A SECOND-ORDER INVARIANT OF THE NOETHER-LEFSCHETZ LOCUS AND TWO APPLICATIONS*

CATRIONA MACLEAN ${ }^{\dagger}$

Key words. Algebraic geometry, Noether-Lefyschetz problem
AMS subject classifications. 14 N 15

1. Introduction and statement of results. Let $X \subset \mathbb{P}^{3}$ be a smooth surface of degree d cut out by a polynomial

$$
F \in k\left[X_{0}, \ldots X_{3}\right] .
$$

We will be interested in the following questions. What curves does X contain? Can these curves be classified?

For a generic X of degree $d \geq 4$, this question was answered in the 20 's, when the Noether-Lefschetz theorem was proved by Lefschetz.

Theorem 1 (Lefschetz). If X is a generic smooth surface of degree $d \geq 4$ in \mathbb{P}^{3} then for any curve $C \subset X$ there exists a surface Y such that $C=X \cap Y$.

A curve C which has the property that $C=X \cap Y$ for some surface Y will be said to be a complete intersection in X.

This theorem says essentially that if X is generic then the set of curves contained in X is well understood and is as simple as possible. In this article we will study the distribution of surfaces for which the conclusion of Theorem 1 does not hold - or in other words, surfaces containing curves which are not well understood.

Throughout the rest of this article, we will denote by U_{d} the space parameterising smooth degree d surfaces in \mathbb{P}^{3}. We define the Noether-Lefschetz locus, which we denote by $N L_{d}$, as follows:

$$
X \in N L_{d} \Leftrightarrow X \text { contains a curve } C \text { which is not a complete intersection in } X
$$

which, by the Leftschetz $(1,1)$ theorem, can alternatively be written as

$$
X \in N L_{d} \Leftrightarrow H_{\text {prim }}^{1,1}(X, \mathbb{Z}) \neq 0
$$

Theorem 1 says that $N L_{d}$ is a countable union of proper subvarieties of U_{d}. Throughout the rest of the article, $N L$ will denote one of these subvarieties. Ciliberto et al. showed in [3] that $N L_{d}$ is dense in the Zariski and complex topologies.

It is interesting to have an idea of the size of the components of $N L_{d}$, since this gives us some idea of how rare badly-behaved curves are. An initial (very rough) estimate comes out of Hodge theory. Any component $N L$ can be expressed as the

[^0]zero locus of a section of a vector bundle of dimension $\binom{d-1}{3}$. Hence the codimension of $N L$ is at most $\binom{d-1}{3}$, and we expect that it will in fact be equal to $\binom{d-1}{3}$. If a component $N L$ has codimension strictly less than $\binom{d-1}{3}$, then we will say it is exceptional.

Since the dimension of U_{d} is $\binom{d+3}{3}-1$, we expect $N L$ to be very small compared with U_{d}. Unfortunately, this bound is highly unsatisfactory, because in the simplest examples it fails to be exact by a very large margin. For example, the set of all surfaces containing a line is a Noether-Lefschetz locus of co-dimension $d-3$.

The principle that has guided much of the work on $N L_{d}$ is that very large components should be geometrically predictable. More precisely, the codimension estimate of $\binom{d-1}{3}$ was based on cohomological arguments, which do not take into account geometric information. Suppose X contains a curve C of low degree which is not a complete intersection in X. The Noether-Lefschetz locus corresponding to C (which will be precisely defined in section 2.1), then has codimension $\leq H^{0}\left(\mathcal{O}_{C}(d)\right.$). This is much less than $\binom{d-1}{3}$ when $d \gg \operatorname{deg}(C)$.

The hope is that when a component $N L$ is large, this should always be explained by the presence of low-degree curves in the corresponding surfaces. Harris conjectured that the number of exceptional loci should be finite: Green and Ciliberto went further, proposing the following conjecture (which implies Harris's) and which we will call henceforth the Green-Ciliberto conjecture.

Conjecture 1 (Green-Ciliberto). If $\operatorname{codim}(N L)<\binom{d-1}{3}$, and X is a point of $N L$ then there exists a curve $C \in X$ and a surface $Y \in \mathbb{P}^{3}$ of degree $\leq d-4$ such that 1. $C \subset X \cap Y$
2. C is not a complete intersection in X.

We will discuss the motivation for this conjecture in section 5 . It has been proved by Voisin [16] that Harris's conjecture (and a fortiori the Green-Ciliberto conjecture) does not hold. However, it is interesting to ask whether a weakened version of the conjeture may hold. The main results which have been proved in this direction so far are the following.

- Voisin [13] and Green [6] prove that for $d \geq 5$ every exceptional NL component has codimension at least $d-3$, and for $d \geq 5$ this bound is obtained only for the component of surfaces containing a line.
- Voisin, [14] proves that for $d \geq 5$, the second largest NL component of U_{d} has codimension $2 d-7$, and this bound is achieved only by the space of surfaces containing a conic.
- Otwinowska, [11] and [12], defines an analogue of $N L_{d}$ for hypersurfaces X of a variety Y of dimension $2 n+1$. She then proves that for any b, and for $d \gg b$, if $X \in N L$ has codimension $\leq \frac{b d^{n}}{n!}$, then X contains an n-cycle of degree $\leq b$.
All of this work relies on a fundamental paper of Carlson and Griffiths [1], in which they give an algebraic expression for the tangent space of $N L_{d}$.

Our aim in this paper is to extend the results of Carlson and Griffiths via a second-order infinitesimal study of $N L$. After summarising the results of Carlson and Griffiths in section 2, we calculate in section 3 an invariant which, to-
gether with the work of Carlson and Griffiths, describes the infinitesimal geometry of $N L$ at X up to second order. This is the second-order invariant mentioned in the title.

This new invariant gives rise to a new family of equations when X is a singular point of $N L$ or $N L$ is exceptional. In section 4 we will use these equations to prove Theorem 2, which completes the classification of exceptional Noether-Lefschetz loci in U_{5} by finding all non-reduced components. (The reduced exceptional loci were determined by Voisin in [14]). In section 5 we will use them to prove Theorem 3, which shows that a weakened version of the Green-Ciliberto conjecture holds for reduced Noether-Lefschetz loci.

Theorem 2. Let NL be a non-reduced Noether-Lefschetz locus in U_{5}. The reduction of $N L$ is the space of all surfaces X with the property that there exists a hyperplane H such that $H \cap X$ contains two lines.

In Proposition 1 of section 4, we show that it is indeed the case that if X has this property then X lies on certain non-reduced Noether-Lefschetz loci. More precisely, if L_{1} and L_{2} are the two lines in question, and $\gamma=\alpha\left[L_{1}\right]_{\text {prim }}+\beta\left[L_{2}\right]_{\text {prim }}$, where α and β are distinct non-zero rational numbers, then $N L(\gamma)$ is non-reduced.
In fact we will prove a stronger result, which is given in detail on page 12 (Theorem 8).

Theorem 3. Suppose that $e \leq \frac{d-1}{2}$. There exists an integer, $\phi_{e}(d)$ such that if $N L$ is reduced, $X \in N L$ and $\operatorname{codim}(N L) \leq \phi_{e}(d)$, then there exists a curve $C \in X$ and a surface $Y \in \mathbb{P}^{3}$ of degree e such that

1. $C \subset X \cap Y$
2. C is not a complete intersection in X.

Further, $\phi_{\frac{d-1}{2}}(d)=O\left(d^{3}\right)$.
Again, the result actually proved is somewhat stronger (see page 25, Theorem 9), but rather complicated to state.

2. Preliminaries.

2.1. Notation. Throughout the rest of this article, γ will be a non-zero element of $H_{\text {prim }}^{1,1}(X, \mathbb{Z})$, and O will be some contractible neighbourhood of X in U_{d}. When C is a curve in X we will denote by $[C]_{\text {prim }}$ the primitive part of the cohomology class of C. When γ is of the form $\sum_{i} \lambda_{i}\left[C_{i}\right]$ and $D \subset X$ has the property that $C_{i} \subset D$ for all i, we will say that γ is supported on D. Unless otherwise stated, we will work over O. We now define $N L(\gamma)$, the Noether-Lefschetz locus associated to γ.

Let \mathcal{H}^{i} be the vector bundle whose fibre over the point X is $H^{i}(X, \mathbb{C})$. This vector bundle is equipped with the flat Gauss-Manin connection ∇ and has a holomorphic structure. The Hodge filtration on $H^{i}(X, \mathbb{C})$ gives rise to a descending filtration $F^{p}\left(\mathcal{H}^{i}\right) \subset \mathcal{H}^{i}$ by holomorphic sub-vector bundles. We write $F^{p} / F^{p+1}=\mathcal{H}^{p, q}$. We denote by $\bar{\gamma}$ the section of $\left.\mathcal{H}^{2}\right|_{O}$ induced by flat transport of γ. There is a projection $\pi: \mathcal{H}^{2} \rightarrow \mathcal{H}^{0,2}$ and we denote $\pi(\bar{\gamma})$ by $\bar{\gamma}^{0,2}$. We now define:

Definition 1. The space $N L(\gamma)$ is the zero locus in O of the section $\bar{\gamma}^{0,2}$.
By the Noether-Lefschetz locus associated to a curve C, we mean $N L\left([C]_{\text {prim }}\right)$. Any Noether-Lefschetz locus is locally equal to $N L(\gamma)$ for some γ. The Zariski tangent space to $N L(\gamma)$ was described by Carlson and Griffiths in [1].
2.2. The work of Carlson and Griffiths. In this section, we summarise the results of [8] and [1]. A summary of this work may also be found in [17].

Griffiths showed in [7] that

$$
\nabla\left(F^{p} \mathcal{H}^{i}\right) \subset F^{p-1}\left(\mathcal{H}^{i}\right) \otimes \Omega_{U_{d}}
$$

Quotienting, it follows that ∇ induces an $\mathcal{O}_{U_{d}}$-linear map

$$
\bar{\nabla}: \mathcal{H}^{p, q} \rightarrow \mathcal{H}^{p-1, q+1} \otimes \Omega_{U_{d}} .
$$

For any n, S^{n} will denote the space of degree n homogeneous polynomials in variables $X_{0}, X_{1}, X_{2}, X_{3}$. Choose $P \in S^{p d-4}$ and let Ω be the canonical section of the bundle $K_{\mathbb{P}^{3}}(4)$. The form $\frac{P \Omega}{F^{P}}$ is then a holomorphic 3 -form on $\mathbb{P}^{3}-X$ and has a class in $H^{3}\left(\mathbb{P}^{3}-X, \mathbb{C}\right)$. The group $H^{3}\left(\mathbb{P}^{3}-X, \mathbb{C}\right)$ maps via the residue mapping res ${ }_{X}$ to $H_{\text {prim }}^{2}(X, \mathbb{C})$: there is therefore in particular a composed mapping

$$
\operatorname{res}_{X}: S^{p d-4} \rightarrow H_{\mathrm{prim}}^{2}(X, \mathbb{C}),
$$

given by

$$
\operatorname{res}_{X}(P)=\operatorname{res}_{X}\left(\left[\frac{P \Omega}{F^{p}}\right]\right)
$$

It is proved in [8] (see also [1] and [17]) that

$$
\operatorname{Im}\left(\operatorname{res}_{X}\right)=F^{3-p} H_{\text {prim }}^{2}(X, \mathbb{C}),
$$

and that

$$
\operatorname{res}_{X}(Q) \in F^{2-p} H^{2}(X, \mathbb{C}) \text { if and only if } Q \in\left\langle\frac{\partial F}{\partial X_{0}}, \ldots, \frac{\partial F}{\partial X_{3}}\right\rangle .
$$

We denote by J_{F} (the Jacobian ideal of F) the homogeneous ideal $\left\langle\frac{\partial F}{\partial X_{0}}, \ldots, \frac{\partial F}{\partial X_{3}}\right\rangle$.
We further denote by R_{F} (the Jacobian ring of F) the graded ring $k\left[X_{0} \ldots X_{3}\right] / J_{F}$. The results above can be summarised as follows.

Theorem 4 (Carlson, Griffiths). The map res X_{X} induces a natural isomorphism between $R_{F}^{p d-4}$ and $H_{\mathrm{prim}}^{3-p, p-1}(X, \mathbb{C})$.

In [1], the infinitesimal variation of this Hodge structure with variations of the hypersurface X was also calculated. We have a map

$$
\bar{\nabla}: \mathcal{H}_{\mathrm{prim}}^{p, q} \rightarrow \operatorname{Hom}\left(T_{U_{d}}, \mathcal{H}_{\mathrm{prim}}^{p-1, q+1}\right) .
$$

Carlson and Griffiths showed that after making the following identifications

1. $T_{U_{d}}(F)=S^{d} /\langle F\rangle$,
2. $\mathcal{H}_{\mathrm{prim}}^{p, q}(F)=R_{F}^{(3-p) d-4}$,
3. $\mathcal{H}_{\mathrm{prim}}^{p-1, q+1}(F)=R_{F}^{(4-p) d-4}$,
we have the following result.
Theorem 5 (Carlson, Griffiths). Up to multiplication by a constant, $\bar{\nabla}_{F}\left(\operatorname{res} X_{X} P\right)$ is identified with the multiplication map

$$
\cdot P: R_{F}^{d} \rightarrow R_{F}^{(4-p) d-4} .
$$

Henceforth, P will denote an element of $S^{2 p-4}$ such that $\operatorname{res}_{X}(P)=\gamma$. We have the following description of the tangent space to $N L(\gamma)=\operatorname{zero}\left(\bar{\gamma}^{0,2}\right)$.

$$
T_{N L(\gamma)}(X)=\operatorname{Ker}\left(\cdot P: R_{F}^{d} \rightarrow R_{F}^{3 d-4}\right) .
$$

or in other words

$$
H \in T_{N L(\gamma)}(X) \text { if and only if there exist } Q_{i} \in S^{2 d-3} \text { such that } P H=\sum_{i=0}^{3} Q_{i} \frac{\partial F}{\partial X_{i}} .
$$

We will lean heavily in what follows on the following classical result, due to Macaulay (which may be found in [4], for example).

Theorem 6 (Macaulay). The ring R_{F} is a Gorenstein graded ring. In other words, $R_{F}^{4 d-8}=\mathbb{C}$ and the multiplication map

$$
R_{F}^{a} \otimes R_{F}^{4 d-8-a} \rightarrow R_{F}^{4 d-8}=\mathbb{C}
$$

is a perfect pairing.
3. The second order invariant of IVHS. Throughout the rest of this article, G and H will be degree d polynomials contained in $T_{N L(\gamma)}(X)$, and $\left\{Q_{i}\right\}_{i=0}^{3},\left\{R_{i}\right\}_{i=0}^{3}$ will be degree $2 d-3$ polynomials such that

$$
P G=\sum_{i=0}^{3} Q_{i} \frac{\partial F}{\partial X_{i}} \text { and } P H=\sum_{i=0}^{3} R_{i} \frac{\partial F}{\partial X_{i}} .
$$

We will extend the work of Carlson and Griffiths to second order using the fundamental quadratic form of a section of a vector bundle - a generalisation of the Hessian, which we now briefly recall.

Let M be a smooth m-dimensional complex scheme, V a rank- r vector bundle on M and σ a section of V. We denote by W the zero scheme of σ and choose a point x of W. We choose also holomorphic co-ordinates, z_{1}, \ldots, z_{m}, on some neighbourhood of x and a trivialisation of V near x. Having picked such trivialisations, σ becomes an r-tuple of holomorphic functions ($\sigma_{1}, \sigma_{2} \ldots \sigma_{r}$). We define the map

$$
d \sigma_{x}: T_{U}(x) \rightarrow V_{x}
$$

by

$$
\begin{equation*}
d \sigma_{x}\left(\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial z_{i}}\right)=\sum_{i=1}^{n} \alpha_{i} \frac{\partial \sigma}{\partial z_{i}} . \tag{1}
\end{equation*}
$$

It can be shown that this map is independent of the choice of trivialisation and of local co-ordinates. The space $\operatorname{Ker}\left(d \sigma_{x}\right)$ is the Zariski tangent space to W at x. We define the fundamental quadratic form, $q_{\sigma, x}$, of σ at x as follows.

$$
q_{\sigma, x}: T_{W}(x) \otimes T_{W}(x) \rightarrow V_{x} / \operatorname{Im}\left(d \sigma_{x}\right)
$$

is defined by

$$
q_{\sigma, x}\left(\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial z_{i}}, \sum_{j=1}^{m} \beta_{j} \frac{\partial}{\partial z_{j}}\right)=\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial z_{i}}\left(\sum_{j=1}^{m} \beta_{j} \frac{\partial}{\partial z_{j}}(\sigma)\right)
$$

This, similarly, is independent of the choice of local trivialisation of V and the choice of local co-ordinates z_{j}.

Remark 1. If x is a smooth point of $W_{\text {red }}$ and $\operatorname{rk}(\operatorname{Ker}(d \sigma))$ is constant in a neighbourhood of x, then $q(u, w)=0$ for any $u \in T_{W_{\mathrm{red}}}$. Indeed, we may choose local co-ordinates on U in such a way that $w=\frac{\partial}{\partial z_{1}}$ and $\left.\frac{\partial \sigma}{\partial z_{1}}\right|_{W_{\text {red }}}=0$.

As an example, if M is the space \mathbb{C}^{2}, V is the trivial vector bundle \mathbb{C} and σ is the section $x y$, then the space $V_{x} / \operatorname{Im}\left(d \sigma_{x}\right)$ is non-zero only at the point $x=(0,0)$ and the form $q_{\sigma, x}: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}$ is given by

$$
q((a, b),(c, d))=a c \frac{\partial^{2} x y}{\partial x \partial x}+a d \frac{\partial^{2} x y}{\partial x \partial y}+b c \frac{\partial^{2} x y}{\partial y \partial x}+b d \frac{\partial^{2} x y}{\partial y \partial y}=a d+b c
$$

We are now in a position to state our result.
Theorem 7. The fundamental quadratic form

$$
q_{\bar{\gamma}, X}: \operatorname{Sym}^{2}\left(T_{N L(\gamma)}(X)\right) \rightarrow R_{F}^{3 d-4} / \operatorname{Im}(\cdot P)
$$

is given by

$$
q(G, H)=\sum_{i=0}^{3}\left(H \frac{\partial Q_{i}}{\partial X_{i}}-R_{i} \frac{\partial G}{\partial X_{i}}\right)
$$

The attentive reader will be surprised to see that this form is apparently not symmetric in G and H. This is, however, only apparent: we have the following lemma.

Lemma 1. For all H and G in $T_{N L(\gamma)}(X)$,

$$
q(G, H)=q(H, G)
$$

Proof of Lemma 1. We know that

$$
\sum_{i=0}^{3} G R_{i} \frac{\partial F}{\partial X_{i}}=G H P=\sum_{i=0}^{3} H Q_{i} \frac{\partial F}{\partial X_{i}}
$$

Rearranging, we get that

$$
\sum_{i=0}^{3}\left(G R_{i}-H Q_{i}\right) \frac{\partial F}{\partial X_{i}}=0
$$

Since the $\frac{\partial F}{\partial X_{i}}$ form a regular sequence, there exist $A_{i, j}$, polynomials, such that

1. $A_{i, j}=-A_{j, i}$,
2. $G R_{i}-H Q_{i}=\sum_{j=0}^{3} A_{i, j} \frac{\partial F}{\partial X_{i}}$.

Deriving this second equation and summing over i, we get that

$$
\sum_{i=0}^{3}\left(G \frac{\partial R_{i}}{\partial X_{i}}+R_{i} \frac{\partial G}{\partial X_{i}}\right)-\sum_{i=0}^{3}\left(H \frac{\partial Q_{i}}{\partial X_{i}}-Q_{i} \frac{\partial H}{\partial X_{i}}\right)=\sum_{i, j}\left(\frac{\partial A_{i, j}}{\partial X_{i}} \frac{\partial F}{\partial X_{i}}+A_{i, j} \frac{\partial F}{\partial X_{i} \partial X_{j}}\right) .
$$

From this we deduce that

$$
\sum_{i=0}^{3}\left(G \frac{\partial R_{i}}{\partial X_{i}}+R_{i} \frac{\partial G}{\partial X_{i}}\right)-\sum_{i=0}^{3}\left(H \frac{\partial Q_{i}}{\partial X_{i}}+Q_{i} \frac{\partial H}{\partial X_{i}}\right) \in\left\langle\frac{\partial F}{\partial X_{i}}\right\rangle .
$$

This completes the proof of Lemma 1.
3.1. The fundamental quadratic form: an explicit description (proof of theorem 7). Recall that G, H are elements of $T_{N L(\gamma)}(X)$. When f is a section of a vector bundle vanishing at X, we will denote by $\frac{\partial f}{\partial G}(X)$ the derivative of f along the tangent vector G at the point X. We have that:

$$
q_{\bar{\gamma}^{0,2}, X}(G, H)=\frac{\partial\left(d \bar{\gamma}^{0,2}(H)\right)}{\partial G}(X),
$$

where $d \bar{\gamma}^{0,2}$ is as defined in 1 This equation is an equality between elements of the space $H^{0,2}(X, \mathbb{C}) / \operatorname{Im}\left(d \bar{\gamma}^{0,2}\right)$.

We choose s a section of $S^{2 d-4} \otimes \mathcal{O}_{N L(\gamma)}$ such that $\operatorname{res}_{\tilde{X}}(s(\tilde{X}))=\bar{\gamma}(\tilde{X})$. After identification of $\mathcal{H}_{\mathrm{prim}}^{3-p, p-1}$ and $R_{F}^{p d-4}$ we have that

1. $\operatorname{Im}\left(d \bar{\gamma}^{0,2}(X)\right)=\operatorname{Im}(\cdot P)$
2. $d \bar{\gamma}^{0,2}(H)(\tilde{X})=H s(\tilde{X})$.
and hence

$$
\begin{equation*}
q_{\bar{\gamma}^{0,2}, X}(G, H)=\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H s(\tilde{X}))\right)}{\partial G}(X), \tag{2}
\end{equation*}
$$

this last equation being an equality between elements of $R_{F}^{3 p-4} / \operatorname{Im}(\cdot P)$.
Let us explain more precisely what we mean by the formula (2). Since $H s(\tilde{X})$ is a degree $3 d-4$ polynomial, it has a residue class $\operatorname{res}_{\tilde{X}}(H s(\tilde{X}))$ in $H^{0,2}(\tilde{X})$. This class disappears at X, and $\frac{\partial(\operatorname{res} \tilde{\tilde{\chi}}(H s(\tilde{X})))}{\partial G}(X)$ denotes its derivation along the tangent vector $G \in T_{U_{d}}(X)$. We note that

$$
\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H s(\tilde{X}))\right)}{\partial G}(X)=\operatorname{res}_{X}\left(H \frac{\partial s(\tilde{X})}{\partial G}(X)\right)+\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H P)\right)}{\partial G}(X) .
$$

Lemma 2. We have $\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H P)\right)}{\partial G}(X)=-\operatorname{res}_{X}\left(\sum_{i=0}^{3} R_{i} \frac{\partial G}{\partial X_{i}}\right)$.
Proof of Lemma 2. If X_{ϵ} is the variety cut out by the polynomial $F+\epsilon G$, then we have

$$
\frac{\partial\left(\operatorname{res}_{X_{\epsilon}}(H P)\right)}{\partial \epsilon}(0)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{res}_{X_{\epsilon}}(H P) .
$$

We know that $H P=\sum_{i=0}^{3} R_{i} \frac{\partial F}{\partial X_{i}}$, whence we see that

$$
H P=\sum_{i=0}^{3}\left(R_{i} \frac{\partial F+\epsilon G}{\partial X_{i}}-\epsilon R_{i} \frac{\partial G}{\partial X_{i}}\right) .
$$

Therefore,

$$
\operatorname{res}_{X_{\epsilon}}(H P)=\operatorname{res}_{X_{\epsilon}}\left(-\epsilon \sum_{i=0}^{3} R_{i} \frac{\partial G}{\partial X_{i}}\right)
$$

and hence

$$
\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H P)\right)}{\partial G}(X)=\frac{\partial\left(\operatorname{res}_{X_{\epsilon}}(H P)\right)}{\partial \epsilon}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{res}_{X_{\epsilon}}\left(-\sum_{i=0}^{3} R_{i} \frac{\partial G}{\partial X_{i}}\right)
$$

From this we get that

$$
\frac{\partial\left(\operatorname{res}_{\tilde{X}}(H P)\right)}{\partial G}(X)=\operatorname{res}_{X}\left(-\sum_{i=0}^{3} R_{i} \frac{\partial G}{\partial X_{i}}\right)
$$

This completes the proof of Lemma 2.
It remains to calculate $\frac{\partial s}{\partial G}(X)$.
Lemma 3. The section s can be chosen in such a way that $\frac{\partial s}{\partial G}(X)=\sum_{i=0}^{3} \frac{\partial Q_{i}}{\partial X_{i}}$.
Proof of Lemma 3. By definition

$$
\operatorname{res}_{X}(P)=\operatorname{res}_{X}\left[\frac{P \Omega}{F^{2}}\right]
$$

The polynomial $s(\tilde{X})$ is chosen such that the section $\operatorname{res}_{\tilde{X}}(s(\tilde{X}))=\operatorname{res}_{\tilde{X}} \frac{s(\tilde{X}) \Omega}{\tilde{F}^{2}}$ of $\mathcal{H}^{2} \otimes \mathcal{O}_{N L(\gamma)}$ is flat with respect to the Gauss-Manin connection. In particular,

$$
\frac{\partial\left(\operatorname{res}_{\tilde{X}}(s(\tilde{X}))\right)}{\partial G}(X)=0
$$

and hence

$$
\operatorname{res}_{X}\left(\frac{\partial \frac{s \Omega}{F^{2}}}{\partial G}(X)\right)=0
$$

On deriving this formula, we obtain that

$$
\begin{equation*}
\operatorname{res}_{X}\left(\frac{\left(\frac{\partial s}{\partial G}(X)\right) \Omega}{F^{2}}-2 \frac{G P \Omega}{F^{3}}\right)=0 . \tag{3}
\end{equation*}
$$

It is proved in [2] that (3) only holds if there is an $\alpha \in H^{0}\left(\Omega_{\mathbb{P}^{3}}^{2}(2 Y)\right)$ such that

$$
\frac{\frac{\partial s}{\partial G}(X) \Omega}{F^{2}}-2 \frac{G P \Omega}{F^{3}}=d \alpha
$$

Any $\alpha \in H^{0}\left(\Omega_{\mathbb{P}}^{2}(2 Y)\right)$ may be written in the form

$$
\alpha=\frac{\sum_{i=0}^{3} S_{i} \operatorname{int}\left(\frac{\partial}{\partial X_{i}}\right) \Omega}{F^{2}},
$$

where the S_{i} are degree $2 d-3$ polynomials. Here, the operation int $T_{Y} \otimes \Omega_{Y}^{2} \rightarrow \Omega_{Y}^{1}$ is defined for any smooth variety Y by $\operatorname{int}(t, \omega)(v)=(\omega(t, v))$. We now show that

$$
d \alpha=\frac{-2}{F^{3}} \sum_{i=0}^{3} S_{i} \frac{\partial F}{\partial X_{i}} \Omega+\frac{1}{F^{2}} \sum_{i=0}^{3} \frac{\partial S_{i}}{\partial X_{i}} \Omega
$$

We shall do this by calculation on \mathbb{C}^{4}. There is a natural application $\pi: \mathbb{C}^{4} \rightarrow \mathbb{P}^{3}$ given by $\left(x_{0}, \ldots, x_{3}\right) \rightarrow\left[x_{0}, \ldots, x_{3}\right]$. The pullback $\pi^{*}(\Omega)$ is given by

$$
\pi^{*}(\Omega)=\operatorname{int}\left(\sum_{j=0}^{3} x_{j} \frac{\partial}{\partial x_{j}}, d x_{0} \wedge \ldots \wedge d x_{3}\right)
$$

and the pullback $\pi^{*} \alpha$ is given by

$$
\pi^{*}(\alpha)=\sum_{i=0}^{3} \frac{S_{i}}{F^{2}} \operatorname{int}\left(\frac{\partial}{\partial x_{i}}, \operatorname{int}\left(\sum_{j=0}^{3} x_{j} \frac{\partial}{\partial x_{j}}, d x_{0} \wedge \ldots \wedge d x_{3}\right)\right) .
$$

We now consider (for example) U_{3}, the open set of \mathbb{P}^{3} given by $X_{3} \neq 0$, and we map it into \mathbb{C}^{4} via the map

$$
s:\left[X_{0}, \ldots, X_{3}\right] \rightarrow\left(X_{0} / X_{3}, X_{1} / X_{3}, X_{2} / X_{3}, 1\right) .
$$

The coordinates $X_{0} / X_{3}, X_{1} / X_{3}, X_{2} / X_{3}$ on U_{3} will be denoted by x_{0}, \ldots, x_{2}. The map s is a section of π. We therefore have that $s^{*} \circ \pi^{*}(\alpha)=\left.\alpha\right|_{U_{3}}$. Therefore

$$
\left.\alpha\right|_{U_{3}}=\left(\sum_{i=0}^{2}-(1)^{i+1} \frac{S_{i}}{F^{2}}+(-1)^{i} X_{i} \frac{S_{3}}{F^{2}}\right)\left(x_{0}, \ldots, x_{2}, 1\right) d x_{0} \wedge \ldots d \hat{x}_{i} \ldots \wedge d x_{2} .
$$

It follows that

$$
\left.d \alpha\right|_{U_{3}}=\sum_{i=0}^{2}\left(-\frac{\partial \frac{S_{i}}{F^{2}}}{\partial X_{i}}+\frac{\partial \frac{X_{i} S_{3}}{F^{2}}}{\partial X_{i}}\right)\left(x_{0}, \ldots, x_{2}, 1\right) d x_{0} \wedge \ldots \wedge d x_{2},
$$

and hence

$$
\left.d \alpha\right|_{U_{3}}=\left(\sum_{i=0}^{3}-\frac{\partial \frac{S_{i}}{F^{2}}}{\partial X_{i}}+\sum_{i=0}^{3} X_{i} \frac{\partial \frac{S_{3}}{F^{2}}}{\partial X_{i}}+\sum_{i=0}^{2} \frac{S_{3}}{F^{2}}\right)\left(x_{0}, \ldots, x_{2}, 1\right) d x_{0} \wedge \ldots \wedge d x_{2}
$$

By the Euler relationship, plus the fact that the degree of $\frac{S_{3}}{F^{2}}$ is -3 , it follows that

$$
\begin{gathered}
\left.d \alpha\right|_{U_{3}}=\sum_{i=0}^{3}-\frac{\partial \frac{S_{i}}{F^{2}}}{\partial X_{i}}\left(x_{0}, \ldots, x_{2}, 1\right) d x_{0} \wedge \ldots \wedge d x_{2} \\
\left.d \alpha\right|_{U_{3}}=\sum_{i=0}^{3} \frac{\partial \frac{S_{i}}{F^{2}}}{\partial X_{i}} \Omega .
\end{gathered}
$$

and hence, as required

$$
d \alpha=\frac{-2}{F^{3}} \sum_{i=0}^{3} S_{i} \frac{\partial F}{\partial X_{i}} \Omega+\frac{1}{F^{2}} \sum_{i=0}^{3} \frac{\partial S_{i}}{\partial X_{i}} \Omega
$$

Recall that

$$
\sum_{i=0}^{3} Q_{i} \frac{\partial F}{\partial X_{i}}=G P
$$

Therefore, the equation

$$
\frac{\left(\left(\frac{\partial s}{\partial G}(X)\right) \Omega\right)}{F^{2}}-2 \frac{H P \Omega}{F^{3}}=d \alpha
$$

is satisfied whenever

$$
\frac{\partial s}{\partial G}(X)=\sum_{i=0}^{3} \frac{\partial Q_{i}}{\partial X_{i}}
$$

and

$$
\alpha=\frac{\sum_{i=0}^{3} Q_{i} \operatorname{int}\left(\frac{\partial}{\partial X_{i}}\right) \Omega}{F^{2}}
$$

Since the kernel of the map $S^{6} \otimes \mathcal{O}_{U_{d}} \rightarrow \mathcal{H}^{2}$ is of constant rank, it follows that we may choose s such that $\frac{\partial s}{\partial G}(X)=\sum_{i=0}^{3} \frac{\partial Q_{i}}{\partial X_{i}}$. This completes the proof of Lemma 3. \square

It follows that

$$
\frac{\partial d_{H}\left(\bar{\gamma}^{0,2}\right)}{\partial G}(X)=\operatorname{res}_{X}\left(\sum_{i=0}^{3}\left(\frac{\partial Q_{i}}{\partial X_{i}} H-R_{i} \frac{\partial G}{\partial X_{i}}\right)\right)
$$

Therefore $q_{\bar{\gamma}^{0,2}, X}(H, G)$ is equal to

$$
\sum_{i=0}^{3}\left(\frac{\partial Q_{i}}{\partial X_{i}} H-R_{i} \frac{\partial G}{\partial X_{i}}\right)
$$

As always, this is of course an equality of elements of $R_{F}^{3 d-4} / \operatorname{Im}(\cdot \mathrm{P})$. This completes the proof of Theorem 7.
4. Non-reduced Noether-Lefschetz loci in U_{5} (proof of theorem 2). We will actually prove the following, which is slightly more precise.

Theorem 8. Let $N L(\gamma) \subset U_{5}$ be non-reduced. Let X be a point of $N L(\gamma)$. Then there exist H a hyperplane, L_{1}, L_{2} distinct lines in $X \cap H$ and α, β distinct non-zero rational numbers such that

$$
\gamma=\alpha\left[L_{1}\right]_{\text {prim }}+\beta\left[L_{2}\right]_{\text {prim }} .
$$

Traditionally, non-reduced Noether-Lefschetz components have been hard to study, since the much-used technique of degenerating X relies on being able to
integrate vector fields. We will use a different approach. The equations arising from the fundamental quadratic form allow us to directly construct harmonic forms on the complement of a special hyperplane section of X. The existence of such harmonic forms implies this section is reducible.

When $d=5$, any component of the Noether-Lefschetz locus has codimension at most 4. It was proved in [13], [6] that the codimension of $N L(\gamma)$ is ≥ 2 and this bound is achieved only if γ is a multiple of $\left[L_{1}\right]_{\text {prim }}$ for some line $L_{1} \subset X$. Further, it was shown in [14] that if $N L(\gamma)$ is of codimension 3 , then γ is a multiple of $\left[C_{1}\right]_{\text {prim }}$ for some conic $C_{1} \subset X$.

The only other Noether-Lefschetz loci in U_{5} which may have tangent spaces with exceptional codimension are non-reduced components, whose reductions are of codimension 4.

Proposition 1. Assume there exists a hyperplane H whose intersection with X has 3 components L_{1}, L_{2}, C such that L_{1} and L_{2} are distinct lines and C is a cubic. If α and β are distinct non-zero integers, then the cohomology class

$$
\gamma=\alpha\left[L_{1}\right]_{\text {prim }}+\beta\left[L_{2}\right]_{\text {prim }}
$$

is such that $N L(\gamma)$ has a non-reduced component.
Proof of Proposition 1. Since α, β are distinct and non-zero, γ is neither the (primitive part of a) class of a line nor the (primitive part of a) class of a conic. We know by the work of Voisin in [15] that $\operatorname{codim}\left(T_{N L_{\gamma}}(X)\right)>3$, and hence codim $\left.T_{N L(\gamma)_{\text {red }}}(X)\right)=4$. We now show that $N L(\gamma)$ has a non-reduced component.

The space $N L(\gamma)$ contains the space $N L\left(L_{1_{\text {prim }}}\right) \cap N L\left(L_{2_{\text {prim }}}\right)$. Since this set has codimension $\leq 2+2=4$, it follows that $N L\left(L_{1_{\text {prim }}}\right) \cap N L\left(L_{2_{\text {prim }}}\right)$ is a component of $N L(\gamma)$.

A dimension count shows that for all $Y \in N L\left(C_{1_{\text {prim }}}\right)$ there is a line $L_{1}^{Y} \in Y$
 1: hence, there is a point $p_{Y} \in L_{1}^{Y} \cap L_{2}^{Y}$. It follows that there is a plane H_{Y} in \mathbb{P}^{3} containing $L_{1}^{Y} \cup L_{2}^{Y}$. Hence, in particular, there is a hyperplane H_{Y} in \mathbb{P}^{3} on which γ_{Y} is supported.

In [10] (p. 212, observation 4.a.4) (see also [17], p. 408, proposition 17.19) it is shown that if there exists a holomorphic form ω on Y such that γ is supported on the zero locus of ω then $\operatorname{codim}\left(T_{N L(\gamma)}(Y)\right)<\binom{d-1}{3}$. Since $K_{Y}=\mathcal{O}_{Y}(1)$, there exists such a holomorphic form, and

$$
\operatorname{codim}\left(T_{N L(\gamma)}(Y)\right)<4
$$

at every point of $N L(\gamma)$. The space $N L(\gamma)$ is therefore non-reduced. This completes the proof of Proposition 1.

We will now prove Theorem 8, which says that this is the only possible type of non-reduced Noether-Lefschetz locus in U_{5}.

We assume that X is a sufficiently general smooth point of $N L(\gamma)_{\text {red }}$. Recall that P is a degree 6 polynomial such that $\operatorname{res}_{X}(P)=\gamma$. Since codim $T_{N L(\gamma)}(X)<4$, it follows from the definition of $T_{N L(\gamma)}(X)=\operatorname{Ker}(\cdot P)$ that the map

$$
\cdot P: S^{5} \rightarrow R_{F}^{11}
$$

is not surjective. By Macaulay duality there is an $X_{0} \in S^{1}$ such that

$$
X_{0} P H=0 \text { for all } H \in R_{F}^{5}
$$

whence we deduce that $X_{0} P=0$ in R_{F}. We define H to be the plane $X_{0}=0$. There exist cubics, $P_{i} \in S^{3}$, such that

$$
X_{0} P=\sum_{i=0}^{3} P_{i} \frac{\partial F}{\partial X_{i}}
$$

We now use the fundamental quadratic form to obtain relations on the P_{i} and $\frac{\partial F}{\partial X_{i}}$ which will imply that $X \cap H$ is reducible.
4.1. Relationships between P_{i} and $\frac{\partial F}{\partial X_{i}}$. We will now use the fundamental quadratic form to derive some special relationships between the $P_{i} \mathrm{~s}$ and the $\frac{\partial F}{\partial X_{i}} \mathrm{~s}$ (proposition 2). In the following sections, we will use these relationships to prove that $X \cap H$ is reducible.

Proposition 2. We have

$$
\begin{align*}
\left.\sum_{i=1}^{3} P_{i} \frac{\partial F}{\partial X_{i}}\right|_{H} & =0 \tag{4}\\
\left.\sum_{i=1}^{3} \frac{\partial P_{i}}{\partial X_{i}}\right|_{H} & =0 . \tag{5}
\end{align*}
$$

Equation 4 implies immediately that $X \cap H$ is singular. We will prove that in fact the space of triples P_{1}, P_{2}, P_{3} satisfying (4) and (5) has dimension at most $(j-1)$, where j is the number of components of $X \cap H$.

Proof of Proposition 2. We will begin by proving the following lemma.
Lemma 4. There is a non-zero L contained in S^{1} such that in R_{F}^{4}

$$
\begin{equation*}
L\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0 \tag{6}
\end{equation*}
$$

Proof of Lemma 4. We know that $\operatorname{codim} T_{N L(\gamma)}(X) \geq 2$ by the result of Voisin and Green, and codim $T_{N L(\gamma)_{\text {red }}}(X)=4$, since X is a smooth point of $N L(\gamma)_{\text {red }}$. We treat first the case where the codimension of $T_{N L(\gamma)_{\mathrm{red}}}(X)$ in $T_{N L(\gamma)}(X)$ is 1 . We have

$$
\left(X_{0} H\right) P=\sum_{i=0}^{3} P_{i} H \frac{\partial F}{\partial X_{i}}
$$

and similarly

$$
\left(X_{0} G\right) P=\sum_{i=0}^{3} P_{i} G \frac{\partial F}{\partial X_{i}}
$$

Now, suppose that $G \in S^{4}$ is such that $X_{0} G \in T_{N L(\gamma)_{\text {red }}}(X)$. Then for any $H \in S^{4}$, we have, by remark 1 , that

$$
q_{\bar{\gamma}^{0,2}, X}\left(X_{0} H, X_{0} G\right)=0
$$

Hence, the following equations hold in R_{F}

$$
X_{0} G \sum_{i=0}^{3} \frac{\partial\left(P_{i} H\right)}{\partial X_{i}}-\sum_{i=0}^{3} P_{i} G \frac{\partial\left(X_{0} H\right)}{\partial X_{i}} \in \operatorname{Im}(\cdot P)
$$

Rearranging, we get that

$$
G H\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right) \in \operatorname{Im}(\cdot P)
$$

Multiplying by X_{0}, we get that

$$
X_{0} G H\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0
$$

and finally, by Macaulay duality, we have

$$
\begin{equation*}
X_{0} G\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0 \tag{7}
\end{equation*}
$$

This last equation holds for any G in the space E defined by

$$
E=\left\{G \in S^{4} \text { such that } X_{0} G \in T_{N L(\gamma)_{\mathrm{red}}}(X)\right\}
$$

We have that $\operatorname{codim}(E) \leq 1$ (since we have supposed that the codimension of $T_{N L(\gamma)_{\text {red }}}(X)$ in $T_{N L(\gamma)}(X)$ is 1). Straightforward algebraic manipulations show that the ideal generated in R_{F} by E contains R_{F}^{5}. Hence for any $J \in R_{F}^{5}$ we have

$$
J X_{0}\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0
$$

and hence by Macaulay duality

$$
X_{0}\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0
$$

Hence Lemma 4 is proved in this case.
We now treat the case where the codimension of $T_{N L(\gamma)_{\mathrm{red}}}(X)$ in $T_{N L(\gamma)}(X)$ is
2. In this case, there are two distinct elements of S^{1}, X_{0} and X_{1}, such that $X_{0} P=0$ and $X_{1} P=0$. Once again, we define E by

$$
E=\left\{G \in S^{4} \text { such that } X_{0} G \in T_{N L(\gamma)_{\mathrm{red}}}(X)\right\}
$$

and we then obtain that

$$
X_{0} G\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0
$$

and similarly

$$
X_{1} G\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0
$$

The codimension of E is at most 2. There are 2 maps,

$$
\phi_{0} \text { and } \phi_{1}: S^{4} / E \rightarrow \operatorname{Ker}(\cdot E) \subset R_{F}^{8}
$$

given by multiplication by $X_{0}\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)$ and $X_{1}\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)$ respectively. Here by $\operatorname{Ker}(\cdot E)$, we mean the set of all elements in R_{F}^{8} which give 0 on multiplying with any element of E. If ϕ_{0} is not an isomorphism then (7) holds for all $G \in \phi_{0}^{-1}(0)$, which is a hyperplane, and the lemma follows as in the previous case.

Only the case where ϕ_{0} is invertible remains. But in this case $\phi_{0}^{-1} \circ \phi_{1}$ has an eigenvalue, λ. The multiplication map

$$
\cdot\left(X_{0}-\lambda X_{1}\right)\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right): R_{F}^{4} \rightarrow R_{F}^{8}
$$

has a kernel of codimension at most 1 , from which we conclude as before that ($X_{0}-$ $\left.\lambda X_{1}\right)\left(X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}\right)=0$. This concludes the proof of Lemma 4.

We will now attempt to prove that this implies that $X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}=0$. We start with the following technical lemma.

Lemma 5. If W^{\prime} is defined to be the space $S^{3} \times S^{1} \times\left\{\mathbb{C}^{4} / 0\right\} \times S^{5}$, then the map $\phi: W^{\prime} \rightarrow S^{4}$ given by $\phi\left(P, L, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, F\right)=P L-\sum_{i=0}^{3} \alpha_{i} \frac{\partial F}{\partial X_{i}}$ is submersive.

Proof of Lemma 5. Let $\left(Y_{0}, \ldots, Y_{3}\right)$ be co-ordinates on \mathbb{P}^{3}, such that $\sum_{i=0}^{3} \alpha_{i} \frac{\partial F}{\partial X_{i}}=\frac{\partial F}{\partial Y_{0}}$. Then

$$
\frac{\partial \phi}{\partial F}(G)=\frac{\partial G}{\partial Y_{0}}
$$

Hence $d \phi: T_{W^{\prime}} \rightarrow T_{S^{4}}$ is surjective. This completes the proof of Lemma 5 .
From this lemma we will deduce the following:
Lemma 6. If $U^{\prime} \subset U_{5}$ is defined by
$\left\{F\right.$ such that $\exists L_{1} \in R_{F}^{1}, L_{2} \in R_{F}^{3}$ such that $L_{1} \neq 0, L_{2} \neq 0$ and $L_{1} L_{2}=0$ in $\left.R_{F}^{4},\right\}$,
then codim $U^{\prime} \geq 6$.
Proof of Lemma 6. We now define W to be the subset of W^{\prime} consisting of all septuples $\left(P, L, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, F\right)$ such that

$$
P L=\sum_{i=0}^{3} \alpha_{i} \frac{\partial F}{\partial X_{i}}
$$

It follows that the codimension of W in W^{\prime} is $\operatorname{dim}\left(S^{4}\right)=35$, whence we see that

$$
\operatorname{dim}(W)=\operatorname{dim} S^{5}+4+4+20-35=\operatorname{dim}\left(S^{5}\right)-7
$$

It follows that the codimension of the image of W under projection to U_{5} is ≥ 6. This completes the proof of Lemma 6.

And finally, this gives us the following.
Lemma 7. In R_{F} we have

$$
\begin{equation*}
X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}=0 \tag{8}
\end{equation*}
$$

Proof of Lemma 7. Indeed, it follows immediately from Lemma 6, and the fact that

$$
\operatorname{codim}\left(N L(\gamma)_{\mathrm{red}}\right)=4
$$

that for a generic point of $N L(\gamma)(6)$ implies that

$$
X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}-P_{0}=0
$$

So Lemma 7 follows from Lemma 6. This completes the proof of Lemma 7.
Equation (4) of Proposition 2 now follows from the two equations

$$
\begin{equation*}
P_{0}=X_{0} \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}} \tag{9}
\end{equation*}
$$

and

$$
\sum_{i=0}^{3} P_{i} \frac{\partial F}{\partial X_{i}}=X_{0} P
$$

We turn now to the equation (5), which follows when we differentiate (9) with respect to X_{0} to obtain

$$
\frac{\partial P_{0}}{\partial X_{0}}=\sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}+X_{0} \frac{\partial\left(\sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}\right)}{\partial X_{0}}
$$

Re-arranging, we get that

$$
-X_{0} \frac{\partial \sum_{i=0}^{3} \frac{\partial P_{i}}{\partial X_{i}}}{\partial X_{0}}=\sum_{i=1}^{3} \frac{\partial P_{i}}{\partial X_{i}}
$$

This completes the proof of Proposition 2.
Now, let us consider the quintic plane curve, $D=X \cap H$. In the next section, we will denote by \tilde{F} the restriction of F to H. We define D_{1}, \ldots, D_{j} to be the components of D and d_{i} to be the degree of D_{i}.
4.2. The cohomology class γ is a linear combination of $\left[D_{1}\right], \ldots,\left[D_{j}\right]$. We will show that the dimensions of the following two spaces are the same :

1. Triples P_{i} satisfying the equations of Proposition 2,
2. Primitive cohomology classes supported on D.

From this, it will not be too hard to show that γ is supported on D.
We now prove the following proposition.
Proposition 3. The cohomology class γ is a linear combination of $\left[D_{1}\right], \ldots,\left[D_{j}\right]$.
Proof of Proposition 3. It will be enough to show that

$$
\begin{equation*}
\operatorname{dim}\left(\left\langle\gamma,\left[D_{1}\right]_{\text {prim }}, \ldots,\left[D_{j-1}\right]_{\text {prim }}\right\rangle\right) \leq j-1 \tag{10}
\end{equation*}
$$

We denote this space by V^{\prime}. We denote by V the space of all triplets of cubics $\left(P_{1}, P_{2}, P_{3}\right)$ in variables X_{1}, X_{2}, X_{3} such that

$$
\begin{equation*}
\sum_{i=1}^{3} P_{i} \frac{\partial \tilde{F}}{\partial X_{i}}=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\partial P_{i}}{\partial X_{i}}=0 \tag{12}
\end{equation*}
$$

Of course, these are simply the equations of Proposition 2. We will first show that the dimension of V is less than or equal to $(j-1)$ and then construct an injective linear map $V^{\prime} \rightarrow V$, from which (10) will follow.

Lemma 8. The dimension of V is $\leq j-1$.
Proof of Lemma 8. For this, we will need to interpret the equations (11) and (12) geometrically. We consider the maps

$$
f: V \rightarrow H^{0}\left(T_{\mathbb{P}^{2}}(2)\right)
$$

and

$$
g: H^{0}\left(T_{\mathbb{P}^{2}}(2)\right) \rightarrow H^{0}\left(\Omega_{\mathbb{P}^{2}}(D)\right)
$$

which are given by

$$
f\left(P_{1}, P_{2}, P_{3}\right)=\sum_{i=1}^{3} P_{i} \frac{\partial}{\partial X_{i}}
$$

and

$$
g(\alpha)=\frac{\operatorname{int}(\alpha) \Omega}{\tilde{F}}
$$

The map int is as given on page 10 . In this case, Ω is the canonical section of $K_{\mathbb{P}^{2}}(3)$. The map g is an isomorphism. We will show the following lemma.

Lemma 9. The map f is injective.
Proof of Lemma 9. Suppose that the triple $\left(P_{1}, P_{2}, P_{3}\right)$ were such that $f\left(P_{1}, P_{2}, P_{3}\right)=0$. There would then be P^{\prime} such that

$$
\left(P_{1}, P_{2}, P_{3}\right)=\left(X_{1} P^{\prime}, X_{2} P^{\prime}, X_{3} P^{\prime}\right)
$$

However we would then have

$$
\sum_{i=1}^{3} P_{i} \frac{\partial \tilde{F}}{\partial X_{i}}=P^{\prime} \tilde{F}
$$

and hence (11) implies that $P^{\prime}=0$. This completes the proof of Lemma 9.
We now consider the image of $g \circ f$ in $H^{0}\left(\Omega_{\mathbb{P}^{2}}(D)\right)$. We will use the following lemma.

Lemma 10. If $\left(P_{1}, P_{2}, P_{3}\right) \in V$ then $g \circ f\left(P_{1}, P_{2}, P_{3}\right) \in H^{0}\left(\Omega_{\mathbb{P}^{2}}^{1, c}(\log D)\right)$.
Here, $\Omega_{\mathbb{P}^{2}}^{1, c}(\log D)$ denotes the sheaf of closed differential forms with logarithmic singularities along D. We note that, since differential forms with logarithmic singularities can be characterised as being those differential forms with simple poles along D whose differential also has logarithmic poles along D, it is automatic that any d-closed member of $H^{0}\left(\Omega_{\mathbb{P}^{2}}^{1, c}(D)\right.$ has in fact a logarithmic singularity along D.

Proof of Lemma 10. It is enough to show that $d\left(g \circ f\left(P_{1}, P_{2}, P_{3}\right)\right)=0$. But

$$
d\left(\frac{\sum_{i=1}^{3}\left(P_{i} \operatorname{int}\left(\frac{\partial}{\partial X_{i}}\right)(\Omega)\right)}{\tilde{F}}\right)=\sum_{i=1}^{3} \frac{\left(-P_{i} \frac{\partial \tilde{F}}{\partial X_{i}}+\tilde{F} \frac{\partial P_{i}}{\partial X_{i}}\right) \Omega}{\tilde{F}^{2}}
$$

By (11) and (12), the right hand side is 0 . This completes the proof of Lemma 10.
We now complete the proof of Lemma 8. By the above, V injects into $H^{0}\left(\Omega_{\mathbb{P}^{2}}^{1, c}(\log D)\right)$. Note that D, being the intersection of a smooth surface and a plane, is reduced.

We define U to be $\mathbb{P}^{2}-D_{\text {sing }}$. By the above comment, U is \mathbb{P}^{2} minus a codimension 2 subset. There is an exact sequence on U,

$$
0 \rightarrow \Omega_{U}^{1, c} \rightarrow \Omega_{U}^{1, c}(\log D) \xrightarrow{\text { res }} \mathbb{C}_{D-D_{\text {sing }}} \rightarrow 0
$$

from which we get an associated long exact sequence,

$$
H^{0}\left(\Omega_{U}^{1, c}\right) \rightarrow H^{0}\left(\Omega_{U}^{1, c}(\log D)\right) \xrightarrow{p} H^{0}\left(D / D_{\text {sing }}, \mathbb{C}\right) \xrightarrow{\delta} H^{1}\left(\Omega_{U}^{1, c}\right)
$$

However, since $\Omega_{\mathbb{P}^{2}}^{1}$ is free and $\mathbb{P}^{2}-U$ is of codimension 2 , it follows by Levi's extension theorem that

$$
H^{0}\left(\Omega_{U}^{1}\right) \simeq H^{0}\left(\Omega_{\mathbb{P}^{2}}^{1}\right)=0
$$

Hence,

$$
H^{0}\left(\Omega_{U}^{1, c}(\log D)\right) \simeq \operatorname{Ker} \delta
$$

Since $\operatorname{dim}\left(H^{0}\left(D / D_{\text {sing }}, \mathbb{C}\right)\right)=j$, it will be enough to show that $\operatorname{Im}(p) \neq H^{0}(D-$ $\left.D_{\text {sing }}, \mathbb{C}\right)$. But if $u \in H^{0}\left(\Omega_{U}^{1, c}(\log D)\right)$ then we have that

$$
p(u)\left(D_{i}\right)=\operatorname{res}_{D_{i}}(u)
$$

where $\operatorname{res}_{D_{i}}(u)$ is the residue of the form u along D_{i}. But we know that $\sum_{i=1}^{j} d_{i} \operatorname{res}_{D_{i}} u=0$ and from this it follows that

$$
\operatorname{dim}\left(H^{0}\left(\Omega_{\mathbb{P}^{2}}^{1, c}(\log D)\right)\right) \leq j-1
$$

This completes the proof of Lemma 8.
We now prove the following lemma.
Lemma 11. The space V^{\prime} has dimension $\leq j-1$.
Proof of Lemma 11. We will construct a map $L: V^{\prime} \rightarrow V$ which we will then show to be injective. We choose a basis $\left(e_{1} \ldots, e_{m}\right)$ for V^{\prime}, such that

1. $e_{1}=\gamma$
2. $e_{2}, \ldots, e_{m} \in\left\langle\left[D_{1}\right]_{\text {prim }}, \ldots,\left[D_{j-1}\right]_{\text {prim }}\right\rangle$.

We will show that the argument presented in the proof of Proposition 2 is also valid for polynomials representing classes in the space

$$
\left\langle\left[D_{1}\right]_{\text {prim }}, \ldots,\left[D_{j-1}\right]_{\text {prim }}\right\rangle
$$

For each e_{l}, we choose Q^{l}, a degree 6 polynomial such that $\operatorname{res}_{X}\left(Q^{l}\right)=e_{l}$. By the choice of basis, we have the following.

Lemma 12. For all $l, X_{0} Q^{l}=0$ in R_{F}^{7}.
Proof of Lemma 12. This is true for $e_{1}=\gamma$ by definition. For $l \geq 2$, it follows from

$$
e_{l} \in\left\langle\left[D_{1}\right]_{\text {prim }}, \ldots,\left[D_{j-1}\right]_{\text {prim }}\right\rangle
$$

that

$$
\begin{equation*}
X_{0} \cdot S^{4} \subset T_{N L\left(e_{l}\right)}(X) \tag{13}
\end{equation*}
$$

This, by Macaulay duality and the results of Carlson and Griffiths, is equivalent to $X_{0} Q^{l}=0$ in R_{F}. This completes the proof of Lemma 12 .

We now choose polynomials $Q_{0}^{l}, Q_{1}^{l}, Q_{2}^{l}, Q_{3}^{l}$ (in four variables) such that

$$
X_{0} Q^{l}=\sum_{i=0}^{3} Q_{i}^{l} \frac{\partial F}{\partial X_{i}}
$$

We then have the following lemma.
Lemma 13. The equation (6) is valid for $\left(Q_{0}^{l}, \ldots, Q_{3}^{l}\right)$. The equations (11) and (12) are valid for the triple $\left(\left.Q_{1}^{l}\right|_{H}, \ldots,\left.Q_{3}^{l}\right|_{H}\right)$.

Proof of Lemma 13. For $l=1$, this is the statement of Proposition 2. For $l \geq 2$, Lemma 12 implies that for all degree 4 polynomials G_{1} and G_{2},

$$
X_{0} G_{1}, X_{0} G_{2} \in T_{N L\left(e_{l}\right)_{\mathrm{red}}}(X)
$$

Hence we see that for all G_{1} and G_{2} in S^{4},

$$
q_{\bar{e}_{l}^{0,2}, X}\left(X_{0} G_{1}, X_{0} G_{2}\right)=0
$$

Alternatively, as in the proof of Proposition 2

$$
G_{1} G_{2}\left(X_{0} \sum_{i=0}^{3} \frac{\partial Q_{i}^{l}}{\partial X_{i}}-Q_{0}^{l}\right) \in \operatorname{Im}(\cdot P)
$$

and multiplying by X_{0} we see that

$$
X_{0} G_{1} G_{2}\left(X_{0} \sum_{i=0}^{3} \frac{\partial Q_{i}^{l}}{\partial X_{i}}-Q_{0}^{l}\right)=0
$$

in R_{F} This time, this relationship is valid for any choice of G_{1} and G_{2}, so it follows immediately by Macaulay duality that

$$
X_{0}\left(X_{0} \sum_{i=0}^{3} \frac{\partial Q_{i}^{l}}{\partial X_{i}}-Q_{0}^{l}\right)=0
$$

in R_{F}. This is precisely equation (6). By Lemma 7, it follows that since X has been chosen general in $N L(\gamma)$

$$
\left(X_{0} \sum_{i=0}^{3} \frac{\partial Q_{i}^{l}}{\partial X_{i}}-Q_{0}^{l}\right)=0
$$

in R_{F}. Indeed, since $\operatorname{deg}\left(Q_{0}^{l}\right)=3$, it follows that $\left(X_{0} \sum_{i=0}^{3} \frac{\partial Q_{i}^{l}}{\partial X_{i}}-Q_{0}^{l}\right)=0$. The two equations (11) and (12) now follow as in the proof of Proposition 2. This completes the proof of Lemma 13.

We set $L\left(e_{l}\right)=\left(\left.Q_{1}^{l}\right|_{H},\left.Q_{2}^{l}\right|_{H},\left.Q_{3}^{l}\right|_{H}\right)$ and extend by linearity. We will now prove the following lemma.

Lemma 14. L is injective.
Proof of Lemma 14. Let v be any element of V^{\prime}. By linearity, there are cubic polynomials $Q_{0}^{v}, Q_{1}^{v}, Q_{2}^{v}, Q_{3}^{v}$ in variables X_{0}, \ldots, X_{3} such that

1. $L(v)=\left(\left.Q_{1}^{v}\right|_{H},\left.Q_{2}^{v}\right|_{H},\left.Q_{3}^{v}\right|_{H}\right)$,
2. The equation (6) is valid for $Q_{0}^{v}, \ldots, Q_{3}^{v}$,
3. There exists a Q^{v} such that $\sum_{i=0}^{3} Q_{i}^{v} \frac{\partial F}{\partial X_{i}}=X_{0} Q^{v}$,
4. Q^{v} represents the cohomology class v.

Lemma 14 now follows from the following lemma.
Lemma 15. Suppose that $\gamma=\operatorname{res}_{X}(P)$, and there exist $\left(P_{0}, \ldots, P_{3}\right)$ such that

$$
X_{0} P=\sum_{i=0}^{3} P_{i} \frac{\partial F}{\partial X_{i}}
$$

Suppose further that (6) is valid and that

$$
\left.P_{1}\right|_{H}=\left.P_{2}\right|_{H}=\left.P_{3}\right|_{H}=0, i \geq 1
$$

Then $\gamma^{1,1}=0$.
Proof of Lemma 15. We have

$$
\begin{equation*}
X_{0} P=\sum_{i=0}^{3} P_{i} \frac{\partial F}{\partial X_{i}} \tag{14}
\end{equation*}
$$

By hypothesis, X_{0} divides P_{i} for $i \geq 1$. It follows from (6) that X_{0} divides P_{0}. Therefore, (14) implies that

$$
P \in\left\langle\frac{\partial F}{\partial X_{i}}\right\rangle
$$

from which it follows that

$$
\operatorname{res}_{X} P \in F^{2}\left(H^{2}(X, \mathbb{C})\right)
$$

Alternatively, we have that

$$
\gamma^{1,1}=0
$$

This completes the proof of Lemma 15.
Since all elements of V^{\prime} are Hodge $(1,1)$ classes, the injectivity of L follows immediately. This completes the proof of Lemma 19.

This completes the proof of Lemma 11.
This completes the proof of Proposition 3.
4.3. The curve D is generically the union of two lines and a cubic. To complete the theorem, it will be enough to show that D is necesarily the union of two lines and a (possibly reducible) cubic. This will follow from a simple dimension count.

Lemma 16. The curve $X \cap H$ must have at least 3 components.
Proof of Lemma 16. We know that γ is a linear combination of classes of curves contained on $X \cap H$. If $X \cap H$ contains only two reducible components, then γ is either the linear combination of

1. a line and a hyperplane section or
2. a conic and a hyperplane section.

This is not possible, since all such cohomology classes have reduced associated Noether-Lefschetz loci. This completes the proof of Lemma 16.

There are now two possibilities:

1. γ is a linear combination of the cohomology classes of two lines and a hyperplane section,
2. X belongs to S, the space of all quintic hypersurfaces possessing a hyperplane section which is the union of two conics and a line.
The codimension of S is 5 and the codimension of $N L(\gamma)$ is at most 4, so the general element of $N L(\gamma)$ cannot be contained in S.

It remains only to exclude the cases $\gamma=\alpha\left(\left[L_{1}+L_{2}\right]_{\text {prim }}\right)$ or $\gamma=\alpha\left(\left[L_{1}\right]_{\text {prim }}\right)$. In the first case, γ is (a multiple of) the primitive part of the cohomology class of a conic, and in the second case γ is (a multiple of) the primitive part of the cohomology class of a line. In either case, γ has a reduced Noether-Lefschetz locus.

This concludes the proof of Theorem 2. \quad a
5. A weaker form of the Green-Ciliberto conjecture holds (proof of Theorem 3). Let us begin by summarising the motivation for the Green-Ciliberto conjecture. We recall that the tangent space $T_{N L(\gamma)}(X)$ is simply the kernel of the map

$$
\cdot P: S^{d} / F \rightarrow R_{F}^{3 d-4}
$$

which is multiplication by P. If $N L(\gamma)$ is exceptional, then the multiplication map $\cdot P: R_{F}^{d} \rightarrow R_{F}^{3 d-4}$ is not onto. Since the multiplication map

$$
R_{F}^{d-4} \otimes R_{F}^{3 d-4} \rightarrow R_{F}^{4 d-8}
$$

is a perfect pairing this is equivalent to saying that there exists $Q \in S^{d-4}$ such that $Q P=0$ in R_{F}. This is equivalent to saying that

$$
Q \cdot S^{4} \subset T_{N L(\gamma)}(X)
$$

There is one case in which it is clear this will be the case - namely when γ is supported on $Z \cap X$, where Z is the surface defined by Q. (In this case, we will say that γ is supported on Q). The Green-Ciliberto conjecture says that this should be the only possibility. The main theorem of this section is as follows.

Theorem 9. Suppose that $e \leq \frac{d-1}{2}$ and $j \leq\binom{ e+3}{3}$. There exists an integer, $\phi_{e, j}(d)$ such that if $N L(\gamma)$ is reduced and $\operatorname{codim}(N L(\gamma)) \leq \phi_{e, j}(d)$ then the dimension of the space $\left\{Q \in S^{e}\right.$ such that γ is supported on $\left.Q\right\}$ is $\geq j$.

Further, $\phi_{\frac{d-1}{2}, 1}(d)=O\left(d^{3}\right)$.
On setting $j=1$ in this statement, we obtain the result given in the introduction.
5.1. Integrating along special sub-bundles of $T_{N L(\gamma)}$. One way in which one might thnk of trying to prove that the class γ is supported on Q would be to try to show that $F+G Q$ is contained in $N L(\gamma)$. From this it would follow by a degeneration argument - due to Griffiths and Harris for smooth Q, and Voisin for general Q - that γ is supported on Q.

This is equivalent to showing that under small perturbation of F in the direction $t G Q$ the tangent vector $G Q$ does not leave the tangent space $T_{N L(\gamma)}$. Unfortunately, this is false. However, in what follows, we show that under the condition that $Q \cdot S^{d-e} \subset T_{N L(\gamma)}(X)$, with $e \leq \frac{d-1}{2}$, we have that $F+G Q^{2}$ is contained in $N L(\gamma)$ for any G.

The theorem will follow immediately from the following two propositions.
Proposition 4. Suppose that $N L(\gamma)$ is reduced and for all Y in some neighbourhood of X, a general element of $N L(\gamma)$, the space

$$
V=\left\{Q \in S^{e} \mid Q \cdot S^{d-e} \subset T_{N L(\gamma)}(Y)\right\}
$$

is of dimension $j>0$. Suppose further that $e \leq \frac{d-1}{2}$. Then, for all $Q \in V$ and $G \in S^{d-2 e}$ such that $F+G Q^{2} \in O$ we have $F+G Q^{2} \in N L(\gamma)$.

Proposition 5. Let X be an element of $N L(\gamma)$. We can construct $\phi_{e, j}(d)$ as above such that if

$$
\operatorname{codim}(N L(\gamma)) \leq \phi_{e, j}(d)
$$

then $\operatorname{dim}\left\{Q \in S^{e} \mid Q \cdot S^{d-e} \subset T_{N L(\gamma)}(X)\right\} \geq j$.
Given these two propositions, it follows by the argument given in section 2 of [15], ($\mathrm{pp} 56-59$), that γ is supported on $Q^{2}=0-$ and hence on $Q=0$.

Proof of Proposition 4. We assume, since the question was dealt with for $d=6,7$ in [15], that $d \geq 8$. We construct a space W as follows:

$$
W=\left\{(Y, A) \in N L(\gamma) \times S^{e} \mid A \cdot S^{d-e} \subset T_{N L(\gamma)}(Y)\right\}
$$

If X is a sufficiently general smooth point of $N L(\gamma)$, then the space

$$
V_{Y}=\left\{A \in S^{e} \mid A \cdot S^{d-e} \subset T_{N L(\gamma)}(Y)\right\}
$$

is of constant dimension near X. The space W will be a smooth over some neighbourhood of X. We will prove the following lemma.

Lemma 17. At any point (Y, A) of W we have $\left(G A^{2}, 0\right) \in T_{W}(Y, A)$ for all G.
Proof of Lemma 17. We know that there exists some B such that $\left(G A^{2}, B\right) \in$ $T_{W}(Y, A)$, since the map $W \rightarrow N L(\gamma)$ locally induces a surjection on the tangent spaces. Denote this tangent vector by χ. Let us derive the equation

$$
A P=\sum_{i} L_{i} \frac{\partial F}{\partial X_{i}}
$$

in the direction χ. By Lemma 3, we can choose to have that

$$
\chi(P)=\sum_{i} \frac{\partial\left(L_{i} G A\right)}{\partial X_{i}}
$$

By definition of χ we have $\chi(A)=B$ and $\chi(F)=\left(G A^{2}\right)$. Hence we have

$$
A \sum_{i}\left(\frac{\partial\left(L_{i} G A\right)}{\partial X_{i}}\right)+B P=\sum_{i}\left(L_{i} \frac{\partial G A^{2}}{\partial X_{i}}+\chi\left(L_{i}\right) \frac{\partial F}{\partial X_{i}}\right)
$$

Rearranging, we get that in R_{F}

$$
G A \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right)=-B P
$$

We will now prove the following result.
Lemma 18. We have

$$
A \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right)=0 \text { in } R_{F}
$$

Proof of Lemma 18. It is in the proof of this key lemma that we will use the fundamental quadratic form. Note that for all $H_{1}, H_{2} \in S^{d-e}$,

$$
A H_{1} \text { and } A H_{2} \in T_{N L(\gamma)}(X)
$$

and further,

$$
q_{\bar{\gamma}^{0,2}, X}\left(A H_{1}, A H_{2}\right)=0
$$

Hence, for all H_{1}, H_{2} the following equality holds in R_{F}

$$
\sum_{i}\left(A H_{1} \frac{\partial\left(H_{2} L_{i}\right)}{\partial X_{i}}-H_{1} L_{i} \frac{\partial\left(A H_{2}\right)}{\partial X_{i}}\right) \in \operatorname{Im}(\cdot P)
$$

Rearranging, we get that

$$
H_{1} H_{2} \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right) \in \operatorname{Im}(\cdot P)
$$

From this we see that for all $H \in S^{2 d-2 e}$,

$$
H A \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right)=0
$$

in R_{F}. We know that

$$
\operatorname{deg} H A \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right)=3 d-4+e \leq 4 d-8
$$

In the last inequality we have used the fact that $d \geq 8$. It follows that

$$
A \sum_{i}\left(A \frac{\partial L_{i}}{\partial X_{i}}-L_{i} \frac{\partial A}{\partial X_{i}}\right)=0
$$

in R_{F}. This completes the proof of Lemma 18.
Returning to the proof of Lemma 17 , we see that $B P=0$. Hence

$$
(0, B) \in T_{W}(Y, A)
$$

and therefore

$$
\left(G A^{2}, 0\right) \in T_{W}(Y, A) \text { for all } G \in S^{d-2 e}
$$

This completes the proof of Lemma 17.
We now complete the proof of Proposition 4. We have just shown there is a field of tangent vectors on W which we denote by τ_{G} given by

$$
\tau_{G}(Y, A)=\left(G A^{2}, 0\right)
$$

We may now integrate along the tangent field τ_{G}, at least locally. (Here, we have used the fact that (Y, A) is a smooth point of W). Hence $F+\epsilon G p^{2}$ is contained in $N L(\gamma)$ for all sufficiently small ϵ. This completes the proof of Proposition 4.

We must now construct the integer $\phi_{e, j}(d)$ such that if $\operatorname{codim}(N L(\gamma)) \leq \phi_{e, j}(d)$ then the dimension of the space

$$
V=\left\{Q \in S^{e} \text { such that } Q \cdot S^{d-e} \in T_{N L(\gamma)}(X)\right\}
$$

is at least j. In what follows, when $W \subset S^{n}$ is a sub-vector space, $\langle V\rangle^{n+m}$ will denote the subspace of S^{n+m} generated by W.

Proof of Proposition 5. This theorem is essentially a statement about multiplication in a certain polynomial ring. We will rely on the following theorem, due to Macaulay and Gotzmann which may be found in [5] (pp. 64-65).

Theorem 10 (Macaulay, Gotzmann). Given an integer, d, any other integer c may be written in a unique way as

$$
c=\binom{k_{d}}{d}+\binom{k_{d-1}}{d-1}+\ldots\binom{k_{i}}{i}
$$

for some integer i. where $k_{d}>k_{d-1} \cdots>k_{i}$. We define $c^{<d>}$ by

$$
c^{<d>}=\binom{k_{d}+1}{d+1}+\binom{k_{d-1}+1}{d}+\ldots\binom{k_{i}+1}{i+1} .
$$

Let V be a subvector space of S^{d} of codimension c. Then, the codimension of $\langle V\rangle^{d+1}$ in S^{d+1} is $\leq c^{<d>}$ and if equality holds then for all j we have

$$
\operatorname{codim}\left(\langle V\rangle^{d+j}\right)=\left(\left(\left(c^{<d>}\right)^{<d+1>}\right) \ldots\right)^{<d+j-1>}
$$

Here, $\langle V\rangle^{i}$ denotes the degree i part of the ideal generated by V in $\mathbb{C}\left[X_{0}, \ldots X_{3}\right]$. We now define a set of functions, $g_{i}(n)$. The function $g_{i}(n)$ should be thought of as "the maximal codimension of $\langle V\rangle^{d+i}$ in S^{d+i} if V is a subvector space of S^{d} of codimension n containing $\left\langle\frac{\partial F}{\partial X_{0}}, \ldots, \frac{\partial F}{\partial X_{3}}\right\rangle$." We define

- $g_{0}(n)=n$,
- $g_{i+1}(n)=g_{i}(n)^{<d+i>}-1$.

Lemma 19. If $V \subset S^{d}$ has codimension n and $S^{1} \cdot\left\langle\frac{\partial F}{\partial X_{i}}\right\rangle \subset V$, then for any integer j the subspace generated by V in S^{d+j} has codimension $\leq g_{j}(n)$.

Proof of Lemma 19. This follows from Theorem 10 by induction on noting that the inclusion $S^{1} \cdot\left\langle\frac{\partial F}{\partial X_{i}}\right\rangle \subset V$ implies that V generates $S^{4 d-7}$, and hence it is not possible to have

$$
\operatorname{codim}\left(\langle V\rangle^{d+j+1}\right)=\left(\operatorname{codim}\left(\langle V\rangle^{d+j}\right)\right)^{<d+j\rangle}
$$

for any $j \leq 3 d-8$. This completes the proof of Lemma 19 .
We are now in a position to define the integer $\phi_{e, j}(d)$.
Definition 2. The integer $\phi_{e, j}(d)$ is the smallest integer n having the property that

$$
g_{2 d-4-e}(n) \leq\binom{ e+3}{3}-j
$$

The above work can be combined to prove Theorem 9 with this definition of $\phi_{e, j}$. It will be enough to show that if $\operatorname{codim}(N L(\gamma)) \leq \phi_{e, j}(d)$ then $\operatorname{dim} \operatorname{Ker}(\cdot P) \geq j$. But the ring

$$
S_{F}=R_{F} / \operatorname{Ker}(\cdot P)
$$

is a Gorenstein graded ring of rang $2 d-4$. It follows by duality that

$$
\operatorname{dim}\left(S_{F}\right)^{e}=\operatorname{dim}\left(S_{F}\right)^{2 d-4-e}
$$

and hence that

$$
\operatorname{dim}\left(R_{F} / \operatorname{Ker}(\cdot P)\right)^{e} \leq\binom{ e+3}{3}-j
$$

by the definition of $\phi_{e, j}(d)$. Hence we have

$$
\operatorname{dim}(\operatorname{Ker}(\cdot P))^{e} \geq j
$$

Remark 2. When we choose $e=1, j=2$, we recover the result of [13] and [6]albeit with the additional hypothesis that $N L(\gamma)$ should be reduced.

It remains only to prove that $\phi_{\frac{d-1}{2}}(d)$ is indeed a cubic function of d.
Proposition 6. There exists $\alpha>0$ such that

$$
\phi_{\frac{d-1}{2}}(d) \geq \alpha d^{3}
$$

for d sufficiently large.
Proof of Proposition 6. Since $\left(\frac{d-1}{2}+3\right)$ is a cubic in d, there exists $\beta<1$ such that for d large

$$
\binom{\frac{d-1}{2}+3}{3}-1 \geq(\beta d+1)\binom{\frac{3 d-1}{2}+2}{2}
$$

Hence

$$
\binom{\frac{d-1}{2}+3}{3}-1 \geq \sum_{i=0}^{\lceil\beta d\rceil}\binom{\frac{3 d-1}{2}-i+2}{2}
$$

and it follows that

$$
g_{\frac{d+1}{2}}\left(\sum_{i=0}^{\lceil\beta d\rceil}\binom{d-i+2}{2}\right) \leq\binom{\frac{d-1}{2}+3}{3}-1
$$

Hence we have

$$
\phi_{\frac{d-1}{2}, 1}(d) \geq \sum_{i=0}^{\lceil\beta d\rceil}\binom{d-i+2}{2}
$$

But we know that

$$
\sum_{i=0}^{\lceil\beta d\rceil}\binom{d-i+2}{2}>\frac{\beta(1-\beta)}{2} d^{3}
$$

and this completes the proof of Proposition 6.
Theorem 8 follows immediately.

REFERENCES

[1] J. Carlson, P. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem, Géométrie Algébrique, ed. A. Beauville, Sijthoff-Noordhoff, Angers 1980, pp. 5176.
[2] J. Carlson, M. Green, P. Griffiths, J. Harris, Infinitesimal variations of Hodge structure (1), Compositio Mathematica, 50 (1983), no.2-3, pp. 109-205.
[3] C. Ciliberto, J. Harris, R. Miranda, General components of the Noether-Lefschetz locus and their density in the space of all surfaces, Math. Ann., 282:4 (1988), pp. 667-680.
[4] D. Eisenbud, Commutative Algebra (with a view towards Algebraic Geometry), Springer, Graduate Texts in Mathematics, 150.
[5] G. Gotzmann, Eine Bedingung für die Flachheit und das Hilbert polynom eines Graduierten Ringes, Math. Z., 158:1 (1978), pp. 61-70.
[6] M. Green, Components of maximal dimension in the Noether-Lefschetz locus, J. Diff, Geom., 29:2 (1989), pp. 295-302.
[7] P. Griffiths, Periods of integrals on algebraic manifolds, 2, American Journal of Mathematics, 90 (1968), pp. 805-865.
[8] P. Griffiths, On the periods of certain rational integrals I, II, Ann. of Math., 90:2 (1969), pp. 460-495; ibid., 90:2 (1969), pp. 496-541.
[9] P. Griffiths, J. Harris, On the Noether-Lefschetz locus and some remarks on codimensiontwo cycles, Math. Ann, 271:1 (1985), pp. 31-51.
[10] P. Griffiths, J. Harris, Infinitesimal variations of Hodge structure (2), Compositio Mathematica, 50 (1983), no. 2-3, pp. 109-205.
[11] A. Otwinowska, Composantes de petite codimension du lieu de Noether-Lefschez : un argument asymptotique en faveur de la conjecture de Hodge, J. Alg. Geom., 12:2 (2003), pp. 307-320.
[12] A. OTWInOWska, Monodromie d'une famille d'hypersurfaces ; application à l'étude du lieu de Noether-Lefschetz, submitted for publication.
[13] C. Voisin, Une précision concernant le théorème de Noether, Math. Ann., 280:4 (1988), pp. 605-611.
[14] C. Voisin, Composantes de petite codimension du lieu de Noether-Lefschetz, Comm. Math. Helve., 64:4 (1989), pp. 515-526.
[15] C. Voisin, Sur le lieu de Noether-Lefschetz en degrés 6 et 7, Compositio Mathematica, 75:1 (1990), pp. 47-68.
[16] C. Voisin, Contrexemple à une conjecture de J. Harris, C.R. Acad. Sci. Paris Sér. I Math., 313 (1991), pp. 685-687.
[17] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10. Société Mathématique de France, Paris, 2002.

[^0]: *Received October 1, 2004; accepted for publication June 15, 2005.
 ${ }^{\dagger}$ Institut Fourier, 100 Rue des Mathématiques, Domaine Universitaire, Saint Martin d’Héres, Isére, France (Catriona.MacLean@ujf-grenoble.fr).

