete invariants of X . The problem of geography

asks for which pairs of integers (m,n) there exists a smooth minimal surface of
general type X with c2(X) = m and K2

X = n. The well-known restrictions on
the Chern numbers for surfaces of generaral type give us the region P in (c2,K

2)-plane
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where the integral points (c2,K
2) with K2 + c2 ≡ 0( mod 12) in the shaded area

are called admissible points (see [16]). The ground-braking work of U.Persson,[15],
followed by the works of G.Xiao, [18],[20] and Z.Chen,[8], have shown the existence
of surfaces for every admissible pair in the part of P subject to K2 ≤ 2c2 as well as
filled the vast part of the remaining sector.

On the other hand the problem of moduli of surfaces of general type has been
actively developed in the last 25 years or so (see e.g., [5],[6],[7]). In particular,
F.Catanese in [6] revives a classical problem of determining an upper bound on the
number of moduli of a surface of general type in terms of its Chern numbers.

The main purpose of this paper is to explore the relations between the Chern
numbers K2

X , c2(X) of a surface of general type X and the dimension of the space of
the infinitesimal deformations of the complex structure of X , i.e. h1(ΘX), where ΘX

is the holomorphic tangent bundle of a surface X .
Such relationships have been implicitly used in studying surfaces with Chern

numbers close to the lower limiting line of P : these surfaces and their moduli are
amendable to an explicit description because they are genus 2 fibrations( see [10] and
[18], [19], for general methods for studying fibered surfaces). About the other extreme
of P one knows from Yau’s work on Kähler-Einstein metric,[21], that surfaces with
K2 = 3c2 are compact quotients of a unit ball in C2. This together with a result of
Calabi and Vesentini,[4], yields the infinitesimal rigidity of these surfaces. One of the
results of this paper is the following.

Theorem 0.1 (= Corollary 4.10). Let X be a smooth surface with KX ample
and let K2

X ≥ 8
3c2(X). Then h1(ΘX) ≤ 9(3c2 −K2).

An upper bound of the above nature can be viewed as a conceptual reason for
difficulties in constructing surfaces with Chern numbers which are close to the upper
limiting line of P . Our approach also suggests where one should look for such surfaces
since in deriving the above bound we give a geometric interpretation of the space of
the infinitesimal deformations H1(ΘX). From this interpretation it follows that all
such surfaces infinitesimally look as though they either come as ramified covers of
some other surfaces or as divisors in a 3-fold.

To explain our approach to the study of the space H1(ΘX) let us consider the
following hypothetical situation. Let π : (X , X) −→ (B, b0) be the universal family
of deformations of a smooth minimal surface of general type X = π−1(b0), with the
base B smooth. Then the total tangent bundle ΘX of X fits into the following exact
sequence

0 // ΘX/B // ΘX // π∗ΘB
// 0 (0.1)

where ΘX/B is the relative tangent bundle of π. Taking the restriction of (0.1) to X
we obtain

0 // ΘX
// ΘX ⊗OX

// ΘB,b0 ⊗OX // 0. (0.2)

By the Kodaira-Spencer theory of deformation of complex structure the coboundary
map ΘB,b0 −→ H1(ΘX) arising from (0.2) is the identity. Thus the sequence (0.2)
can be viewed as the element of the group of extensions Ext1(ΘB,b0 ⊗OX ,ΘX) cor-
responding to the identity endomorphism of H1(ΘX) under the natural identification
Ext1(ΘB,b0 ⊗ OX ,ΘX) = End(H1(ΘX)). Of course, such an extension can be con-
sidered independently of the geometric argument above, i.e. as long as H1(ΘX) 6= 0



GEOGRAPHY AND THE NUMBER OF MODULI 409

we have the group of extensions Ext1(ΩX , H
1(ΘX)∗ ⊗OX) = End(H1(ΘX)), where

ΩX is the cotangent bundle of X , and the identity endomorphism idH1(ΘX ) gives rise
to the following short exact sequence of sheaves on X

0 // H1(ΘX)∗ ⊗OX
// T // ΩX // 0. (0.3)

Besides its naturality the sheaf T is a good place to look for a relationship between
h1(ΘX) and the Chern numbers of X since the rank of T is rk(T ) = h1(ΘX) + 2 and
its Chern invariants are c1(T ) = KX , c2(T ) = c2(X). A study of the sheaf T is the
essential point of our approach.

Set α =
c2(X)

K2
X

. The first immediate observation is that for surfaces with α <
1

2
(i.e. surfaces with positive index) we have a ”topological” upper bound on h1(ΘX)
coming from the semistability of T : if T is semistable with respect to some polariza-

tion on X then h1(ΘX) ≤ 1

1 − 2α
− 2 .

If the above inequality fails then T is unstable with respect to any numerically
effective nonzero divisor D on X . This can be used to obtain some geometric in-
formation. First of all the fact that T is D-unstable implies that T contains the
D-maximal destabilizing subsheaf T D

1 which gives rise to a nontrivial decomposition
of the canonical divisor of X

KX = L1 + E1 (0.4)

where L1 = c1(T D
1 ) and E1 = c1(T /T D1 ). This decomposition becomes especially

meaningful geometrically once we take D = KX and α ≤ 3

8
. We show that in this

case L1 is in the positive cone of the Néron-Severi group NS(X) of X and E1 is an
effective nonzero divisor whose degree with respect to KX is bounded by a function
depending on (3c2 −K2) (see Corollary 1.7). Furthermore, the rank of KX -maximal
destabilizing subsheaf T1 turns out to be 2 or 3 and the inclusion T1 −→ T combined
with the defining sequence (0.3) gives rise to a generically surjective morphism

µ1 : T1 −→ ΩX .

This morphism looks as if it were the codifferential of a morphism f : X −→ Y which
is generically of maximal rank and where dimY = 2 or 3. Of course, there is no
reason for µ1 to come from such a geometric situation. However, it gives rise to a
decomposition of H1(ΘX) as a direct sum of its subspaces H1(ΘX) = V0⊕V1. Each of
these subspaces has features characteristic to the aforementioned geometric situation
(see Proposition 2.2):

1. V0 is a subspace of H1(ΘX) contained in the kernel of the obvious morphism

H1(ΘX) −→ H1(ΘX(E))

for some component E of E1 in the decomposition (0.4), i.e. it looks as though
E is the ramification divisor of some morphism of X onto another surface;

2. V1 injects into H0(OX(F )), where F is again a component of E1, i.e. V1 looks
as a subspace of infinitesimal deformations of a divisor in a 3-fold.

The above result gives a geometric interpretation of the cohomology classes in
H1(ΘX) as global sections of OX(F ) or ΘX ⊗ OE(E). It also allows to obtain
upper bounds on the dimensions of the subspaces V0 and V1 in terms of geometry
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of the divisors E and F respectively (see e.g., Corollary 2.4, Corollary 3.9). Putting
these bounds together with the estimate of E1.KX as a function of (3c2 − K2)
we derive the upper bound for h1(ΘX) as a function of (3c2 − K2) (see Corol-
lary 4.10). We also point out that the nature of the bound as a linear function of
(3c2−K2) can not be improved in view of examples which we discuss in Example 4.11.

The paper is organized as follows.
In §1 we define the extension bundle T as in (0.3) and consider its properties from
the point of view of stability.
In §2 we introduce the notion of divisorial and locally supported moduli and show

that surfaces with α =
c2(X)

K2
X

≤ 3

8
and h1(ΘX) > 2 have the property that the

space of the infinitesimal deformations H1(ΘX) admits a vector space decomposition
H1(ΘX) = V0 ⊕ V1 where V1 is divisorial moduli and V0 is locally supported moduli
of X . We also derive an upper bound on the dimension of the divisorial moduli V1 of
X (Corollary 2.4).
The sections §3 and §4 are devoted to a study of the subspace V0 of locally supported
moduli and, particularly, to a study of the divisor on which V0 is supported.
In section §5 we consider surfaces whose Chern numbers are subject to
3c2 − K2 ≤ 1

2

√
K2. This ”quadratic” condition emerges naturally in view of

the bound on the degree of E1 obtained in Corollary 1.7. The point is that the
Hodge index together with the ”quadratic” condition implies that the intersection
form restricted to the sublattice of NS(X) generated by the irreducible components
of E1 is negative semidefinite. This allows us to give a detailed description of these
components (Lemma 5.4) as well as to deduce conditions for these surfaces to be
fibred by curves of genus ≤ (3c2 −K2).

1. Extension construction. Let X be a smooth minimal surface of general
type. The holomorphic tangent (resp. cotangent) bundle of X will be denoted by ΘX

(resp. ΩX). Throughout the paper, unless said otherwise, we assume H1(ΘX) 6= 0.
For a nonzero subspace V of H1(ΘX) we consider the extension

0 // V ∗ ⊗OX
// TV // ΩX // 0 (1.1)

corresponding to the natural inclusion V ⊂ H1(ΘX) where the following natural
identifications are used:

Ext1(ΩX , V
∗ ⊗OX) = V ∗ ⊗H1(ΘX) = HomC(V,H1(ΘX)).

We will often refer to the sheaf TV sitting in the middle of (1.1) as extension corre-
sponding to V . If V = H1(ΘX), then the corresponding sheaf will be denoted by T .

The invariants of T are easily computed from the defining sequence (1.1):

rk(T ) = h1(ΘX) + 2, c1(T ) = c1(ΩX) = KX , c2(T ) = c2(ΩX) = c2(X).

If no ambiguity is likely we will omit X in the above notation. Set α =
c2(X)

K2
X

and

assume α < 1
2 . The semistability of T gives ”the topological” upper bound for h1(ΘX)

as a function of α.

Proposition 1.1. Let α < 1
2 . If T is semistable with respect to some ample

divisor H on X then h1(ΘX) ≤ 1

1 − 2α
− 2.



GEOGRAPHY AND THE NUMBER OF MODULI 411

Proof. The Bogomolov-Gieseker inequality (see, e.g., [13]) applied to T gives

2(h1(ΘX) + 2)c2 ≥ (h1(ΘX) + 1)K2
X ⇔ 2(h1(ΘX) + 2)α ≥ h1(ΘX) + 1.

Solving for h1(ΘX) yields the asserted inequality.

From now on we assume that α < 1
2 and h1(ΘX) > 1

1−2α − 2. In view of Propo-
sition 1.1 the vector bundle T is unstable with respect to any numerically effective
(nef) divisor D on X . We consider D-destabilizing filtration of T for D nef and big
(D2 > 0):

T = T D
s ⊃ · · · ⊃ T D

1 ⊃ T D
0 = 0. (1.2)

Associated to this filtration we have:

GDi = T D
i /T D

i−1, Li = c1(GDi ), di = c2(GDi ), ri = rk(GDi ), αi =
Li.D

riK.D
. (1.3)

The main properties of the filtration (1.2) are (see [13]):
• the graded sheaves GDi are D-semistable,
• α1 > . . . > αs

The subsheaf T D
1 = GD1 is called the D-maximal destabilizing subsheaf of T .

Following Miyaoka,[13], we have the notion of semipositivity of a torsion-free
sheaf.

Definition 1.2.
a). A torsion-free sheaf F on X is called semipositive with respect to a nef divisor

D(also referred to as D-semipositive) if for any torsion-free quotient Q of F
one has c1(Q).D ≥ 0.

b). F is called generically semipositive if it is so for any nef divisor on X.

Lemma 1.3. The sheaf TV is generically semipositive.

Proof. Suppose TV is not D-semipositive. Then there exists a subsheaf G of T
whose quotient Q is torsion-free and c1(Q).D < 0 or, equivalently, c1(G).D > K.D.
Consider the diagram

G

��

µ

!!C
CC

CC
CC

C

0 // V ∗ ⊗OX
// TV // ΩX // 0

(1.4)

The induced morphism µ : G −→ ΩX must be generically of maximal rank, since
otherwise Im(µ) is a subsheaf of ΩX such that c1(Im(µ)).D ≥ c1(G).K > K.D
contradicting generic semipositivity of ΩX . In particular, the rank r = rk(G) ≥ 2.
Taking the r-th exterior power of (1.4) we obtain

detG

�� ((PPPPPPPPPPPP

0 // F // ∧r TV // ∧r−2
V ∗ ⊗OX(KX) // 0

(1.5)
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The slanted arrow in (1.5) must be zero since c1(G).D > K.D. This yields a nonzero
morphism detG −→ F . But F fits into the following exact sequence

0 // ∧r V ∗ ⊗OX
// F // ∧r−1 V ∗ ⊗ ΩX // 0

which gives a nonzero morphism detG −→ ΩX contradicting generic semipositivity of
ΩX

Using the D-destabilizing filtration (1.2) and the notation in (1.3) we obtain

2c2 = 2
∑

i

di + 2
∑

i<j

Li.Lj = 2
∑

i

di +K2 −
∑

i

L2
i . (1.6)

Since Gi’s are D-semistable the Bogomolov-Gieseker inequality gives 2di ≥ ri−1
ri

L2
i .

Substituting into (1.6) we obtain

2c2 ≥ 2d1 − L2
1 −

∑

i≥2

1

ri
L2
i +K2. (1.7)

By Hodge Index L2
i ≤ (Li.D)2

D2 . This gives

1

ri
L2
i ≤

Li.D

ri

Li.D

D2
= αi

Li.D

D2
(K.D).

Substituting in (1.7)

2c2 ≥ 2d1 − L2
1 −





∑

i≥2

αiLi.D





K.D

D2
+K2. (1.8)

Remark 1.4. From Lemma 1.3 it follows that αs ≥ 0. This implies that
αi, Li.D ≥ 0 for all i and the inequality is strict for 1 ≤ i < s.

From now on we assume D = KX . Substituting this in (1.8) we obtain

2c2 ≥ 2d1 − L2
1 −

∑

i≥2

αiLi.K +K2. (1.9)

Lemma 1.5. If L2
1 ≤ 0, then α > 1

2 − 1
8r1

.

Proof. The Bogomolov-Gieseker inequality for G1 together with L2
1 ≤ 0 yields

2c2 ≥ −
∑

i≥2

αiLi.K +K2 > −α1(K
2 − L1.K) +K2 = −α1(1 − r1α1)K

2 +K2

where the second inequality follows from Remark 1.4 and the fact that the sequence
{αi} is strictly decreasing. Dividing by K2 we obtain

2α > −α1(1 − r1α1) + 1,



GEOGRAPHY AND THE NUMBER OF MODULI 413

or, equivalently,

r1α
2
1 − α1 + (1 − 2α) < 0.

In particular, the discriminant of the quadratic polynomial on the left-hand side must
be positive:

1 − 4r1(1 − 2α) > 0 ⇔ α >
1

2
− 1

8r1
.

Proposition 1.6. If α ≤ 3
8 , then L2

1 > 0 and the morphism µ1 : T1 −→ ΩX
induced from

T1

��

µ1

  A
AA

AA
AA

A

0 // H1(ΘX)∗ ⊗OX
// T // ΩX // 0

(1.10)

is generically surjective. In particular, the rank r1 of T1 is 2 or 3.

Proof. From Lemma 1.5 it follows that L2
1 > 0. Since ΩX can not have subsheaves

of rank 1 of D-dimension 2 we deduce that r1 ≥ 2 and µ1 is generically surjective. To
obtain an upper bound on r1 we use (1.8)

2c2 ≥ −α1K
2 +K2 ⇔ r1 <

1

1 − 2α
≤ 4.

Corollary 1.7. If α ≤ 3
8 and h1(ΘX) > 2 then KX has a distinguished de-

composition KX = L1 + E1 where L1 = c1(T1) is in the positive cone C+(X) of the
Néron-Severi group NS(X) of X and E1 is an effective nonzero divisor. Furthermore,
the rank r1 of T1 is equal to 2 or 3 and

E1.K

K2
<











2(3α− 1), if r1 = 3

8(3α−1)

1+
√

1+16(3α−1)
, if r1 = 2

.

Proof. If α ≤ 3
8 then the ”topological” bound

1

1 − 2α
− 2 ≤ 2. So the Bogomolov-

Gieseker inequality for T fails as soon as h1(ΘX) > 2. In particular, we have the
KX -maximal destabilizing subsheaf T1 which is subject to Proposition 1.6. Hence the
assertion about L1 and r1. To see the properties of E1 we consider the diagram (1.10)
according the values of r1.
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1) r1 = 3 : in this case the above mentioned diagram has the following form

0

��

0

��

0

��
0 // K∗ //

��

T1
//

��

T ′
1

//

��

0

0 // H1(ΘX)∗ ⊗OX
//

��

T //

��

ΩX //

��

0

0 // R //

��

Q1
//

��

S1
//

��

0

0 0 0

(1.11)

where T ′
1 = Imµ1, K∗ = kerµ1, S1 = cokerµ1, Q1 = T /T1, R = (H1(ΘX)∗ ⊗

OX)/K∗. From (1.11) we obtain that K∗ is a line bundle whose dual K is generated
by global sections outside of a subscheme of codim ≥ 2. More precisely, dualizing the
column on the left we obtain

0 // R∗ // H1(ΘX) ⊗OX
// K // Ext1(R,OX) // 0 (1.12)

where the sheaf Ext1(R,OX) is supported on a subscheme of codim ≥ 2. Putting F =
c1(K) we conclude that F is an effective divisor and L1 = c1(T ′

1 )−F = KX−c1(S1)−F .
This implies

E1 = KX − L1 = c1(S1) + F. (1.13)

Since both c1(S1) and F are effective and they can not vanish simultaneously we
obtain that E1 is an effective nonzero divisor.

To obtain the asserted upper bound on the degree (with respect to KX) of E1 we
use (1.8) to obtain

2c2 > −α1K
2 +K2 ⇔ L1.K

3K2
> 1 − 2α⇔ E1.K

K2
< 2(3α− 1).
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2) r1 = 2 : the diagram (1.10) has the following form

0

��

0

��
T1

��

T1

��
0 // H1(ΘX)∗ ⊗OX

// T //

��

ΩX //

��

0

0 // H1(ΘX)∗ ⊗OX
// Q1

//

��

S1
//

��

0

0 0

(1.14)

This implies that E1 = KX−L1 = c1(S1) is effective and it must be nonzero (otherwise
the extension defining T splits). To bound the degree of E1 in this case we use a result
of Miyaoka which says that 3d1 = 3c2(T1) ≥ c21(T1) = L2

1 (see Remark 4.18,[12]).
Substituting this in (1.8) we obtain

2c2 ≥ −1

3
L2

1 −
∑

i≥2

αiK.Li +K2 > −1

3
L2

1 − α1E1.K +K2

= −1

3
(K − E1)

2 − K2 − E1.K

2K2
E1.K +K2. (1.15)

Dividing byK2 and using the Hodge Index
E2

1

K2
≤
(

E1.K

K2

)2

one obtains the following

inequality

(

E1.K

K2

)2

+
E1.K

K2
− 4(3α− 1) < 0. (1.16)

Solving it for E1.K
K2 yields

E1.K

K2
<

−1 +
√

1 + 16(3α− 1)

2
=

8(3α− 1)

1 +
√

1 + 16(3α− 1)
.

2. Two types of infinitesimal deformations. The situation encountered in
the proof of Corollary 1.7 looks as though our surface X admits a morphism f :
X −→ Y which is generically of maximal rank and where dimY = r1 = 2 or 3. With
this hypothetical geometric interpretation in mind one could say that the case r1 = 2
corresponds to the situation where all infinitesimal deformations of X come from
the infinitesimal deformations of the ramification divisor of f and the case r1 = 3
would generally brake into two parts: the infinitesimal deformations of the divisor
X ′ = Im(f) in the 3-fold Y and the infinitesimal deformations of the ramification
divisor of f . Of course, there is no reason for the morphism µ1 : T1 −→ ΩX in (1.10)
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to come from geometry. However, the infinitesimal deformations of X have all the
features of such geometric situations: in the case r1 = 2 all elements of H1(ΘX)
are supported on the divisor E1 as in Corollary 1.7 and in the case r1 = 3 we can
brake H1(ΘX) into two parts: V0 = H0(R∗) (see (1.12)) and V1, a subspace of
H1(ΘX) complementary to V0. The subspace V0 is as in the case r1 = 2 while
the subspace V1 injects into H0(X,K) (see (1.11) for notation), i.e. it looks like
infinitesimal deformations of a divisor in a 3-fold.

The following definition is motivated by the above discussion.

Definition 2.1. 1) A subspace V in H1(ΘX) is called a divisorial moduli of X
if there exists a divisor D on X and an injective linear map V −→ H0(OX(D)).
2) A subspace V in H1(ΘX) is called a locally supported moduli of X if there exists a
nonzero effective divisor E on X such that the sequence

0 // H0(ΘX ⊗OE(E)) // H1(ΘX)
e // H1(ΘX(E))

is exact and V ⊂ ker(e), where e is a section defining E. In this case we will say that
V is locally supported on the divisor E.
3) We say that H1(ΘX) admits a decomposition into divisorial and locally supported
moduli if there exists a vector space decomposition H1(ΘX) = V ⊕ V ′ such that V
(resp. V ′) is a divisorial (resp. locally supported) moduli.
If V = 0 (resp. V ′ = 0), we say that X has locally supported (resp. divisorial) moduli
only.

Let us show that the space of the infinitesimal deformations of X subject to
the conditions of Corollary 1.7 admits a decomposition into divisorial and locally sup-
ported moduli. In order to do this we return to (1.12) and consider the decomposition

H1(ΘX) = V0 ⊕ V1 (2.1)

where we put V0 = H0(R∗) and V1, a subspace of H1(ΘX) complementary to V0.

Proposition 2.2. The decomposition (2.1) is a decomposition into divisorial and
locally supported moduli. The subspace V1 injects into H0(OX(F )) (recall: F = c1(K))
and V0 is locally supported on E′ = c1(S1), i.e. V0 injects into H0(ΘX ⊗ OE′(E′)).
Furthermore, if r1 = 2 then X has locally supported moduli only, and if r1 = 3 and
V0 = H0(R∗) = 0 then X has divisorial moduli only.

Proof. The injection V1 −→ H0(OX(F )) follows from the definition of V1 and
(1.12). To see the assertion about V0 we assume it to be nonzero and consider the
extension of ΩX corresponding to the natural inclusion V0 ⊂ H1(ΘX)

0 // V ∗
0 ⊗OX

// TV0
// ΩX // 0.

The dual of the bottom sequence (1.11) implies that V0 injects into H0(Ext1(S1,OX)).
The latter space is contained in the kernel of H1(ΘX) −→ H1(T ′ ∗

1 ) (this is seen by
taking the dual of the column on the right-hand side of (1.11)). From this it follows
that the morphism (T ′

1 )
∗∗ −→ ΩX induced by T ′

1 −→ ΩX in (1.11) lifts to a morphism
to TV0

, i.e. we have

(T ′
1 )

∗∗

��||xxx
xx

xx
x

0 // V ∗
0 ⊗OX

// TV0
// ΩX // 0
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Factoring out by the torsion part of TV0
/ (T ′

1 )
∗∗

we arrive to the following situation

0

��

0

��
G
µ̃

��

G
µ

��
0 // V ∗

0 ⊗OX
// TV0

//

��

ΩX //

��

0

0 // V ∗
0 ⊗OX

// Q //

��

S //

��

0

0 0

(2.2)

where G is a locally free subsheaf of ΩX and Q is torsion-free. Let L = c1(G) and
E = c1(S). So E is effective nonzero divisor. This divisor is related to E1 in (1.13)
and E′ as follows

E1 = F + c1(S1) = F + E′ = F + c1(Tor
(

TV0
/ (T ′

1 )
∗∗)

) + E (2.3)

In particular, E is a component of E′. We will show that the subspace V0 is locally
supported on E and hence on E′ as asserted in the proposition.
Let e be a global section of OX(E) defining E and consider the short exact sequence

0 // ΘX
e // ΘX(E) // ΘX ⊗OE(E) // 0.

Observe that ΘX(E) = ΩX(−L). Since L = c1(G) = c1((T ′
1 )

∗∗
) +

c1(Tor(TV0
/ (T ′

1 )
∗∗

)) = L1+F +c1(Tor(TV0
/ (T ′

1 )
∗∗

)) we have that L has D-dimension
2. This implies that H0(ΘX(E)) = 0 and the sequence

0 // H0(ΘX ⊗OE(E)) // H1(ΘX)
e // H1(ΘX(E))

is exact (the same argument holds for E′ as well). It remains to check that V0 is

contained in the kernel of H1(ΘX)
e−→ H1(ΘX(E)). This can be seen by taking the

second exterior power of (2.2) and tensoring it with OX(−L)

0

��
OX

�� &&MMMMMMMMMMM

0 // F(−L) // ∧2 TV0
(−L) // OX(E) // 0.

(2.4)

The sheaf F(−L) fits into the following exact sequence

0 // ∧2 V ∗
0 ⊗OX(−L) // F(−L) // V ∗

0 ⊗ ΘX(E) // 0. (2.5)
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From (2.4) we deduce that e ∈ H0(OX(E)) lies in the kernel of the coboundary
morphism

H0(OX(E)) −→ H1(F(−L)).

This morphism and (2.5) give the linear map

H0(OX(E)) −→ V ∗
0 ⊗H1(ΘX(E)) = Hom(V0, H

1(ΘX(E))) (2.6)

which is induced by the obvious cup-product

H0(OX(E)) ⊗H1(ΘX) −→ H1(ΘX(E)).

Since e is mapped to zero in (2.6) we deduce that V0 is contained in ker(H1(ΘX)
e−→

H1(ΘX(E))).

Remark 2.3. From Proposition 2.2 it follows that the inclusion V0 ⊂ H1(ΘX)
factors through H0(ΘX ⊗OE(E)) as follows

V0
_�

��

i

vvmmmmmmmmmmmmmm

0 // H0(ΘX ⊗OE(E)) // H1(ΘX)
e // H1(ΘX(E)).

In fact one can be more precise. First remark that the fact that V0 is annihilated by e
implies that the morphism ΩX(−E) −→ ΩX lifts to TV0

and this lift ΩX(−E) −→ TV0

factors through G in (2.2). This gives the following diagram

0 // ΩX(−E) //

��

G //

��

S′ // 0

ΩX

��

ΩX

��
0 // S′ // ΩX ⊗OE

//

��

S //

��

0

0 0

Dualizing the bottom sequence we obtain

0 // Ext1(S,OX) // ΘX ⊗OE(E) // Ext1(S′,OX) // 0

and the injection V0
i−→ H0(ΘX ⊗OE(E)) factors through H0(Ext1(S,OX))

V0

j

uulllllllllllllll

i

��
0 // H0(Ext1(S,OX)) // H0(ΘX ⊗ OE(E)) // H0(Ext1(S′,OX )) // 0

(2.7)
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Corollary 2.4. Let V1 be as in Proposition 2.2, the subspace of divisorial moduli
of X. Then dimV1 ≤ 1

2 (3c2 −K2).

Proof. From Proposition 2.2 we know that dimV1 ≤ h0(OX(F )). Thus we need
to give an upper bound on the space of sections of the line bundle OX(F ). We may
assume F 6= 0 (otherwise the assertion is obvious since the hypothesis H1(ΘX) 6= 0
implies, by Yau’s result,[21], and a theorem of Calabi-Vesentini,[4], that 3c2−K2 ≥ 4).
Then we know that the linear system | F | has at most finite number of base points.
Blowing-up X along the base locus of | F | we obtain

X̃

σ

��

φ̃

��>
>>

>>
>>

>

Σ
� � // P(H0(OX(F ))∗)

X

φ

??�
�

�
�

where Σ is the image of the rational map φ defined by OX(F ) and σ : X̃ −→ X is
a sequence of blowing-ups. We consider two cases according to the dimension of the
image Σ.
1). dimΣ = 2. In this case we have the following estimate

h0(OX(F )) ≤ 1

2
F 2 + 2. (2.8)

Indeed, if Σ is not a ruled surface then it is well-known that h0(OX(F )) ≤ 1
2degΣ + 2

(see e.g., Lemma 1.4,[2]). This combined with degΣ ≤ F 2

degφ implies h0(OX(F )) ≤
1
2
F 2

degφ + 2 ≤ 1
2F

2 + 2.

If Σ is ruled then we use h0(OX(F )) ≤ degΣ + 2 ≤ F 2

degφ + 2. Since the degree of φ

must be at least 2 we obtain the inequality (2.8) as well.

By Hodge Index F 2 ≤ (F.K)2

K2 . Substituting this into (2.8) and using (1.13) together
with Corollary 1.7 we obtain

dimV1 ≤ h0(OX(F )) < 2(3α− 1)(3c2 −K2) + 2 ≤ 1

4
(3c2 −K2) + 2.

Since 3c2−K2 = 4(9χ(OX)−K2) is divisible by 4 it follows dimV1 ≤ 1
4 (3c2−K2)+1 ≤

1
2 (3c2 −K2), where the last inequality follows from the assumption H1(ΘX) 6= 0.

2). dimΣ = 1. The morphism φ̃ : X −→ Σ factors through the normalization Σ′ of
Σ. Taking the Stein factorization we arrive to the following diagram

X̃
ψ //

φ′

��@
@@

@@
@@

B

f��~~
~~

~~
~~

Σ′

(2.9)

where f is finite and ψ is a surjective morphism with connected fibres. In partic-
ular, the strict transform F̃ of F has the form φ′∗(D) for a divisor D on Σ′ with
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deg(D) = deg(Σ). Putting C̃ to be the class of a smooth fibre of ψ we obtain
F̃ = deg(Σ)deg(f)C̃. This implies that F.K = F̃ .σ∗K = deg(Σ)deg(f)C.K, where
C = σ∗(C̃). From this it follows

dimV1 ≤ h0(OX(F )) ≤ deg(Σ) + 1 =
F.K

deg(f)C.K
+ 1. (2.10)

Combining this with (1.13) and Corollary 1.7 we obtain

dimV1 <
2(3c2 −K2)

deg(f)C.K
+ 1 ≤ 2(3c2 −K2)

C.K
+ 1.

The asserted inequality follows from the following.

Claim. C.K ≥ 4.

Proof of the Claim. The hypothesis α ≤ 3
8 is equivalent to K2 ≥ 96

11χ(OX). In
particular, K2 ≥ 9 with equality holding if χ(OX) = 1. By Yau’s theorem ([21]) such
a surface must be a compact quotient of a unit ball in C2. By a result of Calabi-
Vesentini ([4]) such surfaces are infinitesimally rigid which contradicts our assumption
H1(ΘX) 6= 0. So K2 ≥ 10.
Assume C.K ≤ 3. The Hodge Index and the inequality K2 ≥ 10 imply C2 ≤ 0. Since
C is nef divisor it follows that C2 = 0 and C.K = 2. Furthermore, C2 = 0 implies
that the linear system | F | is base point free. So X = X̃ −→ B in (2.9) is a genus 2
fibration. However, by a result of Xiao (see [18]) such surfaces are subject to α ≥ 1

2 .
Hence C.K ≥ 4.

3. A study of locally supported moduli. Let V0 be as in Proposition 2.2.
Our study of this subspace of H1(ΘX) goes via considerations of the extension TV0

. In
particular, we go back to the diagram (2.2). The divisor E = c1(S) has a stratification
according to the rank of the morphism µ : G −→ ΩX in (2.2). Let Γ be the component
of E where µ vanishes. Then we can decompose the morphism µ as follows

G µ1−→ ΩX(−Γ)
γ−→ ΩX

where µ1 is a morphism which vanishes at most in codimension 2 and Γ = (γ = 0).
This factorization yields the the following diagram

0

��

0

��
0 // G µ1 //

µ

��

ΩX(−Γ) //

γ

��

S2
// 0

ΩX

��

ΩX

��
S //

��

ΩX ⊗OΓ
//

��

0

0 0

(3.1)
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where S2 = coker(µ1). From this diagram we deduce

0 // S2
// S // ΩX ⊗OΓ

// 0. (3.2)

This implies

E = c1(S) = c1(S2) + 2Γ. (3.3)

Dualizing (3.2) we obtain

0 // ΘX ⊗OΓ(Γ) // Ext1(S,OX) // Ext1(S2,OX) // 0.

This together with (2.7) imply

V0
_�

j

��
0 // H0(ΘX ⊗OΓ(Γ)) // H0(Ext1(S,OX)) // H0(Ext1(S2,OX)).

(3.4)

Let V ′′
0 = V0 ∩H0(ΘX ⊗OΓ(Γ)) and let V ′

0 be the image of V0 in H0(Ext1(S2,OX)).
Then we have

dimV0 = dimV ′′
0 + dimV ′

0 ≤ h0(ΘX ⊗OΓ(Γ)) + dimV ′
0 . (3.5)

We will now investigate the spaces V ′
0 and V ′′

0 . An understanding of the latter one
goes via the study of the divisor Γ. We begin by observing the following.

Lemma 3.1. The sheaf OΓ(−L) is generated by global sections outside of a sub-
scheme of dimension 0.

Proof. Restricting the diagram (2.2) to Γ we obtain

G ⊗OΓ

��
0 // V ∗

0 ⊗OΓ
// TV0

⊗OΓ
// ΩX ⊗OΓ

// 0

where the morphism G ⊗ OΓ −→ TV0
⊗ OΓ factors through V ∗

0 ⊗ OΓ. This gives a
monomorphism G ⊗ OΓ −→ V ∗

0 ⊗ OΓ. Taking determinant and dualizing yield the
assertion.

To understand further properties of Γ we let Γ =
∑

mCC be the decomposition
into distinct irreducible components. Put ΛΓ to be the sublattice of NS(X) generated
by the irreducible components C’s.

Lemma 3.2. The intersection pairing restricted to ΛΓ is negative definite.

Proof. Let L = L− + L+ be the Zariski decomposition of L with L+ (resp. L−)
its positive (resp. negative) part. By Corollary 1.7 the positive part L+ 6= 0. From
Lemma 3.1 it follows C.L ≤ 0 for every irreducible component C of Γ. This implies
that either C is in the support of L− and then L+.C = 0, or C is not in the support of
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L− and then C.L± = 0. Thus, we have L+.C = 0 for every irreducible component of
Γ. This implies that the sublattice ΛΓ is orthogonal to L+. By Hodge Index theorem,
the intersection pairing is negative definite on ΛΓ.

This lemma will enable us to show that the contribution of V ′′
0 amounts to count-

ing certain rational curves in Γ.

Lemma 3.3. Assume H0(ΘX ⊗OΓ(Γ)) 6= 0. Then the following holds.
a) There exists a decreasing sequence of components of Γ

Γ ⊃ Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓN−1 ⊃ ΓN

such that h0(ΘX ⊗ OΓ(Γ)) = h0(ΘX ⊗ OΓ0
(Γ0)) > h0(ΘX ⊗ OΓ1

(Γ1)) > · · · >
h0(ΘX ⊗OΓN−1

(ΓN−1)) > h0(ΘX ⊗OΓN (ΓN )) = 0.
b) For each i ∈ {0, . . . , N − 1} there exists a rational curve Ci+1 ⊂ Γi − Γi+1 such
that Ci+1.Γi = −1 or −2.
c) h0(ΘX⊗OΓi(Γi))−h0(ΘX⊗OΓi+1

(Γi+1)) ≤ 3+Ci+1.Γi for every i ∈ {0, . . . , N−1}.
In particular,

h0(ΘX ⊗OΓ(Γ)) ≤ 3N +

N−1
∑

i=0

Ci+1.Γi ≤ 2N.

Proof. Let Γ0 be a smallest component of Γ with the propertyH0(ΘX⊗OΓ(Γ)) =
H0(ΘX ⊗OΓ0

(Γ0)). Choose a reduced irreducible component C1 of Γ0 such that

C1.Γ0 = min{C.Γ0 | C is an irreducible component of Γ0}.
From Lemma 3.2 it follows C1.Γ0 < 0. The definition of Γ0 implies that the restriction
morphismH0(ΘX⊗OΓ0

(Γ0)) −→ H0(ΘX⊗OC1
(Γ0)) is nonzero. Consider the normal

sequence of C1 tensored with OC1
(Γ0)

0 // ΘC1
⊗OC1

(Γ0) // ΘX ⊗OC1
(Γ0) // OC1

(C1 + Γ0).

Since H0(OC1
(C1 +Γ0)) = 0 it follows H0(ΘC1

⊗OC1
(Γ0)) = H0(ΘX⊗OC1

(Γ0)) 6= 0.
This and C1.Γ0 < 0 imply that C1 is rational and C1.Γ0 = −1 or −2. Set Γ′

0 = Γ0−C1.
From the exact sequence

0 // ΘX ⊗OΓ′

0
(Γ′

0) // ΘX ⊗OΓ0
(Γ0) // ΘX ⊗OC1

(Γ0) // 0

we deduce h0(ΘX ⊗OΓ0
(Γ0))−h0(ΘX ⊗OΓ′

0
(Γ′

0)) ≤ h0(ΘX ⊗OC1
(Γ0)) ≤ 3+C1.Γ0.

If h0(ΘX ⊗ OΓ′

0
(Γ′

0)) = 0, then we set Γ1 = Γ′
0 and the sequence Γ0 ⊃ Γ1 has the

required properties. If h0(ΘX ⊗ OΓ′

0
(Γ′

0)) 6= 0, then we repeat the above argument
with Γ′

0 in place of Γ. This will define Γ1 and C2. The process will terminate after a
finite number of steps yielding a decreasing sequence Γ ⊃ Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓN−1 ⊃ ΓN
with the asserted properties. In particular, summing up all the inequalities in c) of
the lemma we obtain

h0(ΘX ⊗OΓ(Γ)) ≤ 3N +
N−1
∑

i=0

Ci+1.Γi ≤ 2N.
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Remark 3.4. Dualizing the bottom sequence in (2.2) we obtain the morphism

V0 ⊗OX −→ Ext1(S,OX)

which is surjective outside a subscheme of dimension 0. This combined with the proof
of Lemma 3.3 implies that c1(S2) in (3.3) is nonzero and the morphism V0 ⊗OX −→
Ext1(S2,OX) is surjective outside a subscheme of dimension 0. Hence, the space V ′

0

in (3.5) is nonzero.

Next we turn to a study of V ′
0 . From the short exact sequence on the top of (3.1)

it follows that V ′
0 injects into the kernel of H1(ΘX(Γ)) −→ H1(G∗). This implies

that the morphism µ1 in (3.1) lifts to the extension of ΩX(−Γ) corresponding to V ′
0

(viewed as a subspace of H1(ΘX(Γ))), i.e. we have the following diagram

G
µ̃1

��

G
µ1

��
0 // (V ′

0)
∗ ⊗OX

// TV ′

0
// ΩX(−Γ) // 0.

Factoring out by the torsion of the quotient TV ′

0
/G we obtain the diagram

0

��

0

��
G1

η̃

��

G1

η

��
0 // (V ′

0)
∗ ⊗OX

// TV ′

0
//

��

ΩX(−Γ) //

��

0

0 // (V ′
0)

∗ ⊗OX
// Q2

//

��

P //

��

0

0 0

(3.6)

analogous to the one in (2.2). As before the morphism η : G1 −→ ΩX(−Γ) is gener-
ically an isomorphism. But this time it vanishes at most in codimension 2. This
implies that the sheaf P has rank 1 outside of a subscheme of dimension 0 on the
support of P . Set E2 = c1(P) and L′

1 = c1(G1). Since the extension TV ′

0
is nontrivial

it follows that E2 is an effective nonzero divisor. By definition of G1 its first Chern
class L′

1 = c1(G) + c1(Tor
(

TV ′

0
/G
)

) = L + c1(Tor
(

TV ′

0
/G
)

). We have seen that L is
a divisor of D-dimension 2. So the same holds for L′

1. Furthermore, dualizing the
bottom sequence in (3.6) we obtain

dimV ′
0 ≤ h0(Ext1(P ,OX)). (3.7)

To obtain the upper bound on the dimension of V ′
0 we compare the extension TV ′

0

with a one-dimensional extension.
Fix a nonzero vector ξ in V ′

0 . Viewing it as a cohomology class in H1(ΘX(Γ))
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(recall: we identify V ′
0 with its image in H1(ΘX(Γ))) we consider the extension cor-

responding to ξ

0 // OX
// Tξ // ΩX(−Γ) // 0.

This extension and TV ′

0
are related by the following diagram

0

��

0

��
(V ′

0/〈ξ〉)∗ ⊗OX

��

(V ′
0/〈ξ〉)∗ ⊗OX

��
0 // (V ′

0)∗ ⊗OX
//

��

TV ′

0
//

��

ΩX(−Γ) // 0

0 // OX
//

��

Tξ //

��

ΩX(−Γ) // 0

0 0

(3.8)

where 〈ξ〉 is the one-dimensional subspace of H1(ΘX(Γ)) spanned by ξ. Combining
this with the middle column in (3.6) we obtain

0

��

0

��
G1

η̃

��

G1

η̃ξ

��
0 // (V ′

0/〈ξ〉)∗ ⊗OX
// TV ′

0
//

��

Tξ //

��

0

0 // (V ′
0/〈ξ〉)∗ ⊗OX

// Q2
//

��

Qξ //

��

0

0 0

(3.9)

where Qξ is the cokernel of η̃ξ.

Lemma 3.5. For a general ξ in V ′
0 the sheaf Qξ is torsion-free.

Proof. It is enough to show that the morphism η̃ξ in (3.9) drops its rank at most
at finite set of points. Observe that η̃ξ drops its rank where
(i) η̃ drops its rank
and where
(ii) Im(η̃) intersects nontrivially the subbundle (V ′

0/〈ξ〉)∗ ⊗OX .
The set of points in (i) is finite since Q2 = coker(η̃) is torsion-free. Turning to
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the points in (ii) we use the fact that η |E2
: G1 ⊗OE2

−→ ΩX(−Γ) ⊗ OE2
drops its

rank precisely by 1 outside of a finite set of points. Then the kernel of η |E2
gives rise

to a one-dimensional subscheme in P(V ′ ∗
0 ) and the points in (ii) are the points of the

intersection of the hyperplane P((V ′
0/〈ξ〉)∗) with this one dimensional subscheme. It

is clear that this intersection is finite for a general choice of ξ.

We are now in the position to give an upper bound on the dimension of V ′
0 . From

Lemma 3.5 it follows that Qξ has the form IZξ(E2), where IZξ is the sheaf of ideals
of some 0-dimensional subscheme Zξ. The right-hand column in (3.9) combined with
the defining sequence of Tξ gives the following diagram

0

��

0

��
G1

η̃ξ

��

G1

η

��
0 // OX

// Tξ

��

// ΩX(−Γ)

��

// 0

0 // OX
// IZξ(E2)

��

// P

��

// 0

0 0

(3.10)

Dualizing the bottom sequence we have

0 // OX(−E2) // OX
// Ext1(P ,OX) // Ext1(IZξ(E2),OX) // 0.

This implies h0(Ext1(P ,OX)) ≤ h0(OE2
) + h0(Ext1(IZξ (E2),OX)) = h0(OE2

) +

χ(Ext1(IZξ (E2),OX)). Substituting into (3.7) we obtain

dimV ′
0 ≤ h0(OE2

) + χ(Ext1(IZξ (E2),OX)). (3.11)

Proposition 3.6. Let E′
2 = E2 + 2Γ. Then the following inequality holds:

dimV ′
0 ≤ 1

3
(3c2 −K2) +

1

6

(

K.E′
2 + (E′

2)
2
)

− Γ2.

Proof. The asserted inequality is obtained by bounding two terms in (3.11). We
begin by estimating the second term. Dualizing the column in the middle of (3.10)
we obtain

χ(Ext1(IZξ(E2),OX)) = χ(G∗
1 ) − χ(T ∗

ξ ) + χ(OX(−E2)).

Applying the Riemann-Roch to the right-hand side yields

χ(Ext1(IZξ (E2),OX)) =
1

2
(L′

1)
2 − c2(G1) +

1

2
E2

2 − 1

2
(K − 2Γ)2 + (c2 −K.Γ + Γ2)

=
1

2
(L′

1)
2 − c2(G1) +

1

2
E2

2 − 1

2
K2 + c2 +K.Γ − Γ2. (3.12)
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By Miyaoka c2(G1) ≥ 1
3 (L′

1)
2

(Remark 4.18,[12]). Substituting in (3.12) we obtain

χ(Ext1(IZξ (E2),OX)) ≤ 1

6
(L′

1)
2

+
1

2
E2

2 − 1

2
K2 + c2 +K.Γ − Γ2

=
1

6
(K − 2Γ − E2)

2
+

1

2
E2

2 − 1

2
K2 + c2 +K.Γ − Γ2

=
1

3
(3c2 −K2) − 1

3
K.E′

2 +
1

6
(E′

2)
2 +

1

2
E2

2 +K.Γ − Γ2

where E′
2 = E2 + 2Γ. This together with (3.11) imply

dimV ′
0 ≤ h0(OE2

) +
1

3
(3c2 −K2) − 1

3
K.E′

2 +
1

6
(E′

2)
2 +

1

2
E2

2 +K.Γ − Γ2. (3.13)

To bound the first term in in the above inequality we use the following.

Lemma 3.7. Let X be a smooth minimal surface of general type. Assume KX =
D + D′, where D is effective and D′ has the Zariski decomposition whose positive

part is nonzero. Then h0(OD) ≤ K.D − D2

2
.

Let us assume this result and complete the proof of the proposition.
From the middle column of (3.10) it follows K − 2Γ = L′

1 + E2. This gives the
decomposition K = E2 + (L′

1 + 2Γ) which satisfies the hypothesis of Lemma 3.7. So
we deduce h0(OE2

) ≤ 1
2 (K.E2 − E2

2). Substituting in (3.13) gives

dimV ′
0 ≤ 1

3
(3c2 −K2) − 1

3
K.E′

2 +
1

2
K.E2 +K.Γ +

1

6
(E′

2)
2 − Γ2

=
1

3
(3c2 −K2) +

1

6
K.E′

2 +
1

6
(E′

2)
2 − Γ2

which is the inequality asserted in the proposition. We turn now to a proof of Lemma
3.7.

Proof of Lemma 3.7. We may assumeD 6= 0 (otherwise there is nothing to prove).
If D is nef and big then by Ramanujam’s vanishing theorem (Theorem 8.1, IV, [1])
h0(OD) = 1. On the other hand K.D − D2 = D.D′. Writing D′ = P ′ + N ′, the
Zariski decomposition of D′, where P ′ (resp. N ′) is its positive (resp. negative) part,
we have D.P ′ > 0 (since P ′ 6= 0 and D is nef and big). So we have D.D′ > 0. Since

K.D −D2 = D.D′ is even we obtain
K.D −D2

2
≥ 1 = h0(OD).

If D is nef and D2 = 0, then one has the following decomposition D =
∑N

i=1Di

where Di.Dj = 0, for every i, j and h0(ODi) = 1, for every i. In particular,

h0(OD) ≤ N ≤ 1

2

N
∑

i=1

Di.K =
1

2
K.D.

The general case can be reduced to the case of a nef divisor as follows. By Riemann-
Roch for OD we have :

h0(OD) − h1(OD) = −K.D + D2

2
. (3.14)

By Serre duality h1(OD) = h0(OD(D +KX)). Set D = D0 and let C0 be a reduced,
irreducible component of D0 for which D0.C0 < 0. Put D1 = D0 − C0 and consider
the exact sequence

0 −→ OD1
(D1 +KX) −→ OD0

(D0 +KX) −→ OC0
(D0 +KX) −→ 0.
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From the cohomology sequence we deduce

h0(OD0
(D0 +KX)) − h0(OD1

(D1 +KX)) ≤ h0(OC0
(D0 +KX)) ≤ K.C0. (3.15)

Repeating the above procedure a finite number of times we obtain the decomposition
D = Dn +

∑n−1
i=0 Ci, where Dn is a nef divisor. Summing up the inequalities of type

(3.15) we obtain

h0(OD(D +KX)) − h0(ODn(Dn +KX)) ≤
n−1
∑

i=0

K.Ci. (3.16)

From the Riemann-Roch applied to Dn we have

h0(ODn(Dn +KX)) = h0(ODn) +
K.Dn +Dn

2

2

Substituting this in (3.16) we obtain

h1(OD) = h0(OD(D +KX)) ≤ h0(ODn) +
K.Dn +Dn

2

2
+

n−1
∑

i=0

K.Ci.

This and (3.14) imply

h0(OD) ≤ h0(ODn) +
K.Dn +Dn

2

2
+

n−1
∑

i=0

K.Ci −
K.D +D2

2

= h0(ODn) +
1

2

n−1
∑

i=0

K.Ci +
Dn

2 −D2

2
(3.17)

If Dn
2 = 0, then by the first part of the argument h0(ODn) ≤ 1

2K.Dn. Substituting
this in (3.17) we obtain the assertion.
If Dn

2 > 0, then h0(ODn) = 1 and (3.17) imply

h0(OD) ≤ 1 +
1

2

n−1
∑

i=0

K.Ci +
Dn

2 −D2

2
.

Since Dn
2 ≤ Dn.D = Dn.(K −D′) = Dn.K −Dn.D

′ we obtain

h0(OD) ≤ 1 +
1

2
(K.D −D2) − 1

2
Dn.D

′.

Using the Zariski decomposition of D′ = P ′ +N ′ we have Dn.D
′ = Dn.P

′ +Dn.N
′ ≥

Dn.P
′ > 0. So Dn.D

′ ≥ 1 and we have

h0(OD) ≤ 1

2
(K.D −D2) +

1

2
.

Since 1
2 (K.D −D2) is an integer it follows h0(OD) ≤ 1

2 (K.D −D2).

Corollary 3.8. Let V ′
0 be as in Proposition 3.6 then

dimV ′
0 <











2α(3c2 −K2) − Γ2 − 1
6

(

1 + 2
K.E′

2

K2 + K.F
K2

)

K.F, if r1 = 3

3c2 −K2 − Γ2, if r1 = 2
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where F is as in Proposition 2.2, Γ and E′
2 are as in Proposition 3.6

Proof. If r1 = 3, then from (1.13), (3.3) and the definition of E′
2 in Proposition

3.6 it follows

K.E′
2 ≤ K.E1 −K.F.

This and the Hodge index imply

(E′
2)

2 ≤ (K.E1 −K.F )2

K2
=

(K.E1)
2

K2
− 2

K.E1

K2
K.F +

(K.F )2

K2
.

Substituting the two inequalities above in the inequality of Proposition 3.6 we obtain

dimV
′
0 ≤

1

3
(3c2 − K

2) +
1

6

�
K.E1 +

(K.E1)
2

K2

�
−

1

6

�
K.F + 2

K.E1

K2
K.F −

(K.F )2

K2

�
− Γ2

≤
1

3
(3c2 − K

2) +
1

6

�
K.E1 +

(K.E1)
2

K2

�
−

1

6

�
1 + 2

K.E
′
2

K2
+

K.F

K2

�
K.F − Γ2 (3.18)

This and the bound on K.E1 in Corollary 1.7 imply

dimV
′
0 <

1

3
(3c2 − K

2) +
1

3
(1 + 2(3α − 1))(3c2 − K

2) −
1

6

�
1 + 2

K.E
′
2

K2
+

K.F

K2

�
K.F − Γ2

= 2α(3c2 − K
2) −

1

6

�
1 + 2

K.E
′
2

K2
+

K.F

K2

�
K.F − Γ2 (3.19)

If r1 = 2, then we use the inequality (1.16) with E1 replaced by E′
2. This yields

K.E′
2 + (E′

2)
2 < 4(3c2 −K2).

Substituting into the inequality in Proposition 3.6 we obtain the assertion.

Corollary 3.9. Let V0 be as in Proposition 2.2, the subspace of the locally
supported moduli of X. Then

dimV0 <











2α(3c2 −K2) − Γ2 + 2N − 1
6

(

1 + 2
K.E′

2

K2 + K.F
K2

)

K.F, if r1 = 3

3c2 −K2 − Γ2 + 2N, if r1 = 2

where Γ and N are as in Lemma 3.3, F and E′
2 are as in Corollary 3.8.

Proof. The inequalities of Corollary 3.8 and the last inequality in Lemma 3.3,c)
substituted in (3.5) yield the assertion.

Combining the result of Corollary 3.9 with our analysis of the divisorial moduli
of X in the proof of Corollary 2.4 will yield a bound on the dimension of the space of
infinitesimal deformations of X .

Corollary 3.10. Let α ≤ 3
8 and h1(ΘX) > 2 and let Γ and N be as in Lemma

3.3. Then

h1(ΘX) ≤ 3c2 −K2 − Γ2 + 2N.
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Proof. If r1 = 3, then combining Proposition 2.2 with Corollary 3.9 we obtain

h1(ΘX) < 2α(3c2 −K2)− Γ2 + 2N − 1

6

(

1 + 2
K.E′

2

K2
+
K.F

K2

)

K.F + dimV1. (3.20)

If F = 0, then dimV1 = 1 and we obtain

h1(ΘX) < 2α(3c2 −K2) − Γ2 + 2N + 1.

Combining this with α ≤ 3
8 we obtain the asserted inequality.

If F 6= 0, we argue as in the proof of Corollary 2.4.

1). The linear system | F | is not composed of a pencil. Then (2.8) im-
plies

dimV1 ≤ 1

2
F 2 + 2 ≤ 1

2

(K.F )2

K2
+ 2.

Substituting the last expression above in (3.20) yields

h1(ΘX) < 2α(3c2 −K2) − Γ2 + 2N − 1

6

(

1 + 2
K.E′

2

K2
+
K.F

K2

)

K.F +
1

2

(K.F )2

K2
+ 2

= 2α(3c2 −K2) − Γ2 + 2N + 2 +
1

6

(

2
K.F

K2
− 1 − 2

K.E′
2

K2

)

K.F

≤ 2α(3c2 −K2) − Γ2 + 2N + 2 +
1

6

(

2
K.E1

K2
− 1 − 4

K.E′
2

K2

)

K.F. (3.21)

Using the upper bound for K.E1

K2 from Corollary 1.7 we obtain

h1(ΘX) < 2α(3c2 −K2) − Γ2 + 2N + 2 +
1

6

(

12α− 5 − 4
K.E′

2

K2

)

K.F. (3.22)

This combined with α ≤ 3
8 gives

h1(ΘX) <
3

4
(3c2 −K2) − Γ2 + 2N + 2 − 1

6

(

1

2
+ 4

K.E′
2

K2

)

K.F

which implies h1(ΘX) ≤ 3c2 −K2 − Γ2 + 2N as asserted.

2). The linear system | F | is composed of a pencil. Then (2.10) together
with Claim in the proof of Corollary 2.4 imply dimV1 ≤ 1

4K.F + 1. Substituting in
(3.20) we obtain

h
1(ΘX) < 2α(3c2 − K

2) − Γ2 + 2N + 1 +
1

12
K.F −

�
2
K.E

′
2

K2
+

K.F

K2

�
K.F

= 2α(3c2 − K
2) − Γ2 + 2N + 1 +

1

12
K.E1 −

1

12
K.E

′
2 −

�
2
K.E

′
2

K2
+

K.F

K2

�
K.F

< (2α +
1

6
)(3c2 − K

2) − Γ2 + 2N + 1 −
1

12
K.E

′
2 −

�
2
K.E

′
2

K2
+

K.F

K2

�
K.F

≤
11

12
(3c2 − K

2) − Γ2 + 2N + 1 −
1

12
K.E

′
2 −

�
2
K.E

′
2

K2
+

K.F

K2

�
K.F. (3.23)
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From this one immediately deduces the inequality h1(ΘX) ≤ 3c2 −K2 − Γ2 + 2N .
If r1 = 2, then X has locally supported moduli only, i.e. H1(ΘX) = V0. This

together with the second inequality of Corollary 3.9 imply h1(ΘX) < 3c2−K2−Γ2 +
2N .

Remark 3.11. One can give a straightforward upper bound on −Γ2 in terms of
geometry of the irreducible components of Γ: write the decomposition Γ =

∑

imiCi
into reduced irreducible components Ci. The adjunction formula applied to the compo-
nent Ci gives K.Ci+C2

i ≥ 2gi−2, where gi = g(C̃i) is the genus of the normalization
C̃i of Ci. This together with

−Γ2 = −
∑

i

m2
iC

2
i −

∑

i6=j
mimjCi.Cj

yield

−Γ2 ≤
∑

i

m2
iK.Ci −

∑

i

m2
i (2gi − 2) −

∑

i6=j
mimjCi.Cj . (3.24)

The divisor 2Γ is a component of E1 in Corollary 1.7. This implies that K.Γ <
c(3c2 − K2), where c = 1, if r1 = 3 and c = 2,if r1 = 2. From this we obtain
miK.Ci < c(3c2 −K2) −∑j 6=imjK.Cj. Substituting into (3.24) we obtain

−Γ2 < c

(

∑

i

mi

)

(3c2 −K2) −
∑

i

m2
i (2gi − 2) −

∑

i6=j
mimjCi.Cj −

∑

i6=j
mimjK.Cj .

This implies

−Γ2 < c

(

∑

i

mi

)

(3c2 −K2) + 2
∑

i

◦
m2
i

where the second sum is taken over all rational components of Γ. In the next section
we will derive an upper bound on −Γ2 using the technique of extension construction.

4. More on locally supported moduli. In this section we consider more
closely a one-dimensional extension corresponding to an element in V0 \ V ′′

0 (see (3.5)
for notation).

Fix a cohomology class ξ in V0 \ V ′′
0 ⊂ H1(ΘX) and consider the corresponding

extension

0 // OX
// Tξ // ΩX // 0.
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This one-dimensional extension is related to the extension TV0
in (2.2) by a diagram

analogous to the one in (3.8)

0

��

0

��
(V0/〈ξ〉)∗ ⊗OX

��

(V0/〈ξ〉)∗ ⊗OX

��
0 // (V0)

∗ ⊗OX
//

��

TV0
//

��

ΩX // 0

0 // OX
//

��

Tξ //

��

ΩX // 0

0 0

where 〈ξ〉 is the one-dimensional subspace of H1(ΘX) spanned by ξ. The morphism
µ̃ : G −→ TV0

in (2.2) composed with the morphism TV0
−→ Tξ in the above diagram

yields the following

G
µ̃ξ

��

G
µ

��
0 // OX

// Tξ // ΩX // 0.

Factoring out by the torsion of the coker(µ̃ξ) we obtain the following

0

��

0

��
Fξ
ν̃ξ

��

Fξ
νξ

��
0 // OX

// Tξ

��

// ΩX

��

// 0

0 // OX
// IZξ(Dξ)

��

// Sξ //

��

0

0 0

(4.1)

where Fξ is locally free, IZξ is the sheaf of ideals of some 0-dimensional subscheme
Zξ on X and Dξ is a nonzero effective divisor.

Remark 4.1. By an argument analogous to the one in the proof of Lemma 3.5
we obtain that for a general choice of ξ ∈ V0 \ V ′′

0 the divisor Dξ = Γ +E2, where the
components Γ and E2 are as in (3.10) while c1(Tor(coker(µ̃ξ))) = Γ. In particular,
this implies

L = c1(G) = K −Dξ − Γ = K − E2 − 2Γ. (4.2)
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We will now consider the properties of the divisor Dξ. For this we take the second
exterior power of (4.1)

0

��
OX(K −Dξ)

det ν̃ξ

��

det νξ

&&NNNNNNNNNNN

0 // ΩX // ∧2 Tξ

��

// OX(K) // 0

IZξ(Dξ) ⊗Fξ

The divisor Dξ is the subscheme where det νξ vanishes. This implies that the re-
striction of det ν̃ξ to any reduced irreducible component C of Dξ factors through
ΩX ⊗ OC , i.e. we obtain a nonzero morphism OC(K −Dξ) −→ ΩX ⊗ OC . Tensor-
ing with OX(−K) gives a nonzero morphism sC : OC(−Dξ) −→ ΘX ⊗ OC and its
zero-locus is ZCξ = Zξ ∩ C.

Remark 4.2. The above considerations can be applied to any component D of
Dξ. This gives a nonzero morphism

sD : OD(−Dξ) −→ ΘX ⊗OD.

To understand properties of the morphism sC we combine it with the normal
sequence for C ⊂ X :

0

��
ΘC

��
0 // OC(−Dξ)

sC //

φC &&MMMMMMMMMM
ΘX ⊗OC

��
OC(C)

(4.3)

We distinguish two types of irreducible components in Dξ according to whether the
morphism φC in (4.3) is zero or not.

Type I. φC 6= 0. Then the zero-locus ZCξ of sC is contained in the zero-locus of φC .
This implies

degZCξ ≤ C2 + C.Dξ. (4.4)

Type II. φC = 0. Then sC factors through ΘC . Let ηC : C̃ −→ C be the normalization
of C. Then we have the following exact sequence of sheaves on C̃:



GEOGRAPHY AND THE NUMBER OF MODULI 433

0

��
ΘC̃

dηC

��
0 // η∗COC(−Dξ) ⊗ OC̃(η∗CZ

C
ξ ) // η∗CΘX // η∗COC(−K +Dξ) ⊗ OC̃(−η∗CZCξ ) // 0

(4.5)

We claim that the injective morphism in the horizontal sequence of (4.5)
factors through ΘC̃ . Indeed, the normalization morphism gives ηC∗ : OC −→
ηC∗OC̃ . Tensoring it with ΘX and combining with the differential of ηC gives
the following

0 // ΘC

ψ

���
�
�

// ΘX ⊗OC

��
0 // ηC∗ΘC̃

// ΘX ⊗ ηC∗OC̃

where the induced morphism ΘC −→ ΘX ⊗ ηC∗OC̃ factors through ηC∗ΘC̃

(see Theorem 11.9,[5]) as indicated in the above diagram. The natural
isomorphism HomOC (ΘC , ηC∗ΘC̃) = HomOC̃ (η∗CΘC ,ΘC̃) implies that the
morphism η∗CΘC −→ η∗CΘX factors through ΘC̃ . On the other hand
η∗C(sC) : η∗COC(−Dξ) −→ η∗CΘX factors through η∗CΘC . So we deduce that
η∗C(sC) factors through ΘC̃ as claimed. Thus the diagram (4.5) has the fol-
lowing form

0

��
η∗CΘC

η∗ψ //_______ ΘC̃

dηC

��
0 // η∗COC(−Dξ) ⊗ OC̃(η∗CZ

C
ξ )

OO�
�

�

j̃

66mmmmmmmmmmmmmm
j // η∗CΘX // η∗COC(−K +Dξ) ⊗ OC̃(−η∗CZCξ ) // 0

(4.6)

Since cokernel of j in the above diagram is locally free it follows that j̃ is an
isomorphism as well as all the oblique arrows in (4.6). This implies

degZCξ ≤ deg
(

η∗C(ZCξ )
)

= C.Dξ − (2gC̃ − 2) (4.7)

where gC̃ is the genus of the normalization of C.

Remark 4.3. The fact that j̃ is an isomorphism and j is injective implies that
the differential dηC in (4.6) is of maximal rank everywhere, i.e. the morphism ηC :
C̃ −→ C ⊂ X is an immersion.

Let us decompose the divisor Dξ as follows

Dξ = D′
ξ +D′′

ξ (4.8)
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whereD′
ξ (resp. D′′

ξ ) is the part ofDξ composed of the reduced irreducible components

of type I (resp. type II). We will be concerned with the part D′′
ξ . Let

(

D′′
ξ

)

red
be the

reduced part of D′′
ξ .

Lemma 4.4. The singular locus of
(

D′′
ξ

)

red
is contained in Zξ ∩D′′

ξ .

Proof. The morphism O(D′′

ξ )red

(−Dξ) −→ Θ(D′′

ξ )red

induced by the morphism

s(D′′

ξ )red

is an isomorphism away from Zξ ∩ D′′
ξ . This implies that Θ(D′′

ξ )red
, p is a

locally free O(D′′

ξ )red
, p-module for any p ∈

(

D′′
ξ

)

red
\ Zξ. By a result of Lipman,[11],

this implies that p is a smooth point of
(

D′′
ξ

)

red
.

Lemma 4.5. Let C be a reduced irreducible curve in X such that C.Dξ < 0. Then
C is a smooth rational curve with C.Dξ = −2 or −1.

Proof. The assumption C.Dξ < 0 implies that C is a component of Dξ with C2 <
0. This implies that C is of type II. From (4.7) and C.Dξ < 0 it follows that gC̃ = 0
and C.Dξ = −1 or −2. This yields that deg(η∗C(ZC)) ≤ 1. So ZC must be contained
in the smooth locus of C and sC induces an isomorphism OC(ZC−Dξ) ∼= ΘC . Hence
ΘC is locally free. Again Lipman’s result in [11] gives the smoothness of C.

The above lemma implies the following.

Proposition 4.6. If X has no smooth rational curves then the divisor Dξ is nef.

Remark 4.7. If the subspace V ′′
0 6= 0 and we take the extension Tξ corresponding

to a nonzero ξ ∈ V ′′
0 , then the divisor Dξ is a component of Γ (see (3.2) for notation)

and we will denote it by Γξ. The results of Lemma 4.5 and Lemma 3.2 imply that
the irreducible curves intersecting Γξ negatively are smooth rational curves having
intersection -1 or -2 with Γξ. In particular, if X has no smooth rational curves then
V ′′

0 = 0 and V0 = V ′
0 . This combined with Corollary 3.8 yields

dimV0 <











2α(3c2 −K2) − Γ2 − 1
6

(

1 + 2
K.E′

2

K2 + K.F
K2

)

K.F, if r1 = 3

3c2 −K2 − Γ2, if r1 = 2

.

We will now apply the above considerations to obtain an upper bound for (−Γ2)
in the inequality of Corollary 3.10 (compare with Remark 3.11).

First we recall that by Remark 4.1 the divisorDξ = Γ+E2 for a general ξ ∈ V0\V ′′
0 .

Let N2 be the number of rational curves (counted with their multiplicities) subject
to Lemma 4.5 and contained in E2. Then we have the following bound on −Γ2.

Lemma 4.8. Let Γ, E2 and N2 be as above. Then the following inequality holds.

−Γ2 ≤ (Γ + E2)
2 −K.Γ + 2N2.
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Proof. From Lemma 4.5 it follows Dξ.E2 = (Γ + E2).E2 ≥ −2N2. From (4.2)
and Lemma 3.1 we obtain that (2Γ + E2).Γ ≥ K.Γ. Taking the sum of these two
inequalities we obtain

Γ2 + (Γ +E2)
2 ≥ K.Γ − 2N2.

Hence the assertion of the lemma.

Corollary 4.9. Let X, Γ, N be as in Corollary 3.10 and let E2, N2 be as in
Lemma 4.8 then the following holds.

h1(ΘX) ≤







3
2 (3c2 −K2) + 2(N +N2), if r1 = 3

5(3c2 −K2) + 2(N +N2) −K.E1 −K.Γ, if r1 = 2
.

Proof. By Hodge index (Γ +E2)
2 ≤ ((Γ + E2).K)2

K2
. Using the fact that Γ + E2

is a component of E1 in Corollary 1.7 and arguing as in the beginning of the proof of
Corollary 3.8 we have

(Γ + E2)
2 ≤ ((Γ + E2).K)2

K2
≤ (K.E1 −K.(F + Γ))2

K2

≤ (K.E1)
2

K2
− 2

K.(Γ + E2)

K2
K.(F + Γ) − (K.(Γ + F ))2

K2
.

Substituting this in the inequality of Lemma 4.8 we obtain

−Γ2 ≤ (K.E1)
2

K2
− 2

K.(Γ + E2)

K2
K.(F + Γ) − (K.(Γ + F ))2

K2
−K.Γ + 2N2. (4.9)

If r1 = 3 then substituting (4.9) in (3.20) and treating the cases according to the
properties of the linear system | F | as it is done in the proof of Corollary 3.10 we
obtain

h1(ΘX) <























(14α− 4)(3c2 −K2) + 2(N +N2) + 1, if F=0,
(14α− 4)(3c2 −K2) + 2(N +N2), if | F | is not composed

of a pencil,
(14α− 4 + 1

6 )(3c2 −K2) + 2(N +N2) + 1, if | F | is composed of
a pencil.

(4.10)

This together with α ≤ 3
8 give h1(ΘX) ≤ 5

4
(3c2 −K2) + 2(N +N2) in the first two

cases and h1(ΘX) <
17

12
(3c2 −K2) + 2(N +N2) + 1 in the last case. These two in-

equalities clearly imply

h1(ΘX) ≤ 3

2
(3c2 −K2) + 2(N +N2).

If r1 = 2 then we use (1.16) to obtain

(Γ + E2)
2 < 4(3c2 −K2) −K.E1.
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This combined with Lemma 4.8 yields

−Γ2 < 4(3c2 −K2) + 2N2 −K.E1 −K.Γ.

Substituting this in the inequality of Corollary 3.10 we obtain

h1(ΘX) < 5(3c2 −K2) + 2(N +N2) −K.E1 −K.Γ.

Corollary 4.10. 1) If the canonical divisor K of X in Corollary 4.9 is ample
then

h1(ΘX) ≤







21
4 (3c2 −K2), if r1 = 3

9(3c2 −K2) − 3K.Γ, if r1 = 2
.

In particular, h1(ΘX) ≤ 9(3c2 −K2).
2) If X in Corollary 4.9 does not contain smooth rational curves then

h1(ΘX) ≤







3
2 (3c2 −K2), if r1 = 3

5(3c2 −K2) −K.E1 −K.Γ, if r1 = 2
.

In particular, h1(ΘX) ≤ 5(3c2 −K2).

Proof. The ampleness of K implies

N +N2 ≤ K.(Γ + E2) ≤ K.E1 −K.(Γ + F ). (4.11)

If r1 = 3 then by Corollary 1.7 N + N2 < 2(3c2 − K2) − K.(Γ + F ). Treating the
cases according the properties of the linear system | F | as it is done in the proof of
Corollary 3.10 we obtain

h1(ΘX) <























14α(3c2 −K2) + 1 − 2K.Γ, if F=0,
14α(3c2 −K2) − 2K.(Γ + F ), if | F | is not composed of a

pencil,
14α(3c2 −K2) + 1 − 23

12K.F − 2K.Γ, if | F | is composed of a
pencil.

(4.12)
This combined with α ≤ 3

8 implies h1(ΘX) ≤ 21
4 (3c2 −K2).

If r1 = 2 then combining (4.11) with the inequality of Corollary 4.9 we obtain

h1(ΘX) < 5(3c2 −K2) +K.E1 − 3K.Γ.

Using the bound on K.E1 in Corollary 1.7 we deduce

h1(ΘX) < 9(3c2 −K2) − 3K.Γ.

The second part of the corollary follows from Corollary 4.9 and the fact N = N2 = 0
which is guarantied by Remark 4.7 and the absence of smooth rational curves on X .
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We close this section by observing that the upper bound for h1(ΘX), as a linear
function of (3c2 −K2), can not be improved since for every rational α in the interval
]13 ,

1
2 [ we have examples of surfaces with Chern numbers c2, K

2 whose ratio is equal
to α and having h1(ΘX) = c(3c2 −K2), for some universal constant c.

Example 4.11. The following construction is due to Sommese (see [17]).

Let X be a smooth minimal surface of general type with α =
c2
K2

=
1

3
and a mor-

phism π : X −→ C onto a smooth curve C of genus gC ≥ 1 (such surfaces were
constructed by Hirzebruch, Inoue, Livné; see [9]).

Take n sheeted unramified cover τ : Cn −→ C with Cn connected (this can be done
for any n ≥ 1, since gC ≥ 1) follow it by a 2 sheeted branched cover σ : Cm,n −→ Cn
having 2m branch points (this can be done for any m ≥ 1). Taking the fibre products
we obtain

Xm,n

π′′

��

σ̃ // Xn

π′

��

τ̃ // X

π

��
Cm,n

σ // Cn
τ // C

where Xn is n sheeted unramified cover of X and Xm,n is a double cover of Xn

branched along 2m fibres of π′ which lie over the branch points of σ. Choosing the
branch points of σ away from the critical values of π′ we obtain Xm,n smooth and
minimal. The Chern invariants of Xm,n are as follows:

K2
Xm,n = 2nK2

X + 8m(g − 1), c2(Xm,n) = 2nc2(X) + 4m(g − 1)

where g is the genus of a smooth fibre of π. This implies 3c2(Xm,n) − K2
Xm,n

=

4m(g − 1) while h1(ΘXm,n) = 2m, i.e. we obtain surfaces X subject to the following

h1(ΘX) =
1

2(g − 1)
(3c2 −K2).

Furthermore, as Sommese shows in [17], for any rational α in the interval ] 13 ,
1
2 [

an appropriate choice of m and n in the above construction gives a surface Xm,n with
αXm,n = α.

5. Surfaces with small values of 3c2−K2. In this section we consider surfaces
subject to the following conditions:

1) α <
1

2

2) h1(ΘX) ≥ 2 (5.1)

3) 3c2 −K2 ≤ 1

2

√
K2.

The last numerical assumption arises naturally in view of the inequality in Corollary
1.7 since combined with the Hodge Index it implies that the intersection pairing is
negative semidefinite on the sublattice of NS(X) spanned by the irreducible compo-
nents of the divisor E1 (see Corollary 1.7 for notation). This, as we will see shortly,
imposes strong restrictions on the geometry of E1 as well as on X .
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First we check that the inequality 3c2 −K2 ≤ 1
2

√
K2 insures that α ≤ 3

8 . Indeed,

if α > 3
8 then 1

2

√
K2 ≥ 3c2 −K2 > 1

8K
2 implying K2 < 16. On the other hand the

condition H1(ΘX) 6= 0 yields 3c2−K2 ≥ 4. This and 3) of (5.1) give K2 ≥ 64. Hence
we must have α ≤ 3

8 .

From the condition 3c2−K2 ≤ 1
2

√
K2 and K2 ≥ 64 it also follows that the ”topo-

logical” bound in Proposition 1.1 is
1

1 − 2α
− 2 ≤ 10

7
. Hence the Bogomolov-Gieseker

inequality fails for the extension bundle T in (1.1) as soon as h1(ΘX) ≥ 2. So the
conditions (5.1) imply the decomposition of the canonical divisor KX = L1 + E1 as
in Corollary 1.7 with

E1.K <















2(3c2 −K2) ≤
√
K2, r1 = 3

8(3c2−K2)

1+
√

1+16(3α−1)
≤ 4

√
K2

1+
r

1+ 8√
K2

< 2
√
K2, r1 = 2

. (5.2)

Lemma 5.1. Let E be a component of E1. Then E2 ≤ 0.

Proof. If r1 = 3 then the first inequality in (5.2) implies that E.K <
√
K2. This

combined with the Hodge Index implies E2 ≤ 0.
If r1 = 2 then following through the same argument we obtain E2 ≤ 3. To

improve this estimate we return to the inequality (1.15) rewriting it as follows

2(3c2 −K2) > E1.K + 3
(E1.K)2

K2
− 2E2

1 . (5.3)

This together with 3c2 −K2 ≤ 1
2

√
K2 and E2

1 ≤ 3 imply E1.K <
√
K2 + 3. Using

the Hodge Index and K2 ≥ 64 we obtain E2
1 ≤ 1. Substituting this in (5.3) yields

E1.K <
√
K2. This implies E.K <

√
K2 and E2 ≤ 0.

In what follows we consider the geometric consequences of Lemma 5.1.

Corollary 5.2. E1.K ≤ 3c2 −K2.

Proof. The definition of KX -destabilizing filtration in (1.2) and the notation in

(1.3) imply E1 =
∑

i≥2

Li. From the proof of Lemma 5.1 and Remark 1.4 it follows that

Li.K <
√
K2, for every i ≥ 2. This combined with the Hodge index yields L2

i ≤ 0,
for every i ≥ 2. Substituting in (1.7) we obtain

2c2 ≥ 2d1 − L2
1 +K2. (5.4)

We know, by Corollary 1.7, that the rank of T1 is 2 or 3. In both cases we obtain

d1 ≥ 1

3
L2

1 (see the proof of Corollary 1.7 for details). Substituting in (5.4) yields

2c2 ≥ −1

3
L2

1 +K2 = −1

3
(K − E1)

2 +K2 =
2

3
K2 +

2

3
K.E1 −

1

3
E2

1 .

This and Lemma 5.1 imply E1.K ≤ 3c2 −K2.
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Proposition 5.3. Let r1 = 3 and c1(K) 6= 0, where the sheaf K is as in (1.11).
Then the line bundle K = OX(F ) is generated by global sections and defines a mor-
phism

f : X −→ B

where B is a smooth projective curve and f is a surjective morphism with connected
fibres. Let F0 be the class of a smooth fibre of f and write F = f∗(Z) for some divisor
Z on B. Then F = (degZ)F0 and (degZ)F0.K ≤ 3c2 −K2.

Proof. We already know that OX(F ) has at most 0-dimensional base locus (see
a) of the proof of Corollary 1.7). From (1.13) it also follows that F is a component
of E1. This and Lemma 5.1 imply that F 2 ≤ 0. Since F is nef we conclude that
F 2 = 0. This also implies that OX(F ) is generated by global sections and the image
of the morphism defined by OX(F ) is a curve. Taking its normalization and then
Stein factorization we obtain the asserted morphism.

The last inequality of the proposition follows from the bound on E1.K in Corollary
5.2.

Next we turn to the case when r1 = 3 and K = OX or r1 = 2. In this case the
subspace V0 of locally supported moduli of X is of codimension at least 1 in H1(ΘX).
Thus V0 is nonzero and we consider the extension Tξ for a general ξ in V0. This
gives rise to the divisor Dξ which is a nonempty component of E1 with D2

ξ ≤ 0 and

Dξ.K ≤ 3c2 − K2 (Lemma 5.1 and Corollary 5.2, respectively). We decompose Dξ

into two parts

Dξ = D′
ξ +D′′

ξ (5.5)

according to type as in (4.8).

Lemma 5.4. Assume X has no smooth rational curves. Then D2
ξ = (D′

ξ)
2 =

(D′′
ξ )

2 = 0 and the divisors D′
ξ and D′′

ξ have the following properties.

(i′) Each irreducible component C of D′
ξ is smooth with ΩX ⊗OC = OC(−C) ⊕

OC(K + C),
(ii′) for any two curves C and C′ in D′

ξ the intersection C.C′ = 0,
(iii′) Let mC be the multiplicity of the component C in D′

ξ. Then OC((mC+1)C) =
OC , i.e. OC(C) is a torsion point of Pic◦(C) and its order of torsion tC
divides (mC + 1).

(i′′) Each irreducible component C of D′′
ξ is a rational curve with a single double

point,
(ii′′) any two distinct irreducible components of D′′

ξ are either disjoint or intersect
at their (common) double point.

(iii′′) Let p1, . . . , pM ′′ be the set of distinct doubles points as above. Then the decom-

position D′′
ξ =

M ′′

∑

i

D′′
ξ (pi) of D′′

ξ into connected components is such that every

connected component D′′
ξ (pi) =

M ′′

i
∑

j=1

mijCij , where Cij ’s are rational curves

with a single double point at pi.
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Proof. Since X has no smooth rational curves Proposition 4.6 implies that Dξ is
nef. This yields Dξ.C ≥ 0 for any reduced irreducible component C of Dξ. From this
it follows D2

ξ ≥ 0 which combined with Lemma 5.1 gives D2
ξ = 0 and Dξ.C = 0 for

any reduced irreducible component C of Dξ.
Let C be a reduced irreducible component of D′

ξ. Then the inequality (4.4)

combined with C2 ≤ 0 and C.Dξ = 0 yields C2 = 0 and the morphism φC in (4.3)
must be an isomorphism. This implies the assertions (i′) − (iii′) as well as (D′

ξ)
2 =

D′
ξ.D

′′
ξ = (D′′

ξ )
2 = 0.

We turn now to the components of D′′
ξ . From the above argument we deduce

that C.D′′
ξ = 0 for every reduced irreducible component C of D′′

ξ . This together with
(4.7) implies gC̃ ≤ 1. We claim that gC̃ = 0. In fact, if gC̃ = 1 then (4.7) implies that
the the zero-locus of the morphism sC in (4.3) is empty. This and Lemma 4.4 yield
that C is a smooth curve of genus 1 and C does not meet any other component of
D′′
ξ . This combined with (D′′

ξ ).C = 0 yields C2 = 0. By the adjuction formula for C

we obtain K.C = C2 = 0 which contradicts the fact that X is a minimal surface of
general type. Thus C is a rational curve. By assumption it can not be smooth. From
(4.7) and Remark 4.3 it follows that ZCξ must be a double point of C. This proves
(i′′) of the lemma.

From Lemma 4.4 it follows that if two distinct irreducible components of D′′
ξ

intersect then they intersect at their (common) double point. Hence the assertion
(ii′′) of the lemma.

Turning to (iii′′) we put p1, . . . , pM ′′ to be distinct double points as above. Then
(iii′′) follows from (i′′) and (ii′′).

Proposition 5.5. Let D′
ξ and D′′

ξ be as in Lemma 5.4 and let M ′ (resp. M ′′)
be the number of connected components of D′

ξ (resp. D′′
ξ ). If M ′ +M ′′ ≥ 2, then X

admits a morphism

f : X −→ B

where B is a smooth projective curve and f is a surjective morphism with connected
fibres. Furthermore, the divisors D′

ξ and D′′
ξ are contained in the fibres of f . More

precisely, let F0 be the class of a fibre of f , then F0 = tCC, where C is an irreducible
curve in D′

ξ and tC is as in (iii′) of Lemma 5.4, and F0 = δiD
′′
ξ (pi), where δi ∈ Q+

and D′′
ξ (pi) is a connected component of D′′

ξ as in (iii′′) of Lemma 5.4.

Proof. Consider the set {C | irreducible curve in D′
ξ} ∪ {D′′

ξ (pi) | i = 1, . . . ,M ′′}
(see Lemma 5.4 for notation). From the assumption M ′ + M ′′ ≥ 2 it follows
that the set contains at least two distinct and hence disjoint divisors, say Σ1

and Σ2. From ((K.Σ1)Σ2 − (K.Σ2)Σ1).K = 0 and the Hodge Index it follows
that ((K.Σ1)Σ2 − (K.Σ2)Σ1)

2 ≤ 0. Since Σ1.Σ2 = (Σ1)
2 = (Σ2)

2 = 0 it fol-
lows that (K.Σ1)Σ2 − (K.Σ2)Σ1 = 0 in NS(X). This implies that some power
of OX((K.Σ1)Σ2 − (K.Σ2)Σ1) lies in the kernel of H1(O∗

X) −→ H2(X,Z). If
H1(OX) = 0, then L = OX(m(K.Σ1)Σ2) = OX(m(K.Σ2)Σ1) for some positive inte-
ger m. This implies that the divisors m(K.Σ1)Σ2, m(K.Σ2)Σ1 give a base point free
pencil in the linear system | L |, i.e. we have a morphism X −→ P1. Taking the Stein
factorization yields the assertion.

We turn now to the case H1(OX) 6= 0. If M ′′ 6= 0, then the Albanese map of X
contracts the divisors D′′

ξ (pi)’s to points. From this and (D′′
ξ (pi))

2 = 0 it follows that
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the image of the Albanese map is a curve. This gives the asserted morphism. So we
may assume M ′′ = 0. Then M ′ ≥ 2 and we take two distinct curves C1 and C2 in D′

ξ.
Arguing as in the first part of the the proof we obtain that there exist positive integers
a1, a2 such that L = OX(a1C1 − a2C2) ∈ Pic◦(X). We may assume that L is not
of finite order (otherwise we are done by the first part of the proof). The restriction
L⊗OC1

= OC1
(a1C1) is, by Lemma 5.4, (iii′), a torsion point of Pic◦(C1). Thus the

restriction morphism rC1
: Pic◦(X) −→ Pic◦(C1) contains an infinite subgroup of the

cyclic group {Ln}n∈Z. Hence ker(rC1
) is an abelian subvariety of Pic◦(X) of dimen-

sion ≥ 1. This implies that the kernel of the differential of rC1
at 0 is nonzero. But this

differential is H1(OX) −→ H1(OC1
). By Ramanujam’s Lemma (see TheoremA,[3])

nC1, for some n ∈ N, moves in an irrational pencil. More precisely, the inclusion
C1 ⊂ X gives the morphism of the Albanese varieties φ : Alb(C1) −→ Alb(X) and the
image of φ is a proper abelian subvariety of Alb(X) since the differential of φ at 0 is
dual to H1(OX) −→ H1(OC1

). Consider ψ : X −→ Alb(X)/Im(φ). This morphism
contracts C1 to a point. Since C2

1 = 0 the image of ψ must be a curve. This yields
the asserted morphism.

From the construction of the morphism f it follows that the class of its fibre F0 is
a positive rational multiple of either D′′

ξ (pi) or any irreducible C in D′
ξ. Furthermore,

in the latter case Lemma 5.4,(iii′) and Lemma 8.3,III,[1], imply that C is the support
of the multiple fibre of multiplicity tC , i.e. tCC = F0.

Corollary 5.6. Let X be a smooth surface subject to (5.1) and let V0 be the
subspace of locally supported moduli of X. If X contains no rational curves, then

dimV0 ≤ 1

2
K.Dξ

where Dξ is as in Lemma 5.4 and ξ ∈ V0 is general.

Proof. For a general ξ ∈ V0 the subspace V0 ⊂ H1(ΘX) is supported on Dξ,
i.e. V0 ⊂ ker(H1(ΘX) −→ H1(ΘX(Dξ))). This implies that dimV0 ≤ h0(ΘX ⊗
ODξ(Dξ)). Since X has no rational curves Lemma 5.4 implies that Dξ is composed
of the irreducible components of type I only, i.e. Dξ = D′

ξ (see (5.5)). From this it
follows

dimV0 ≤ h0(ΘX ⊗ODξ(Dξ)) ≤
∑

C

h0(ΘX ⊗OmCC(mCC)) (5.6)

where the sum is taken over the reduced irreducible components of D′
ξ.

Let tC be the order of torsion of OC(C) (see Lemma 5.4, (iii′)). Using Lemma
5.4,(i′) we obtain

h0(ΘX ⊗OmCC(mCC)) ≤
{

mC+1
tC

, if tC ≥ 2

mC , if tC = 1
.

This combined with (5.6) yields

dimV0 ≤
∑

C

1
mC +

∑

C

2 mC + 1

tC
(5.7)

where the first (resp. second) sum is taken over the reduced irreducible components
C of Dξ with tC = 1 (resp. tC ≥ 2). Observing that K.C ≥ 2 for every irreducible
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component C of Dξ we obtain

∑

C

1
mC ≤ 1

2
K.D

(1)
ξ and

∑

C

2 mC

tC
≤ 1

4
K.D

(2)
ξ (5.8)

where D
(1)
ξ (resp. D

(2)
ξ ) is the part of Dξ composed of the irreducible curves C with

tC = 1 (resp. tC ≥ 2). Furthermore, tCK.C ≥ 4, for every irreducible curve C in

D
(2)
ξ . This yields

∑

C

2 1

tC
≤ 1

4
K.D

(2)
ξ . Combining this with the second inequality in

(5.8) gives

∑

C

2 mC + 1

tC
≤ 1

2
K.D

(2)
ξ .

Substituting this and the first inequality in (5.8) into (5.7) we obtain

dimV0 ≤ 1

2
K.D

(1)
ξ +

1

2
K.D

(2)
ξ =

1

2
K.Dξ.

Corollary 5.7. Let X be as in Corollary 5.6. Then

h1(ΘX) ≤







1
2 (3c2 −K2), if r1 = 2

1
2 (3c2 −K2) + 1, if r1 = 3

.

Proof. If r1 = 2 then h1(ΘX) = dimV0. This combined with Corollary 5.6 and
Corollary 5.2 gives h1(ΘX) ≤ 1

2 (3c2 −K2).
If r1 = 3 then h1(ΘX) = dimV0 + dimV1 and we consider two case according to

properties of the linear system | F |, where F is as in Proposition 5.3.
Case: F = 0. Then dimV1 = 1 and h1(ΘX) = dimV0 +1. Arguing as in the case

r1 = 2 we obtain h1(ΘX) ≤ 1
2 (3c2 −K2) + 1.

Case: F 6= 0. Then by Proposition 5.3 the linear system | F | defines a fibration
f : X −→ B with the class of a smooth fibre F0 and F = deg(Z)F0 for some divisor

Z on B. In particular, dimV1 ≤ deg(Z) + 1 =
K.F

K.F0
+ 1. From this it follows

h1(ΘX) ≤ K.F

K.F0
+ 1 + dimV0. (5.9)

To bound dimV0 we use the argument in the proof of Corollary 5.6 with the following
modification. By Proposition 5.5 the irreducible components C of Dξ are related to
the class of the fibre F0 as follows: tCC = F0, where tC is the order of torsion of
OC(C). Using this relation and the notation in (5.8) we obtainX

C

1
mC +

X
C

2 mC

tC

=
K.D

(1)
ξ

K.F0
+

K.D
(2)
ξ

K.F0
=

K.Dξ

K.F0
and

X
C

2 1

tC

=
X
C

2 K.C

K.F0
≤

K.D
(2)
ξ

K.F0
.

(5.10)
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Substituting this in (5.7) we obtain

dimV0 ≤ 1

K.F0

(

K.Dξ +K.D
(2)
ξ

)

.

This together with (5.9) yield

h1(ΘX) ≤ 1

K.F0

(

K.F +K.Dξ +K.D
(2)
ξ

)

+ 1

=
1

K.F0

(

K.F + 2K.Dξ −K.D
(1)
ξ

)

+ 1

≤ 1

K.F0

(

2K.E1 −K.F −K.D
(1)
ξ

)

+ 1 (5.11)

where the last inequality follows from the fact that F +Dξ is a component of E1 (see
(1.13), (2.3), (3.3) and Remark 4.1). Combining (5.11) with Corollary 5.2 we obtain

h1(ΘX) ≤ 2

K.F0
(3c2 −K2) + 1 − deg(Z)

where Z is as in Proposition 5.3. Recalling that K.F0 ≥ 4 (see Claim in the proof of
Corollary 2.4) we deduce h1(ΘX) ≤ 1

2 (3c2 −K2)

Proposition 5.8. Let X be a smooth surface subject to (5.1) and let ΩX be
ample. Then X has divisorial moduli only. More precisely, let OX(F ) be as in Propo-
sition 5.3 then there is an isomorphism

H0(OX(F ))
∼→ H1(ΘX). (5.12)

Furthermore, the KX-maximal destabilizing subsheaf T1 is given by the extension

0 −→ OX(−F ) −→ T1 −→ ΩX −→ 0 (5.13)

and the cup-product with this extension (viewed as an element of H1(ΘX(−F ))) de-
fines the isomorphism (5.12).

Proof. The ampleness of ΩX implies that X has neither rational curves nor the
curves subject to (i′) of Lemma 5.4. This yields V0 = 0, i.e. X has the divisorial
moduli only and the sheaf T1 in (1.11) fits into the following exact sequence

0 −→ OX(−F ) −→ T1 −→ T ′
1 −→ 0. (5.14)

Since the linear system | F | is base point free and F 2 = 0 we obtain that the sequence
(1.12) has the form

0 −→ R∗ −→ H1(ΘX) ⊗OX −→ OX(F ) −→ 0. (5.15)

Furthermore, the vanishing of V0 implies that the homomorphism

H1(ΘX) −→ H0(OX(F )) (5.16)

arising from the cohomology sequence of (5.15) is injective. Thus we have the first
assertion of the proposition.
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In view of the sequence (5.14) the remaining part of the proposition follows as
soon as we show that T ′

1 = ΩX or, equivalently, c1(S1) = 0, where S1 is as in (1.11).
In order to do this we consider the extension

0 −→ V ∗ ⊗OX −→ TV −→ ΩX −→ 0 (5.17)

defined by a general 2-dimensional subspace V of H1(ΘX).
The inclusion T1 −→ T induces a monomorphism T1 −→ TV which gives rise to

the following diagram

0

��

0

��

0

��
0 // OX(−F ) //

��

T1
//

��

T ′
1

//

��

0

0 // V ∗ ⊗OX
//

��

TV //

��

ΩX //

��

0

0 // OX(F ) //

��

QV
//

��

S1
//

��

0

0 0 0

(5.18)

Factoring out by the torsion of QV we obtain

0

��

0

��

0

��
0 // OX(−F ) //

��

FV //

��

F ′
V

//

��

0

0 // V ∗ ⊗OX
//

��

TV //

��

ΩX //

��

0

0 // OX(F ) //

��

IZV (DV ) //

��

S′
V

//

��

0

0 0 0

(5.19)

where IZV is the sheaf of ideals of some 0-dimensional subscheme ZV of X .

Claim. F ′
V = ΩX .

Let us assume this and complete the proof of the proposition.
From the claim it follows that the sheaf FV fits into the following exact sequence

0 // OX(−F ) // FV // ΩX // 0 . (5.20)

This sequence can be viewed as an (nonzero) element of Ext1(ΩX ,OX(−F )) =
H1(ΘX(−F )). Denote the corresponding cohomology class in H1(ΘX(−F )) by τ .



GEOGRAPHY AND THE NUMBER OF MODULI 445

The cup-product with τ gives rise to the linear map

H0(OX(F ))
τ // H1(ΘX) . (5.21)

The ampleness of ΩX guaranties that this homomorphism is injective. Combining
this with the injectivity in (5.16) we deduce that the cup-product in (5.21) is an
isomorphism. Furthermore, this also implies that FV lifts to T , i.e. we have a
morphism of extensions

0 // OX(−F ) //

��

FV //

��

ΩX // 0

0 // H1(ΘX)∗ ⊗OX
// T // ΩX // 0

The maximality of T1 yields the equality T1 = FV .

Proof of Claim. Take a nonzero element ξ in V and consider the corresponding
one-dimensional extension Tξ

0 // OX
// Tξ // ΩX // 0.

This extension is related to TV by the following exact sequence

0 // OX
// TV // Tξ // 0.

Putting this together with vertical sequence in the middle of (5.19) we obtain

0

��

0

��
FV

��

FV

��
0 // OX

// TV //

��

Tξ //

��

0

0 // OX
// IZV (DV ) //

��

Pξ //

��

0

0 0

(5.22)

In particular, we obtain a distinguished divisor in the linear system | DV | which we
continue to denote DV . From (5.19) we deduce

DV = FV + EV (5.23)

where FV is the divisor in the linear system | F | corresponding to the line (V/〈ξ〉)∗ in
V ∗ ⊂ H0(OX(F )), and EV = c1(S′

V ), where S′
V is as in (5.19). We will now establish

the following.
(i) DV is nef
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(ii) ZV = ∅

The argument is essentially the same as in the considerations of (4.1). Namely, we
take the third exterior power of (5.22)

0

��
OX(K −DV )

�� ''PPPPPPPPPPPP

0 // ∧2 Tξ // ∧3 TV //

��

OX(K) // 0

IZV (DV ) ⊗∧2 FV

(5.24)

The restriction of the above diagram to any reduced irreducible component C of DV

gives a nonzero morphism OC(K −DV ) −→ ∧2 Tξ ⊗OC = T ∗
ξ (K) ⊗OC . Tensoring

with OX(−K) we obtain a nonzero morphism OC(−DV ) −→ T ∗
ξ ⊗OC . Combining

this with the defining sequence for Tξ yields

0

��
ΘX ⊗OC

��
0 // OC(−DV ) //

φC
&&NNNNNNNNNNNN

T ∗
ξ ⊗OC

��
OC

��
0

(5.25)

Observe that DV .C ≥ 0 since otherwise φC = 0 and we obtain a nonzero morphism
OC(−DV ) −→ ΘX ⊗OC which contradicts the ampleness of ΩX . This proves that
DV is nef. But DV is a component of E1 which implies, by Lemma 5.1, that D2

V ≤ 0.
Thus we must have DV .C = 0 for every reduced irreducible component C of DV .
Returning to (5.25) we see that the morphism φC must be nonzero and, hence, it is
an isomorphism for every reduced irreducible component C of DV . This implies, in
particular, that ZV = ∅.
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Once we know that ZV = ∅ the diagram (5.19) becomes as follows

0

��

0

��

0

��
0 // OX(−F ) //

��

FV //

��

F ′
V

//

��

0

0 // V ∗ ⊗OX
//

��

TV //

��

ΩX //

��

0

0 // OX(F ) //

��

OX(DV ) //

��

S′
V

//

��

0

0 0 0

(5.26)

Assume EV = c1(S′
V ) = DV − F 6= 0. We will show that this produces a nonzero

subspace of locally supported moduli which is impossible by the first assertion of the
proposition. To this end dualize the sequence at the bottom of the above diagram to
obtain

0 // OX(−DV ) // OX(−F ) // Ext1(S′
V ,OX) // 0.

This implies that Ext1(S′
V ,OX) = OEV (−F ). Furthermore, since FV is a component

of DV we have DV .F = 0 = EV .F which implies Ext1(S′
V ,OX) = OEV . Now

dualizing the column on the right in (5.26) we obtain

0 // ΘX
// (F ′

V )∗ // OEV
// 0

which yields that ker(H1(ΘX) −→ H1(F ′
V )) 6= 0. But this is a subspace of locally

supported moduli which must be zero by the first part of the proof of the proposition.
Thus c1(S′

V ) = 0 and we obtain the equality F ′
V = ΩX .
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