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MAPS BETWEEN B" AND B" WITH GEOMETRIC RANK
ko <n—2 AND MINIMUM N *

SHANYU JIf AND DEKANG XUT

Dedicated to Professor Yum-Tong Siu on the Occasion of his 60th Birthday

1. Introduction. Let B” = {z € C" : |z] < 1} be the unit ball in C™. The prob-
lem of classifying proper holomorphic mappings between B™ and BY has attracted
considerable attention (see [Fo 1992] [DA 1988] [DA 1993] [W 1979] [H 1999][HJ 2001]
for extensive references) since the work of Poincare [P 1907][T 1962] and Alexan-
der [A 1977]. Let us denote by Prop(B™,B") the collection of proper holomorphic
mappings from B" to BY. It is known [A 1977] that any map F € Prop(B",B")
must be biholomorphic and must be equivalent to the identity map. Here we say that
f,g € Prop(B",BY) are equivalent if there are automorphisms ¢ € Aut(B") and
7 € Aut(B") such that f = 7ogoo. For general N > n, the discovery of inner func-
tions indicates that Prop(B™,BY) is too complicated to be classified. Hence we may
focus on Rat(B™,BY), the collection of all rational proper holomorphic mappings
from B™ to BY. We first recall the following results:

THEOREM 1.0. Let 2 <n < N.

(1) [We 1979][Fa 1986] When N < 2n — 1, Rat(B",BY) has only one equiva-
lent class.

(2a) [Fa 1982] When N = 2n—1 and n = 2, Rat(B?,B3) has four equivalent classes.
(2b) [HJ 2001] When N = 2n — 1 and n > 2, Rat(B",B?"71) has ezactly two
equivalent classes. One is the linear map and another one is Whitney map.

(3) [DA 1988] When N = 2n, Rat(B",B?") has infinitely many equivalent classes.
In particular, {Fi(z1-++ ,2n) = (21, Zn—1,008(t) zn,sin(t)zp2) : t € (0,7/2)} is a
family of mutually inequivalent polynomial proper embeddings.

However a puzzle remains: Why is the case of n = 2 in Theorem 1.0 (2a) more
complicated than the one of n > 3 in Theorem 1.0(2b)?

This puzzle can be solved by the following new formulation, which is crucially
based on a notion, geometric rank, introduced recently by Huang [H 2003]. For any
2 < n < N, any F € Rat(B",B") can be associated an invariant integer ro €
{1,2,...,n — 1}, called its geometric rank (see § 2 for the definition). It is known that
for any F € Rat(B",BY), its geometric rank ko = 0 if and only if F' is equivalent
to the linear map ([H 1999, Theorem 4.2] cf. [HJ 2001, Propostion 2.2]). Therefore,
to study maps in Rat(B",BY), it is sufficient to study maps with geometric rank
Ko Z 1.

If F € Rat(B",BY) with the geometric rank kg, it is known [H 2003, lemma
3.2] that N > n + w must hold, namely, the least dimension of the target

space is n+ (Zn=—ro=L)ro Therefore, to understand the simplest case, given an integer

ko € {1,...,n — 1}, we are interested in studying maps F' € Rat(B",B") with the
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geometric rank kg and with the minimum dimension of the target space:

2 — ko — 1
F:B" - BV, N:n—l—w. (1)

When o = 1, (1) becomes F : B® — B?"~L, which is the case covered by Theorem
1.0 (2a) and (2Db).

It is also known from a recent deep and important result by Huang [H 2003]
that there is a significant difference between the case 1 < kg < n — 2 and the case
ko = n — 1. More precisely, when 1 < kg < n — 2, the maps F have so-called
semi-linear property while the maps with k9 = n — 1 may not have such property.
This gives a philosophy that maps F' with kg = n — 1 are comparatively much more
complicated than the ones with 1 < ko < n — 2. From this philosophy, the following
two problems are naturally formulated.

Problem A. Study and classify maps F € Rat(B",BY) with N = n+ m
and 1 < kg <n—2.

Problem B. Study and classify maps F € Rat(B",BY) with N = n+ w
and kg =n — 1.

When k9 = 1, Problem A is solved in Theorem 1.0 (2b), and beyond this case,
the next simplest unsolved case is Rat(B*, B?) with ko = 2. When n = 2, Problem B
is solved in Theorem 1.0 (2a), and beyond this case, the next simplest unsolved case
is Rat(B?,B®) with ko = 2.

In fact, the formulation of Problems A and B explains why Rat(B?,B3) is more
complicated than Rat(B™,B?"~!) with n > 3: Each of Theorem 1.0 (2a) and (2b) is
an initial case of Problem A and Problem B.

In this paper, we study Problem A and we first estimate the degree of such maps
F. As the main result, we investigate Problem A by studying maps F € Rat(B*, BY)
with kg = 2 and deg(F) = 2.

THEOREM 1.1. Let F € Rat(B",BY) with geometric rank kg, 1 < ko < n — 2,
and with N = n + W Then deg(F) < ko + 2.

THEOREM 1.2. Let F' € Rat(B*,B?) with the geometric rank 2 and with deg(F) =
2. Then F is equivalent to Whitney map Wa o of rank 2.

The paper is organized as follows. We first prove Theorem 1.1, by using the same
technique in the proof of Lemma 5.2 in [HJ 2001]. Here we would like to mention
a conjecture by D’Angelo [DA 1993, p.189] which is open: if FF € Rat(B",BY),
then deg(F) < 2N — 3. Next we introduce the definition of Whitney map of rank
ko ( see (9)) and prove a criterion for such maps. In Section 5, we determine the
form of F(z,0), in which the semi-linearity property of F' by Huang [H 2003] will
be crucially used. In Section 6, we further determine the form of F'(z,w). Theorem
6.1 tells us what F looks like when F' € Rat(Hy4, Hg) satisfies the normalization
condition in Theorem 2.2: F' has three complex parameters b%t)l, b%%)l, Eooo1 and one
real parameter po > 1 that are related by certain equations. To prove such map
F is equivalent to Whitney map, one key step is to change the parameter us into 1.
However, the difficulty is that such ps is invariant under any equivalent change that fix
the origin (see (4)(5)). If we consider F,;**, which is equivalent to F' (see Theorem 2.2),
the calculation of ps p(p) is too complicated to be handled. Our idea is to calculate
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only the linear part of ps p(p), which dramatically reduces our computation. As a
result, we see that us p(p) decreases when p moves along a certain direction. Then
we are able to show that ps p(p) can reach the minimum and hence it must be 1 and
the resulting map F' is exactly Whitney map.

Acknowledgments. We wish to thank Xiaojun Huang for helpful discussions
and valuable suggestion for our work in this paper. We also thank the referees who
gave very useful suggestions and comments.

2. Preliminaries. Let H, := {(z,w) € C"! x C, Im(w) > |z|?} be the Siegel
upper-half space in C™ where n > 2. By using the Cayley transformation:

2z 1+aww 1 21 wr—1
n:Hn Bna n\<» = 7 . |y Pn *7 ) = y LT )
p - P2, w) (1—zw l—zw) pu (7, 07) (w*—i—l l w*—i—l)

H,, is biholomorphic equivalent to the unit ball B™ and 0H,, is equivalent to the unit
sphere 9B"™. For any F € Rat(B",BY), py' o F o p, € Rat(H,,Hy). Then we can
identify a map F' € Rat(B",B") with the one in Rat(H,,Hy), and we shall still
denote it as F for simplicity. By the work of Cima and Suffridge[CS 1990], F' extends
holomorphically up to the boundary. Hence the map F' induces a non-constant CR
mapping from 0H,, to 9Hy. As before, we also denote it as F.

ou
{Ly,---,L,_1} forms a basis for the complex tangent bundle T(:99H,,, and T is
the tangent vector field of dH,, transversal to Th9Y9H, U T(OVHH,. OH, can
be parameterized by (z,%z,u) through the map (z,%Z,u) — (z,u +i|z|?). Assign the
weight of z and w to be 1 and 2 respectively. If m is a non-negative integer, a function

h defined over a neighborhood U of 0 in 9H,, is said to be of quantity o,:(m) if
h(tz,tZ,t%u)
‘t‘7n
this case, we write h = 0,¢(m).

Write L; =2iz_j%+% for j=1,---,n—1and T = 2 with w = u + iv.

— 0 uniformly for (z,u) on any compact subset of U as t(€¢ R) — 0. For

Let FF = (f7¢7g) = (f?g) = (fh"' afnflv(blf" ad)anvg) be a map in
Rat(H,,,Hy). For any p = (29, wg) € 0H,,, we consider automorphisms O'?ZO we) €

Aut(H,,) and T£07w0) € Aut(Hpy) given by

U?ZOMO)(Z,U)) = (2 + 20, w + wo + 2i(2, %)),

Téo,wo)(2*7w*) = (Z* - f(Zo,wo),w* - g(Zo,wo) - 2i<Z*7f(ZO7w0)>)'

Then F, = 7F o F o 0) € Rat(H,,Hy) is equivalent to F with F,(0) = 0. By the

work of Huang [H 1999], F), is equivalent to another new map F;* = (f;*, ¢;*,g5*)
that satisfies the following normalization condition.

THEOREM 2.1. [H 1999, Lemma 5.3] Let F be a C%-smooth CR map from a
connected open subset M C OH,, into OHy with N > n > 2. Then for each p € M,
Fy* = (f, ¢,9) satisfies the normalization condition:

7

fp:Z+2

oV (2)w + 00 (3), b, = 6P (2) + 0wi(2), gp = W+ 0w(4)  (2)
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with (Z, a;(,l)(z)>|z|2 = |¢>1(,2)(z)|2, where we denote by hYU)(z) a polynomial of z with
homogeneous degree j.

Here ag)(z) = 2zA(p) where A(p) is a certain (n — 1) X (n — 1) semi-positive
Hermitian matrix. The rank of A(p) is said to be the geometric rank of F' at the
point of p. We denote it by Rkr(p). We define the geometric rank of F to be
Ko = mazpeon, Rkr(p). Notice that 0 < kg <n — 1.

THEOREM 2.2. [H 2003, Lemma 3.2, 3.3, Corollary 4.2, 5.2, (3.6.4) and Claim
4.4] Let F be a C*-smooth CR map from a connected open subset M C OH,, into
OHy with F(0) =0, 1 < kg = Rkp(0) <n —2 and N = n+ =505 - Tpep for
Vp(= 0) € M, F, is equivalent to another map Fyr*, still denote it by (f,b,9), from
O0H,, to OHy, with the following conditions:

fi=z+ %ij towt(i%),
fi=2+0m(3),550)=01<j<n—1
2, 24 .
Sjt = 1221+ 0wt (2), 3= H=(0) =0 for k > ko, H28(0) =0, ¥(j,1) € So;
g=w+o0uw(5), g(0,w)=w+o(w?),

(3)

where Sop = {(jl),1 < j < ko, 1 <1 <n—-1, 5 <1} pj >m =1 forj<rkg
and p; = 0 for j > ko; pji =/t Fpy for 1 < j < ko, 1 <1 <n—1,5#1 and
tij = \/Hj for 1 < j < ko.

We notice that Sy is the finite index set of {¢;;} and |Sp| = W Also,
by [H 2003, Corollary 5.2], the set {p € OH,,, Rkr(p) = Ko} is an open dense subset
of M. Therefor the assumption that F'(0) = 0, k9 = Rkr(0) holds for almost p € M.

For any rational holomorphic map H = % on C", where P;, Q are

holomorphic polynomials and (Py,- -, P, Q) = 1, the degree of H is defined to be
deg(H) = maz{deg(P;), 1 < j <m, deg(Q)}.

LEMMA 2.3. [HJ 2001, Lemma 5.3 and 54| Let F € Rat(H,,Hy). If
deg(Fp(2,0)) <! for any p in an open subset of OH,,, then deg(F) <.

Consider o € Auto(H,) and 7 € Autq(Hy) given by

> (/\(z—&—gzz),;v()], A w)) (1)

where q(z,w) = 1 — 2i(a,2) + (r —ila]>)w, A > 0, r € R, a € C"! and U is an
(n —1) x (n — 1) unitary matrix, and
)\* * 0% L * )\*2 *
T*(Z*,’w*): (Z +a’* U)*) i] ) w ’ (5)
q* (2%, w*)

where ¢*(z*,w*) = 1 — 2i(a*, z*) + (r* —i|a*|?)w*, \* > 0, 7* € R, a* € CNV~! and
U*isan (N — 1) x (N — 1) unitary matrix.

LEMMA 2.4. ([H 2003, Lemma 2.2]) Let F = (f,¢,9) and F* = (f*,¢*,g*) be
C? CR map from a neighborhood of 0 in OH,, into OHx (N > n > 1) such that both
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satisfy the normalization condition (2). Suppose that F* = 7* o F oo where o and 7*
are as in (4) and (5) respectively. Then it holds that

* —1 * —1 * * —2 * Uil 0
A=A ai=-A"a"U, a5=0, r"==-X""r, U* = | (6)
where a* = (aj,al) with a its first (n — 1) components, U3, is an (N —n) X (N —n)
unitary matriz. Conversely, suppose ™™ and o, given in (4) and (5) respectively,
are related by (6). Suppose that F' satisfies (2). Then F* := 7*oFoo also satisfies (2).

3. Proof of Theorem 1.1 . Assume that F' satisfies (3). Let £; = 22@% + aizj

be the complexfication of L;. We apply L;, LiL;(k < ko, k < j) to the equation:

920 = f(z,w) F(C, ) + ¢z, w)$(C, ) for any w—n = 2i(z-C). Let (z,w) =0,

7 = 0. Then we get

= I 0 (¢ ¢ -
f(CvO)t = (BIA Bl> (%) = (BCIAZt> ’ VC €C la (7)

where
L1L1(f1) LiLi(f2) - LiLa(fu-1)
L1L2(f1) LiLo(f2) -+ Lila(fn-1)
... DRI DR .. Cl
LiLn-1(fr)  LiLn-a(fe) - Lilp-1(fn-1) Cy
A= L2Lo(f1) L2Lo(f2) oo LoLo(frn-1) =1 .
(0,0,¢,0)
LoLn-1(fr) L2ln-a(fe) -+ Lalp-1(fn-1) Cro
Emgﬁn—l(fl) Lnoﬁn—l(fQ) Enoﬁn—l(fn—l)
and C; are (n — 1) X (n — 1) matrices with the following forms:
_le 07 0 0 0O --- 0
~C —m2(, 0 0 0 --- 0
—Cs 0 —p3Cy e 0 0 --- 0
Ch — B : : : Do ’
1 iCKO 0 0 7/‘L:"€0<1 o ... 0
~Crpi1 0 0 0 0 --- 0
_Zn_l 0 0 .. 0 0O --- 0
0 *2M2_ZQ 0 - 0 0 --- 0
0 —p2C3 —p3Gy - 0 0 - 0
Go= [0 b 0wl 0 0,
0 —p2Cpyin 0 0 0 --- 0
0 —p2l, 1 0 0 0 --- 0
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00 0 -+ —2ugC 0 - 0
7 CHO _ 0 00 _/'I’KO'CKO“Fl 0 O ’
000 - _,U%()Zn—l o - 0
and B is equal to
L1Li(p11) - L1L1(d1(n—1)) L1Ly(¢p22) - L1L1(brg(n—1))
L1L2(P11) L1L2(1(n—1)) ﬁl£2(¢22) L1L2(Preg(n—1))
L1Lpn-1(P11) - Lila-1(P1(n-1)) ﬁlﬁn 1(¢22) o L1Lln—1(drg(n-1))
LoLo(d11) e L2Lo(d1(n-1)) £2£2(¢22) e L2L2(bry(n—1)) .
(0,0,¢,0)
LoLp—1(d11) -+ LaLln-1(d1(n-1)) ﬁ2/$n 1(¢22) o LaLn—1(Prg(n—1))
LroLn-1(¢11) - LroLn-1(d1(n-1)) ENOEH 1(¢22) o LrgLa—1(Prg(n—1))
D,
—t D2
Hence A = ) with
Dy,
—2
—2¢ =2
vy —2/12Gy
—(1+ p2)¢1¢s =
o (12 + 13)GaC }
—(1+ 13)C1 G (2 13)66s ~241,Cr,
: T —Hk Zn Z/-c +1
Dl = -~ ) D2 = _(:UQ +/J'Ko)<2c:m) L DNO = ’ .0 ’
_(1 + MHO)C1CRO g .
_F 7 1262C 0 11 S
C1Cm0+1 . *Mﬁofnocn—l
72127171 —12G2Cn 1
—_ 2 — 2 2
Notice that £:£;(¢s(0,0)) = 2iC; @0 4 2i¢; &-ga(0:0) 4 20200) from (3). If we
2
denote bfj to be gwgizi lo, then we get
(gbw) Vi opg 4 QzCibgj + 2izib§j,for i < j < Ko;
(d)gt) = 27’§z st + 27’Cz stvfor (Zj) 7£ (St)a i <j < Roj;
Lj(pij) = /pi + pj + 27/C bz]’for J > Ko;
Lj(pst) = ijbSt,for J > ko.
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Recalling 11 = 1, p; = 0 for j > Ko, we can write B = D + B with

2 0 0 0 --- 0 0 0 0 0
0 Vi¥tps --- 0 0 --- 0 0 0 0 0
0 0 VIF i, O 0 0 0 0 0
0 0 0 1 0 0 0 0 0
D= : : : : : : : : : : :
0 0 0 0o --- 1 0 0 0 0
0 0 0 0 -~ 0 2y 0 0 0
0 0 0 0 - 0 0 Vua+tpu O 0
0 0 N 0 0 e 0 0 O S Mno
K, b, bly - b%(nfl) byy - bflgo(nfl)
B=| : Lo : S ]
Ey,) \b1y bY3 - DY gy b5 bRy
where
4iC, 0 0o -~ 0 0 4i, 0o -+ 0
2iC, 2i¢; 0 -~ 0 0 23 2, --- O
By = | 2i(,, 0 0 - 2¢ |, B2=]0 2, 0 - 2y |,
2iCy 11 0 . 0 2iC., 11 0 e 0
2iC,, O 0 - 0 0 2i¢,, O - 0
000 --- 41'2,%
- 000 --- 2i470+1
000 - 2, ,
Denote B* = D™1B = 22’5- b where
By biy b - bi(n_l) by o b}m(n_l)
DM i | =2 and b= i : oo :
El‘in bllii) blfQO e blf?n—l) bgg n b:g(n—l)

— — —

Then (B*)2 = (20)2(- (b-C) - b,- -+ ,(B*)* = (2)*C- (b- {)¥=1 - b,---. Hence

~BTAT = —(I+ B 'DAL = —(1+ 332, (-1 B) D1 AL
= 1 - 2{( 52, (-1 i) F- ) oDt Al (8)

=t

— —[1—2(T+2i5-&) " - D1 A



240 S. JI AND D. XU

Notice that b - 5 is a kg X Ko matrix. Each entry of this matrix is a polynomial

of ¢ with degree 1. We also notice that D*IAZt is a vector of polynomial about ¢

with degree 2, we conclude degp < kg +2. lf welet z=w=n=01n w =

- 3
f(z,w)f(&,n), we get g(¢,0) = 0. Hence deg(F;**) < ko + 2 for any p in OH,, that is
closed to 0. By Lemma 2.3, deg(F') < kg + 2. The proof of Theorem 1.1 is completed.
a

4. Whitney Maps of Rank kg. Let 1 < kg <n—1, N=n-+ W A
map Wi, .o = (I'1, -+, Ti41) in Rat(B",BY) is called Whitney map of rank kg if it
is of the following form:

(.2

Dy = (22,V22122, , V221210, 21200415+ + 21 20—1, 210),
(.2

Iy = (227\/522237 e ,\/5222HO722ZNO+1, S 222n—1, 22W),

: (9)
(2

FI{() — (Z,g07zmoz/{0+1» e ,ZKOanl,Z,{OUI),

Fngrl = (ZnoJrla e 7Zn717w)-

Notice that when rg = 1, 'y = (27, 2129, ..., 212n_1, 21w) and [y = (29, -+ , 2,1, W)

give the classical Whitney map. By Cayley transformation, W, ., can be identified
as a map in Rat(H,,Hy). As an example, Wy € Rat(Hy, Hg) is of the form

_ zl+%zlw zz+ Zow 23722310
fl— 1— 2w 7f - 7f3 I—iw

11 = 7, 12 = 221Z2 , P13 P22 = 15—, a3 =25, g=w.

(10)
We want to prove a criterion for Whitney map which will be used to prove Theorem
1.2.

w7

THEOREM 4.1. Let F' € Rat(H,,, Hy) with the geometric rank ko, 1 < kg < n—2,
and with N = n—i—m_'{%m. Then F is equivalent to Wy, .., if and only if deg(F) = 2
and F' is equivalent to another map F = (f, &, g) that satisfies (3) and ;jfg; (0,0)=0
for all 4,1 and k.

Proof. It suffices to show that if F' satisfies (3) and 59;%'; (0,0) = 0 for all 7,1
and k, then F' is equivalent to W, ..

Step 1. Determine F(z,0). As we did in §3, apply £L;, Li.L;(k < Ko, k < j) to

9e0) “ 9 _ p; w)FTCm) + 62, w) B ), ()

for any w —n = 2i(z - ().
By (7), we have
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where A is as in Section 3, and

D(n—1)x]50]
D(n—2)x|50|

D("—Ro)xlso\

. 2n—ro—1 2n—ro—1 : o
is an | So| x | S| = 22 =9 Jro o (2n = )% diagonal matrix with

20117 0 0 -+ O 0 0 --- 0

0 2 0 -~ 0 0 0 - 0
Dn-1)x|50| = : S : R

0 0 0 - 0 p@E-1y 0 -+ 0

0 o 0 2ty 0 0 0 0

0O --- 0 0 Hro(ro+1) O 0 0

Dn—ro)x|so| = : : : : :

0 -~ 0 0 0 0 0 feg(ni)

Hence f(,0) = ¢, ¢u((,0) = “HG G for k < o and k <1< n, gp((,0) = £

Mkl Mk
for k < kg. Putting (z,w) = 0 and n = 0 in (11), we get ¢g({,0) = 0. Since
Ukl = /1 + p, ke = /i for k <1 < n and k < kg (see Theorem 2.2), from the
above argument, we have proved the following.

f(2,0) =z

Or1(2,0) = Ve + puzez, 1<k <ky k<l<n-1, (12)
ik (2,0) = VurzE, 1 <k < ko;

g(z,0) =0.

Step 2. Determine F(z,w). We claim:

iH(b+E)z; .
g5 = 2EGEEE 1 < < oy

ERCEE
fj:Zj, Kio<j§n—1;
b = i 157 <U<n (13)
(bﬂ:ﬁ’ 1<j<kKgy, ko+1<Ii<n-—1,
2
(bJJ = 1+(b1%)w’ 1 <j < Ko;
g=w,

where b € R is a real number.
In fact, Since deg(F) = 2, by (12), we can write F' in the form
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&) @ ey 2
fi = Aj (AT (A Gt A jwtATw Cl<ji<n-—1:
1+ED (2)+E®@ (2)+EM (2)w+e; w+esw?

by = B§Ll)(z)+31('12)(z)+33('ll)(i)\w/JFB’jlw+B”jlw27 (1) € So: (14)

1+EM (2)+E®) (2)+ED (2)w+e; wtezw?

W (2)4C® (2)+CD (2wt Cw+C" w?
1+EM (2)+E®) (2)+EM (2)w+e; w+eaw? '

g =

Here we use notation h(k)(z) to denote a homogeneous polynomial of z with total
degree k. We write ¢;; as a Taylor series at 0 and compare the expression with (12).
Then we get

e~

B (2) = pjuziz, BY (2) = B'j=B"j = B (2) =0, ¥(j,1) € Sp.

Applying (12) to ¢;1(z,0), we obtain EM(z) = E?)(z) = 0. Similarly, writing f; as
a Taylor series at 0 and compare it with (3), we have Ag-l)(z) =z, A;=A"; =0,

A;l)(z) = Lz + erz; for j < ko, and A;l)(z) = ez for kg +1 < j <n-—1 By
using (12) and the fact that EM(2) = E?)(2) = 0 to f;(z,0), we get A§2)(z) =0.

For g, we similarly obtain C’ = 1, CM(z) = CM(z) = C?)(z) = 0. Since
deg(F) < 2, as the proof of [HJ 2001, Lemma 6.1], using the last two equations of
(3), we get g(z,w) = w. Therefore from (14), we find C' =1, C” = e, EM(2) =0
and e; = 0. Combining the above results, we get

fj — z1+(2MJZJ+€1‘ZJ)w7 1< j < ko; f] _ ziteizjw

iz zlJrelw 1+eiw
_ jlZj =l . . —
¢jl - 1Z-eiw’ V(j,l) € 507 g=w.

Since F maps 0H,, into OHy, we have Im(g) = |f|*> + |¢|> on OH,. Notice
g(z,w) = w, this equation can be written into

ko <j<n-—1; (15)

21* = |f(z,w)* + [¢(z,w)[*, V(z,w) € IH,,. (16)
Replacing f, ¢ by the ones in (15), we can write (16) as
K . 2 n—1
|Z\2\1+e 2 _ - ) v ) ) 2 2
1w|® = Z Zj + (2:u’jz] +e1zj)w| + Z |zj + e1zjw|” + Z ljiz;2]
j=1 Jj=ro+1 (G1)eSo

for any (z,w) € OH,,. Since w = u + i|z|?, we obtain several equations:

|22[1 + ex (u +i|2[?)] = Izz(l +eru+ equ + e |2|* — ier|z* + e *u® + |e1|22|4)»

Ko 2

D

Jj=1

7 .
~nizi + e1z)(u+ilz[?)

Zj+(2

Ko
= Z |22 <1 +etu + eyu +der |22 — ieq|z? + |er]?u® + |er||2|* - Hj|22>
j=1

1 T 7
+Z|zj|2( Wi+ e = pugen + pdlelt + Gl - Sl
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n—1

o Iy +ezwtizP)P

Jj=ro+1
n—1

= > |zj|2(1+e1u+e1u+ie1|z|2—z‘elz|2+|e12u2+|e1|2z|4),
Jj=kKo+1

and

07 = > whlzlPlal

(4,1)€So

Substituting the above terms into (16), we get

Ko Ko Z Ko
=3l 02 4 1) (5 Zw 5wl - pa Y wls?)
=1 =1 =1

+ Z N?,Z|Zj|2|«zz| , Vz € C”*1 and u € R.
(41)eSo

Since z,u are independent variables,
1 Ko Z Ko ’L Ko
1 > 1zl + §EZM\ZJ|2 —5e > nlzlP=0
j=1 j=1 j=1
This means
NS T B
Z ZMj + 5#3‘61 2U361 ‘Z]| =
j=1

Therefore %,u? + Lpjer — tpjer =0,V =1, ko. Since p; = 1 (see Theorem 2.2),
this implies Im(e1) = —1 and 1 =y = pg -+ - = f1,. Our claim (13) is proved.

Step 3. F is equivalent to Whitney Map. Let F be of the form (13).
= (f, ¢, 9) is equivalent to

F = (MG 52000 1020 ) ).

Let A = 5. By permutating the components of F’, we may assume that F’ is of the
followmg form F'(z,w) = (¥1, - ,¥ro+1), Where

_ Qz% 2\/52122 Zﬂzlzﬁo 22125541
1 _<1+(4bz‘)w’ 1+ (@db—iyw 14 4b—i)yw' 1+ (@Ab—i)w
2212n-1 z1+ (4b+ i) zw
1+ b—d)w’ 1+ (4b—i)w )’
_ 2z§ 2\/52223 2\/5222*50 2292k5+1
w2_<1+(4bi)w’ 1+ (b—iyw’ 14 4b—i)yw' 1+ (@db—i)w
2292n—1 zo + (4b + i) zow
1+ 4b—d)w’ 1+ (4b—i)w )’
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b = 2220 2210 Zro+1 . 2250 #n—1  Zrg + (40 + i) z5w
o 1+ @b—d)w 14+ @b—d)w’ "1+ @Ab—dHw’ 1+ (4b—i)w ’
’(/)K0+1 = (Zﬁo-i-l? CrtyRn—1, U})

Using the Cayley transformations, F’ induces a proper holomorphic mapping
F=pnoF' op,lin Rat(B",B") given by F = (11, ,%x,+1), where

7= 22 V2zze V2212, AZggr1
1+ 2bi — 2biw’ 1 + 2bi — 2biw’ "1+ 2bi — 2biw’ 1 + 2bi — 2biw’ ’
Z1%n—1 le(l — 2[)2) + 2biz1
1+ 2bi — 2biw’ 14 2bi — 2biw
% _ Z% \/52223 L \/52’2250 222Kk0+1 L
1+ 2bi — 2biw’ 1 + 2bi — 2biw’ "1+ 2bi — 2biw’ 1 + 2bi — 2biw’ ’

Z9Zn—1 ZQIU(I — 2[)2) + ZbiZQ
1+ 2bi — 2biw’ 1+ 2bi — 2biw ’

o = z2, Zio Zro+1 o ZroFn—1 ZroW(1 — 2bi) + 2bizy,
o 14 2bi — 2biw’ 1 + 2bi — 2biw’ "1 4 2bi — 2biw’ 1+ 2bi — 2biw ’
wmo"rl = (zfio"rlv Ctty Zn—1, ’LU)
Consider

o(z,w) = (z L+ 2ib) 22.b)w) and (2", w*) = ( L2 z* (1+ 2ib)iw*)
’ V142 )’ ’ V144027 7 1+ 4b2 ’

which are elements in Aut(B") and Aut(B?) respectively. By definition, F is equiv-

!

alent to I/ =0 Foo. Replacing b by —b, as before, we write F = (17/}1/, e ,m )
where

—~ 23 V2212 V221 2,
Y= (\/1 FAR(1 - o Zw) VI AP(1 - S 2w) VI AR(L - S 2w)
212k0+1 B Z12n—1 iz % —v )
V1 +4b2(1 — Wu})’ VIFAR(1 - ) 1- 2mw)’
o 25 V22223 V2252,
V2 = (\/1+4b2(1— ) VIT AR (1 - 2w)’ VI A1 2 w)]
22%kg+1 5 Z2%n-1 sy \/ﬁw —v )
V1 +4b2(1 — Ww)’ VIFAR(1 - ) 1- 2w
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0 = (i
Ko T P 2b ) P 2b Y )
2b
Zro =1 i, vivaE Y )
2b » ko 20 J
VIR - Ffpe) -
i <1—2ib 1—2ib (1—2ib )2 )
K = | —(/—=%k sy T /=31y | Y Y——= w ).
TV Y i T Vi A
Define 8 = \/% and Sg = /1 — (2. Notici2ng |\/117+274¢'£2| = 1, we multiply i to
—~ —_— i
the last components of wll, e ,1/1,{0/, — ( v11<‘r24§22> to the last component of ¥, 4+1

/ 2 ! =y . . .
and 11_*'2‘% to the other components of ¥,,11 , F’ is equivalent to a new map, still
~ — —_—
denote it as F' = (1, , Yro+1 )
J/ _ [ Sszi V2Ssziz . V2Spz12ry Sp21Zrgt1 . Spzizaa > B—w
L= \T=Bw> " 1-Bw > "7 1-pw ° 1-pw > = 1-pw “11=pw |
wN/ _ Spza  /2Sgzazs \/§Sﬁ222~0 Spzazrg+1 | Sprazn-—1 B—w
2 =\ 138w’ 1-Bw ’ 1-Bw °* 1-pfw T 1-Bw 21w |°
: (17)
’(//JVI — Sﬁzio Sﬁzmozn0+1 . SBZNOZH—I B—w
Ko 1-Bw? 1-fw b 1-pw  PTRO1I-Bw |
/
Vrot1 = (Zrot1s " 5201, W).
On the other hand, for any a € R, we define
S.z  a—w \/—2
Pa = ’ ) Sa = 1-a )
l—aw’ 1—aw
which is an automorphism of B™. Similarly, we can define ¢} € Aut(BY). For

Whitney map W, ., = (I'1,---
©s 0 Wi ko © @q has the following form

,Tror1) from B™ to BY defined in (9), we see that

f-/ Sazf \/§Sa2122 \/Esazlzﬁo Sazlz&o#»l . Saz12Zn—1 a—w
1=\ 1TZaw’ ™~ 1—aw > ’ l—aw 7 l—aw > l—aw l—aw |°
FN_ Saz3 /2842223 \/§Sa222n0 Saz22kg+1 . Saz22n_1 5, A=W
2= \T—aw’ ™ 1—aw ° ’ l—aw ° l—aw T l—aw 2T1—aw |
(18)
2
. — SaZuy  SaZrgZrgtl Sazrg2n_1 a—w
Ko l—aw’ 1—aw ’ ’ l—aw ?7K01—quw |

Trgt1 = (Zm)-i-h e 7Zn—1,w)-
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Comparing (17) with (18), if we put a = %, F =t 0 Wh.ke ©q and this proves

Theorem 4.1. 0O

5. Determining F'(z,0). From now on, we always consider F' € Rat(0H4, 0Hyg)
with geometric rank 2 and degree 2 as in Theorem 1.2. In order to determine F(z,w),

we need to determine F'(z,0) first. Let us denote ¢j;(z,w) =3, , <4 bgfltz}‘zgzgwt.

LEMMA 5.1. Let F € Rat(0Hy, 0Hy) satisfying (3) with kg = 2 and deg(F) = 2.
Then

fl(z70) = 21, f2(z70) = z2, f3(Z,O) = Z3,
2
$11(2,0) =

“1
1 — 260 21 — 2i/T+ pabl i) 2o — 2ib\E3) 25
V14 oz 2
$12(2,0) = S (11) . — (212) o3y ]
1 = 2ibyggy 21 — 26/ 1 + p2biggy 22 — 2ibyg01 23
Z123
1— 2ib{ 50 21 — 20T b’ by 22 — 2ibSE0) 23
2
Ny
$22(2,0) = 7 . 272 = 5
1 — 2ibjggy 21 — 261 + p2biggy 22 — 2ibyg01 23
VH272%3
$23(2,0) = (D) . 12) a3
1 = 2ibjggr 21 — 2i/1 + pabiggy 22 — 2ibyg01 23

$13(2,0) =

22 23 11 13 12 11 23 13
and 5500)1 = bgOO)l = b(()10)1 = b((no)l =0, b610)1 = \/ffw 500)17 b(()10)1 = \/.U2bgoo)1a

birer = V(1 + 1)) where py > 1.

Proof.  As we did in §3 and by the same notation, we have

25, 00 —2G°
_§2 —p2(y 0 = -1 +M_2)@
A: —C?) 0 O y and AC = _CIC?)
0 Gy 0 i
0 —p2Gs 0 *[LQ@

We can write the 5 x 5 matrix B = D + B where

2 0 0 0 0
0 VIitme 0 0 0
p=|o o 1 o o [,
0 0 0 2@ O
0o 0 0 0 i
WG o
_ 21 2iGy pAD p(12) (3)  22)  23)
B=1| 2 o 1001 %1001 01001 01001 01001
i b(ll) b(12) b(13) b(22) b(23)
0 4iC 0101 Y0101 Y0101 Y0101 Y0101

0 2i(s
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By (8), we have —B~1AC' = —[I = 2iC (I + 2ib - f) D'AC'. Writing

Cii Ch2 o
= 24b -
( Co1 Ca ) -6

& 0
1 1
p(ID pa2) a3)@2)23) T >2 T+ps oL
—9; 1001 Y1001 %1001 Y1001 ®1001 (s 0
pAD (12 p(13) ,(22)  (23) L
0101 0101 0101 0101 0101 0 \/{7272
0 LG
11) 1001 4 b bg})%))l v bg?)?))li_k b%?))li
_ o boorCr + WCQ foorGs Tﬂ”@ + \(/2,2—?(2 Vi S
b — b2 — B2 — ]
b + \/%Cz e eI ARy A
we have
<—2
2 14+Cy% —Ci2 > L
= < ( —Cy1 1+Cpy ) i T b
~B™ . A-C=|I-2i GG
det 1+ Ch1 Cia
Co 14 Cy VH CQ

VH262C3

1+Cn Cia

Denoting by A the determinant det ( Oy 1+ Chy

) and by (7), by direct com-
putation, we obtain
A(C.0 0) = =2 + 211’0101 271’3%)%)1 + 22b(<)101 _ Wb
(C )¢11(< ) G m(l VIts NS 2 1001 Cl 42
2R 2 b GG — 2 /lb ) CiCaa.
(19)
Since F is of degree 2, the numerator of ¢11({,0) must be Zf by (3) so that from (19)

we get bg%%)l = b%%)l = 0 and then

=2 (12) ., (12) . (22)
2ib. 2ib 2ib 2ib2
11 = CL {1 + 0101 20101 Fy ( 001 | £%0101 _ o; ST M2b1001>€~2 n 0101 C3]-

A V14 pe V1 po V2 V2
(20)
Similarly we calculate ¢22 to obtain b(()llg)l = béll‘z’))l = 0 and at the value (¢,0)
N e 11 1 (12 2ib{ ey
P22 = A {1 + 20 (bgOO)l ViEaT 010)1) G+ \/l_li_ﬂc 2+ 22b§001§3} (21)
— GG, 2o~ (2w 2ibGg) a2) \ =, 2ibio)
=214 220 —2i4/1 b
P13 A +mC1+ m‘F N + p2bigo C2+ iz Gl
(22)

— V202G Cz(s 1 212
23 = 1+ 2i( bioo) — m bion )G+ %@ +2ibipoy Cs [, (23)
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VI 2 9 2632 b3 ppZ) N
p261G2 {1+ 2 bgll) 01017 o 2 1001 | 2 0101) Gl

12 = G+
2 A L+ pp O (1 + pa) Ltpo o pa(1+ po

(24)
With the fact that b%%)l = b%%)l = b(()llt)l = béll‘z)l = 0, we also calculate

—

A(Z, 0): det(l + 2%5 ) =14+ C11+ Cy + C11C029 — C12C9

12 12 22
_ [ 9,7(11) . b(()lo)l (o bgOO)l -b(()lo)l
= 14+G| 200 +2i——==— | + (| 2 +2i

V14 pe V1 po N

= (13) b(()QI%)l
+ 2ib + 2i—)

€ ( 1001 N

11) , (12 12) , (22 13) , (23 11) , (22

72 bgOO)lnglO)l 72 b§00)1b610)1 72 bgoo)lb((n(ﬁ _ 75500)1 610)1

4G ———— —4¢ 4G 4G ————

V14 po V14 poy/12 V2 V2

p{th) p(23) pl13) p(12) o pl12) p(23) pl13) p(22)
n —C1C3(— 4%1001%101 _ 4 %1001 0101) n ng?)( _ 4 21001%101 4 Y1001 0101)_
V2 VI 2 V(L + p2)p2 VH2
The factors in the right hand sides of (20)(21)...(24) must be the same, and it also
must be a factor of A(¢,0). Then Lemma 5.1 follows immediately. 0O

6. Determining F(z,w).

THEOREM 6.1. Let F': 0Hy — 0Hg satisfies (3) with ko = 2 and deg(F) = 2.
Then F must be of the form:

2] — 2ib%%))1zf — 2ib%%)1z1z3 + (Eooo1 + %)zlw

f1: — )
1— 260 21 — 26\ 25 + Eggorw
fom %2 — 2“7%%))1 2122 — 2ib§%%)1z223 + (Eooo1 + wf)zzw
2= Nz 1) )
1-— 22[)5%)%))1 Z1 — 21()%})36)1 23 + E0001’LU
f3= <3 Zib%%)ﬂ?% - zib%}))ﬁlzia + Eooo1 23w
1-— 22[)5%)%))1 Z1 — 21()%})36)1 23 + E0001’LU
4 11
1= 22+ b0 2w b1y = VIF¥ pozi20 + \/ﬁmbgoo)lzgw
1= 2ipD) . _ 9;p(13) E ’ 1— 2 . _ 9;p(13) E ’
10100121 — 210100123 + Looo1W ib1go121 — 210100123 + Eooorw
bra= 2123 + 5%36)12110 Bon — V273
1= 2ib{0 21 — 200D 2 + Egporw 1— 200 21— 2060 25 + Fooorw
1001~1 ? 1001Z3 + 0001 W 1 100121 1 100123 =+ 0001 W

V22223 + / Fiab oy 22w

1-— 2ib%h)1z1 — 22()(1%)?6)12’3 + E0001w

P23=

) g:w’
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where b%%))l, blgé)l, Egoo1 € C and pg > 1 with

2 2
us —1 Iz 13
Boon | = == Im(Eoom) = =72 — bioon (25)

Proof. By the normalization condition (3) and Lemma 5.1, we can write the
map F' in the following form:

T13) 1
flz |:Zl 2Zb100121 \/ 1 + /142b1001Z122 2’ngt%)12123 + (E0001 + i)zlw
. |:1 — 2@1)%%))121 \/ 1+ ,LLQb(11020122 22[)%?6)123 + EOOOlw + E100121w +

-1
2
+Ep10122w + Eoor1z3w + Eggoow )

fo= [22 —2iy/1+ b1001z2 QZb%O)lzl,ZQ 22()%%)12223 + (Eooo1 + %)zzw

|:]. 2lb100121 \/ 1 + M2b100122 22[)100)12’3 + EQ()Olw + Elomzlw +

1
2
+Ep10122w 4 Eop11 23w + Eggoow )

f3: |:Z3 — QZb%%)lzg - 2ib%%)lz123 — 2i\/ 1 + ,Uzb%%)lZQZg + E000123w
[ 2zb100121 —2i\/1+ M2b100122 22b100)123 + Epoorw + Erpor 1w +

-1
2
+Ep10122w + Eoo11 23w + Eggoow } ;

d11= {Z% + b%%))lzlw} {1 — 2ibg e — 20/ T+ bl 20

- —1
—2ib%%)123 + Egoo1w + Erporz1w + Egio122w + Epor1zz3w + Eooozwﬂ )

bro= [\/1 + poz129 + b%%)lmw + \/%—Mb%é)lzgw] [1 - 22b100121 2iy/1 + M2b10012’2

—1
—2i b%%)lz:s + Epoorw + Erpo1z1w + Eor0122w + Eoor1 23w + Egopow ] ;

¢13: |:le’3 + b(lt?(’))lzlw} |:1 — 2Zb10012’1 \/ 1 + /J,ng%)%)lzg

_ —1
.1 (13) 2
—2ibj00123 + Eooorw + Erpo1z1w + Egio122w + Ego11 23w + Eggoow )
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bos= [\@zs V) m)baa%aw} [1 by — 20 /T b2

—1
2zb§00)1z3 + Egoo1w + Eipo1z1w + Egio122w + Epor1 23w + Eggoow } )

Pa3= {\/#_22223 + \/1725%?))12210] [1 - 2Zb100121 2/ 1+ H2b1001z2

. -1
(13
—2zb§00)1zs + Egoo1w + Erporz1w + Egio122w + Epor1 23w + Eooozwﬂ ,

9= [w + Chroo1z1w + Coro1 22w + Copr123w + E0001w2]
{1 —2ib{L0) 21 — 20/ pab$i2) 2
_ —1
—Zib%%)lzs + Eooorw + Ergo1z1w + Eoio122w + Eoor1 23w + E0002w2:| .
When z9 = 23 = 0 and Im(w) = 21, we get fo = f3 = ¢22 = ¢po3 = 0, and

21 — 22b100121 + (E0001 + 5 )le

fi=
1- 215500121 + Epoorw + Ergorz1w + E0002’w2
br1= 22+ b§00)1z1w
1- 2ib%%))121 + Eooo1w + Eroo1z1w + Egpoaw?
p(12)
bra= 1001#1W
(1 ’
1- 2zb§0{))1z1 + Egoo1w + Eroo1z1w + Egooaw?
b(1 )z w
P13= 100121

1- 2ib%%))121 + Egoo1w + Eroo1z1w + Eggoew?

2
w + Crpo121Ww + Eggorw

1 — 2ib ) 21 + Eooo1w + Eigo1 21w + Egopzw?

Consider the basic equation Im(g) = |f|> + |¢|*> for any Im(w) = |z|>. By
considering the u? terms, we see that Egggs is real. Considering the u* terms, we

obtain EOOOQ(EOOOl — EOOOl) = 0. Considering the uzy terms, 01001 + 22()(1%)%))1 = 0.

Considering the u?z; terms, we get Eiop; = 0. Considering the u3z; terms, we

get Croo1Fooo2 = 0. Similarly, when z; = 23 = 0 and Im(w) = |z2]?, we get
. 12 -

00101 = 722\/1%‘#2[)500)1, E0101 = OaCOl(HEOOOQ = 0, when Z1 = Z9 = 0 and

Im(w) = |2’3|2, we get 00011 = —2’&175%)%)1, E0011 = 07C0011E0002 = 0. Therefore we

can distinguish two cases.
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Case i: 01001 = 00101 = 00011 =0. Then b(l%)}))l = bﬂ)%)l = bﬁ):)()))l = 0 and we
apply Claim (13) in the proof of Theorem 4.1 to know that F is of the form (13). We
are done.

Case ii: (01001, 00101, 00011) 75 (0, 0,0). In this case E0002 =0. By the basic
equation Im(g) = |f|? on OHy, we have

|2]%]1 — 2zb1001z1 2i4/1+ u2b§001z2 22b100)123 + Egoo1w/?
= |z[?1 - 2Zb100121 = 2iy/1+ M2b§oo1z2 - 22b1001z3 + (Eooo1 + §)w|2
1
2?1 = 2/TF bt 22 — 2856t 21 — 2005 20 + (Booon + 52wl

+z3)?1 — 2zb§00)123 2zb100121 2i/1+ ugbloolzg + Egoo1w/?

FlaPlen + B oy w]? + [/ F pzzize + b ooy 21w + \/%—mb%)ﬂzwp

12
2Pz + bigmyw]? + 222V Eizze + /2 (L+ p2)blew]?
+|22]? |\V1223 + /1t b1001w|2-

By considering the 21Zz3u? terms, we get bgoo)lb%t)l = 0. We consider 22 = 23 = 0 and

Im(w) = |21|?, divided by |21 /%, to get

|1 — 2b(1%)%))12’1 + E0001w\2

= [1— 25021 + (Booor + S)ul? + |21 + bl + {s2hwl? + b5yl
By considering the u? terms, we have
Tm(Booor) = ~ — SE0L12 — ISERLIZ — SERL P (26)
We also consider z; = z3 = 0 and I'm(w) = |22/|?, divided by the |z3|? terms, to get:

11— 2iy/1+ pzblggn 22 + Eooorw|? = |1 — 2iy/T+ uboh 22 + (Eooor + %)U}P

11 (13
|\/rb(1oo)1w|2 + [VB222 + / p2(1 + po) b1001w\2 + Vi b100)1w|2~

By considering the u* terms, divided by ji, we have Im(Eqggo1) = —42— 1+M2 | 1001 \2
(1 —|—/,L2)|b%%1|2 |b1%)%)1|2. From above two formulas, we get 0 = ”QT_l 1+u2 \bﬂ)}}lﬁ

M2‘b1001|2 so that |b1%J%))1|2 = u2—1 + p2(1 + 112)|b1001|2 Recalling bgOO)lb%J%J)l = 0 and
1o > 1, we obtain the equation |b§00)1|2 (“2 L1+ u2)|b1001|2> = 0. Then either

b%%)l =0or L2 (14 ug)\b%%)l |2 = 0. Since p2 > 1, the second possibility implies

(12) (12 (11) 12 _ p3-1 .
bigg) = M2 = O We have proved b1001 = 0 and |bjg;|° = #4—. Therefore our basic
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equation becomes

2211 — 2ib g1 21 — 2ib55) 25 + Eooorw|?

= |z 21 - 2zb%%))1z1 — 221)%?6)12’3 + (Fooo1 + =)wl?

2
21— 2S00 21 — 2ib{E) 25 + (Eooor + B2 )wl?

2
2211 — 2ib o 25 — 2ibhes 21 + Eooorw|? + |21 ]2z + bioorw]?

HaaPIVTH paz1 + bl + [aafles + bl

13
Heal?|Vimaz2l + |2l Vi zs + bl wl.

Considering all terms involving u?, we get
i i
21| Eooo1|* = |211* Eooo1 + §|2 + |22|*| Eooo1 + %P + |23)*| Eooo1 >

11 11 13 13
21050012 + |22 2] bioon|? + 121 218 Gon | + |22 /zbion |-

H2
VI+ g
, we have

2
By recalling |b%}))1|2 — /t24—1

1 2
0= |Zl|2<4 + Im(Eoom)) + |Z2|2<Z2 + ,LLQIm(EOOM))

2 _ 1 2 —1
2 2R g (P nfal? ) O

Comparing the |21]? and |2z3|? respectively, we find out

1 21
0= (4 + Im(Eoom)) + M24 + |b%%)1|2,
-1
0= (% + Im(Eoom)) + % + [bigon .
Thus we have proved that [b{L) |2 = @ and I'm(FEopo1) = 7%3 — iz o

COROLLARY 6.2. Let F € Rat(Hy,Hyg) be as in Theorem 6.1. Then F is equiv-
alent to another map that is of the form as in Theorem 6.1 with the same us value
and satisfies the additional property:

B =0 and Re(Egoo1) = 0. (27)

Proof. Let F be as in Theorem 6.1. We take o € Auto(Hy) and 7* € Auto(Hy)
0
in the forms of (4) and (5) with U = Id,A = 1,Us, = Id, r =0 and a = 0

13
7b§00)1

Then by Lemma 2.4, we can verify that F = 7% o F oo still is of the form as in
Theorem 6.1, with the same us value, and satisfies b%%)l =0.

Next fixing F' that is of the form as in Theorem 6.1 with b%%)l = 0. We again
take o € Autg(Hy) and 7 € Auto(Hy) in the forms of (4) and (5) with U = Id, A =
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l,a = 0,Us, = Id and r = —Re(FEooo1). Then by Lemma 2.4, we can verify that

F =10 Foo is of the form as in Theorem 6.1, with the same us value, and satisfies
(27). O

7. The Proof of Theorem 1.2. Let F' € Rat(H4,Hy) be as in Corollary 6.2.
For any p € 0Hy, let f11,7(p) and fig, p(p), with 111, F( ) < L2 r(p), be the eigenvalues

of the semipositive matrix A(p) : = (a;i(p)) = (— 219 Lir ledw |0) Define p1 p(p) =1 and

w2, r(p) = Z? iggg > 1. Recall that u; #(p) and po r(p) are the coefficients py = 1 and

w2 in Theorem 2.2, respectively, which are the eigenvalues of the semipositive matrix

2 pkokx
(—22'%2{% lo). Write p = (p1,...,p7) = (21,21, 22, Z2, 23, Z3, u) that is identified as a

point in OHy, and write ag,(p) = aékk) + ZJ 1 agkk)pj +o(lp|), k=1,2,3.

LEMMA 7.1.  Let I be as in Corollary 6.2. for any p that is closed to 0

a11(p) =1 — 2ReEgoo1u + 42@%0%))121 bioorzD) + ol|pl),

a2 (p) = p2 — 2peReEgporu + 21‘112(5500121 b%O)lzl) + o(|pl),
as3(p) = 0(|p|).

We shall assume this lemma, which will be proved in the next section, to prove
Theorem 1.2. We first study the real analytic function us g(p) of p.

LEMMA 7.2. Let F be as in Corollary 6.2. Then

s, (9) = p2 + dpiaIm (bﬁoo’lzl) T o))

for any such p near 0, where ps is the one as in (25).
Proof. Recall that 11 p(p) and fis p(p) must be the eigenvalues of the equation
det(Al — A(p)) =0, ie.,

A—aii(p) —ai2(p) —a13(p)
det | —a2(p) A—ax(p) -—asp) |=0.
—as1(p) —asa(p) A —azz(p)

Since the geometric rank is 2, we must have det(A — A(p)) = AA — 1. r(p))(A —
fia,7(p)). For simplicity, we denote a;; = a;;(p). Then

det()\I — A(p)) = A |:>\2 — (a11 + a99 + 0,33))\ + (a11a22 + a110a33

+ag2a33 — G21a12 — G23032 — a31a13)} ’

1

= [(1111 + age + azz) — ((011 + ag2 + 033)2 —4(ar1a22

p,r(p) = 3

1/2
+ai1a33 + agza33 — A21G12 — A23G32 — a31a13)> } s
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1

Lo, r(p) = B (a11 + a2 + asz) + ((au + az2 + CL33)2 —4(ar1a92

1/2
+ai1a33 + agza33 — ag1012 — A23G32 — a31a13)> } .

Then

fio.o(p) = fia(p) _ 1+/1-N(p)+ M)
| mp)  1-/1-N(p)+ M(p)

where, by Lemma 7.1,

11022 a21a12 + a13a31 + a23as32
Np)=4—-"""—+0 , M(p)=4
) (a11 + a22)? (Ip) ) (a11 + age + assz)?

= o(|p])-

By considering the Tayler seriese of a;; = aéjj) +> % a,(jj)pk + o(|p|) for k =1,2,3,
we obtain

(22) 7
a 1 22) (11 11) (22
M2,F(p) = (()11) - ( (11))2 Z (a’(() )a; ) - ag )CL§ )>pj + 0(|p|)
) Qg

j=1
Then from Lemma 7.1, the desired equality is proved. 0O

Proof of Theorem 1.2.  Let F be as in Corollary 6.2 and fixed . If its po = 1,
then F' must be Whitney map (10). Suppose that pus > 1. Then by Lemma 7.2,
we can choose p = (—ib%t)lr, 0,0,0,0, 0,0) or identify p = p(r) = (—ib%t)lr, 0,0,

i|b%t)1|27“) € OHy4, where r > 0, to conclude that

pa p(p(r)) = pa — Al bSeo |7 + o(|r]).

Therefore, there is a constant ¢ > 0 such that for any 0 < r < o, the derivative
dp2.r(0(1)) () Therefore for such Py 12,Fp, (0) is decreasing as r increases. Hence
K2, Fp (0) < p2,7(0). In other words, we find a new map that has smaller us value.
By Corollary 6.2, we can assume that this new map is of the form as in Theorem 6.1,
with the same ps value, b%‘é)l = 0 and Re(Eppp1) = 0. Let us denote this map as
F1. Repeating this process, we obtain a sequence of maps {Fj}%2, such that each
map F} is of the form as in Theorem 6.1 with b%%)l =0 and Re(Fopoo1) = 0 and that
each Fj, is equivalent to the I and that po p,,, < p2,r, holds for all k. Then the
limit map F' = limy, F}, must be of the form as in Theorem 6.1 with b%%)l = 0 and
Re(Eoppo1) = 0, and with the minimum g, z value.

We want to prove that this map is the desired one. In fact, suppose that ., z > 1.
Then p = 0 must be a critical point of the real analytic function p, 5(p). By Lemma
7.2, p = 0 is a critical point if and only if b%}))l = 0. This implies, by (25), that
Ho 7 = 1, which is a contradiction to the assumption that p, 5 > 1.

Finally, since we can assume that the map F is of the form as in Corollary 6.2
with g = 1, it is the Whiteny map (10). 0O

To finish the proof of Theorem 1.2, it remains to prove Lemma 7.1.
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8. The Proof of Lemma 7.1. We are going to use the following formula (see
cf. [H 2003, § 2]) to prove Lemma 7.1:

t

L;Tf(p)- Lif(p) (28)

aji(p) = —2i ngaw\o = -2 {/\(lp)
_% (Tf(p) . sz(p)t) (Tf(p) 'Wt> _ 2;;3(‘;) <T2g(p) — 2%T2f(p) .f(p)t> }

Since F is of the form as in Corollary 6.2, we have

21 — 2ib 401 22 + (Fooor + £)z1w
p= 20T oo ¥ D20 o1, ),
1 — 2ibyg121 + Eooorw

Then

(E0001 + %)Zl E(Zl — 2@b§00)1zl (E0001 + %)Zl’IU)

T = 20001
1-— 2ib%10)1z1 + Fgoorw (1 — 22b100121 + EOOOlw)2

_ %zl +o(](z,w))),

Similarly, by direct computation, we obtain the following results. For simplicity, we
use o(1) to denote o|(z,w)|).

. 7
T?f1 = —iEooo121 +0(1), Lifi =1+ W +o(1),

L\Tf =< — 25%%3121 iEooo1w + o(1), Lafi = o(1), LoTf1 = o(1), Lafi1 = o(1),

fa=za+0(), Tfa= %22 +0(1), T? fo = —ip2 Eooo122 + o(1),
(11) T2
Lifa =0(1), L1T fo = —pabiggiz2 +0(1), Lafo =1+ —w +o(1),

LoTfy = 22 — Mzb%%))lh —ipaEooorw 4 0(1), L3 fa = o(1)

fs=23+0(1), Tfs=o0(1), T*f3 =0(1), L1fs =o0(1), L1Tf3 = o(1),
Lafs =0, LoTf3 =0, L3fs =1+ o0(1), LsT f3 = o(1),

é11 = o(1), Tor1 = bigey21 + o(1),

T?¢11 = —2E0001b%%))121 +o(1), Lig1 =221 + b%h)lw +o(1),
L1T¢11 = bgjz)}))l + ( 2E0001 + 4Z|b1001 )Zl — 26%1))113'000110 + 0(1)7
Lap11 =0, LoaTh11 =0, Lypir = o(1),
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b12 = 0(1), Tepra = %b%@ +o(1),
T2¢12 = —2Enom ﬁb%&zz +0(1), Ligia = \/1+ pazz + o(1),
L1 Té12 = —Eooor\/1+ paza + Zi\b%é)lp\/luij—m@ + o(1),
Lagra = \/1+ pioz1 + \/%—mb%&w +0o(1),
11 . 11
LoT¢12 = 5?1730(;}2 + (\/?ﬁQM |bgt%))1|2 — Eooo1 /1 + p2)z1 — —2M2E1—0T13i00)1 w+ o(1),
Lsgr2 = o(1),

¢13 =0(1), To13 = 0(1), T?¢13 = o(1), Lip1z = z3 +o(1), LiT 13 = o(1),
Lop13 =0, LaT'h13 =0, Lapiz = 21 +0(1), L3T¢13 = —Epoo121 + o(1),

$22 = 0(1), Tpaa = 0(1), T?¢az = o(1),
Lipaz = 0o(1), L1Thaz = 0(1), Lagaa = 2y/p222 + o(1),
LoT ¢gp = —2Ego01+/pi222 + 0(1), Lzgas = o(1),

23 = 0(1), Tpaz = o(1), T?¢a3 = 0(1), L1az = o(1),
LiT¢o3 = 0(1), Lagas = /223 + 0o(1), LoT¢a3 = o(1),
L3¢oz = /1222, L3Thp23 = —Eooo1/ 222 + 0(1).

By (29) and all above formulas, the desired formulas in Lemma 7.1 are obtained. 0O
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