
ASIAN J. MATH. c© 2005 International Press
Vol. 9, No. 2, pp. 261–272, June 2005 011

NONEMPTINESS OF SKEW-SYMMETRIC DEGENERACY LOCI∗

WILLIAM GRAHAM†

Abstract. Let V be a rank N vector bundle on a d-dimensional complex projective scheme X;
assume that V is equipped with a skew-symmetric bilinear form with values in a line bundle L and
that Λ2V ∗ ⊗L is ample. Suppose that the maximum rank of the form at any point of X is r, where
r > 0 is even. The main result of this paper is that if d > 2(N −r), then the locus of points where the
rank of the form is at most r − 2 is nonempty. The analogous result for symmetric degeneracy loci
was proved in [Gra]; the proof here is similar. If the hypothesis of ampleness is relaxed, we obtain a
weaker estimate on the maximum dimension of X (and give a similar result for the symmetric case).
We give applications to subschemes of skew-symmetric matrices, and to the stratification of the dual
of a Lie algebra by orbit dimension.
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1. Introduction. This paper proves a nonemptiness result for skew-symmetric
degeneracy loci. The analogous result for symmetric degeneracy loci was proved in
[Gra]. The methods used in this paper are similar; the proof uses ideas of [IL], which
are related to work of Fulton, Lazarsfeld, Tu, Harris, and Sommese ([FL1], [FL2],
[Laz], [Tu1], [HT], [Som]). The geometry used in the proof is slightly different than
in [Gra]: in place of projective and quadric bundles, we use Grassmannian bundles
of 2-planes and isotropic 2-planes. The results of this paper do not require the more
refined properties of Gysin maps needed to handle the odd rank case in [Gra].

Before stating the main result we illustrate it with an application. Let SSr(N)
denote the projectivization of the space of skew-symmetric N × N complex matrices
of rank at most r. Because the rank of a skew-symmetric matrix is necessarily even,
we will assume r is even. The codimension of SSr−2(N) in SSr(N) is 2(N − r) + 1
(cf. [Ful1, Ex. 14.4.11], or [IL, 2.5]), so there exist 2(N − r)-dimensional closed
subschemes of SSr(N) not meeting SSr−2(N). We prove that this is the largest
dimension possible.

Theorem 1.1. Assume that r > 0 is even. If X is a closed subscheme of SSr(N)
not meeting SSr−2(N), then dim X ≤ 2(N − r).

If U is a vector subspace of the space of N ×N complex matrices, we say that U
has constant rank r if every nonzero matrix in U has rank r. As a corollary to the
above theorem, we obtain the following linear algebra result.

Corollary 1.2. Assume r is even. If U is a constant rank r vector subspace of
the space of skew-symmetric N × N complex matrices, then dim U ≤ 2(N − r) + 1.

If N = r + 1 then the corollary says that dim U ≤ 3. The bound in this case is
achieved, as shown by an example of Westwick (see [IL, p. 168]).

If V → X is a vector bundle with a bilinear form with values in a line bundle L,
let Xr denote the subscheme of points in X where the rank of the form is at most r.
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Theorem 1.1 is deduced from the following theorem, which is the main result of the
paper.

Theorem 1.3. Let X be a d-dimensional complex projective scheme and let
V → X be a rank N vector bundle. Suppose that V is equipped with a skew-symmetric
bilinear form with values in a line bundle L such that the restriction of the form to
any fiber has rank at most r, where r > 0 is even. Assume that Λ2V ∗ ⊗ L is ample.
If the form has constant rank r, then d ≤ 2(N − r). Equivalently, if d > 2(N − r),
then the locus Xr−2 is nonempty.

Theorem 1.1 is an immediate consequence, as the trivial bundle V = CN ×
SSr(N) → SSr(N) is equipped with a skew-symmetric form with values in L = O(1),
and the bundle Λ2V ∗ ⊗ L is ample. Observe that as a consequence of this theorem
one obtains a stepwise proof of the nonemptiness of skew-symmetric degeneracy loci,
a result proved by other methods in [FL2, Prop. 3.5].

If the hypothesis of ampleness in the main theorem is relaxed, we obtain a weaker
estimate on the maximum dimension of X (see Theorem 3.3). A similar result holds
in the symmetric case; see Remark 3.4.

One natural example of a skew-symmetric map is the Lie bracket on a Lie algebra
g. From this, one can define a skew-symmetric form ω on the bundle g × P (g∗) →
P (g∗), with values in OP (g∗)(1). The orbits of the algebraic group G on g∗ all have
even dimension. Let

g∗r = {λ ∈ g∗ | dim G · λ ≤ r};

then g∗r is a closed conical subset of g∗, and the projectivization P (g∗r) coincides with
the locus P (g∗)r defined using the form ω. Applying our main theorem yields a result
(Proposition 4.3) about the stratification of g∗ by orbit dimension. As a consequence
of this result we obtain the following bound on the size of minimal dimensional orbits
in g∗ (Corollary 4.4): if N = dim g, and r is the minimal dimension of a nonzero
G-orbit on g∗, then

r ≤ 2

⌊

2N + 1

6

⌋

.

This bound is achieved in the example of the minimal nonzero coadjoint orbits of the
group SL3.

The contents of the paper are as follows. Section 2 contains some preliminary
results used in the proof of the main theorem. In particular, we define projection from
a subspace in a Grassmannian (or Grassmannian bundle) to a smaller Grassmannian,
generalizing the construction for projective space, and we prove that this map is an
affine linear bundle map (Proposition 2.5). The proof of the main theorem and its
generalized version are given in Section 3, and the application to Lie algebras is given
in Section 4.

I would like to thank Robert Varley for encouraging me to consider bundles that
are not necessarily ample.

Conventions and notation. Schemes are of finite type over C; all algebraic groups
are assumed to be linear. Homology and cohomology are taken with rational coeffi-
cients, unless otherwise noted. A symplectic form on an r-dimensional vector space is
a nondegenerate skew-symmetric form; r must be even. Similarly, we speak of a sym-
plectic form on a rank r vector bundle; such a form may take values in a line bundle.
If V and W are vector bundles, Hom(V, W ) denotes the vector bundle V ∗ ⊗ W , and
Gs(V ) the Grassmann bundle of s-dimensional planes in V .
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2. Preliminaries. Let r be even, and let ( , ) be a symplectic form on Cr. We
define the conformal symplectic group GSpr as the set of all g in GLr such that for
all v, w ∈ Cr,

(gv, gw) = τ(g)(v, w), (2.1)

where τ(g) depends only on g. Equivalently, g must satisfy the condition gtMg =
τ(g)M . This group is, up to isomorphism, independent of the choice of symplectic
form. The reason is that all symplectic forms on Cr are equivalent, in the sense that
given a second symplectic form on Cr, there is a linear automorphism of Cr such that
the pullback of the second symplectic form is our original form.

As in the case of the orthogonal groups, (2.1) implies that (det g)2 = τ(g)r .
However, in the symplectic case, a stronger result holds. We include a proof for lack
of a reference.

Proposition 2.1. The group GSpr is connected, and any g ∈ GSpr satisfies
det g = τ(g)r/2.

Proof. For r = 2, direct computation shows that GSp2 = GL2 and det g = τ(g).
In general, GSpr acts transitively on P r−1. Let P denote the stabilizer in GSpr

of a point x of P r−1. Then P is a parabolic subgroup of GSpr, with Levi factor
L isomorphic to C∗ × GSpr−2. By induction we may assume that L is connected,
and hence so is P . Since GSpr/P ≃ P r−1 is also connected, we see that GSpr is
connected. Since the function

g 7→
τ(g)r/2

det g

has square 1, its only possible values are ±1. Hence the function is constant on
connected components; since GSpr is connected, the function is identically 1.

The (homology) Poincaré polynomial of a space X is by definition Pt(X) =
∑

bit
i,

where bi = dim Hi(X) is the i-th Betti number of X (recall that we take homology
and cohomology with rational coefficients).

Proposition 2.2. Let W be a symplectic vector space of dimension r = 2n,
and let G2(W ) (resp. Z) denote the Grassmanian of (resp. isotropic) 2-planes in
W . Then the odd homology groups of G2(W ) and Z vanish, and, setting q = t2, the
Poincaré polynomials of these spaces are given by

Pt(G2(W )) = 1 + q + 2q2 + 2q3 + · · · + (n − 1)qr−4 + (n − 1)qr−3

+nqr−2 + (n − 1)qr−1 + · · · + q2r−4

Pt(Z) = 1 + q + 2q2 + 2q3 + · · · + (n − 1)qr−4 + (n − 1)qr−3

+(n − 1)qr−2 + (n − 1)qr−1 + · · · + q2r−5.

(2.2)

(Since these spaces are compact orientable manifolds, the polynomials are palin-
dromic.)

Proof. If G is a connected reductive group, and P ⊃ B are a parabolic subgroup
and a Borel subgroup, respectively, then there is a fibration G/B → G/P , with fibers
P/B. Because the odd cohomology of these spaces vanishes, the cohomology spectral
sequence of the fibration degenerates at E2, so

Pt(G/P ) =
Pt(G/B)

Pt(P/B)
.
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The numerator and denominator of the right hand side can be calculated in terms
of Weyl groups. If l is the rank of the semisimple part of g = Lie G, then there
exist fundamental invariants d1, . . . , dl of the Weyl group W of g, called exponents,
in terms of which we can express the Poincaré polynomial of G/B:

Pt(G/B) =
∑

w∈W

ql(w) =

∏

i(q
di − 1)

(q − 1)l
.

Here l(w) is the length of w, the first equality follows from the Bruhat decomposition,
and the second is in [Hum]. Because P/B = L/BL, where the Levi factor L of P
is reductive, and BL is a Borel subgroup of L, Pt(P/B) is calculated by a similar
formula using the exponents of the Weyl group of l = Lie L. The exponents of all
Weyl groups of simple complex Lie algebras are known; for slr (type Ar−1) they are
2, 3, . . . , r; for spr (type Cr/2, with r even), they are 2, 4, 6, . . . , r (see [Hum]). If a
group is reductive, then its Lie algebra has a semisimple part which is a product of
simple Lie algebras, and its set of exponents is the union (with multiplicities) of the
sets of exponents corresponding to those simple Lie algebras.

The Grassmannian G2(W ) equals G/P , where G = SLr and p = Lie P has
Levi factor with semisimple part isomorphic to sl2 × slr−2. Similarly, the isotropic
Grassmannian Z equals G/P , where G = Spr and p has Levi factor with semisimple
part isomorphic to sl2× spr−4. The desired formulas for Pt(G2(W )) and Pt(Z) follow
(with a little algebra) from this, using the facts in the previous paragraph.

Note that as complex varieties, dim G2(W ) = 2r − 4 and dim Z = 2r − 5, as
follows from the above proposition (or by directly computing the dimensions of the
groups G and P used to realize these spaces as homogeneous spaces).

Proposition 2.3. Let W → X be a rank r vector bundle over a d-dimensional
scheme X. Assume that W is equipped with a symplectic form with values in a line
bundle L. Let G2(W ) (resp. Z) denote the Grassmannian bundles of (resp. isotropic)
2-planes in W . Let bi = dim Hi(X) for i ≥ 0, and bi = 0 for i < 0. Then

dim H2d+2r−4(G2(W )) = nb2d + (n − 1)b2d−2 + (n − 1)b2d−4 + (n − 2)b2d−6

+(n − 2)b2d−8 + · · · + b2d−(4r−6) + b2d−(4r−8)

dim H2d+2r−6(Z) = dim H2d+2r−4(G2(W )) − b2d.
(2.3)

Hence if X is complete and irreducible,

dim H2d+2r−4(G2(W )) = dim H2d+2r−6(Z) + 1. (2.4)

Proof. Since both G2(W ) and Z are partial flag bundles associated to principal
bundles for connected groups (which are, respectively, GLr and GSpr), the homology
of each of these bundles is isomorphic to the tensor product of the homology of X
with the homology of the fiber ([Ler]; an argument is also given in [Gra, Prop. 4.4]).
Combining this with the previous proposition yields (2.3); (2.4) follows from this,
since if X is complete and irreducible then b2d = 1 [Ful1, Lemma 19.1.1].

We now discuss affine linear bundles on schemes. By an affine linear bundle of
rank n we mean a fiber bundle with fibers isomorphic to Cn, but with structure group
equal to the group M(n) generated by GLn and translations. We require that such
a bundle be locally trivial in the Zariski topology. This definition differs from but is
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equivalent to the definition in [Bry]; that paper uses the term affine bundle. However,
because this term is used in [Ful1, p. 22] in a weaker sense (there the structure group
is not required to be M(n)), we have used the term affine linear bundle.

We can identify M(n) modulo translations with GLn, and so we have a natural
surjection π : M(n) → GLn. Given a collection of transition functions for an affine
linear bundle E → X , composing those functions with π yields a collection of transi-
tion functions for an associated vector bundle V → X (in [Bry], the term associated
vector bundle is used in a different sense). The structure group of E reduces to GLn

if and only if E has a section; in this case, E and its associated vector bundle V are
isomorphic schemes.

Remark 2.4. In the usual (complex) topology, E always has a (continuous)
section [Ste, 12.2] and thus E and V are homeomorphic. Therefore E and V are both
homotopy equivalent to X . However, in general E and V need not be isomorphic
as schemes. For example, if G = SL2, and T (resp. B) is the subgroup of diagonal
(resp. upper triangular) matrices, then G/T is an affine variety which is an affine
linear bundle over G/B = P 1, and the associated vector bundle is the cotangent
bundle of P 1 (see [Bry]), which is not an affine variety.

Let

0 → K → V
ρ
→ W → 0

be an exact sequence of vector bundles on a scheme X , of ranks N − r, N , and r,
respectively. Let Gs(V )K denote the open subscheme of Gs(V ) whose fiber over any
x ∈ X consists of those points in Gs(Vx) corresponding to those subspaces of Vx whose
intersection with Kx is {0}. Assume that Gs(V )K is nonempty, which is equivalent
to saying that s ≤ r. Define a map

π : Gs(V )K → Gs(W ) (2.5)

by sending p ∈ Gs(Vx) to ρ(p) ∈ Gs(Wx). We call π the projection from the subbundle
K.

Proposition 2.5. Let

0 → K → V
ρ
→ W → 0 (2.6)

be an exact sequence of vector bundles on a scheme X, of ranks N − r, N , and r,
respectively. Let s ≤ r. Let ν : Gs(W ) → X denote the projection, and let S → Gs(W )
denote the tautological rank s subbundle of ν∗W . Then π : Gs(V )K → Gs(W ) has
the structure of an affine linear bundle on Gs(W ) of rank s(N − r), with associated
vector bundle Hom(S, ν∗K).

Before giving the proof we need some preliminaries. First, note that Gr(W ) = X .
Also, we can identify Gr(V )K with the closed subscheme E = E(W, K) of Hom(W, V )
defined as follows. There is a natural map η : Hom(W, V ) → Hom(W, W ). Let X1

denote the closed subscheme of Hom(W, W ) corresponding to the identity section,
and let

E = E(W, K) = η−1(X1). (2.7)

Note that the fiber Ex is given by

Ex = {f ∈ Hom(Wx, Vx) | ρ ◦ f = id}.
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The isomorphism

E → Gr(V )K

takes f ∈ Ex to the subspace f(Wx) ∈ Gr(Vx). The inverse map takes Ux ∈
(Gr(V )K)x to the map f = (ρ|Ux

)−1 ∈ Ex.
As stated in [Ful2], E is an affine bundle over X . The next lemma (the special

case s = r of Proposition 2.5) shows that E is in fact an affine linear bundle. In the
case where (2.6) is the tautological exact sequence of bundles on the Grassmannian
GN−r(C

N ), a version of this lemma is [Bry, Ex. 4.3].

Lemma 2.6. Let 0 → K → V
ρ
→ W → 0 be an exact sequence of vector bundles

on a scheme X, of ranks N − r, N , and r, respectively, and let E be as defined in
(2.7). Then E has a natural structure of an affine linear bundle on X, with associated
vector bundle Hom(W, K).

Proof. We begin by choosing compatible trivializations of the vector bundles K,
V , and W . Precisely, cover X by (Zariski) open sets on which we have trivializing
isomorphisms

βi : V |Ui

∼=
→ C

N × Ui

such that, if αi is the restriction of βi to K|Ui
, then αi takes K|Ui

isomorphically to
the subbundle (CN−r × {0}) × Ui of CN × Ui. There is an induced isomorphism

γi : W |Ui

∼=
→ C

r × Ui.

We denote the transition functions for these bundles by αij , βij , and γij , so, writing
Uij = Ui ∩ Uj and we have βij : Uij → GLN , etc. (To be precise, write V |ij = V |Uij

.
Our convention is that if S is a scheme and v and x are S-valued points of CN and
Uij , respectively, we define βij(x) by the equation

βi|Vij
◦ (βj |Vij

)−1(v, x) = (βij(x)v, x),

and similarly for αij , γij .) Note that for a point x of Uij , the matrix βij has the block
form

βij(x) =

[

αij(x) Mij(x)
0 γij(x)

]

for some matrix Mij(x).
Our trivializations induce trivializing isomorphisms

δi : Hom(W, K)|Ui

∼=
→ Hom(Cr, CN−r) × Ui.

Let

δij : Uij → GL(Hom(Cr, CN−r))

denote the corresponding transition functions; if f ∈ Hom(Cr, CN−r) and x ∈ Uij ,
then

δij(x)(f) = αij(x) ◦ f ◦ γij(x)−1. (2.8)
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We have additional induced trivializing isomorphisms

ζi : Hom(W, V )|Ui

∼=
→ Hom(Cr, CN−r) × Ui.

Write ζ̄i for the restriction of ζi to E|Ui
.

Let p : Hom(Cr, CN ) → Hom(Cr, CN−r) be induced by projection of CN onto
the first N − r coordinates. Define maps

εi : E|Ui
→ Hom(Cr, CN−r) × Ui

by

εi = (p × id) ◦ ζ̄i.

One can verify that the εi are isomorphisms and that the corresponding transition
functions εij are as follows. If f ∈ Hom(Cr, CN−r) and x ∈ Uij , then

εij(x)(f) = αij(x) ◦ f ◦ γij(x)−1 + Mij(x)γij(x)−1. (2.9)

Therefore the εi give E the structure of an affine linear bundle; comparing (2.8) and
(2.9), we see that the associated vector bundle is Hom(W, K).

Proof of Proposition 2.5. Let ν : Gs(W ) → X denote the projection. The pullback
by ν of the exact sequence (2.6) is an exact sequence of vector bundles on Gs(W ):

0 → ν∗K → ν∗V
ν∗ρ
−→ ν∗W → 0.

Let S ⊂ ν∗W denote the tautological rank s subbundle, and B = (ν∗ρ)−1(S). The
sequence

0 → ν∗K → B → S → 0

is again exact. Let φ̃ denote the composition

Gs(B) → Gs(ν
∗V ) ∼= Gs(W ) ×X Gs(V ) → Gs(V ),

where the first map is induced by the bundle inclusion B ⊂ ν∗V , and the second
map is the natural projection. Concretely, if q ∈ Gs(Wx) and p ∈ Gs(Bq), then the
inclusion

Bq ⊂ ν∗Vq = Vν(q)

means that p defines a point of Gs(Vν(q)); that point is φ̃(p). Note that

φ̃−1(Gs(V )K) = Gs(B)ν∗K . Let

φ = φ̃|Gs(B)ν∗K
: Gs(B)ν∗K → Gs(V )K .

We claim that φ is an isomorphism of schemes over Gs(W ). By Lemma 2.6, this
suffices, since Gs(B)ν∗K can be identified with E(S, ν∗K).

To prove the claim, by working locally on X , we may assume that the bundles
K, V and W are trivial, and thereby reduce to the case where X is a point. In this
case, K, V , and W are just vector spaces. Then

Gs(B) ∼= {(p, q) | p ∈ Gs(V ), q ∈ Gs(W ), q̃ := ρ−1(q) ⊃ p}
∼= {(q̃ ⊃ p) | p ∈ Gs(V ), q̃ ∈ Gs+N−r(V ), q̃ ⊃ K}.



268 W. GRAHAM

The projection Gs(B) → Gs(W ) takes (q̃ ⊃ p) to ρ(q̃). The open subvariety Gs(B)ν∗K

consists of (q̃ ⊃ p) as above satisfying the additional condition p ∩ K = {0}, i.e.,
p ∈ Gs(V )K . The map φ takes (q̃ ⊃ p) to p. The map p 7→ (p + K, p) is inverse to φ;
hence φ is an isomorphism. Finally, φ is compatible with the maps to Gs(W ), since
given (q̃ ⊃ p) as above with p ∈ Gs(V )K , we have ρ(q̃) = ρ(p).

Corollary 2.7. Let V → X be a rank N vector bundle with a skew-symmetric
form with values in a line bundle L. Assume that the form has constant rank r. Let
K denote the radical of the form, and let W = V/K; then W inherits an L-valued
skew-symmetric form V . Let Z ⊂ G2(W ) and Z̃ ⊂ G2(V ) denote the subbundles of
isotropic 2-planes. Then G2(V ) − Z̃ is an affine linear bundle over G2(W ) − Z, of
rank 2(N − r).

Proof. This follows from Proposition 2.5, since under the map

π : G2(V )K → G2(W ),

the inverse image of G2(W ) − Z is G2(V ) − Z̃.

3. Proofs of the main results.

3.1. Proof of Theorem 1.3. The proof is parallel to that of the main theorem
in [Gra]. We may assume that X is irreducible of dimension d. We assume that
the form is of constant rank r, where r is even and positive; we must show that
d ≤ 2(N − r). Let K denote the radical of the form; K is a vector subbundle of V , of
rank N − r. Let W = V/K; then W is a rank r vector bundle on X , equipped with
a nondegenerate skew-symmetric form with values in L. Let G2(V ) (resp. G2(W ))
denote the Grassmann bundle of 2-planes in V (resp. W ), and let Z̃ ⊂ G2(V ) (resp.
Z ⊂ G2(W )) denote the subbundle of isotropic 2-planes. By Corollary 2.7, G2(V )− Z̃
is a rank 2(N−r) affine linear bundle over G2(W )−Z, so by Remark 2.4, the homology
groups of these spaces are isomorphic.

Let π1 and π2 denote the projections from G2(V ) and P (Λ2V ) to X . We claim
that there exists a section of an ample line bundle on G2(V ) vanishing only on Z̃.
Indeed, since Λ2V ∗ ⊗L is ample, the line bundle OP (Λ2V ⊗L∗)(1) is ample. Under the
natural isomorphism between P (Λ2V ) and P (Λ2V ⊗L∗), this line bundle corresponds
to the line bundle L′ = OP (Λ2V )(1)⊗π∗

2L, which is therefore an ample line bundle on
P (Λ2V ). Let S → G2(V ) be the tautological rank 2 subbundle. Under the Plücker
embedding G2(V ) →֒ P (Λ2V ), L′ pulls back to L′′ = Λ2S∗ ⊗ π∗

1L, which is therefore
ample. Our skew-symmetric form is a section of the bundle Λ2V ∗⊗L → X ; this pulls
back to a section of π∗

1(Λ2V ∗⊗L) → G2(V ). Composing this section with the natural
map π∗

1(Λ2V ∗ ⊗ L) → L′′ yields a section of L′′. This section vanishes at p ∈ G2(V )
if and only if p is isotropic, proving the claim.

Because G2(V ) is projective, the claim implies that G2(V )−Z̃ is an affine scheme.
Since the dimension of G2(V )− Z̃ is 2(N − 2) + d, and since the homology groups of
this space are isomorphic to those of G2(W ) − Z, we conclude that

Hj(G2(W ) − Z) = 0 for j > 2(N − 2) + d. (3.1)

The map i : Z →֒ G2(W ) is a regular embedding and there exists a tubular neighbor-
hood of Z in G2(W ) (cf. [Gra, Prop. 2.5]). Therefore there is a Gysin sequence

· · · → Hj(G2(W )−Z) → Hj(G2(W ))
i∗
→ Hj−2(Z) → Hj−1(G2(W )−Z) → · · · (3.2)
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(see [Gra, Section 3]). This exact sequence and (3.1) imply that i∗ : Hj(G2(W )) →
Hj−2(Z) is injective for j > 2(N − 2) + d. On the other hand,

dim H2d+2r−4(G2(W )) = dim H2d+2r−6(Z) + 1

(Proposition 2.3). Hence 2d + 2r − 4 ≤ 2(N − 2) + d, so d ≤ 2(N − r), as desired.
This completes the proof.

Remark 3.1. The preceding proof did not use the more refined properties of
Gysin maps needed in [Gra] to handle the case of odd rank symmetric degeneracy
loci. In fact, an exact sequence similar to (3.2) can be constructed without reference
to Gysin maps, and then the proof will go through. The analogous construction is
given in [Gra, Section 4]; we omit details here.

We can relax the hypothesis of ampleness and obtain a weaker bound on the
dimension of X , using a result of Goresky and MacPherson. We begin with some
definitions. If π : X → Y is a morphism of varieties, where X has pure dimension d,
finitely decompose X into subvarieties Vi so that π|Vi

has constant fiber dimension.
Goresky and MacPherson define the defect D(π) of π as the supremum over i of the
fiber dimension of π|Vi

minus the codimension of Vi. They prove that if π is proper
and Y is affine, then X has the homotopy type of a CW complex of real dimension at
most d + e, where e = D(π). In particular, Hi(X) = 0 for i > d + e, and Hd+e(X ; Z)
is torsion-free. See [GM, pp. 25, 152].

If L is a line bundle on a complete scheme X , we will say that L has defect
D(L) = e if some tensor power L⊗k is pulled back to X by a morphism π : X → P l

with D(π) = e. Line bundles with defect 0 are called lef by de Cataldo and Migliorini
[dCM], and studied there. Ample line bundles have defect 0.

The following lemma is an immediate consequence of the result of Goresky and
MacPherson stated above. For n-ample line bundles, a similar cohomology vanishing
theorem appears as [Tu2, Theorem 6.2], with a proof by Harris.

Lemma 3.2. Let L be a line bundle on an irreducible projective scheme X of
dimension d, and let Z be the zero-scheme of a non-zero section of L. Assume that
D(L) = e. Then Hi(X −Z) = 0 for i > d + e, and Hd+e(X −Z; Z) is torsion-free.

We can now state the generalization of our main theorem.

Theorem 3.3. Assume the hypotheses of Theorem 1.3, except replace ampleness
of Λ2V ∗⊗L by the following hypothesis: with notation as in the proof of Theorem 1.3,
assume that the bundle Λ2S∗ ⊗ π∗

1L on G2(V ) has defect e. If the form has constant
rank r, then d ≤ 2(N − r) + e. Equivalently, if d > 2(N − r) + e, then the locus Xr−2

is nonempty.

Proof. Using Lemma 3.2, the proof of Theorem 3.3 is a simple modification of
the proof of Theorem 1.3; it is only necessary to replace the estimate (3.1) by the
estimate

Hj(G2(W ) − Z) = 0 for j > 2(N − 2) + d + e. (3.3)

Remark 3.4. In [Gra], we proved that if V → X is a rank N vector bundle
on a d-dimensional projective scheme X , with an L-valued quadratic form such that
S2V ∗ ⊗ L is ample, and the quadratic form has constant rank r, then d ≤ N − r.



270 W. GRAHAM

Let π : P (V ) → X denote the projection. If instead of assuming that the bundle
S2V ∗⊗L on X is ample, we assume that the defect of the bundle OP (V )(2)⊗π∗L on
P (V ) is e, then we obtain the estimate d ≤ N − r + e.

4. Example: Duals of Lie algebras. In this section we apply our main theo-
rem to the stratification of the dual of a Lie algebra by orbit dimension.

Let G be an algebraic group and g its Lie algebra. Let 〈 , 〉 denote the pairing
between g∗ and g. Define a skew-symmetric form ω on the trivial bundle g×P (g∗) →
P (g∗), with values in OP (g∗)(1), as follows. If λ ∈ g∗ − {0}, let [λ] denote the
corresponding point in P (g∗). Then [λ] is a line in g, with dual space [λ]∗. If x, y ∈ g,
then ω[λ](x, y) is the element of [λ]∗ satisfying

ω[λ](x, y)(µ) = 〈µ, [x, y]〉,

for µ ∈ [λ].

Remark 4.1. The form defined above can be viewed as a special case of the
following construction (cf. [Gra]). If V → X is a vector bundle with a bilinear form
with values in a vector bundle W on X , consider ρ : P (W ∗) → X . The vector bundle
ρ∗V has a bilinear form with values in OP (W∗)(1). This is defined by composing
the natural ρ∗W -valued bilinear form on ρ∗V with the projection ρ∗W → S∗, where
S = OP (W∗)(−1) is the tautological subbundle. The form ω on the bundle g×P (g∗) →
P (g∗) is obtained by applying this construction to g, viewed as a bundle over a point.

The group G acts on g∗ via the coadjoint action. Define

g∗r = {λ ∈ g∗ | dim G · λ ≤ r}.

This is a conical closed subset of g∗, so we obtain P (g∗r) ⊂ P (g∗).
Any coadjoint orbit has a symplectic form (defined by Kirillov and Kostant) and

hence is even-dimensional. The form ω is closely related to the symplectic form on
coadjoint orbits; this is reflected in the following lemma (in which we equip closed
subschemes with the reduced scheme structures).

Lemma 4.2. The subscheme P (g∗r) of P (g∗) is equal to the subscheme P (g∗)r of
points in P (g∗) where the form ω has rank at most r.

Proof. Let Gλ denote the stabilizer of λ in G, and gλ the Lie algebra of Gλ. It
is enough to show that the radical of ω[λ] is gλ. Let ad denote the adjoint action of

g on itself, and ad+ the dual action on g∗. By definition of the dual action, for all
x, y ∈ g,

〈ad+(x)λ, y〉 + 〈λ, ad(x)y〉 = 0. (4.1)

Thus, x ∈ g is in the radical of ω[λ] iff 〈λ, ad(x)y〉 = 0 for all y in g iff ad+(x)λ = 0,

which is equivalent to x ∈ gλ.

Applying our main theorem to the stratification of P (g∗) yields as an immediate
consequence a result about conical subvarieties of g∗.

Proposition 4.3. Let G be an N -dimensional algebraic group with Lie algebra g.
Let r > 0 be even, and let g∗r denote the subscheme of all points in g∗ whose G-orbits
have dimension at most r. If X is a conical closed subscheme of g∗r meeting g∗r−2 only
at 0, then dim X ≤ 2(N − r) + 1.
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As a corollary we obtain the following result about minimal orbits.

Corollary 4.4. Let G be an N -dimensional algebraic group with Lie algebra g.
Let r be the minimal dimension of a nonzero G-orbit in g∗. Then

r ≤ 2

⌊

2N + 1

6

⌋

.

Proof. We may assume r > 0. Since g∗r is a conical closed subscheme of g∗ which
contains subvarieties of dimension r (namely orbit closures), we have

r ≤ dim g∗r ≤ 2(N − r) + 1,

so r
2 ≤ 2N+1

6 . Because r
2 is an integer, the result follows.

As noted in the introduction, the bound in the above corollary is achieved for the
minimal coadjoint orbits of the group SL3; in this case N = 8 and r = 4.
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