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SELF-SIMILAR MEASURES ASSOCIATED TO IFS WITH
NON-UNIFORM CONTRACTION RATIOS∗

SZE-MAN NGAI† AND YANG WANG‡

Abstract. In this paper we study the absolute continuity of self-similar measures defined by iter-
ated function systems (IFS) whose contraction ratios are not uniform. We introduce a transversality
condition for a multi-parameter family of IFS and study the absolute continuity of the corresponding
self-similar measures. Our study is a natural extension of the study of Bernoulli convolutions by
Solomyak, Peres, et al.
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1. Introduction. Let {Si}q
i=1 be an iterated function system (IFS) of contractive

similitudes on R
d defined by

(1.1) Si(x) = ρiRix+ bi, 1 ≤ i ≤ q,

where 0 < ρi < 1, bi ∈ R
d and Ri is a d × d orthogonal matrix for each i. Let

F be the corresponding self-similar set (i.e. the attractor) and let dimH(F ) denote
the Hausdorff dimension of F . For any set of probability weights {pi} such that
0 < pi < 1 and

∑q
i=1 pi = 1, there corresponds a unique probability measure, known

as a self-similar measure, which is supported on F and satisfies the following self-
similar identity:

(1.2) µ =

q∑

i=1

piµ ◦ S−1
i

(see e.g. Hutchinson [H], Falconer [F]). It is well known that µ is either singular or
absolutely continuous with respect to the d-dimensional Lebesgue measure (see e.g.
Dubins and Freedman [DF] or Peres et al. [PSS]). We are interested in conditions
that determine this dichotomy.

Let us recall that for the IFS in (1.1) the similarity dimension of F is defined
to be the unique real number α satisfying

∑q
i=1 ρ

α
i = 1. It is easy to show (see [F,

Sections 9.2 and 9.3]) that the similarity dimension of F is always greater than or
equal to its Hausdorff dimension. Consequently, if

(1.3)

q∑

i=1

ρd
i < 1,

then the similarity dimension of F will be less than d and hence dimH(F ) < d. This
forces µ to be singular. Therefore we only need to study the case

∑q
i=1 ρ

d
i ≥ 1.
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The absolute continuity of self-similar measures with all similitudes having the
same contraction ratio, particularly in one dimension, has been investigated exten-
sively, most notably in [PS1], [PS2], [So], [PSc]. In a seminal work Solomyak [So]
proves that the infinite Bernoulli convolution, which is the self-similar measure given
by

S1(x) = ρx, S2(x) = ρx+ 1, p1 = p2 =
1

2

is absolutely continuous for almost all 1/2 < ρ < 1. The proof employs an important
concept called the transversality condition, first introduced in Pollicott and Simon
[PoS]. Subsequently more general results on absolute continuity of self-similar mea-
sures have been obtained in several studies (see [PS2], [PSc]), all of which employing
the transversality condition. The transversality condition has been used to study
other questions in fractal geometry (see e.g. [PSc] and [PSS]).

When the similitudes are allowed to have non-uniform contraction ratios little has
been known on the absolute continuity of the corresponding self-similar measures, even
for the simple IFS consisting of two maps

S1(x) = ρ1x, S2(x) = ρ2x+ 1, p1 = p2 =
1

2
.

The main objective of this paper is to study the absolute continuity of self-similar
measures associated with such iterated function systems. A basic theorem we establish
is:

Theorem 1.1. Let {Si}q
i=1 be an IFS on R

d given by Si(x) = ρiRix+ bi, where
0 < ρi < 1, bi ∈ R

d and Ri is an orthogonal d× d matrix. Let µ be the corresponding
self-similar measure with probability weights p1, . . . , pq.

(i) Suppose that
∏q

i=1 p
pi

i ρ
−dpi

i > 1. Then µ is singular.

(ii) Suppose that
∏q

i=1 p
pi

i ρ
−dpi

i = 1 but pi 6= ρd
i for some i. Then µ is singular.

(iii) Suppose that pi = ρd
i for all i. Then µ is absolutely continuous if and only if

the IFS {Si} satisfies the open set condition (OSC). In this case µ = αLd|F
where F is the attractor of the IFS, α = 1/Ld(F ) and Ld is the Lebesgue
measure on R

d.

We remark that part (i), the easier part of Theorem 1.1, is known. In fact Nicol

et al. [NSB] showed that the condition
∏q

i=1 p
pi

i ρ
−dpi

i > 1 implies that the Hausdorff
dimension of µ, denoted by dimH(µ), is strictly less than d. This forces µ to be
singular. Recall that

dimH(µ) := inf
{

dimH(E) : µ(Rd \ E) = 0
}
.

In §2 we give an elementary probabilistic proof of this result by using the Law of Large
Numbers. Such a probabilistic approach also enables us to obtain sharper results, as
in the proof of part (ii) in Theorem 1.1.

A well-known fact is that it is typically much harder to establish absolutely con-
tinuity than to prove singularity. In our case this fact is greatly exacerbated by the
non-uniformity of the contraction ratios. The standard definition of the transversality
condition needs to be modified into a more complex form, and is much harder to ver-
ify. Furthermore, we no longer have the powerful tool of convolution at our disposal.
(We will discuss this in more detail later on.)
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Fig. 1. Regions of singularity and a.e. absolute continuity for the measure µρ1,ρ2 in Theorem
1.3. Condition (1.3) is satisfied on the left of the line ρ2 = 1 − ρ1. For (ρ1, ρ2) on the left of the
hyperbola ρ2 = 1/(4ρ1), µρ1,ρ2 is singular (Theorem 1.1 (i)). On the hyperbola, µρ1,ρ2 is singular
except when ρ1 = ρ2 = 1/2 (Theorem 1.1 (ii) and (iii)). The shaded region bounded by the hyperbola
and the “saw-tooth” curve is the known region of a.e. absolute continuity. The remaining region is
unknown and µρ1,ρ2 is conjectured to be absolutely continuous for L2-a.e. (ρ1, ρ2) in that region.

To establish absolute continuity we consider an IFS {Si}q
i=1 in the one dimen-

sional case d = 1, where each Si(x) = ρix + bi. Fix b1, b2, . . . , bq and a set of prob-
ability weights p1, . . . , pq > 0 with

∑q
i=1 pi = 1. For the corresponding self-similar

measure to be absolutely continuous the contraction ratios ρ1, . . . , ρq must lie in the
region

∏q
i=1 p

pi

i ρ
−pi

i < 1. The transversality condition for a one-parameter family of
similitudes can be generalized to a multi-parameter family of similitudes. We shall
define it in details in §3. Using the transversality condition we establish the following
generalization of a result in [PS2]:

Theorem 1.2. Let {Si(x) = ρi(λ)x + bi(λ)}q
i=1 be a C2 family of IFS on R

with parameters λ = (λ1, . . . , λm). Fix a set of probability weights p1, . . . , pq > 0 with∑q
i=1 pi = 1 and let µλ be the corresponding self-similar measure. Suppose that Ω is

an open subset of the region {λ :
∏q

i=1(pi/ρi(λ))pi < 1} such that for λ ∈ Ω the
IFS {Si} satisfies the transversality condition. Then µ is absolutely continuous for
Lebesgue almost all λ ∈ Ω.

The transversality condition for a one-parameter family of IFS is already difficult
to verify, and for a multi-parameter family it is even harder. We consider the special
case of q = 2 with equal probability weights.

Theorem 1.3. Let µρ1,ρ2
be the self-similar measure corresponding to the IFS

{S1, S2} on R with

S1(x) = ρ1x, S2(x) = ρ2x+ 1, p1 = p2 =
1

2
.

Then µρ1,ρ2
is absolutely continuous for Lebesgue almost all (ρ1, ρ2) in the region

ρ1ρ2 > 1/4 and 0 < ρ1, ρ2 < 0.6491.
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The actual region of absolute continuity we have established is shown in Figure 1,
and is substantially larger than the region stated in Theorem 1.3. Details about the
absolute continuity of µρ1,ρ2

are in §4. We conjecture that for almost all (ρ1, ρ2) in
the region ρ1ρ2 > 1/4 the measure µρ1,ρ2

is absolutely continuous. But the proof of
this conjecture would perhaps require radically new ideas, in particular for the area
where one of the parameters is very close to 1.

2. Proof of Theorem 1.1. We first introduce the following standard notation.
Let Σq = {1, 2, . . . , q} be the set of letters, and let Σn

q be the set of words of length n

in Σq. We use Σ∗
q and ΣN

q to denote the set of all finite words in Σq and the set of all
one-sided sequences in Σq, respectively. For each j = (j1, . . . , jn) ∈ Σ∗

q let |j|i denote
the number of letters i in j, and let |j| = n be the length of j. Furthermore, define

pj := pj1 · · · pjn
, ρj := ρj1 · · · ρjn

, Sj = Sj1 ◦ · · · ◦ Sjn
.

Iterating equation (1.2) n times we get

(2.1) µ =
∑

j∈Σn
q

pjµ ◦ S−1
j .

Proof of Theorem 1.1 (i). This part is known (see [NSB]). We include a
different proof here for self-containment. Let Ld denote the Lebesgue measure on R

d.
We will construct a sequence of Borel sets {Fn} such that lim infn→∞ µ(Fn) ≥ C > 0,
where C is some constant independent of n and limn→∞ Ld(Fn) = 0. This shows that
µ is singular.

Let F be the attractor of the IFS {Si}q
i=1. F is the support of the self-similar

measure µ. Since
∏q

i=1 p
pi

i ρ
−dpi

i > 1 there exists an ε > 0 sufficiently small such that

q∏

i=1

ppi+ε
i ρ

−d(pi−ε)
i = b > 1.

For each n > 0 define

Kn := {j ∈ Σn
q : (pi − ε)n ≤ |j|i ≤ (pi + ε)n, 1 ≤ i ≤ n}

and let Fn :=
⋃

j∈Kn
Sj(F ). Observe that Kn 6= ∅ for all sufficiently large n. Moreover,

for each j ∈ Kn we have S−1
j (Fn) ⊇ F , and hence µ(S−1

j (Fn)) = 1. By (2.1),

µ(Fn) ≥
∑

j∈Kn

pjµ(S−1
j (Fn)) =

∑

j∈Kn

pj.

The standard Law of Large Numbers (see e.g. Shiryaev [Sh], Ch. I, §5) yields µ(Fn) →
1 as n→∞. Now on the other hand,

Ld(Fn) ≤
∑

j∈Kn

Ld(Sj(F )) =
∑

j∈Kn

ρd
jLd(F ).

But

∑

j∈Kn

ρd
j =

∑

j∈Kn

ρd
j p

−1
j pj ≤

∑

j∈Kn

pj

( q∏

i=1

ρ
d(pi−ε)n
i p

−(pi+ε)n
i

)
=

∑

j∈Kn

pjb
−n ≤ b−n.
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Hence Ld(Fn) → 0 as n→∞. Thus, µ is singular.
The proof of part (ii) of Theorem 1.1 is more involved. The Law of Large Numbers

is no longer sufficient. We need more refined estimates. This is done through the use
of the vector form Central Limit Theorem.

Proof of Theorem 1.1 (ii) and (iii). First we prove (iii). Suppose that pi = ρd
i

for all i. Then the similarity dimension of the IFS {Si} is exactly d. Hence the support
of the corresponding self-similar measure µ has positive Lebesgue measure if and only
if {Si} satisfies the open set condition (OSC) (see Schief [Sc]). In particular {Si} must
satisfy the OSC if µ is absolutely continuous. Conversely if {Si} satisfies the OSC
then µ = αLd|F , where F is the attractor of the IFS and α = 1/Ld(F ), obviously
satisfies (1.2) and is absolutely continuous.

We now prove (ii). We again construct a sequence of sets Fn such that µ(Fn) >
c > 0 for all n where c is independent of n and Ld(Fn) → 0. This will prove that µ is
singular.

For any nonempty An ⊆ Σn
q we define

ΩAn
:=

⋃

j∈An

Sj(F ).

Then

(2.2) Ld(ΩAn
) ≤

∑

j∈An

Ld
(
Sj(F )

)
= Ld(F )

∑

j∈An

ρd
j .

Observe that S−1
j (ΩAn

) ⊇ F , so µ(S−1
j (ΩAn

)) = 1 for all j ∈ An. It follows from
(2.1) that

(2.3) µ(ΩAn
) =

∑

j∈Σn
q

pjµ(S−1
j (ΩAn

)) ≥
∑

j∈An

pj.

Our objective is to find a sequence {An} in Σn
q and some ε0 > 0 such that

(2.4) lim
n→∞

∑

j∈An

ρd
j = 0 and lim sup

n→∞

∑

j∈An

pj ≥ ε0 > 0.

Together with (2.2) and (2.3), this will force µ to be singular.
Now, write ρd

i = pici. Since
∏q

i=1 c
pi

i = 1 and not all pi = ρd
i , there must exist

some ci < 1 and some ci > 1. Without loss of generality we assume that

c1, . . . , cr < 1, cr+1, . . . , cq ≥ 1.

For positive integers n sufficiently large define

An :=
{
j ∈ Σn

q : |j|1 ≥ p1n+
√
n, |j|i ≥ pin for 2 ≤ i ≤ r, |j|i ≤ pin for r < i ≤ q

}
.

Note that An 6= ∅ for all n sufficiently large. Moreover,
∑

j∈An

ρd
j =

∑

j∈An

pjcj =
∑

j∈An

pjc
|j|1
1 . . . c|j|qq .

It follows from the definition of An thatX
j∈An

ρd
j ≤

X
j∈An

pjc
p1n+

√
n

1 cp2n
2 · · · c

pqn
q = c

√
n

1

X
j∈An

pj

�
cp1
1 cp2

2 . . . c
pq
q

�n

= c
√

n
1

X
j∈An

pj ≤ c
√

n
1 .
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Hence
∑

j∈An
ρd
j → 0 as n→ ∞. To complete the proof of (2.4) we only need to prove

that lim supn→∞

∑
j∈An

pj ≥ ε0 for some ε0 > 0.

Lemma 2.1. There exists an ε0 > 0 such that for sufficiently large n,

∑

j∈An

pj ≥ ε0.

Proof. We use the vector form Central Limit Theorem in probability theory to
prove the lemma. Consider the random vector

X = ei with probability pi,

where ei is the standard coordinate vector in R
q. Independently generate n such

random vectors X1, . . . ,Xn. Let Yn = X1 + · · · + Xn. Then

∑

j∈An

pj = Prob
{
Y 1

n ≥ p1n+
√
n, Y i

n ≥ pin for 2 ≤ i ≤ r, Y i
n ≤ pin for r < i ≤ q

}
,

where [Y 1
n , . . . , Y

q
n ]T = Yn. Let

Zn =
Yn − E(Yn)√

n
=

Yn − n[p1, . . . , pq]
T

√
n

=: [Z1
n, . . . , Z

q
n]T .

Let U be the subset of R
q defined by

U := {(x1, . . . , xq) : x1 ≥ 1, x2, . . . , xr ≥ 0, xr+1, . . . , xq ≤ 0}.

Then

(2.5)
∑

j∈An

pj = Prob
{
Zn ∈ U

}
.

Observe that Zn = [Z1
n, . . . , Z

q
n]T lies on the hyperplane x1 + · · · + xq = 0 in R

q. So
we consider the reduced random vector Z∗

n := [Z1
n, . . . , Z

q−1
n ]T . Under this setting,

Zq
n ≤ 0 ⇔ Z1

n + · · · + Zq−1
n ≥ 0.

Define U∗ ⊂ R
q−1 by

U∗ :=
{
(x1, . . . , xq−1) : x1 ≥ 1, x2, . . . , xr ≥ 0, xr+1, . . . , xq−1 ≤ 0,

q−1∑

k=1

xk ≥ 0
}
.

Hence we may rewrite (2.5) as

∑

j∈An

pj = Prob
{
Z∗

n ∈ U∗
}
.

Now, by the Central Limit Theorem (see Theorem 29.5 in Billingsley [B]),

Z∗
n −→ Z weakly,
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where Z has normal distribution centered at the origin whose covariance matrix A =
(σij) satisfies

σij = E
(
(X i − pi)(X

j − pj)
)

=

{
pi − p2

i , if i = j
−pipj , if i 6= j,

where 1 ≤ i, j ≤ q − 1 and X = [X1, . . . , Xq]T . Since pq > 0, it is easy to see that A
is diagonally dominant. So A is nonsingular. Hence (see p. 384 of [B]) Z has density

fZ(x) = (2π)
q−1

2 | detA|− 1
2 exp

(
− 1

2
xTA−1x

)
, x ∈ R

q−1.

This means that

lim
n→∞

Prob
{
Z∗

n ∈ U∗
}

=

∫

U∗

fZ(x) dx.

The set U∗ obviously has positive Lebesgue measure in R
q−1. Therefore∫

U∗
fZ(x) dx > 0. Thus for sufficiently large n we have

∑

j∈An

pj = Prob
{
Z∗

n ∈ U∗
}
>

1

2

∫

U∗

fZ(x) dx =: ε0 > 0,

proving the lemma.
By proving this lemma we have now completed the proof of Theorem 1.1 (ii).

3. Transversality condition and a.e. absolute continuity. We consider an
IFS {Si}q

i=1 on R where Si(x) = ρix+bi, in which ρi = ρi(λ1, . . . , λm) with 0 < ρi < 1
and bi = bi(λ1, . . . , λm) depend on the real parameters λ1, . . . , λm. We call the IFS
{Si} an m-parameter family of IFS, and throughout the paper we will assume that all
ρi and bi are C2 functions of λ = (λ1, . . . , λm). A subset of R

m is called a region if it
is the union of an open connected set with some, none, or all its boundary points.

Definition 3.1. An m-parameter family {Si}q
i=1 of IFS satisfies the transver-

sality condition for λ ∈ Ω, where Ω is a region in R
m, if for any i, j ∈ ΣN

q with
i(1) 6= j(1) we have

(3.1) ‖∇(Si(0) − Sj(0))‖ > 0 whenever Si(0) − Sj(0) = 0,

where ∇ denotes the gradient with respect to the parameters λ.

Observe that Sj(x) = Sj(0) for any x and j ∈ ΣN
q . Hence we shall adopt the

notation Sj := Sj[λ] = Sj[λ1, . . . , λm] for Sj(x) = Sj(0). Furthermore, write Fi,j(λ) :=
Si[λ] − Sj[λ]. Then (3.1) becomes

‖∇Fi,j(λ)‖ > 0 whenever Fi,j(λ) = 0.

Lemma 3.1. Let f(λ) be C2 on a region Ω ⊆ R
m and λ

∗ ∈ Ω such that Br(λ
∗) ⊆

Ω. Let f(λ∗) = 0 and ‖∇f(λ∗)‖ ≥ ε > 0. Suppose that all second partial derivatives

of f satisfy | ∂2f
∂λi∂λj

(λ)| ≤ M on Ω. Then there exists a δ = δ(ε,M, r) > 0 and a

C0 = C0(ε,M, r) > 0 such that for all t > 0,

Lm
(
{λ ∈ Ω ∩Bδ(λ

∗) : |f(λ)| ≤ t}
)
≤ C0t.
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Proof. Since ‖∇f(λ∗)‖ ≥ ε > 0 we may without loss of generality assume that
| ∂f
∂λ1

(λ∗)| ≥ ε/
√
m. Write λ

∗ = [λ∗1, . . . , λ
∗
m]T and define g : Ω −→ R

m by

g(λ) := [f(λ), λ2 − λ∗2, . . . , λm − λ∗m]T .

The derivative Dg(λ) := [∂gi/∂λj ] is upper triangular with | detDg(λ∗)| ≥ ε/
√
m >

0. Now all second partial derivatives of f are bounded by M . The Mean Value
Theorem applied to ∂f/∂λ1 restricted to the line segment from λ

∗ to λ implies that

∣∣∣∣
∂f

∂λ1
(λ) − ∂f

∂λ1
(λ∗)

∣∣∣∣ ≤M‖λ − λ
∗‖

for λ ∈ Br(λ
∗). Let δ0 = min{r, ε/(2M√

m)}. Then | ∂f
∂λ1

(λ)| ≥ ε/(2
√
m) for all

λ ∈ Bδ0
(λ∗). Hence | detDg(λ)| ≥ ε/(2

√
m) on Bδ0

(λ∗).
Note that Dg(λ) satisfies the Lipschitz condition

‖Dg(λ1) − Dg(λ2)‖ ≤ C‖λ1 − λ2‖

for some C = C(M) following again from the Mean Value Theorem. The norm on the

left side of the inequality is the Euclidean norm on R
m2

. Now [Dg]−1(λ) is bounded
on Bδ0

(λ∗) because Dg is bounded and | detDg(λ)| ≥ ε/(2
√
m). It follows from the

Inverse Function Theorem (cf. [HH]) that there exists a δ = δ(ε,M, r) > 0, δ ≤ δ0,
such that g : Bδ(λ

∗) −→ R
m is invertible. Clearly

S := g(Bδ(λ
∗)) ⊆

{
y ∈ R

m : |yi| < δ for 2 ≤ i ≤ m
}

=: Ŝ.

Hence

Lm
(
{λ ∈ Bδ(λ

∗) : |f(λ)| ≤ t}
)

=

∫

{y∈S: |y1|≤t}

| detDg−1(y)| dy

≤
∫

{y∈bS: |y1|≤t}

2
√
m

ε
dy ≤ C0t,

where C0 := 2(2δ)m−1, using the fact that Dg−1(g(λ)) = [Dg]−1(λ). Observe that
all the constants in the proof ultimately depend only on ε, M and r. This completes
the proof.

Lemma 3.2. Suppose an m-parameter family of IFS {Si(x) = ρi(λ)x+ bi(λ)}q
i=1

on R is C2 for λ in an open set U ⊆ R
m. Suppose further that the IFS satisfies the

transversality condition on a compact region Ω ⊂ U . Then there exists a constant
C > 0 such that Fi,j(λ) = Si[λ] − Sj[λ] satisfies

(3.2) Lm
(
{λ ∈ Ω : |Fi,j(λ)| ≤ t}

)
≤ Ct

for all i, j ∈ ΣN
q with i(1) 6= j(1) and all t > 0.

Proof. The class of all functions Fi,j(λ) with i(1) 6= j(1) is compact in the space
of continuous functions on Ω with the supremum norm. Hence there exists an ε > 0
such that ‖∇Fi,j(λ)‖ ≥ ε whenever Fi,j(λ) = 0. The compactness of Ω implies that
there exists an r > 0 such that

Ωr :=
{
λ ∈ R

m : dist (λ,Ω) ≤ r
}
⊂ U.
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Since Ωr is compact, there exists a ρ∗ ∈ (0, 1) such that ρi(λ) ≤ ρ∗ for all i and
λ ∈ Ωr. Observe that all first and second partial derivatives of bi(λ) are bounded
on Ωr. Thus it follows from the geometric rate of convergence of all Si[λ] that there
exists a constant M > 0 such that all second partial derivatives of Fi,j(λ) are bounded
by M on Ωr for all i, j ∈ ΣN

q .
For each λ ∈ Ω we have Br(λ) ⊂ Ωr. Let δ = δ(ε,M, r) be as in Lemma 3.1.

Consider a partition of R
m into cubes of size δ/(2

√
m). For each cube that intersects

the set Zi,j := {λ ∈ Ω : Fi,j(λ) = 0} we pick a point in Zi,j within that cube. Let
these points be λ1, . . . ,λn. Clearly Bδ(λi) contains the entire cube in which λi lies.
Hence Ri,j :=

⋃n
i=1Bδ(λi) contains Zi,j. Therefore |Fi,j(λ)| > 0 on Ω \ Ri,j. The

compactness of Ω \ Ri,j and the compactness of the class of functions Fi,j(λ) with
i(1) 6= j(1) imply that there exists a t0 > 0 such that |Fi,j(λ)| ≥ t0 on Ω \ Ri,j for all
i, j ∈ ΣN

q with i(1) 6= j(1).
To prove (3.2) for all t > 0 it suffices to prove it for 0 < t < t0. Since |Fi,j(λ)| ≤ t

implies λ ∈ Ri,j =
⋃n

i=1 Bδ(λi), we have

{λ ∈ Ω : |Fi,j(λ)| ≤ t} =

n⋃

i=1

{λ ∈ Ω ∩Bδ(λi) : |Fi,j(λ)| ≤ t}.

It follows from Lemma 3.1 that

Lm
(
{λ ∈ Ω : |Fi,j(λ)| ≤ t}

)
≤ nC0t,

where C0 = C0(ε,M, r) is as in Lemma 3.1. Now the compactness of Ω means
there can be at most n0 := ⌊(diam(Ω) · 2√m/δ)m⌋ cubes intersecting Zi,j, where ⌊x⌋
denotes the smallest integer greater than or equal to x. Hence n ≤ n0. This proves
the lemma.

Theorem 3.3. Let {Si(x) = ρi(λ)x + bi(λ)}q
i=1 be an m-parameter family of

IFS on R satisfying the transversality condition on an open set Ω. For a fixed set
of probability weights p1, . . . , pq > 0 let µλ be the corresponding self-similar measure.
Suppose that for some 0 < α ≤ 1 we have

(3.3)

q∑

i=1

pi

(
pi

ρi(λ)

)α

< 1

for all λ ∈ Ω. Then µλ is absolutely continuous with its density function dµλ/dx ∈
L1+α(R) for Lm-a.e. λ ∈ Ω.

Proof. We prove µλ is absolutely continuous for Lm-a.e. λ ∈ Bδ(λ0) for any
λ0 ∈ Ω and sufficiently small δ > 0. This would imply the theorem.

Pick an arbitrary λ0 ∈ Ω and a sufficiently small δ > 0 so that R := Bδ(λ0) ⊂ Ω.
From (3.3) we have

(3.4)

q∑

i=1

pi

(
pi

ρ∗i

)α

< 1,

where ρ∗i = minλ∈R ρi(λ). We now prove that µλ is absolutely continuous for Lm-a.e.
λ ∈ R.

For any probability measure µ on R the lower derivative of µ at x is defined as

D(µ, x) = lim
r→0+

µ
(
Br(x)

)

r
.



236 S.-M. NGAI AND Y. WANG

It is known that µ is absolutely continuous if and only if D(µ, x) < ∞ for µ-a.e.
x ∈ R (see Mattila [M], Ch. 2). In this case D(µ, x) = dµ/dx is the density of µ.
Furthermore dµ/dx ∈ L1+α(R) if

∫
R
D(µ, x)α dµ(x) <∞.

So to prove the theorem it suffices to prove

(3.5) Kα :=

∫

R

∫

R

D(µλ, x)
α dµλ(x) dλ <∞.

It follows from Fatou’s Lemma that

(3.6) Kα ≤ lim
r→0+

1

rα

∫

R

∫

R

µλ

(
Br(x)

)α
dµλ(x) dλ.

Now let ν be the product measure on ΣN
q with weights p1, . . . , pq. Let Πλ : ΣN

q −→ R

be given by Πλ(i) = Si[λ]. Then µλ = ν ◦ Π−1
λ

, and a change of variables in (3.6)
yields

(3.7) Kα ≤ lim
r→0+

1

rα

∫

R

∫

ΣN
q

µλ

(
Br

(
Πλ(j)

))α

dν(j) dλ.

Observe that µλ = ν ◦ Π−1
λ

implies

µλ

(
Br

(
Πλ(i)

))
= ν ◦ Π−1

λ

(
Br

(
Πλ(i)

))

= ν
(
{j ∈ ΣN

q : |Si[λ] − Sj[λ]| < r}
)

=

∫

ΣN
q

χ{j∈ΣN
q : |Fi,j(λ)|<r} dν(j),

where the last two equalities follow from Πλ(i) = Si[λ] and Fi,j(λ) = Si[λ] − Sj[λ].
Substituting the above into (3.7) and changing the order of integration lead to

Kα ≤ lim
r→0+

1

rα

∫

ΣN
q

∫

R

(∫

ΣN
q

χ{j∈ΣN
q : |Fi,j(λ)|<r} dν(j)

)α

dλ dν(i).

Applying Jensen’s inequality and again changing the order of integration, we get

Kα ≤ lim
r→0+

C1

rα

∫

ΣN
q

(∫

R

∫

ΣN
q

χ{j∈ΣN
q : |Fi,j(λ)|<r} dν(j) dλ

)α

dν(i)

= lim
r→0+

C1

rα

∫

ΣN
q

(∫

ΣN
q

Lm{λ ∈ R : |Fi,j(λ)| < r} dν(j)
)α

dν(i)(3.8)

where C1 = Lm(R)1−α is a constant.
Let σ denote the standard shift operator on ΣN

q . For any i ∈ ΣN
q let

Λn,i :=
{
j ∈ ΣN

q : i(k) = j(k) for all 1 ≤ k ≤ n, i(n+ 1) 6= j(n+ 1)
}
.

For any j ∈ Λn,i we have Fi,j(λ) = ρin(λ)Fσni,σnj(λ) where in = (i1, i2, . . . , in) is the
word consisting of the first n letters of i. Hence by Lemma 3.2,

Lm{λ ∈ R : |Fi,j(λ)| < r} = Lm{λ ∈ R : ρin(λ)|Fσni,σnj(λ)| < r}
≤ Lm{λ ∈ R : |Fσni,σnj(λ)| < (ρ∗in)−1r} ≤ C(ρ∗in)−1r
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for some constant C. Now (3.8) gives

Kα ≤ lim
r→0+

C1

rα

∫

ΣN
q

( ∞∑

n=0

∫

Λn,i

Lm{λ ∈ R : |Fi,j(λ)| < r} dν(j)
)α

dν(i)

≤ lim
r→0+

C1

rα

∫

ΣN
q

( ∞∑

n=0

∫

Λn,i

C(ρ∗in)−1r dν(j)

)α

dν(i)

= CC1

∫

ΣN
q

( ∞∑

n=0

(ρ∗in)−1ν(Λn,i)

)α

dν(i)

≤ CC1

∫

ΣN
q

( ∞∑

n=0

(ρ∗in)−αν(Λn,i)
α
)
dν(i),

where the last inequality holds because 0 < α ≤ 1. It is standard to verify that

∫

ΣN
q

|ρ∗in |−αν(Λn,i)
α dν(i) =

( q∑

i=1

pi

( pi

ρ∗i

)α)n

.

Hence by (3.4),

Kα ≤ CC1

∞∑

k=0

( q∑

i=1

pi

( pi

ρ∗i

)α)n

<∞.

This proves (3.5) and completes the proof of the theorem.

Proof of Theorem 1.2. For each 0 < α ≤ 1 define

Ωα =

{
λ ∈ Ω :

q∑

i=1

pi

( pi

ρi(λ)

)α

< 1

}
.

By Theorem 3.3 µλ is absolutely continuous for Lm-a.e. λ ∈ Ωα. We claim that any
λ ∈ Ω must also be in Ωα for all sufficiently small α > 0. To prove this claim it
suffices to prove that each λ ∈ Ω has

q∑

i=1

pi

( pi

ρi(λ)

)α

< 1 for sufficiently small α > 0.

The Taylor expansion yields aα = 1 + ln(a)α+ o(α). Hence

q∑

i=1

pi

( pi

ρi(λ)

)α

=

q∑

i=1

pi

(
1 + α ln

( pi

ρi(λ)

)
+ o(α)

)
= 1 + α

q∑

i=1

pi ln
( pi

ρi(λ)

)
+ o(α)

= 1 + α

q∑

i=1

ln
( pi

ρi(λ)

)pi

+ o(α) < 1

for sufficiently small α > 0, following from the assumption that
∑q

i=1 ln(pi/ρi(λ))pi <
0.

Now choose a sequence {αn} such that αn → 0+. Then it follows that Ω =⋃
n Ωαn

. Hence µλ is absolutely continuous for Lm-a.e. λ ∈ Ω, proving the theorem.
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Remark. So far in this section we have considered the transversality condition
only for IFS on R. However, the transversality condition can also be defined for IFS
on R

d. Let {Si(x)}q
i=1 be a C2 m-parameter family of IFS on R

d defined as

Si(x) = ρi(λ)Ri(λ)x+ bi(λ),

where 0 < ρi(λ) < 1, Ri(λ) is an orthogonal matrix and bi(λ) ∈ R
d. We say that

{Si} satisfies the transversality condition for λ ∈ Ω, where Ω ⊆ R
m is a region, if for

any i, j ∈ ΣN
q with i(1) 6= j(1) the derivative matrix

∂

∂λ
(Si[λ] − Sj[λ])

has full rank whenever Si[λ] = Sj[λ]. All results in this section then generalize to R
d.

4. IFS with two similitudes on R. In this section we consider the IFS on R

consisting of the two contractions

(4.1) S1(x) = ρ1x, S2(x) = ρ2x+ 1,

where 0 < ρ1, ρ2 < 1. We study the absolute continuity of the self-similar measure
corresponding to probability weights p1 = p, p2 = 1 − p and 0 < p < 1. By Theorem
1.1 the measure is singular for ρp

1ρ
1−p
2 ≤ pp(1 − p)1−p with the exception of ρ1 = p

and ρ2 = 1 − p. So we consider the case ρp
1ρ

1−p
2 > pp(1 − p)1−p.

As in [So] and [PS1], we prove absolute continuity of the self-similar measure by
establishing the transversality condition. For any i ∈ {1, 2}N we have

(4.2) Si(x) = Si(0) =
∞∑

n=0

ǫi(n+1)ρin =
∞∑

n=0

ǫi(n+1)ρ
|in|1
1 ρ

|in|2
2 ,

where ρi0 := 1, in = (i(1), . . . , i(n)) ∈ {1, 2}n denotes the word of the first n letters of
i, and |j|1 (respectively, |j|2) for a given j ∈ {1, 2}∗ denotes the number of letters ‘1’
(respectively, ‘2’) in j, with ǫ1 = 0 and ǫ2 = 1. It seems rather hard to establish the
transversality condition directly by using the parameters (ρ1, ρ2). Instead we perform
the following change of variables

ρ1 = aλ, ρ2 = λ,

where 0 < a, λ < 1. In fact we shall simplify it further by fixing a and considering
the transversality condition with respect to the single parameter λ.

With the new parameters (4.2) becomes

(4.3) Si(0) = Si[λ, a] =

∞∑

n=0

ǫi(n+1)a
|in|1λn.

As before let Fi,j(λ, a) = Si[λ, a] − Sj[λ, a]. For a fixed a denote

Fa :=
{
f(λ) = Fi,j(λ, a) : i(1) = 2, j(1) = 1

}
.

We employ the technique of finding (∗)-functions in [So] and [PS1]. However, as it
turns out for a fixed a no single (∗)-function leads to good results. Instead, we need
to use more than one of them.
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Definition 4.1. Let G ⊆ Fa for some 0 < a < 1. Let h(λ) be of the form

h(λ) = 1 −
k∑

i=1

ciλ
i +

∞∑

i=k+1

ciλ
i,

where all ci ≥ 0 are bounded and ci ≥ ε for some ε > 0 for sufficiently large i. Then
h(λ) is called a (∗)-function for G if for any given g(λ) ∈ G we have

g(λ) − h(λ) =

n∑

i=1

biλ
i −

∞∑

i=n+1

biλ
i

for some n ≥ 1 and all bi ≥ 0.

Lemma 4.1. Let h(λ) be a (∗)-function for some G ⊆ Fa such that for some
λ0 ∈ (0, 1) we have

(4.4) h(λ0) ≥ δ, h′(λ0) ≤ −δ

for some δ > 0. Then for any ε ∈ (0, λ0) there exists some δ̃ = δ̃(ε) > 0 such that for
all g ∈ G and λ ∈ [ε, λ0],

g′(λ) ≤ −δ̃ whenever g(λ) ≤ δ̃.

Consequently all g(λ) ∈ G satisfy the transversality condition on [0, λ0].

Proof. This lemma is essentially proved in [PS1]; only minor modifications are
needed since in our case the coefficient c1 of h(λ) can be 0, leading to h′(0) = 0.
But this minor inconvenience can easily be fixed by considering the interval [ε, λ0] for
some sufficiently small ε > 0. The proof in [PS1] then carries over.

We next partition Fa so that good (∗)-functions satisfying (4.4) can be found for
each part of the partition. For n ≥ 1 let

Gn,a :=
{
Fi,j(λ, a) ∈ Fa : i(k) = 2 for 1 ≤ k ≤ n

}
, Hn,a := Fa \ Gn,a.

Lemma 4.2. Any h1(λ) of the form

(4.5) h1(λ) = 1 −
k−1∑

i=1

aλi + cλk +

∞∑

i=k+1

aλi,

where c ∈ R and k ≥ n− 1 is a (∗)-function for Hn,b for all b with 0 < b ≤ a.

Proof. Let g(λ) = Fi,j(λ, b) ∈ Hn,b. Then i(1) = 2, j(1) = 1 and i(l) = 1 for some
l ≤ n. Hence

Si[λ, b] =

∞∑

m=0

ǫi(m+1)b
|im|1λm =: 1 +

∞∑

m=1

amλ
m

such that am ≤ b ≤ a for all m ≥ n, where ǫ1 = 0 and ǫ2 = 1. Furthermore, since
j(1) = 1 we know that Sj[λ, b] has the form

Sj[λ, b] =

∞∑

m=0

ǫj(m+1)b
|jm|1λm =:

∞∑

m=1

a′mλ
m
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such that a′m ≤ b ≤ a for all m ≥ 1. Thus g(λ) = Fi,j(λ, b) satisfies

g(λ) − h1(λ) =

p∑

m=1

bmλ
m −

∞∑

m=p+1

bmλ
m,

where bm ≥ 0 and p = k − 1 or p = k.

Lemma 4.3. Any h2(λ) of the form

(4.6) h2(λ) = 1 −
n+k−1∑

i=n

λi + cλn+k +

∞∑

i=n+k+1

λi,

where c ∈ R and k ≥ 1 is a (∗)-function for Gn,b for all b with 0 < b < 1.

Proof. Let g(λ) = Fi,j(λ, b) ∈ Gn,b. Then i(j) = 2 for all 1 ≤ j ≤ n and j(1) = 1.
Hence

Si[λ, b] = 1 +

n−1∑

i=1

λi +

∞∑

i=n

biλ
i,

where bi ≤ 1 for i ≥ n. Since the coefficients of Sj[λ, b] cannot exceed 1, the first n
coefficients of g(λ) are nonnegative. It is now easy to see that

g(λ) − h2(λ) =

p∑

i=1

ciλ
i −

∞∑

i=p+1

ciλ
i

with all ci ≥ 0, where p = n+ k − 1 or p = n+ k.

Let µρ1,ρ2
be the self-similar measure corresponding to the IFS (4.1) with proba-

bility weights p1 = p, p2 = 1 − p and 0 < p < 1. Define

Ω̂p :=
{
(ρ1, ρ2) : ρp

1ρ
1−p
2 > pp(1 − p)1−p, 0 < ρ1, ρ2 < 1

}
.

For any pair of reals λ0, a ∈ (0, 1) let Kλ0,a be the two triangles

Kλ0,a :=
{

(ρ1, ρ2) : 0 < ρ1 ≤ λ0,
ρ2

ρ1
≤ a

}
∪

{
(ρ1, ρ2) : 0 < ρ2 ≤ λ0,

ρ1

ρ2
≤ a

}
.

Theorem 4.4. Let n ≥ 1 and 0 < a ≤ 1. Suppose that there exist h1(λ) and
h2(λ) of the form (4.5) and (4.6), respectively, such that

hi(λ0) ≥ δ, h′i(λ0) ≤ −δ, i = 1, 2

for some λ0 ∈ (0, 1) and δ > 0. Then µρ1,ρ2
is absolutely continuous for L2-a.e.

(ρ1, ρ2) ∈ Kλ0,a ∩ Ω̂p.

Proof. Denote the two triangles of Kλ0,a by T1 and T2, respectively. Since h1(λ)
is a (∗)-function for Hn,b for all 0 < b ≤ a, it follows from Lemma 4.1 that the
transversality condition is satisfied for functions in Hn,b for λ ∈ [0, λ0]. The existence
of h2(λ) yields the transversality condition for functions in Gn,b for λ ∈ [0, λ0]. There-
fore for each fixed b with 0 < b ≤ a the IFS (4.1) parametrized by ρ1 = bλ and ρ2 = λ
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satisfies the transversality condition for λ ∈ [0, λ0]. Hence µρ1,ρ2
as a one-parameter

family with parameter λ is absolutely continuous for L1-a.e. λ ∈ [0, λ0], provided

that (bλ, λ) ∈ Ω̂p. Therefore as a two-parameter family with parameters (λ, b) the
measure µρ1,ρ2

is absolutely continuous for L2-a.e. (λ, b) ∈ [0, λ0] × (0, a], provided

that (ρ1, ρ2) ∈ Ω̂p. This region is Ω̂p ∩ T2.

To prove the a.e. absolute continuity of µρ1,ρ2
for (ρ1, ρ2) ∈ Ω̂p ∩ T1, we consider

the self-similar measure µ̃ρ1,ρ2
associated to the IFS {S̃1, S̃2} where

S̃1(x) = ρ1x+ 1, S̃2(x) = ρ2x

with the same probability weights p1 = p and p2 = 1 − p. Note that

S̃1 = ψ−1 ◦ S1 ◦ ψ, S̃2 = ψ−1 ◦ S2 ◦ ψ,

where ψ(x) = ρ1−1
1−ρ2

x + 1
1−ρ2

. It follows that µρ1,ρ2
= µ̃ρ1,ρ2

◦ ψ−1. Hence µρ1,ρ2

is absolutely continuous if and only if µ̃ρ1,ρ2
is. But by symmetry the IFS {S̃1, S̃2}

satisfies the transversality condition on T1. So µ̃ρ1,ρ2
, and hence µρ1,ρ2

, is absolutely

continuous for a.e. (ρ1, ρ2) ∈ Ω̂p ∩ T1.
Theorem 4.4 allows us to establish a region of a.e. absolute continuity by looking

for suitable (∗)-functions. A quick search using Mathematica yields several pairs
(λ0, a) and their corresponding (∗)-functions, given in Tables I and II.

Corollary 4.5. Let Λ be the set of pairs (λ0, a) in Table I. Then the self-
similar measure µρ1,ρ2

with probability weights p1 = p2 = 1
2 is absolutely continuous

for L2-a.e. (ρ1, ρ2) in the region

Ω̂ ∩
⋃

(λ0,a)∈Λ

Kλ0,a, where Ω̂ :=
{

(ρ1, ρ2) : ρ1ρ2 >
1

4
, 0 < ρ1, ρ2 < 1

}
.

The above region of a.e. absolute continuity is shown in the shaded region in
Figure 1. It is clearly bigger than the region stated in Theorem 1.3. In the case of
Bernoulli convolutions (see [So] and [PS1]), the random variable Si(0) = Si[λ, a] =∑∞

n=0 ǫi(n+1)a
|in|1λn in (4.3) with a = 1 can be decomposed into a sum of two indepen-

dent variables. The techniques of “thinning” and convolution can then be employed.
In the case a < 1, a similar decomposition leads to a sum of two dependent random
variables. It is thus not clear how such powerful techniques can be applied.

While Tables I and II are sufficient for the case p = 1
2 , it is not for all 0 < p < 1.

Our next two tables extend the values of a in Tables I and II to the interval (0, 0.4).
The corresponding (∗)-functions are listed in Tables III and IV.

Note from the tables that the transversality condition holds on [0, λ0], where λ0 is
given by Tables I and III whenever a > 0.100, while it is given by Table IV whenever
a < 0.100. We then have:

Theorem 4.6. Let Λ be the set of pairs (λ0, a) given by Tables I and III if
a > 0.100, or given by Table IV if a ≤ 0.100. Then the self-similar measure µρ1,ρ2

defined by the IFS (4.1) with probability weights p1 = p and p2 = 1 − p, 0 < p < 1, is
absolutely continuous for L2-a.e. (ρ1, ρ2) in the region

Ω̂p ∩
⋃

(λ0,a)∈Λ

Kλ0,a.



242 S.-M. NGAI AND Y. WANG

Table I. (∗)-functions h1(x)

a λ0 h1(x)

1.000 0.6491 1 −
P3

i=1
xi + 0.087530x4 + x5/(1 − x)

0.975 0.6542 1 − a
P3

i=1
xi

− 0.053224x4 + ax5/(1 − x)

0.950 0.6594 1 − a
P3

i=1
xi

− 0.189572x4 + ax5/(1 − x)

0.925 0.6646 1 − a
P3

i=1 xi
− 0.321542x4 + ax5/(1 − x)

0.900 0.6698 1 − a
P3

i=1
xi

− 0.449199x4 + ax5/(1 − x)

0.875 0.6750 1 − a
P3

i=1
xi

− 0.572564x4 + ax5/(1 − x)

0.850 0.6802 1 − a
P3

i=1
xi

− 0.691689x4 + ax5/(1 − x)

0.825 0.6854 1 − a
P3

i=1
xi

− 0.806586x4 + ax5/(1 − x)

0.800 0.6918 1 − a
P4

i=1
xi + 0.630326x5 + ax6/(1 − x)

0.775 0.6983 1 − a
P4

i=1
xi + 0.418118x5 + ax6/(1 − x)

0.750 0.7049 1 − a
P4

i=1 xi + 0.214975x5 + ax6/(1 − x)

0.725 0.7114 1 − a
P4

i=1
xi + 0.020672x5 + ax6/(1 − x)

0.700 0.7178 1 − a
P4

i=1
xi

− 0.165001x5 + ax6/(1 − x)

0.675 0.7243 1 − a
P4

i=1
xi

− 0.342234x5 + ax6/(1 − x)

0.650 0.7307 1 − a
P4

i=1
xi

− 0.511203x5 + ax6/(1 − x)

0.625 0.7372 1 − a
P4

i=1
xi

− 0.672042x5 + ax6/(1 − x)

0.600 0.7451 1 − a
P5

i=1
xi + 0.297886x6 + ax7/(1 − x)

0.575 0.7527 1 − a
P5

i=1 xi + 0.049501x6 + ax7/(1 − x)

0.550 0.7602 1 − a
P5

i=1
xi

− 0.184502x6 + ax7/(1 − x)

0.525 0.7677 1 − a
P5

i=1
xi

− 0.404614x6 + ax7/(1 − x)

0.500 0.7750 1 − a
P5

i=1
xi

− 0.611244x6 + ax7/(1 − x)

0.475 0.7824 1 − a
P5

i=1 xi
− 0.804764x6 + ax7/(1 − x)

0.450 0.7896 1 − a
P5

i=1
xi

− 0.985459x6 + ax7/(1 − x)

0.425 0.8006 1 − a
P6

i=1
xi

− 0.487063x7 + ax8/(1 − x)

0.400 0.8101 1 − a
P7

i=1
xi

− 0.004498x8 + ax9/(1 − x)

Table II. (∗)-functions h2(x)

λ0 h2(x)

0.83 1 −
P10

i=5
xi

− 0.5x11 + x12/(1 − x)

0.85 1 −
P12

i=6
xi + 0.4x13 + x14/(1 − x)

0.86 1 −
P13

i=7 xi
− 0.98x14 + x15/(1 − x)

0.87 1 −
P15

i=8
xi

− 0.18x16 + x17/(1 − x)

0.88 1 −
P17

i=9
xi + x18/(1 − x)
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Table III. (∗)-functions h1(x)

a λ0 h1(x)

0.375 0.8190 1 − a
P7

i=1
xi

− 0.326319x8 + ax9/(1 − x)

0.350 0.8278 1 − a
P7

i=1
xi

− 0.619668x8 + ax9/(1 − x)

0.325 0.8363 1 − a
P7

i=1
xi

− 0.885920x8 + ax9/(1 − x)

0.300 0.8474 1 − a
P8

i=1
xi

− 0.676359x9 + ax10/(1 − x)

0.275 0.8564 1 − a
P8

i=1 xi
− 0.972115x9 + ax10/(1 − x)

0.250 0.8677 1 − a
P9

i=1
xi

− 0.885398x10 + ax11/(1 − x)

0.225 0.8801 1 − a
P11

i=1
xi

− 0.511140x12 + ax13/(1 − x)

0.200 0.8901 1 − a
P11

i=1
xi

− 0.933492x12 + ax13/(1 − x)

0.175 0.9026 1 − a
P13

i=1 xi
− 0.808326x14 + ax15/(1 − x)

0.150 0.9149 1 − a
P15

i=1
xi

− 0.832987x16 + ax17/(1 − x)

0.125 0.9278 1 − a
P18

i=1
xi

− 0.819597x19 + ax20/(1 − x)

0.100 0.9415 1 − a
P23

i=1
xi

− 0.954917x24 + ax25/(1 − x)

0.075 0.9558 1 − a
P31

i=1
xi

− 0.912405x32 + ax33/(1 − x)

0.050 0.9692 1 − a
P43

i=1
xi

− 0.925572x44 + ax45/(1 − x)

0.025 0.9842 1 − a
P84

i=1
xi

− 0.981855x85 + ax86/(1 − x)

Table IV. (∗)-functions h2(x) for those h1(x) in Table III.

a λ0 h2(x)

— 0.89 1 −
P18

i=10
xi

− 0.3x19 + x20/(1 − x)

— 0.90 1 −
P23

i=13
xi + 0.6x24 + x25/(1 − x)

— 0.91 1 −
P26

i=15
xi + 0.7x27 + x28/(1 − x)

— 0.92 1 −
P29

i=17
xi + 0.8x30 + x31/(1 − x)

— 0.929 1 −
P33

i=20
xi + 0.1x34 + x35/(1 − x)

0.100 0.9393 1 −
P40

i=25
xi

− 0.112691x41 + x42/(1 − x)

0.075 0.9497 1 −
P51

i=33 xi
− 0.398343x52 + x53/(1 − x)

0.050 0.9595 1 −
P68

i=45
xi + 0.882207x69 + x70/(1 − x)

0.025 0.9746 1 −
P122

i=86
xi + 0.580009x123 + x124/(1 − x)

We illustrate Theorem 4.6 for p1 = 1/3 in Figure 2.
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