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TRANSFER OF UNITARY REPRESENTATIONS∗

NOLAN R. WALLACH† AND CHEN-BO ZHU‡

Introduction. This paper has as its primary purpose a clear exposition of the
idea in [21] which we describe as transfer between real forms of a semi-simple Lie group
over C. The basic point is that there are representations of one real form that can be
more easily understood in the context of another real from. An interesting example
is a minimal representation (that is annihilated by the Joseph ideal) of a split group
over R. In the case when the complexification admits a Hermitian symmetric real
form, minimal representations of that real form are part of the “analytic continuation
of the holomorphic discrete series” (cf. [5]). For example, in the case of SO(4, 4) or
split E7 one can “transfer” the holomorphic minimal representations of SO(6, 2) and
Hermitian symmetric E7 respectively. If there is no Hermitian symmetric real form
then since there is always a quaternionic real form one can do a similar transfer. We
feel that this exposition is necssary since the original discussion had many misprints
which could be confusing and also lacked, in some cases, proper reference to earlier
related work. The secondary purpose is to give some new examples of its applicability.
These examples give more evidence of a possible deep connection between the notion
of transfer and Howe’s theory of dual pairs. We will now give a description of the
paper.

Let GC be a connected, simply connected semi-simple Lie group over C. Let G and
G′ be two real forms of GC with respective maximal compact subgroups K and K ′.
Let θ and θ′ be corresponding Cartan involutions looked upon as automorphisms of
GC. We assume that θθ′ = θ′θ. Set M = K∩K ′. Let g, g′, gC denote the Lie algebras
of G, G′, GC respectively. We shall use similar notation throughout the article thus
the Lie groups will be denoted by capital letters and the corresponding Lie algebra
by the corresponding lower case fraktur letter.

Let (π, V ) be an irreducible admissible (g′, K ′)-module. Then we may look upon
it as a (gC, M)-module. We can apply the Zuckerman functors (ΓK

M )i to V and get
(g, K)-modules

V i = (ΓK
M )i(V ).

See [16] for a comprehensive treatment of the Zuckerman functors. Since V has an
infinitesimal character, the modules V i will also have the same infinitesimal charac-
ter. Therefore any finite dimensional K-invariant subspace of V i will generate an
admissible (g, K)-submodule of V i. Observing that if Ann(V ) is the annihilator of
V in U(gC), then Ann(V i) ⊃ Ann(V ). Thus V i has Gelfand-Kirillov dimension less
than or equal to that of V . This simple method of obtaining admissible modules
is what we mean by the most basic method of transfer. In the special case that V
is unitarizable (g′, K ′)-module with some special properties as a kC-module one can
make these transferred submodules much more explicit.
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We will now assume that V is unitarizable as a (g′, K ′)-module and as a (kC, M)-
module it splits into a direct sum of irreducible submodules :

V =
⊕

j

Vj ,

with Vj a finite direct sum of irreducible (kC, M)-modules Lj and each Lj is unitariz-
able as a (k1, M)-module. Here k1 = kC∩g′ is a real form of kC with θ′|kC

as the Cartan

involution and it contains m = k ∩ k′ as the corresponding maximal compact subalge-
bra. Then there will be a decomposition of V i into (g, K)-submodules corresponding
to irreducible M -submodules W of the exterior power ∧i(kC/mC) (Proposition 1.5),
which (by results of Kumaresan, Parthasarathy and Vogan-Zuckerman) when non-
zero pick out certain θ′-stable parabolic subalgebras of kC. Furthermore if there exists
an involutive unitary operator on V which realizes the action of θθ′, then each piece
of V i has a (g, K)-invariant, non-degenerate Hermitian form with a positivity test
(Proposition 2.5), which is effective in many interesting cases (Corollary 2.7 and The-
orem 4.1). In this paper, the only example that will be studied in detail will involve
the case when V and Vj are highest weight modules. However, in earlier work of
the first named author with B. Gross [8, 9] these ideas have been used to transfer
quaternionic unitary representations for En for n = 6, 7, 8 from the quaternionic real
form to the split real form (in particular, giving a new construction of the minimal
representations of the split groups) and also give the Blattner type branching formulas
for the restriction of small discrete series for arbitrary simple Lie groups over R to
certain (non-compact) symmetric subgroups.

The idea of comparing unitary representations for two real forms of a semi-simple
Lie algebra was initiated by Enright [3]. In it he considers G′ = G0 × G0, where G0

is a simply connected, connected Lie group with Lie algebra g0 and it is of Hermitian
symmetric type, and G is the simply connected, connected complex Lie group with
Lie algebra g = g0 ⊗R C. The representations π of G0 ×G0 are in the analytic contin-
uation of the holomorphic discrete series, and the representations of G obtained are
the components of degenerate principal series. This was extended in much greater
generality in parts of [6] (Theorem 7.2 and Theorem 7.3), with G′ of Hermitian sym-
metric type and the representations π of G′ in the part of analytic continuation of
the holomorphic discrete series where the modules remain irreducible. In both of the
mentioned cases, the derived functor modules vanish except at the middle degree, and
in the middle degree it carries a unitarizable representation of G (or zero). When π
is a general unitarizable highest weight module, the derived functor modules may be
non-zero in degrees below the middle dimension. The situation was considered in [7]
and partial results were obtained when both G′ and G are of Hermitian symmetric
type. The work of the first named author [21] extended the earlier work mentioned
above and developed the comparison techniques in a more general framework. As
mentioned above, the main aim of the current article is to make [21] more accessible.
In the last section, we give an example of a connection of the construction here with
Howe’s theory of dual pairs. This may be considered as providing a global description
of the representations obtained or as describing certain theta lifts as derived functor
modules.

In this transfer of unitary representations between real forms, several Lie algebras
play a role. It is instructive to arrange them in a diagram consisting of four diamonds
(Figure 1). Here σ and σ′ are respectively the complex conjugations of gC with respect
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Fig. 1. A diamond of Lie algebras

to g and g′, and they are assumed to satisfy the compatibility conditions

σσ′ = σ′σ, θσ′ = σ′θ, θ′σ = σθ′.

1. A decomposition of Zuckerman functors. We will begin this section in
more generality than the introduction.

Let G be a real reductive Lie group, and K be a fixed maximal compact subgroup.
Let M ⊂ K be a compact subgroup.

Suppose that we are given a (gC, M)-module (π, V ). By applying the Zuckerman
functors (ΓK

M )i to V , we produce (gC, K)-modules

(1.1) Γi(V ) = (ΓK
M )i(V ).

We recall (a form of) this construction [4, 2, 22].
Let H(K) denote the algebra of matrix coefficients of finite-dimensional unitary

representations of K, when viewed as an algebra under convolution it is called the
Hecke algebra for K. However, we will only be using the operation of multiplication
as functions on K. The space H(K) has two K-module structures: left multiplication
lK and right multiplication rK . We view the tensor product V ⊗H(K) as a (k, M)-
module under the action π ⊗ lK . Let Hi(k, M ; V ⊗H(K)) be the relative Lie algebra
cohomology of k, M with coefficients in V ⊗H(K). We define actions of gC and K on
Hi(k, M ; V ⊗H(K)) as follows.

Identify V ⊗H(K) = H(K, V ) as a space of V -valued functions on K, by v⊗f 7→ F
where F (k) = f(k)v. This space can be described as the space of all functions F from
K to V such that

dim span{F (k)|k ∈ K} < ∞

and if λ ∈ V ∗ then the function g(k) = λ(F (k)) is K-finite. Then g acts on H(K, V )
by

(1.2) (µ(X)F )(k) = π(Ad(k)X)F (k),

where k ∈ K, X ∈ gC and F ∈ H(K, V ). It is easy to check that µ(X) defines a (k, M)-
homomorphism of H(K, V ) to itself. Thus µ(X) induces an endomorphism, µ̄(X), on
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the relative cohomology spaces and with respect to this action Hi(k, M ; V ⊗ H(K))
is a gC-module.

We note that K acts on V ⊗ H(K) by I ⊗ rK commuting with π ⊗ lK , and so
induces a K-module structure on Hi(k, M ; V ⊗ H(K)). With respect to the actions
(µ̄, I ⊗ rK), each Hi(k, M ; V ⊗H(K)) is a (gC, K)-module. The critical point here is
that all of the homological algebra is done in the context of (k, M) cohomology and
so the action of K is easily computed. We will spend a significant part of this paper
studying the implications of this observation. In the earlier work of the first named
author with Enright in [4] it was shown that the action of g was a consequence of
naturality. One “unwinds” the action described in [4, 22] then the action described
above is obvious.

We also note that the cochain complex defining Hi(k, M ; V ⊗H(K)) is given as

Ci(k, M ; V ⊗H(K)) = HomM (∧i(kC/mC), V ⊗H(K)).

The actions (µ, I ⊗ rK) of gC and K are actually defined on Ci(k, M ; V ⊗H(K)), but
these actions do not make Ci(k, M ; V ⊗ H(K)) a (gC, K)-module. The problem is
that the derived action of X ∈ k does not agree with the action of X as an element
of g (in Equation (1.2)). But the induced actions (µ̄, I ⊗ rK) on Hi(k, M ; V ⊗H(K))
are compatible, and so we have a (gC, K)-module. The Zuckerman modules are then

(1.3) Γi(V ) = Hi(k, M ; V ⊗H(K)).

We now come to the main assumptions of this article.

(A1): There is a real form k1 of kC and a real reductive group K1 such that K1 ⊃ M
and (K1, M) is a symmetric pair of noncompact type.

(A2): As a (kC, M)-module, V splits into a direct sum

(1.4) V =
⊕

j

Vj , with Vj ≃ mjLj

a finite direct sum of irreducible (kC, M)-modules Lj and each Lj is unitarizable as a
(k1, M)-module.

An interesting case where (A1) and (A2) are satisfied is the subject of [6]. In
that paper the authors consider a family of generalized Verma modules N(λ + tξ)
associated to a θ-stable parabolic subalgebra q = l⊕u of gC such that the nilradical u

satisfies [u ∩ kC, u] = 0 and N(λ + tξ) is irreducible for t ≤ 0. See §4 of [6] for details.
We will be giving several examples of this phenomenon in this article. Also many
examples were analyzed in [21].

In the setting of the introduction, the restriction θ′|kC

is an involution of kC.

The corresponding real form of kC is k1 = kC ∩ g′, with the complexified Cartan
decomposition

kC = mC ⊕ ok.

Here ok = o ∩ kC, o = (p′)C, and g′ = k′ ⊕ p′ is the Cartan decomposition of g′. Thus
the assumption (A1) is satisfied. If V is unitarizable as a (g′, K ′)-module, and it is M -
admissible, then the assumption (A2) is satisfied. More generally (A2) will be satisfied
if K ′ ⊃ B, for a compact subgroup B ⊂ K and V is B-admissible. This condition
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holds true for unitary highest weight representations of a Hermitian symmetric real
form when B contains the center of K ′. We shall have more to say on this case in § 4.
It has also been studied for quaternionic representations of a quaternionic real form
of GC when B is the “quaternionic SU(2)” in [8]. In that reference it was shown how
one can transfer the minimal representation of quaternionic E8 to split E8. The same
procedure will work for E6 and E7. In addition, in [9] it is shown that “small discrete
series” are admissible for small subgroup, B, of a maximal compact subgroup. In that
paper transfer was used in order to derive a Blattner type multiplicty formula for the
restriction of a small discrete series to a symmetric subgroup containing the group B.

For the rest of this paper, we shall take both (A1) and (A2) as standing hypothe-
ses.

For each γ ∈ K̂, fix Fγ ∈ γ. Recall that Peter-Weyl theorem implies that as a
(K, K)-bimodule (under lK , rK)

H(K) ≃
⊕

γ∈K̂

F ∗
γ ⊗ Fγ .

Note that the coboundary operator d on Ci(k, M ; V ⊗H(K)) commutes with I ⊗ rK .
Thus we have the decomposition (as K-modules)

Hi(k, M ;H(K) ⊗ V ) ≃
⊕

γ∈K̂

Hi(k, M ; V ⊗H(K)(γ)).

Here H(K)(γ) denotes the γ-isotypic component of H(K) with respect to the right
action rK , and is isomorphic to F ∗

γ ⊗ Fγ under lK , rK .
We now use the decomposition of V in (1.4) to obtain

Hi(k, M ; V ⊗H(K)) ≃
⊕

j

⊕

γ∈K̂

Hi(k, M ; Vj ⊗H(K)(γ)).

For simplicity, we assume that G has compact center and that M and K are
connected. The center Z(K) of K is the same as the center of K1 and it acts on a
representation of type γ ∈ K̂ and Lj by unitary characters (the central characters).

For each j, let K̂j denote the set of those γ ∈ K̂ which has the same central character
and the same kC-infinitesimal character as that of Lj . Set

Ω(V ) =
⊕

j

⊕

γ∈K̂j

Vj ⊗H(K)(γ),

X(V ) =
⊕

j

⊕

γ /∈K̂j

Vj ⊗H(K)(γ).

Obviously, V ⊗H(K) = Ω(V )⊕X(V ). Note that this decomposition depends on the
decomposition of V in (1.4).

Wigner’s Lemma [1] implies that

Hi(k, M ; X(V )) = 0.

Thus Hi(k, M ;H(K) ⊗ V ) = Hi(k, M ; Ω(V )). As (K1, M) is a symmetric pair of
non-compact type, the coboundaries for the (k1, M)-cohomologies of unitary repre-
sentations are all zero. See [1]. We therefore have

Hi(k, M ;H(K) ⊗ V ) = Hi(k, M ; Ω(V )) = HomM (∧i(kC/mC), Ω(V )).
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With a bit more work we may summarize by the following

Proposition 1.5. Suppose that M ⊂ K is a compact subgroup satisfying (A1)
and (π, V ) is a (gC, M)-module satifying (A2).

1. We have

Hi(k, M ; Ω(V )) = HomM (∧i(kC/mC), Ω(V )),

with the (gC, K)-action (ν, I ⊗ rK), where

ν(X)ω = PΩ(µ̄(X)ω), for X ∈ gC, ω ∈ HomM (∧i(kC/mC), Ω(V )),

and PΩ is the projection of V ⊗H(K) onto Ω(V ) corresponding to the decom-
position V ⊗H(K) = Ω(V ) ⊕ X(V ). Thus we have

(1.6) (ΓK
M )i(V ) = Hi(k, M ; Ω(V )) = HomM (∧i(kC/mC), Ω(V )).

2. Let W be a M -submodule of ∧i(kC/mC). Then

HomM (W, Ω(V ))

is a (gC, K)-submodule of HomM (∧i(kC/mC), Ω(V )).

If W is a M submodule of ∧i(kC/mC) then we will use the notation ΓW (V ) for
the (gC, K)-module HomM (W, Ω(V )). If ∧i(kC/mC) =

∑
δ W i

δ is a decomposition of
∧i(kC/mC) into irreducible M -modules, then we have the decomposition

(ΓK
M )i(V ) = Hi(k, M ; Ω(V )) =

∑

δ

ΓW i
δ
(V ),

as (g, K)-modules. As K-modules, we have

(1.7) ΓW (V ) ≃
⊕

j

⊕

γ∈K̂j

HomM (W, Vj ⊗ F ∗
γ ) Fγ .

2. Unitarizability. In this section, we assume beyond (A1) and (A2) that

(A3): there is a (g, M)-invariant non-degenerate Hermitian form on the (gC, M)-
module V , denoted by 〈 , 〉.

Remark 2.1. If V is a generalized Verma module, one constructs a (g, M)-
invariant form in the standard way (the Shapavalov form). In some other cases, such a
(g, M)-invariant form can often be “transfered” from a (g′, M)-invariant form, where
g′ is another real form of gC. See the proofs of Proposition 2.5 and Theorem 4.1.

Since the form is (g, M)-invariant, it is (kC ∩ g, M)-invariant and so 〈Vi, Vj〉 = 0
if i 6= j (Schur’s Lemma). On H(K) we put the L2-inner product which we also
denote by 〈 , 〉. On V ⊗H(K), we put the tensor product Hermitian form for which
we also use the notation 〈 , 〉. Note that 〈Ω(V ), X(V )〉 = 0 and so this form is
non-degenerate on Ω(V ). On ∧i(kC/mC), we put the Hermitian inner product corre-
sponding to −B|k×k, where B is a fixed Ad(G)-invariant non-degenerate bilinear form
on g such that −B(θX, X) > 0 for X a non-zero element of g.

Identity

HomM (∧i(kC/mC), Ω(V )) = ((∧i(kC/mC)∗ ⊗ Ω(V ))M
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as a subspace of ∧i(kC/mC)∗ ⊗ Ω(V ). We put on the latter the tensor product Her-
mitian form, which is clearly non-degenerate. It will be denoted (as usual) by 〈 , 〉.
Since M is compact, and all the relevant forms are M -invariant, we see by an easy
averaging argument that the restriction of 〈 , 〉 to (∧i(kC/mC)∗ ⊗ Ω(V ))M is non-
degenerate.

A straight forward calculation yields

Lemma 2.2. Let W be an M -submodule of ∧i(kC/mC), then the Hermitian form
〈 , 〉 on ΓW (V ) is (g, K)-invariant and non-degenerate.

We now carry out an analysis of when the form 〈 , 〉 on V induces a positive-
definite form on ΓW (V ). We recall some facts about unitary representations with
(k1, M)-cohomology.

Let L be an irreducible (k1, M)-module which is unitarizable. Let F be an irre-
ducible finite-dimensional (k1, M)-module such that L and F have the same central
character and the same infinitesimal character. Let W be an irreducible M -submodule
of ∧i(kC/mC) and assume that

HomM (∧i(kC/mC), L ⊗ F ∗) 6= 0.

We fix a maximal torus T in M with the Lie algebra t and let

h = {X ∈ kC| [X, t] = 0}

be the corresponding fundamental Cartan subalgebra of kC. Denote θ′ the Cartan
involution of kC corresponding to M . Then the result of Vogan-Zuckerman [18] implies
that there exists a θ′-stable parabolic subalgebra, q ⊃ h, of kC, with the following
properties: let u be the nilradical of q and let

un = {X ∈ u| θ′(X) = −X}

be the non-compact part of u. Set ρq,n(h) = 1
2 tr(ad(h)|un

for h ∈ t. Then W
has highest weight 2ρq,n with respect to any system of positive roots of (mC, tC)
compactible with q ∩ mC. Let γM,q(0) denote the corresponding equivalence class of
irreducible M -modules.

We fix b, a θ′-stable Borel subalgebra of kC such that h ⊂ b ⊂ q. If Λ is a dominant
integral element of h∗ with respect to b that is also T -integral, we define γM,q(Λ) to
be the equivalence class of irreducible M -modules with highest weight

Λ|t + 2ρq,n.

The result of Vogan-Zuckerman [18] now implies that if Λ is the highest weight of F
with respect to b, then there exists such a q with dim Fu = 1 and such that L is
isomorphic to Aq(Λ). Furthermore

(2.3) HomM (W, L ⊗ F ∗) = HomM (W, L(γM,q(Λ)) ⊗ F ∗(γM,ν
∗)),

where ν = Λ|t. Here the notation L(γ) and F ∗(γ) indicate isotypic component with
respect to the M -type γ. Also, γM,ν is the equivalence class of irreducible M -module
with highest weight ν with respect to b ∩ mC. Finally the equality means that if we
expand L and F ∗ into isotypic components with respect to M , then only the indicated
term contributes. Note that γM,q(Λ) is the unique minimal M -type of Aq(Λ) in the
sense of Vogan.
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Applying (2.3) to each of the terms in the decomposition

ΓW (V ) ≃
⊕

j

⊕

γ∈K̂j

HomM (W, Vj ⊗ F ∗
γ ) Fγ ,

we have proved the following result.

Proposition 2.4. Let 〈 , 〉 be a (g, M)-invariant non-degenerate Hermitian form
on V and let W be an irreducible M -submodule of ∧i(kC/mC).

1. Suppose that W /∈ γM,q(0) for all q (in kC). Then ΓW (V ) = 0.
2. Suppose W ∈ γM,q(0) for some q and the restriction of the form 〈 , 〉 to the

minimal M -type spaces

Vj(γM,q(Λj)) × Vj(γM,q(Λj))

is positive definite for each j such that Lj ≃ Aq(Λj). Then ΓW (V ) is unitary.

We conclude this section with a general unitarizability result.
We will use the notation of § 1. Recall that M ⊂ K is a compact subgroup

satisfying (A1) and (π, V ) is a (gC, M)-module satisfying (A2). Let θ′ be the Car-
tan involution of kC corresponding to M . Assume that θ′ extends to an involutive
automorphism of g. Then θθ′ = θ′θ. Let

p = {X ∈ g| θ(X) = −X}

and set gu = k + ip ⊂ gC, which is a compact real form of gC. Let τ denote complex
conjugation of gC with respect to gu. Then σ′ = τθ′ = θ′τ is an involutive antilinear
automorphism and it defines a corresponding real form g′ of gC. Thus σ′ is the complex
conjugation in gC relative to g′. Let G′ be a connected real reductive group with Lie
algebra g′ and maximal compact subgroup K ′ corresponding to the Cartan involution
θ′ with {k ∈ K ′| θ(k) = k} ≃ M . We will therefore think of M as a subgroup of K ′.
We have by construction

σ′|g = θθ′.

The following result gives a general criterion on “transfer of unitary structures”.

Proposition 2.5. Suppose that (π, V ) is an irreducible unitarizable (g′, K ′)-
module with invariant inner product ( , ). Assume that there exists an involutive
unitary operator T on V such that

(2.6) π(θθ′(X)) = Tπ(X)T−1, and Tπ(m) = π(m)T,

where X ∈ gC, m ∈ M . Let W ∈ γM,q(0) for some q, and assume further that for each
j such that Lj ≃ Aq(Λj), the corresponding minimal M -type spaces Vj(γM,q(Λj)) all
lie in V+ or all lie in V− where

V± = {v ∈ V | Tv = ±v}.

Then ΓW (V ) is unitary.

Proof. Define a new form 〈 , 〉 by 〈v, w〉 = (Tv, w), for v, w ∈ V . We claim that
it is a (g, M)-invariant non-degenerate Hermitian form.
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We have for X ∈ g,

〈Xv, w〉 = (T (Xv), w) = (θθ′(X)Tv, w)

= (σ′(X)Tv, w) = −(Tv, Xw) = −〈v, Xw〉

This proves the g-invariance. The rest of the claim is obvious.
By replacing T by −T if necessary, we may assume that the minimal M -type

spaces Vj(γM,q(Λj) all lie in the +1 eigenspace V+ of T . Obviously the two forms
〈 , 〉 and ( , ) coincide on V+, so the positivity of 〈 , 〉 on V+ is the same as the
positivity of ( , ) on V+.

The result now follows from Proposition (2.4).

We specialize to the following situation: suppose that θθ′ ∈ Ad(G). As θθ′

preserves K, there will be some m0 ∈ K such that θθ′ = Ad(m0). This implies that
θ′(m0) = m0, and so m0 ∈ M . Note that Ad(m2

0) = I and Ad(m0)|M = I. Thus
m2

0 ∈ Z(G) = Z(G′) and m0 ∈ Z(M).
Let χ be the central character of V and set

T =
1

χ(m2
0)

1
2

π(m0),

where χ(m2
0)

1
2 is a fixed choice of square root of χ(m2

0). Then T satisfies the hypothesis
of Proposition (2.5). We therefore have the following

Corollary 2.7. Suppose that (π, V ) is an irreducible unitarizable (g′, K ′)-
module with invariant inner product ( , ). Assume that θθ′ = Ad(m0) for m0 ∈ M . Let
W ∈ γM,q(0) for some q, and assume further that for each j such that Lj ≃ Aq(Λj),
the action of m0 on the corresponding minimal M -type spaces Vj(γM,q(Λj)) is of the

same multiple (out of the two possible choices ±χ(m2
0)

1
2 ). Then ΓW (V ) is unitary.

3. The case when the Lj are unitary highest weight modules. In this
section, we examine the case when all the Lj ’s in the decomposition of V |(kC,M) in (1.4)

are unitary highest weight modules. To conclude unitarity of ΓW (V ) (Proposition
2.4), we need to know the minimal M -types of such modules. We shall adhere to the
usual practice of denoting a real reductive group by G. The relevant group we have
in mind is actually K1 (and for G′ in § 4).

For the moment, let G be a connected real reductive group with compact center,
and K is a maximal compact subgroup of G. Let g = k ⊕ p be the corresponding
Cartan decomposition. Assume that (g, k) is a Hermitian symmetric pair. Thus we
have

gC = kC ⊕ p+ ⊕ p−

with pC = p+ ⊕ p− an Ad(K)-invariant decomposition, and [p±, p±] = 0. We note
that kC ⊕ p+ is a (maximal) parabolic subalgebra of gC.

Let t be a maximal abelian subalgebra of k and bk be a Borel subalgebra of kC

such that tC ⊂ bk. Let Φ+
k be the corresponding system of positive roots of Φ(kC, tC).

Let

Φ+
n = {α ∈ Φ(gC, tC)| (gC)α ⊂ p+}.
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Then Φ+ = Φ+
k ∪ Φ+

n is a positive system of Φ(gC, tC). Set

ρk =
1

2

∑

α∈Φ+

k

α, ρn =
1

2

∑

α∈Φ+
n

α,

and ρ = ρk + ρn.
If F is an irreducible unitary K-module, set

(3.1) N(F ) = U(gC) ⊗
U(kC⊕p+) F

to be the corresponding generalized Verma module. Here F is regarded as a U(kC⊕p+)-
module with p+F = 0. Let L(F ) denote the unique irreducible quotient of N(F ). As
usual, N(F ) and L(F ) are (g, K)-modules with g acting by left multiplication and K
acting by

k(x ⊗ f) = Ad(k)x ⊗ kf, for x ∈ U(gC), f ∈ F.

We will now introduce the invariant Hermitian form (Shapavalov form) on N(F ).
Let

p : U(gC) → U(kC)

be the projection given by the decomposition:

U(gC) = U(kC) ⊕ (p−U(gC) + U(gC)p+).

Let σ be the conjugation of gC with respect to g. For X ∈ gC define X∗ = −σ(X)
and extend this action to a conjugate linear antiautomorphism of U(gC): i.e.,

(xy)∗ = y∗x∗, 1∗ = 1, with x, y ∈ U(gC).

If x, y ∈ U(gC), f, g ∈ F then we set

(x ⊗ f, y ⊗ g) = (p(y∗x)f, g).

Then ( , ) defines a (g, K)-invariant Hermitian form on N(F ). As is well-known
the radical of this form is M(F ), the unique maximal proper submodule of N(F ).
Therefore ( , ) induces a (g, K)-invariant non-degenerate Hermitian form on

(3.2) L(F ) = N(F )/M(F ).

Such a form is unique (up to a scalar multiple).
Let λ be the highest weight of F with respect to bk. If γ ∈ K̂ then let λγ denote

the highest weight of any representative of γ with respect to bk. We fix an Ad(G)-
invariant non-degenerate symmetric bilinear form B on gC with −B(θX, X) > 0 for
X a non-zero element of g, as before. On it∗, we will use the inner product ( , ) that
is dual to B|it×it. The following result is (essentially) due to Parthasarathy [14]

Proposition 3.3. Assume that L(F ) is unitarizable.
1. F is the unique minimal K-type in the sense of Vogan. Namely if γ ∈ K̂ is

such that L(F )(γ) 6= 0 then

||λγ + 2ρk|| ≥ ||λ + 2ρk||,

with equality if and only if λγ = λ.
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2. Suppose in addition that λ + ρ is integral and regular. Let s ∈ W (gC, tC) (the
Weyl group) be such that s(λ + ρ) is dominant. Then there exits a θ-stable
parabolic subalgebra q of gC depending only on s such that L(F ) ≃ Aq(ξ) for
an appropriate ξ.

Remark 3.4. We may decompose L(F ) into even and odd parts, as follows: let
T be the following (well-defined) involutive endomorphism of N = N(F ):

T (x ⊗ f) = θ(x) ⊗ f, x ∈ U(gC), f ∈ F.

Since θ commutes with ∗ and p, we have (Tv, Tw) = (v, w) for v, w ∈ N . Thus T
preserves the maximal proper submodule of N and “pushes down” to an involutive
endomorphism of L = L(F ), still denoted by T . Assume that L is unitarizable. We
have the (orthogonal) eigenspace decomposition of T :

L = L+ ⊕ L−,

where L± = {v ∈ L|Tv = ±v} are the even and odd parts. Note also that (p+)∗ = p−

and so we have the orthogonal direct sum decomposition

L = Lp+

⊕ p−L.

Clearly the minimal K-type of L(F ) is F ≃ Lp+

⊂ L+ and L− ⊂ p−L. Considerations
of evenness and oddness (with respect to some involutive operator T ) were used in a
number of ways in [3] and [6] to arrive at unitarity results. C.f. Proposition 2.5 and
Theorem 4.1.

We now return to the situation of the previous two sections: M ⊂ K is a compact
subgroup satisfying (A1) and (π, V ) is a (gC, M)-module satisfying (A2) and possess-
ing a (g, M)-invariant non-degenerate Hermitian form 〈 , 〉 (as in (A3)). In addition,
we assume that (k1, M) satisfies the hypotheses above for (g, K), namely the pair
(k1, M) is of Hermitian symmetric type. We write

kC = mC ⊕ o+
k ⊕ o−k

for the decomposition used above for gC.
In view of Proposition 3.3, Proposition 2.4 now implies the following

Proposition 3.5. Assume that in the decomposition (1.4), each Lj ≃ L(Fj),
a unitarizable (k1, M)-module with highest weight. Assume further that the (g, M)-
invariant Hermitian form 〈 , 〉 is positive definite on the following highest weight
space

V o+

k = {v ∈ V |o+
k v = 0}.

Then ΓW (V ) is either zero or unitarizable for each irreducible M -submodule W of
∧i(kC/mC).

4. The case when V is a unitarizable highest weight module. In this
section we will be dealing with an important special case in which we will be able
to give an easily calculated criterion for unitarizability. Let g be semi-simple with
Cantan involution θ. Let g′ be another real form of gC with Cartan involution θ′.
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Assume that θθ′ = θ′θ. In addition we assume that the pair (g′, k′) is Hermitian
symmetric with

gC = k′C ⊕ o+ ⊕ o−,

o = (p′)C = o+ ⊕ o−, o± abelian and [k′C, o±] ⊂ o±. We further assume that there is
a connected semi-simple Lie group G′ with Lie algebra g′ having maximal compact
subgroup K ′ with algebra k′. We assume also that θ defines an automorphism of G′

and that

M = {k ∈ K ′| θ(k) = k}.

Clearly we have

kC = mC ⊕ o+
k ⊕ o−k ,

where o±k = {X ∈ o±|θ(X) = X}.

Theorem 4.1. Let V = L(F ) be a unitarizable (g′, K ′)-module of highest weight.
We assume that

(4.2) θ(o+) = o+,

(4.3) θ(k′)f = k′f, k′ ∈ K ′, f ∈ F.

Then ΓW (V ) is either zero or unitarizable for each irreducible M -submodule W of
∧i(kC/mC).

Remark 4.4. The condition (4.2) ensures that θ fixes the center of K ′ (as
opposed to sending an element of the center to its inverse). Geometrically this means
that K1/M is a complex submanifold of G′/K ′.

Proof. Note that (A1) is automatic in our setting. We have already observed
that the condition (4.2) implies that θ acts as the identity on the center Z(K ′) of K ′

and so M ⊃ Z(K ′). Since V is admissible as a Z(K ′)-module, this implies that the
hypothesis (A2) is also satisfied. Furthermore all the Lj’s in the decomposition of
V |(kC,M) in (1.4) are unitary highest weight modules for the pair (k1, M). See [12].

If x ∈ U(gC) and f ∈ F , then set

T (x ⊗ f) = θθ′(x) ⊗ f.

Since θθ′(k′C) = k′C and θθ′(o+) = o+, (4.3) implies that T “pushes down” to an
involutive endomorphism of N = N(F ). Note that θθ′ commutes with the operators
∗ and p (defined in § 3), the condition (4.3) also implies that (Tv, Tw) = (v, w) for
v, w ∈ N . Here ( , ) is the canonical (g′, K ′)-invariant Hermitian form on N defined
previously. Thus T preserves the maximal proper submodule of N and “pushes down”
to an involutive endomorphism of L = L(F ), still denoted by T .

Note that T satisfies the required properties in (2.6) of Proposition (2.5). As in
its proof, we define a new form 〈 , 〉 by 〈v, w〉 = (Tv, w), for v, w ∈ V and we see that
it is a (g, M)-invariant non-degenerate Hermitian form.

We have the eigenspace decomposition of θ|o± :

o± = o±k ⊕ o±n ,
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where o±n = {X ∈ o±|θ(X) = −X}. Note that (o+
k )∗ = o−k and so

L = Lo+

k ⊕ o−k L,

an orthogonal direct sum decomposition with respect to both ( , ) and 〈 , 〉.
We also have the orthogonal eigenspace decomposition of T :

N = N+ ⊕ N−, L = L+ ⊕ L−,

where N± = {v ∈ N |Tv = ±v} and L± = {v ∈ L|Tv = ±v}. Since N = U(o−)⊗F =
U(o−k )U(o−n ) ⊗ F and since

θθ′|o−

k
= −I, and θθ′|o−

n
= I,

we have

U(o−n ) ⊗ F ⊂ N+, and so N− ⊂ o−k N.

As L is a gC (and T -module) quotient of N , we have

L− ⊂ o−k L.

Taking the orthogonal complement, we have Lo+

k ⊂ L+. This implies that the forms

( , ) and 〈 , 〉 are identical on Lo+

k .
In view of Proposition (3.5), the result follows.

5. A family of examples. In this section we will analyse a specific family of
examples where the two real forms are Hermitian symmetric, indeed isomorphic to the
real symplectic group. Special cases of the material of this section were studied in [21].
We consider (g, K) ≃ (Sp(2n, R), U(n)) and (g′, K ′) ≃ (Sp(2n, R), U(n)). For both

groups we need to go to the two-fold covering of Sp(2n, R), denoted by S̃p(2n, R). We
label the roots Φ of gC, h (in the usual way) as ǫi ± ǫj, i 6= j and ±2ǫi, 1 ≤ i, j ≤ n.
Choose the system of positive roots Φ+ so that the simple roots are

α1 = 2ǫn, α2 = ǫ1 − ǫ2, ..., αn = ǫn−1 − ǫn.

Let r, s be non-negative integers with r + s = n. Set
{

ηi = ǫi, 1 ≤ i ≤ r,

ηr+i = −ǫn−i+1, 1 ≤ i ≤ s.

Let

H =
1

2

n∑

i=1

ηi, and H ′ =
1

2

r∑

i=1

ηi −
1

2

n∑

i=r+1

ηi.

We take

θ = eπiadH , θ′ = eπiadH′

to define the Cartan involutions of the corresponding pairs.
The positive roots of K are given by

ηi − ηj , 1 ≤ i < j ≤ n.
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Let gC = k′C ⊕ p′
C

be the (complexified) Cartan decomposition of gC. Let Φ+
k′ and

Φ+
n′ be respectively the positive roots in k′C and p′

C
. Write o = p′

C
and choose o+ so

that

Φ+
n′ = {α ∈ Φ|(gC)α ∈ o+}.

Then we have

gC = k′C ⊕ o ⊕ o−.

Write o±k = o± ∩ kC and o±n = o± ∩ p, as before. Then we have

kC = mC ⊕ ok ⊕ o−k .

We set

lC = mC ⊕ o+
n ⊕ o−n

and l = lC ∩g. Then l = g∩g′ and (l, M) is a symmetric pair of Hermitian symmetric
type. We have

l = l1 ⊕ l2 ≃ sp(2r, R) ⊕ sp(2s, R).

The simple roots for l1 are

η1 − η2, ..., ηr−1 − ηr, 2ηr

and those for l2 are

−2ηr+1, ηr+1 − ηr+2, ..., ηn−1 − ηn.

We have

M = K ∩ K ′ ≃ U(r) × U(s).

We assume that we have chosen p+ such that

o+
n ∩ p+ ⊂ (l1)C.

Then Harish-Chandra’s strongly orthogonal roots for l1 are 2ηr, ..., 2η1 and those for
l2 are −2ηr+1, ...,−2ηn.

Let bm be Borel subalgebra of mC fixed by our choice of positive roots and let n+
m

be the nilradical of bm. We shall need to use some (non-zero) highest weight vectors

v+
i ∈ S(o−n ∩ p+)(−2ηr − · · · − 2ηr−i−1)

n+
m

and

v−i ∈ S(o−n ∩ p−)(2ηr+1 + · · · + 2ηq+i)
n+

m .

Here the notation S indicates the symmetric algebra and S(o−n ∩ p+)(λ) denotes the
M -isotypic component of S(o−n ∩ p+) with highest weight λ, and similar notations
apply likewise. Then

S(o−n )n
+
m = C[v+

1 , ..., v+
r , v−1 , ..., v−s ].
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This follows from a well-known result of Schmid [15].

Note that α1 = 2ǫn is the unique simple root in Φ+
n′ . Let Λ1 ∈ h∗ be defined by

2(Λ1, αi)

(αi, αi)
= δi1.

In terms of η1, ..., ηn, we have

Λ1 = η1 + · · · + ηr − ηr+1 − · · · − ηn.

We shall consider unitary highest weight module L(−m
2 Λ1) of G = S̃p(2n, R) of

highest weight −m
2 Λ1, m a natural number. For m ≥ n, it was studied in [6], and so

we will concentrate on the cases m < n.
From the analysis in [19], we have (as a K ′-module)

L(−
m

2
Λ1) ≃ C−m

2
Λ1

⊗ S(o−)/
∑

k≥m+1

S(o−)Vk,

where C−m
2

Λ1
is the 1-dimensional K ′-module of weight −m

2 Λ1,

Vk = S(o−)(−γ1 − · · · − γk),

and γ1 < · · · < γn is the Harish-Chandra’s system of strongly orthogonal roots for
Φ+

n′ . From this, we may conclude that

L(−
m

2
Λ1)

o+

k ≃ C−m
2

Λ1
⊗ S(o−n )/

∑

k≥m+1

S(o−n )q(Vk),

where q : S(o−) 7→ S(o−n ) is the surjective algebra homomorphism with kernel ker q =
o−k S(o−).

The M -highest weight vectors in
∑

k≥m+1 S(o−n )q(Vk) are computed to be of the
form

∑

i+j≥m+1

C[v+
1 , ..., v+

r , v−1 , ..., v−s ]v+
i v−j .

This implies that the M -highest weight vectors in L(−m
2 Λ1)

o+

k are of the form

C−m
2

Λ1
⊗ C[v+

1 , ..., v+
r , v−1 , ..., v−s ]/

∑

i+j≥m+1

C[v+
1 , ..., v+

r , v−1 , ..., v−s ]v+
i v−j .

Let µ be such a highest weight, then

µ = −
m

2
Λ1 − 2k1ηr − · · · − 2krη1 + 2l1ηr+1 + · · · + 2lsηn,

where

k1 ≥ · · · ≥ kr ≥ 0, l1 ≥ · · · ≥ ls ≥ 0,

and

kilj = 0, if i + j ≥ m + 1.
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Let 1 ≤ p ≤ s be the largest j such that lj > 0. Clearly p ≤ m.
Set q = m − p. Then ki = 0 for any i ≥ m + 1 − p = q + 1.
Denote

M̂p,q = {µ|k1 ≥ · · · ≥ kq ≥ 0, l1 ≥ · · · ≥ lp > 0}.

Then we get a disjoint union decomposition:

M -types of L(−
m

2
Λ1)

o+

k =
∐

p+q=m

M̂p,q.

Take µ ∈ M̂p,q:

µ = −
m

2
Λ1 − 2k1ηr − · · · − 2kqηr−q+1 + 2l1ηr+1 + · · · + 2lpηr+p.

We have ρk =
∑n

j=1
n−(2j−1)

2 ηj . In terms of the η coordinates, we have

µ + ρk = (λ1, ..., λn) + (0, ..., 0︸ ︷︷ ︸
r−q

,−2kq, ...,−2k1︸ ︷︷ ︸
q

, 2l1, ..., 2lp︸ ︷︷ ︸
p

, 0, ..., 0︸ ︷︷ ︸
s−p

),

where

λj =

{
n−(2j−1)

2 − m
2 , 1 ≤ j ≤ r,

n−(2j−1)
2 + m

2 , r + 1 ≤ j ≤ n.

If q < r, then we require that

2lp +
n − (2(r + p) − 1)

2
+

m

2
>

n − 1

2
−

m

2
,

and if p < s, then we require that

−
n − 1

2
+

m

2
> −2kq +

n − (2(r − q) + 1)

2
−

m

2
.

The stated conditions are respectively

2lp > r − q − 1, if q < r,

and

2kq > s − p − 1, if p < s.

The point here is that µ + ρk is regular if both of the above conditions are satisfied.
The regular weights µ in M̂p,q are all in the same K-Weyl chamber. Let s = sp,q

be the following permutation so that s(µ + ρk) is dominant regular:

ηr+1 7→ η1, ..., ηr+p 7→ ηp, (p of them),

η1 7→ ηp+1, ..., ηr−q 7→ ηp+r−q, (r − q of them),

ηp+r+1 7→ ηp+r−q+1, ..., ηn 7→ ηn−q, (s − p of them),

ηr−q+1 7→ ηn−q+1, ..., ηr 7→ ηn, (q of them).
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The length of s is equal to

(r − q)p + qp + q(s − p) = rs − (r − q)(s − p).

Note that the “middle” dimension is 1
2 dim(kC/mC) = rs.

One checks that the corresponding θ′-stable parabolic q of kC is determined by
the wight

λp,q = −(ηr−q+1 + · · · + ηr) + (ηr+1 + · · · + ηr+p).

In turn q corresponds to an irreducible M -submodule Wp,q of ∧i(kC/mC), where i =
rs − (r − q)(s − p).

Write

Γp,q = ΓWp,q
.

Using (1.7) and (2.3) or a derived functor analog of Borel-Weil-Bott theorem (see [4],
Proposition 6.3 and [7], Corollary 3.2), we see that the highest weights of K-types of
Γp,q(L(−m

2 Λ1)) are those ν such that

ν + ρk = s(µ + ρk)

= (g1, ..., gn) + (2l1, ..., 2lp︸ ︷︷ ︸
p

, 0, ..., 0,−2kq, ...,−2k1︸ ︷︷ ︸
q

),

where

gi =





n−2(r+i)−1
2 + m

2 , 1 ≤ i ≤ p,
n−2(i−p)−1

2 − m
2 , p + 1 ≤ i ≤ p + r − q,

n−2(i+q)−1
2 + m

2 , p + r − q + 1 ≤ i ≤ n − q,
n−2(i−s)−1

2 − m
2 , n − q + 1 ≤ i ≤ n,

and

k1 ≥ · · · ≥ kq ≥ [
s − p

2
], l1 ≥ · · · ≥ lp ≥ [

r − q

2
].

We therefore have

ν = (h1, ..., hn) + (2l1, ..., 2lp︸ ︷︷ ︸
p

, 0, ..., 0,−2kq, ...,−2k1︸ ︷︷ ︸
q

),

where

hi =





−r + m
2 = p−q

2 − (r − q), 1 ≤ i ≤ p,

p − m
2 = p−q

2 , p + 1 ≤ i ≤ p + r − q,

−q + m
2 = p−q

2 , p + r − q + 1 ≤ i ≤ n − q,

s − m
2 = p−q

2 + (s − p), n − q + 1 ≤ i ≤ n.

Let ξ, η ∈ {0, 1} such that

ξ ≡ r − q (mod 2), η ≡ s − p (mod 2).
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Then r − q = 2[ r−q
2 ] + ξ, s − p = 2[ s−p

2 ] + η.
We therefore conclude that the K-types of Γp,q(L(−m

2 Λ1)) are of the form

ν =
p − q

2
1n + (2l′1 + ξ, ..., 2l′p + ξ

︸ ︷︷ ︸
p

, 0, ..., 0,−2k′
q − η, ...,−2k′

1 − η
︸ ︷︷ ︸

q

),

where

l′1 ≥ · · · ≥ l′p ≥ 0, k′
1 ≥ · · · ≥ k′

q ≥ 0.

At this point we have constructed a family of unitarizable (g, K) modules
Γp,q(L(−m

2 Λ1) for p ≤ s, q ≤ r and p + q = m ≤ n. We will now give a conjec-
tural interpretation of these unitary representations.

We consider the reductive dual pair (O(p, q), Sp(2n, R)) in the sense of Howe [10].
For ξ, η ∈ {0, 1}, we define a character 1ξ,η of O(p, q) by the conditions

1ξ,η|O(p) = (det)ξ, 1ξ,η|O(q) = (det)η.

Then the general theory of Howe [11] assigns a representation θp,q(1ξ,η) of S̃p(2n, R)
to the character 1ξ,η (and to any irreducible admissible representation of O(p, q)).
The representations θp,q(1ξ,η) are called theta lifts of 1ξ,η and are all unitary when
p + q ≤ n (the stable range condition, see [13]).

Conjecture 5.1. Let p ≤ s, q ≤ r and p + q = m ≤ n. Then we have

Γp,q(L(−
m

2
Λ1)) ≃ θp,q(1ξ,η),

where ξ ≡ r − q, η ≡ s − p (mod 2).

Note that L(−m
2 Λ1) ≃ θ0,m(10,0). It is easily checked that the conjecture is true

in the special case when ξ = η = 0. The representations concerned will then contain a
(same) 1-dimensional K-type, and so are determined by their infinitesimal characters.
We refer the reader to [23] for this as well as discussions on θp,q(1ξ,η) and other related
representations arising from the formalism of Howe correspondence.
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