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INTEGRATION OF MEROMORPHIC COHOMOLOGY CLASSES
AND APPLICATIONS ∗

DANIEL BARLET† AND JON MAGNÚSSON‡

En hommage à Yum Tong Siu pour ses soixante ans

Abstract. The main purpose of this article is to increase the efficiency of the tools introduced in
[B.Mg. 98] and [B.Mg. 99], namely integration of meromorphic cohomology classes, and to generalize
the results of [B.Mg. 99]. They describe how positivity conditions on the normal bundle of a compact
complex submanifold Y of codimension n + 1 in a complex manifold Z can be transformed into
positivity conditions for a Cartier divisor in a space parametrizing n−cycles in Z .

As an application of our results we prove that the following problem has a positive answer in
many cases :

Let Z be a compact connected complex manifold of dimension n+p. Let Y ⊂ Z a submanifold
of Z of dimension p− 1 whose normal bundle NY |Z is (Griffiths) positive. We assume that there
exists a covering analytic family (Xs)s∈S of compact n−cycles in Z parametrized by a compact
normal complex space S.

Is the algebraic dimension of Z ≥ p ?

0. Introduction. In the present paper we will develop further some of the
methods introduced in [B.Mg.98] and [B.Mg.99] concerning integration of meromor-
phic cohomology classes. We will equally generalize the results of [B.Mg.99] which
describe how positivity conditions on the normal bundle of a compact complex sub-
manifold Y of codimension n + 1 in a complex manifold Z can be transformed
into positivity conditions for a Cartier divisor in a space parametrizing n−cycles in
Z .

Applications. We shall motivate this work by an application to the following
problem:

(0.1) Problem. Let Z be a compact connected complex manifold of dimension
n+ p in Fujiki’s class C1 and denote the algebraic dimension of Z by a(Z)2. Let
Y ⊂ Z be a closed submanifold of dimension p− 1 > 0 whose normal bundle NY |Z
is (Griffiths) positive3.

Does this imply that a(Z) ≥ dim(Y ) + 1 = p ?

(0.2) Remarks.

1) There exists a compact connected three-dimensional manifold Z of algebraic
dimension 0 containing a smooth rational curve with normal bundle O(1)⊕
O(1) (see for instance [C.91] ). Thus the hypothesis Z ∈ C is not superfluous.

2) We assume p > 1 (so Y is not a finite set of points) because the case p = 1 is
trivially false (let Z be any torus with a(Z) = 0).
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3) The case codimZY = 1 is well known because the line bundle associated with the
divisor Y is of maximal Kodaira-dimension and therefore Z is a Moishezon
manifold (i.e. a(Z) = dimZ).

4) We shall also discuss the following two variants of the problem (0.1):
(a) the case where Y is a locally complete intersection of codimension n + 1 in

Z. In this case the normal bundle is again well defined and the hypothesis
NY |Z > 0 still makes sense.

(b) the case when the hypothesis NY |Z > 0 is replaced by the assumption that
NY |Z is ample .

We shall also combine the variants (a) and (b) .

(0.3) A Necessary Condition. Assume that Z satisfies a(Z) ≥ dimY +1 = p.
Then by choosing another bimeromorphic model Z̃ of Z given by a modification
τ : Z̃ → Z if necessary, we can find an equidimensional map π : Z̃ → W on a
normal projective variety W such that a(W ) = p. Then the fibres of π define,
using the direct image by τ , an analytic family of n−cycles in Z which covers Z4.

Remark that the covering family constructed in this way is not related to the sub-
manifold Y . The inequality a(Z) ≥ p is now reflected in the fact that the normal
compact complex space parametrizing this covering family is a Moishezon space.
This leads naturally to the following problem :

(0.4) Problem. Let Z be a compact connected complex manifold of dimension
n+ p. Let Y ⊂ Z a submanifold of Z of dimension p− 1 whose normal bundle
NY |Z is (Griffiths) positive. We assume that there exists a covering analytic family
(Xs)s∈S of compact n−cycles in Z parametrized by a compact normal complex
space S.

Is a(Z) ≥ p ?

(0.5) A Special Case. Let Z be a compact connected complex manifold of
dimension n + p. Let π : Z → S be a holomorphic equidimensional map onto a
normal compact complex space S of dimension p. As before we assume that there
exists a complex submanifold Y of dimension p− 1 in Z whose normal bundle is
(Griffiths) positive.

Is S a Moishezon space ?

(0.6) Remarks.

0) As the fibers of π give a covering analytic family of n−cycles of Z which is
parametrized by the compact normal complex space S problem (0.5) is a
special case of problem (0.4). We shall see below that in this case we have
equivalence between “S is Moishezon” and “a(Z) ≥ p”.

1) In problem (0.4) (and (0.5)) the case p = 1 is allowed, and Y may be taken
to be any point in Z. The conclusion a(Z) ≥ 1 is then a consequence
of [K.75] because (Xs)s∈S is a covering family of divisors in Z which is
not compatible with a(Z) = 0. (In problem (0.5), dimS = 1, so S is
projective !)

2) Consider the classifying map c : S → Cn(Z) for the analytic family (Xs)s∈S

(see [B.75] ); we can always replace S by the normalisation of its image

4See theorems 2 and 4 in [B.75] .
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by c without changing the n−cycles which appear in the family. Thus,
without any loss of generality, we shall always assume in the sequel that the
map c : S → Cn(Z) is the normalization of its image.

3) Now define

Σ := {s ∈ S | |Xs| ∩ Y �= ∅}. (1)

As Y is projective (because it carries a positive bundle), Σ is a Moishezon
space thanks to [C.80]. Moreover, if

Z =
⋃
s∈Σ

|Xs|,

then we obtain that a(Z) ≥ p by a“classical” argument (see for in-
stance[C.80]).

4) Of course we shall also consider variants a) and b) or a) + b) for the problems
(0.4) and (0.5) (see remark 4 in (0.2)).

Now we shall state our main result concerning these questions 5:

(0.7) Theorem. Assuming the hypotheses of problem (0.4) with the weaker as-
sumption that Y is a locally complete intersection of codimension n + 1 with an
ample normal bundle. We assume that for each generic point of Σ the corresponding
cycle meets Y in a finite set. We assume also that our covering family of cycles is
locally separated along Y 6. Then we have a(Z) ≥ p.

In the case of problem (0.5) we obtain a statement without referring to the previous
separation condition on the covering family:

(0.8) Corollary. In the situation of problem (0.5), if Y ⊂ Z is a locally
complete intersection of codimension n + 1 with a positive normal bundle, then S
is a Moishezon space.

For some comments on the non-equidimensional case see the remark (4.2) following
the proof of the corollary.

(0.9). We show moreover that, in general, the problem (0.4) can be reduced to
the case where dimS = p (which is the lowest possible dimension) and we obtain in
this case a transcendental analogue of the result using the convexity property of the
cycle space (see [B.78]), namely that there exists a divisor in Z and p algebraically
independent holomorphic functions on the complement of this divisor (but they may
have essential singularities along the divisor)7.

This shows that our filtered integration of meromorphic cohomology classes (see be-
low) may be seen as an algebraic analogue of the convexity reduction via cycle space
(see [A.N. 67] , [N.S.77] , [B.78] etc...)

5See section 4 for more results and a detailed discussion.
6See the precise definition in section 4 .
7The proof of this is explained in remark (4.4) 2).
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Main tools and generalizations.

(0.10). In this paper we will consider the following setting. Let Z be a complex
manifold and let (Xs)s∈S be an analytic family of n−cycles in Z. Let X be the
graph of the family and let p : X → Z and π : X → S be the canonical projections.
A locally complete intersection Y of codimension n+1 in Z will be called a pole
for the family if the (analytic) incidence set {s ∈ S | Xs ∩ Y �= ∅} is nowhere dense
in S. We will say that a pole Y is proper and generically finite (respectively
finite) if the mapping π : p−1(Y ) → S is proper and generically finite (respectively
finite).

The same setting is under consideration in our papers [B.Mg.98] and [B.Mg.99] and
we will now describe how results from them are generalized in the present paper.

In the former paper we show that if the pole Y is finite then the incidence set carries
a natural structure of a Cartier divisor, called the incidence divisor and denoted by
ΣY or simply by Σ. In the latter paper we assume the pole Y to be finite and
we also assume that, for generic σ in ΣY , the cycle Xσ cuts Y in a unique
point and at that point Xσ is smooth and not tangent to Y . Then in the case
where Y is ample and S is compact we show that if the family of cycles satisfies
certain separation conditions along Y then the incidence divisor ΣY is of
maximal Kodaira dimension. This is proved by “integrating” the cohomology classes
in Hn+1

[Y ] (Ωn
Z) on the cycles and thus producing enough holomorphic functions on

S \ ΣY having polar singularities along ΣY .

We generalize this result in two different ways. First we allow the pole Y to be
proper and generically finite; so Xσ ∩ Y may be of positive dimension for all σ in
a nowhere dense analytic subset of ΣY . In this more general setting the incidence
set still carries a natural structure of a Cartier divisor thanks to [B.K.03], but the
integration of the cohomology classes needs special attention.

The second generalization is much more delicate and consists in dropping all condi-
tions on the intersection of the cycles with the pole. This means that, for generic
σ in ΣY , the cycle Xσ can cut the pole in several points (tangentially or not).
Under this weaker assumption the main problem is to get a precise bound – in fact
an optimal bound – for the pole order of the meromorphic functions obtained by inte-
grating the cohomology classes. In order to get such a bound we have to modify the
definition of pole order for the cohomology classes. This new order will be referred
to as the conormal order and it is defined by replacing the “naive” filtration on
Hn+1

[Y ] (Ωn
Z) by the so called conormal filtration described in (2.13). We then prove

the following result:

Let C be an irreducible component of |ΣY | and let q′C denote its multiplicity in
ΣY . There exists a rational number κ′

C ∈]0, 1] such that the pole order along C
of a meromorphic function, obtained by integrating a cohomology class of conormal
order ν, is bounded by q′C .κ

′
C .ν. Moreover this bound is optimal.

Of course we will have κ′
C = 1 when for a generic σ ∈ C we have only one point in

Xσ ∩ Y with non-tangential intersection .

(0.11) Theorem. Let (Xs)s∈S be an analytic family of n−cycles in a complex
manifold Z, parametrized by a reduced complex space S and let Y be a proper and
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generically finite pole for this family. Then there exists a quasi-filtered 8 integration
map

π∗p∗Hn+1
[Y ] (Ωn

Z) → H1
[ΣY ](OS)

when we endow the sheaf Hn+1
[Y ] (Ωn

Z) with the conormal filtration and the sheaf
H1

[ΣY ](OS) with the κ′−filtration9.

(0.12) Remark.We want to emphasize the fact that Z is not assumed to be
compact in the previous theorem. Moreover neither the cycles Xs nor the divisor
ΣY (nor a fortiori the space S) are supposed to be compact. The only compactness
assumption we make is that Y is a proper and generically finite pole; meaning that
π : p−1(|Y |) → S is proper and generically finite on its image |ΣY | which has empty
interior in S.

(0.13). Our final step is to describe, for a generic point in an irreducible compo-
nent C of |Σ|, how to control the poles of maximal order via a “normal quasi-cone”,
which determines the initial behaviour of the family (Xs)s∈S in the normal direction
to ΣY . This allows us to define conditions for the family (Xs)s∈S to be locally
separated along C, which generalizes the idea used in [B.Mg. 99] for the generically
non-tangential intersection case.
The simplest case is when we get enough information on a generic cycle from its
intersection points with Y (the order 0 case). This case is enough to prove corollary
(0.8).
Two other cases are also treated. First, when the generic cycle in C cuts Y in only
one point with multiplicity k ≥ 2. A sufficient condition in this case to have local
separation along Y is that the cycle Xs is determined (locally up to a finite set)
by the couple (y(s), CXs,y(s)) where {y(s)} = Xs ∩ Y and where CXs,y(s) is the
image (assumed to be of codimension 1) of the Zariski tangent cone at y(s) of Xs

in NY/Z,y(s).
The second simple situation is when, at the generic point of C, there exists at least
one point with non-tangential intersection in Xs∩Y . In this case the “normal quasi-
cone” reduces to the collection of the contact elements given by the tangent spaces
to the cycle at intersection points. It is interesting to note that this case cannot be
deduced from our results in [B.Mg. 99]. Even in the case when the generic cycle is
smooth and not tangent to Y at all of its intersection points with Y , we cannot
reach this conclusion unless the intersection consists of a unique point.
With these tools we obtain that if there exists a component Cmax for which we have
(i) κ′

Cmax
= κ′

max := supC κ′
C

(ii) the family (Xs)s∈S is locally separated along Y on Cmax,
then, assuming that the normal bundle NY/Z is ample, the Cartier divisor ΣY has
maximal Kodaira dimension in S10. In fact the ampleness of the normal bundle of Y
allows us to exhibit enough global sections on S of some power of ΣY to separate
the generic points of Cmax.

8Quasi-filtered means that locally on ΣY there exists m0 ∈ N such that the map respects
filtrations in degrees ≥ m0.

9These filtrations are defined in section 3.
10Here S and Y are assumed to be compact.
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(0.14) Theorem. Let Z be a complex manifold and let (Xs)s∈S be an analytic
family of n−cycles in Z with S compact and connected. Let Y be a proper and
generically finite pole with respect to (Xs)s∈S and let Σ denote the associated
incidence divisor. If Y is an ample subvariety of Z and if the family is separated
at order 0, 1, or by tangent cones along Y , then Σ is of maximal Kodaira
dimension.

(0.15) Remark. Here we assume S and Y compact. But the statement is
local around |Y | in Z and neither Z nor the cycles Xs are assumed to be
compact.

(0.16) Final Remark. It is important to note that, even if the main applica-
tion given here of this study is outside the context of complex (projective) algebraic
geometry, our results lead to precise information on the Chow variety of a complex
quasi-projective manifold. Even if the compact normal space S is already known to
be projective it is interesting to build explicitly from geometric data on Z a Cartier
divisor of S, and then produce from cohomology classes on Z enough global sections
of the powers of the associated line bundle to ensure that its Kodaira dimension is
maximal.

1. The hypersurface case.

(1.1). Let V be an open neighbourhood of the origin in Cn+1 and consider an
analytic family (Xs)s∈S of hypersurfaces in V parametrized by a reduced complex
space S.
Let P : S×V → C be a (holomorphic) defining function for the graph of the family;
thus Xs is the hypersurface defined by P (s, z) = 0 in V . Denote by σ : S → C

the holomorphic function on S given by σ(s) := P (s, 0) and let Σ be the (Cartier)
divisor defined by σ. We shall assume that |Σ| is nowhere dense in S. Then Σ is
the incidence divisor in S of the family (Xs)s∈S and the pole Y := {0} (reduced
in V ).
Of course, we have s ∈ Σ if and only if the origin belongs to Xs. Let Φ be
the family of all closed sets F in V which are X−proper11. Then we have an
integration map (see [B.Mg. 98])

Hn
Φ(V \ 0,Ωn

V ) → H0(S \ Σ,OS)

which induces a filtered map (which we will also call an integration map)∫
X

: Hn+1
[0] (V, ,Ωn

V ) → H1
[Σ](S,OS),

where the filtrations are given respectively by the maximal ideal M0 of OV,0 and
the ideal IΣ = (σ) in OS . This means that the map

∫
X sends Ann(Mν

0) to
Ann(σν) for each ν ∈ N, where Ann(Mν

0) and Ann(σν) consist of those elements
that are annihilated by Mν

0 and σν as global sections of the sheaves Hn+1
[0] (Ωn

V )
and H1

[Σ](OS) respectively.

11This means that the pull-back of F on the graph X of the family (Xs)s∈S is proper on S.
(See(2.3) and (2.4) for the general definition).
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The aim of this section is to define a finer filtration on H1
[Σ](OS) in order to get

an optimal bound for the pole order of the integral of a cohomology class of a given
order.
Now using Grothendieck’s local duality we may identify Hn+1

{0} (V,Ωn
V ) with the strong

dual of the dual Fréchet space Ω1
V,0. Then the map

∫
X is explicitly given by∫

X
(η) = ∂

〈
d|P
P

(s, z), η
〉

where d|P is the S−relative differential of P (so we differentiate only with respect
to z for fixed s ∈ S \ Σ and d|P

P ∈ Ω1
V,0 ), and where

∂ : H0(S \ Σ,OS) → H1
|Σ|(S,OS)

is the “polar part ”map .
Let us consider a point s0 ∈ Σ such that s0 is a smooth point of S and of |Σ|
(after normalization of S, a generic point of |Σ| always satisfies these two conditions
because Σ is a Cartier divisor in S). For η ∈ Hn+1

[0] (V,Ωn
V ) denote by w(η) the

order of η relative to the M0−filtration and by ϕ(η) the pole order of
∫
X (η) along

|Σ| near s0. Let q be the multiplicity of Σ near s0 (so that Σ = q.|Σ| near s0 )̃
and define

κ :=
1
q

sup
{
ϕ(η)
w(η)

∣∣∣ η ∈ Hn+1
[0] (V,Ωn

V ), η �= 0
}

Then the following theorem holds:

(1.2) Theorem. In the situation described above, where |Σ| is a smooth hyper-
surface in a smooth S near s0, define k := mult0(Xs0).
Then for any integer µ ≥ 1 there exist an integer m ∈ [µ, µ + k[ and a class
η ∈ Hn+1

[0] (V,Ωn
V ) such that w(η) = m and ϕ(η) = q.m.κ.

Proof of (1.2). The space S and its hypersurface |Σ| are both smooth near s0
so we can choose a coordinate system (s1, · · · , sp) centred at s0 such that |Σ| is
defined by s1 = 0. Since we have Σ = q.|Σ| near s0, it is sufficient to prove the
theorem in the case where S is the unit disc in C, s0 = 0 and Σ is defined by
sq = 0.
By definition of k := mult0(X0) we can write

P (s, z) = P (s, 0) +
k∑

j=1

Pj(s, z) − R(s, z)

where Pj is homogeneous of degree j in z = (z0, · · · , zn) and where R is of order
≥ k + 1 in z, with the following properties:

Pj(0, z) ≡ 0 for 1 ≤ j ≤ k − 1, Pk(0, z) �≡ 0 and P (s, 0) = sq.

For each j ∈ [1, k] such that Pj(s, z) is not identically zero, write

Pj(s, z) = −sαj .Qj(s, z) where Qj(0, z) �≡ 0
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and put αj = +∞ when Pj(s, z) is identically zero. Observe that

αj ≥ 1 , for j ∈ [1, k − 1] and αk = 0.

We shall denote by J0 = {j ∈ [1, k]
/
αj < ∞}. Remark that we have k ∈ J0 so

J0 �= ∅. We then have

P (s, z) = sq −
⎛⎝∑

j∈J0

sαj .Qj(s, z) +R(s, z)

⎞⎠
and to simplify the writing we put

T (s, z) =
∑
j∈J0

sαj .Qj(s, z) +R(s, z),

so P (s, z) = sq − T (s, z) or P = sq − T for short. Put

τ :=
1
q
.max

{
q − αj

j

∣∣∣ 1 ≤ j ≤ k

}
(2)

and note that we obviously have

1
k
≤ τ ≤ 1.

We shall prove the theorem by showing:
(i) For any η ∈ Hn+1

[0] (V,Ωn
V ) we have ϕ(η) ≤ q.τ.w(η).

(ii) For any µ ≥ 1 there exists η ∈ Hn+1
[0] (V,Ωn

V ) of order m ∈ [µ, µ + k[ such
that ϕ(η) = q.τ.w(η).

In particular this gives the equality τ = κ and thereby formula (2) gives an easy
way to compute κ.

Proof of (i). Let η ∈ Hn+1
[0] (V,Ωn

V ) and put m = w(η). Outside the zero locus
of P we have

d|P
P

= − d|T
sq − T

= −
m−1∑
j=0

T jd|T
sq(j+1)

− Tmd|T
(sq − T ).sq.m

where we use the S−relative differential d|.
As Tm is of order ≥ m in z we have〈

Tmd|T
(sq − T ).sq.m

, η

〉
= 0

and consequently〈
d|P
P

, η

〉
= −

m∑
j=1

1
j.sq.j

〈
d|T j , η

〉
= −

m∑
j=1

1
j.sq.j

〈
T j , dη

〉
. (3)

Note that dη has order ≤ m+ 1. For every l ∈ [1,m] we have

T (s, z)l =

⎡⎣∑
j∈J0

sαj .Qj(s, z) +R(s, z)

⎤⎦l

=
∑

|γ|+ν=l

s
∑k

j=1(αjγj)
(

l
γ,ν

)
.Qγ .Rν
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where ν ∈ N, γ = (γ1, · · · , γk) ∈ Nk, |γ| =
∑k

j=1 γj ,
Qγ = Qγ1

1 · · ·Qγk

k and
(

l
γ,ν

)
is the multinomial coefficient ; and consequently〈

T l, dη
〉

=
∑

|γ|+ν=l

s
∑k

j=1(αjγj)
(

l
γ,ν

) 〈Qγ .Rν , dη〉 . (4)

By combining (3) and (4) we get〈
d|P
P

, η

〉
= −

m∑
l=1

1
l

∑
|γ|+ν=l

s−e(γ,ν,l)
(

l
γ,ν

) 〈Qγ .Rν , dη〉 (5)

where e(γ, ν, l) = q.l −∑
j∈J0

αjγj .
The order of Qγ .Rν in z is at least

k∑
j=1

j.γj + ν(k + 1)

so that 〈Qγ .Rν , dη〉 = 0 if

k∑
j=1

j.γj + ν(k + 1) > m.

Thus to prove that the function

s �→
〈
d|P
P

(s, z), η
〉

has a pole of order at most q.m.τ at s = 0 it is sufficient to prove that for every
(γ, ν) ∈ Nk × N satisfying

k∑
j=1

γj + ν = l and
k∑

j=1

j.γj + ν(k + 1) ≤ m (6)

we have

q.l −
k∑

j=1

αj .γj ≤ q.m.τ .

But under the conditions in (6) we have

2q.l −
k∑

j=1

αj .γj =
k∑

j=1

q.γj + q.ν −
k∑

j=1

αj .γj

=
k∑

j=1

q − αj

j
.j.γj + q.ν

≤ q.τ.

k∑
j=1

j.γj + q.ν (by definition of τ)

≤ q.τ.(m− ν.(k + 1)) + q.ν

= q.m.τ + q.ν.(1 − τ.(k + 1))

≤ q.m.τ

(
because τ ≥ 1

k

)
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and this completes the proof of (i).

Proof of (ii). First we note that in the previous computation the inequality

q.l −
k∑

j=1

αj .γj ≤ q.m.τ

is an equality if and only if the following three conditions are satisfied:
• ν = 0,

•
k∑

j=1

j.γj = m,

• γj = 0 if q − αj < j.q.τ .

Put J := {j ∈ [1, k] | q − αj = j.q.τ} and Γm :=

{
γ ∈ Nk

∣∣∣ ∑
j∈J

j.γj = m

}
.

From the decomposition in (5) we then see that the meromorphic function s �→〈
d|P
P , η

〉
has a pole of order q.m.τ at s = 0 if and only if the holomorphic

function

s �→
〈 ∑

γ∈Γm

(
|γ|
γ

) 1
|γ|Q

γ(s, z) , dη

〉
does not vanish at s = 0, that is to say if and only if〈 ∑

γ∈Γm

(
|γ|
γ

) 1
|γ|Q

γ(0, z) , dη

〉
�= 0.

We observe that
∑

γ∈Γm

(|γ|
γ

)
1
|γ|Q

γ(0, z) is the homogeneous component of degree m

of the polynomial
m∑

l=1

1
l

(∑
j∈J

Qj(0, z)
)l
. (7)

Claim. Write J = { j1, . . . , jr } with j1 < · · · < jr. Then in any interval in
N∗ of length > jr there exists an integer m such that the homogeneous component
of degree m of the polynomial in (7) is not identically 0. Moreover such an integer
m is a multiple of gcd {j1, · · · , jr}.

Proof of the claim. Clearly if m �∈ Nj1 + · · · + Njr there is no homogeneous
component of degree m for (7) , so any solution is a multiple of gcd {j1, . . . , jr}.
Let z0 ∈ Cn+1 such that Qj(0, z0) �= 0 for all j ∈ J , and let π : C → C be
defined by

π(t) :=
∑
j∈J

Qj(0, t.z0)

It is enough to show that for any µ ∈ N∗ there exists m ∈ [µ, µ+ jr[ such that the
coefficient of tm in

m∑
l=1

1
l
[π(t)]l
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is not 0. The formal power series

F (t) :=
+∞∑
l=1

1
l
[π(t)]l (8)

is well defined because π(0) = 0 and it clearly has the same coefficient of tm

as the polynomial
m∑

l=1

1
l [π(t)]l. On differentiating equation (8) we find that

F ′(t).[1 − π(t)] = π′(t). Hence if we write

1 − π(t) = 1 +
∑
j∈J

bj .t
j and F ′(t) =

+∞∑
0

cj .t
j

it follows that

cj = −(b1.cj−1 + · · · + bjr
.cj−jr

) for all j ≥ jr.

Therefore if cj−jr
= · · · = cj−1 = 0 for some j ≥ jr then F ′ is a polynomial.

But this is never the case because the degree of π is jr ≥ 1, which thus proves the
claim.

End of the proof of (ii). Fix an integer µ ∈ N∗ and choose any m ∈ [µ, µ+ jr[ ⊂
[µ, µ+ k[ such that the homogeneous component of degree m of the polynomial in
(7) is not identically zero. Let ∂0 denote the analytic Dirac functional at the origin
in Cn+1, defined by:

〈f.dz0 ∧ · · · ∧ dzn, ∂0〉 = f(0) .

For every α ∈ Nn+1 put

∂
(α)
0 :=

1
α!
∂|α|(∂0)
∂zα

. (9)

Pick α ∈ Nn+1 with |α| = m such that the coefficient of zα in the polynomial (7)
is not zero. Let i be such that αi �= 0 and put

η = (−1)i∂
(α′)
0 dz0 ∧ · · · d̂zi ∧ · · · dzn,

where α′ = (α0, . . . , αi − 1, . . . , αn). Clearly η is an element of order |α′| + 1 =
|α| = m in Hn+1

[0] (V,Ωn
V ) such that

〈zβ , dη〉 =
{

0 for β �= α
1 for β = α.

Hence

〈 ∑
γ∈Γm

(|γ|
γ

)
1
|γ| .Q

γ(0, z) , dη

〉
�= 0

and this completes the proof of (ii) .
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(1.3) Remarks.

1) We actually proved a stronger result than announced in the theorem. Namely, for
any given defining function γ for |Σ| near s0 we constructed a cohomology
class η of order m satisfying q.κ.m ∈ N and

lim
s→s0

γq.κ.m(s)
∫
X

(η)(s) �= 0.

This will be used later on.
2) Formula (2) gives an explicit way to compute κ and from this formula it is easy

to deduce the following:
• For k = 1 we always have κ = 1 .
• We have Σ = q.|Σ| near s0, in the case q = 1 we get κ = 1

k .
• In general ( k ≥ 2, q ≥ 2) we have the inequalities 1

k ≤ κ ≤ q−1
q .

The geometric significance of κ will become clear in (2.9) and its algebraic meaning
is explained in section 3.

2. The general case.
(2.1). The main results of this section are theorem (2.23) and its corollary (2.26).

They give a generalization of theorem (1.2) to the case where the cycles are of arbitrary
codimension. These results are considerably more difficult than theorem (1.2) and
require some changes of the setting. Among other things we have to change the
definition of pole order for the differential forms and cohomology classes in question.

In the sequel we will frequently make use of the fact that for a Stein open neigbourhood
V of the origin in Cn+1 with n ≥ 1 the canonical mapping :

Hn(V \ {0},Ωn
V ) → Hn+1

{0} (V,Ωn
V )

is an isomorphism. For an element η in Hn+1
[0] (V,Ωn

V ) we will refer to any ∂̄−closed
(n, n)−form in V \ {0} that defines η via this isomorphism as a Martinelli repre-
sentative of η. As before we let ∂0 denote the Dirac functional at the origin in
Cn+1 and put

∂
(α)
0 :=

1
α!
∂|α|(∂0)
∂zα

.

for all α in Nn+1.

(2.2) Lemma. Let z = (z0, · · · , zn) be the standard coordinates in Cn+1. Then
for every α ∈ Nn+1 there exists a Martinelli representative ψα of ∂(α)

0 in Cn+1 such
that the (0, n)−form

||z||2n+1+ε+|α|ψα

has a continuous extension at 0, for every ε > 0.

Proof. First we observe that the standard Martinelli representative of ∂0

ψ0 = ||z||−(2n+2)
n∑

j=0

(−1)j z̄j ∧k �=j dz̄k
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has the required property, more precisely the (0, n)-form ||z||2n+1+εψ0 has a contin-
uous extension at 0, for every ε > 0.

Obviously the (0, n)-form ψα :=
1
α!
∂|α|ψ0

∂zα
is a Martinelli representative of ∂

(α)
0

for all α ∈ Nn+1. We claim that the (0, n)-form ||z||2n+1+ε+|α|ψα has a contin-
uous extension at 0, for every ε > 0. To prove this we only have to note that
∂|α|

∂zα
(||z||−(2n+2)) is a constant multiple of

z̄α

||z||2n+2+2|α| .

(2.3) Definition. Let Z be a complex manifold and let (Xs)s∈S be an analytic
family of n−cycles in Z. Let X denote the graph of the family and fix a point
s0 ∈ S.

• We say that a closed set F in Z is X -proper near s0 if there exists a fixed
compact set K ⊂ Z such that for all s near s0 we have

F ∩ |Xs| ⊂ K.

A closed set in Z is said to be X -proper if it is X - proper near every point
in S.

• We say that a ∂̄−closed (n, n) C∞−form ψ on an open subset U of Z
is X -proper near s0 (respectively X -proper) if its support is X -proper
near s0 (respectively X -proper).

(2.4) Remark. Let p : X → Z and π : X → S be the canonical projections
of the graph of the family (Xs)s∈S and let F be a closed subset of Z. Then F is
X−proper near s0 (respectively X−proper) if and only if the subset p−1(F ) of X
is π−proper in a neighbourhood of s0 (respectively π−proper).

(2.5). In the sequel we will frequently refer to the following situation:

Let Z be a Stein open neighbourhood of the origin in Cn+p with p ≥ 1 and let
(Xs)s∈S be an analytic family of n−cycles in Z with graph X . Let f0, . . . , fn

be a regular sequence of holomorphic functions in Z vanishing at 0 and let W be
the image of Z by the associated mapping into Cn+1. Denote by f : Z → W the
corresponding flat surjective map and put Y := f−1(0). Suppose that

• the map f is finite on |Xs| for every s ∈ S,
• Y is a finite pole for the family (Xs)s∈S .

Let Σ denote the incidence divisor of Y and (Xs)s∈S . Then (f∗Xs)s∈S is a well
defined analytic family of hypersurfaces in W , and the (reduced) point 0 is a (finite)
pole for this family. By the direct image invariance proved in [B.Mg. 98] we know
that Σ is equally the incidence divisor of (f∗Xs)s∈S and {0}.

(2.6) Lemma. Assume the hypothesis in (2.5). Then for every η ∈ Hn+1
{0} (Ωn

Cn+1)
there exists an open neighbourhood Z1 of 0 in Z and a Martinelli representative
ψ of η on f(Z1) \ {0} such that (f |Z1)

∗ψ is X|Z1−proper .

Proof. We split the proof into three steps :
• (Step 1) Let S be a reduced complex space, U and B be open polydiscs in

Cn and Cp respectively and let f : S × U → Symk(Cp) be a holomorphic
map defining an analytic family of n−cycles (Xs)s∈S in U ×B. Then for
any compact set K ⊂ U the closed set K ×B is obviously X−proper.
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• (Step 2) Let q : Z → Z ′ be a proper finite surjective holomorphic map
between two complex manifolds. Let (Xs)s∈S be an analytic family of
n−cycles in Z and denote by (q∗Xs)s∈S the direct image family in Z ′.
Then a closed set F ⊂ Z ′ is q∗(X )−proper if and only if the closed set
q−1(F ) ⊂ Z is X−proper.

• (Step 3) Up to a change of the functions f0, . . . , fn by generic linear com-
binations, we may assume that {f1 = · · · = fn = 0} ∩ Xs0 = {0} near
0 in Z. Choose holomorphic functions g1, . . . , gp−1 near 0 such that
f0 = · · · = fn = g1 · · · = gp−1 = 0 define the origin (set theoretically) near
0. Then, shrinking Z around the origin, we may assume that the map

q := (f0, . . . , fn, g1, . . . , gp−1) : Z → Z ′ := q(Z) ⊂ Cn+p

is proper, finite and surjective. Now define a scale U × B adapted to the
cycle q∗(Xs0) near the origin in Z ′ using coordinates corresponding to
f1, . . . , fn for U and g1, . . . , gp−1, f0 for B , and shrink S around s0
in order to have an analytic family of cycles in U × B. By step 1, for any
compact set K ⊂ U the set K×B is q∗(X )−proper. Now consider the map
1U × f0 : U ×B → U ×D. The direct image of the family (q∗(Xs))s∈S in
U×B by this map is simply the direct image by the map f = (f1, . . . , fn, f0)
of our initial family (Xs)s∈S . By step 1 it is then clear that for any compact
set K ⊂ U , K×D is f∗(X )−proper. Thus from steps 1 and 2 we conclude
that f−1(K×D) is X−proper. Choosing a Martinelli representative ψ on
U ×D \ {0} for η such that Supp(ψ) ⊂ K ×D , where K is a compact
neighbourhood of 0 in U12, concludes the proof.

(2.7) Lemma. Consider the situation in (2.5) and let s0 be a point in Σ. Let ψα

be a Martinelli representative of ∂(α)
0 in W \{0} such that f∗ψα is X−proper near

s0 and put ρ(Xs) := dist(0, |f∗Xs|). Then for every ε > 0, for every holomorphic
n−form ω on W and for every holomorphic function g on Z , the function

s �→ ρ(Xs)1+|α|+ε

∫
Xs

g.f∗(ψα ∧ ω)

is bounded on S′ \ S′ ∩ Σ.

Proof. Let S0 be a neighbourhood of s0 such that Suppf∗ψα∩|Xs| is contained
in a compact set L of Z for all s in S0. Let D and U be relatively compact
open polydiscs centred at the origin in C and Cn respectively and let S′ be a
relatively compact neighbourhood of s0 in S0 such that

D̄ × Ū ⊂W, |f∗Xs| ∩ (D × U) ⊂ 1
2
D × U,

and such that f∗Xs induces a k−branched covering of U for all s in S′, where
1
2D denotes the set D contracted by the factor 1

2 .
Now let ε > 0, g ∈ O(Z) and ω ∈ Ωn(W ). Let τ ∈ C∞

c (D × U) be identically 1
in a neighbourhood of 1

2D̄ × {0}. Then the function

s �→
∫

Xs

f∗(ψα ∧ ω) −
∫

Xs

f∗(τψα ∧ ω) =
∫

Xs

f∗((1 − τ)ψα ∧ ω)

12This is possible by lemma 1 p.74 of [B.Mg. 99].
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is continuous on S and thus bounded on S′ since S̄′ is compact. So it is enough
to prove the lemma for τ.ψα instead of ψα.
Denote by z = (z0, . . . , zn) the coordinates in Cn+1. From lemma (2.2) we
know that the representative ψα can be chosen such that the (n, n)−form
||z||2n+1+|α|+ε/2τ.ψα ∧ ω extends to a continuous form ϕ on W . By the “multi-
projection trick” (see [B. 79]) one can write ϕ as a finite sum of forms of the type
r(t, z).dt ∧ dt̄ where (z, t) = (z, t1, . . . , tn) is a coordinate system for C × Cn,
dt∧ dt̄ = dt1 ∧ · · · ∧ dtn ∧ dt̄1 ∧ · · · ∧ dt̄n and r is a continuous function with compact
support in D ×K where K is a compact subset of U . This is done by mappings
of the type

(z, t1, . . . , tn) → (t1 − a1.z, · · · , tn − an.z).

One should note that the condition |f∗Xs| ∩ (D × U) ⊂ 1
2D × U ensures that there

exists δ > 0 such that for any a = (a1, . . . , an) with ||a|| < δ the corresponding
perturbed projection makes f∗Xs a k−branched covering in a neighbourhood of
1
2D̄ ×K. Moreover, by shrinking S′ if necessary, δ can be chosen uniformly with
respect to s.
On the set |f∗(Xs)| we have

ρ(Xs)1+|α|+ε.τ.ψα ∧ ω =
(
ρ(Xs)
||(z, t)||

)1+|α|+ε
ϕ

||(z, t)||2n−ε/2
.

Hence it is enough to show that, for a continuous function r with compact support
on D × U , the function

s �→
∫

Xs

g.f∗
((

ρ(Xs)
||(z, t)||

)1+|α|+ε

.
r(z, t)

||(z, t)||2n−ε/2
. dt ∧ dt̄

)
is bounded on S′ \ S′ ∩ Σ.
Put

h := g.f∗
((

ρ(Xs)
||(z, t)||

)1+|α|+ε

. r(z, t)

)
.

Obviously we have Supp(h) ⊂ Supp(f∗ψα) so Supp(h) ∩ |Xs| ⊂ L for all s in
S′. Since ρ(Xs) ≤ ||(z, t)|| for (z, t) ∈ |f∗(Xs)|,∀s ∈ S′ \ S′ ∩ Σ, and g.f∗r is
continuous on L, there exists a constant C such that ||h|||Xs| ≤ C for all s in
S′ \ S′ ∩ Σ. From this we deduce that∣∣∣∣traceXs

(
h.f∗

(
1

||(z, t)||2n−ε/2

))∣∣∣∣ ≤ k.C

||t||2n−ε/2

for all s in S′ \ S′ ∩ Σ; here the trace is taken with respect to the (finite) map

(f1, . . . , fn) : Xs → Cn.

The support of the trace in the above formula is clearly contained in K so we finally
get ∣∣∣∣∫

Xs

h.f∗
(

dt ∧ dt̄
‖(z, t)‖2n−ε/2

)∣∣∣∣ =
∣∣∣∣∫

K

traceXs

(
h.f∗

(
1

‖(z, t)‖2n−ε/2

))
dt ∧ dt̄

∣∣∣∣
≤ k.C

∣∣∣∣∫
K

dt ∧ dt̄
‖t‖2n−ε/2

∣∣∣∣ .
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Since the last integral is convergent, this completes the proof.

(2.8) Remark. The following proposition relates the rational number κ to the
geometric behaviour of the family of cycles near the pole.

(2.9) Proposition. Let D be an open polydisc centred at the origin in Cl with
coordinates s = (s1, . . . , sl). Let (Xs)s∈D be an analytic family of hypersurfaces in
an open neighbourhood of the origin in Cn+1 such that the incidence divisor of the
family with the origin is given by sq

1 = 0. Let κ be the rational number associated
with the family at s = 0. Then, after shrinking D if necessary, there exists a
constant C > 0 such that

dist(0, |Xs|) ≥ C.|s1|q.κ for all s ∈ D .

Proof. The statement is local along Σ. Let U and ∆ be polydiscs centred
at the origin in Cn and C respectively, such that U × ∆ is an adapted scale for
X0 of degree k = mult0(X0). If P (s, t, z) = 0 is an equation of the graph of the
family (Xs)s∈D in D×U ×∆ we know that the initial form at (0,0) of P (0, t, z) is
homogeneous of degree k, and so we may write (compare with the proof of theorem
(1.2)), shrinking D around s = 0 if necessary,

P (s, t, z) = P (s, 0, 0) +
k−1∑
j=1

s
αj

1 Qj(s, t, z) +Rk(s, t, z)

with P (s, 0, 0) = sq
1, with Qj homogeneous of degree j in (t, z) such that either

Qj ≡ 0 or Qj(0, s2, . . . , sl, t, z) �≡ 013, αj ∈ N∗ for j ∈ [1, k − 1] and

Rk(s, t, z) =
∑
|β|=k

(t, z)βGβ(s, t, z)

where (t, z)β = tβ1
1 .tβ2

2 . . . tβn
n .zβ0 for β ∈ Nn+1 and where the functions Gβ are

holomorphic in D × U × ∆.
Recall that J0 = {j ∈ [1, k]

/
Qj �≡ 0}, αj = +∞ for j �∈ J0, and that αk = 0. Then

we have

κ =
1
q
. max
j∈[1,k]

(
q − αj

j

)
.

Now fix U ′ ⊂⊂ U and ∆′ ⊂⊂ ∆ relatively compact polydiscs centered at the origin
in Cn and C respectively. Let R > 0 be such that for any j ∈ [1, k − 1] we have

R ≥ ||Qj || 1
2 D̄×Ū ′×∆̄′

R ≥
∑
|β|=k

||Gβ || 1
2 D̄×Ū ′×∆̄′

Assuming now that the radius of D for the first variable is at most 1, we shall prove
that 0 < ρ < inf { 1

4.R ,
1
2} implies

|Xs| ∩
(
{||t|| ≤ ρ.|s1|q.κ} × {|z| ≤ ρ.|s1|q.κ}

)
= ∅,

13in (t, z) for (0, s2, · · · , sl) generic in |Σ| .
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for all s ∈ 1
2D̄ \ Σ . For any given ρ > 0 and any (s, t, z) ∈ 1

2D̄ × Ū ′ × ∆̄′ \ Σ
define τ ∈ Cn and ξ ∈ C as follows

t = ρ.|s1|q.κ.τ

z = ρ.|s1|q.κ.ξ

If now we have P (s, t, z) = 0 for (s, t, z) ∈ 1
2D̄ × Ū ′ × ∆̄′ \ Σ then we obtain

sq
1 +

∑
j∈J0

s
αj

1 .Qj(s, t, z) +Rk(s, t, z) = 0.

So , using the definition of τ and ξ , homogeneity and the choice of R , we get

|sq
1| ≤

∑
j∈J0

|s1|αj .ρj .R.|s1|j.κ.q + ρk.R.|s1|k.κ.q

and so

|sq
1| ≤ R.

∑
j∈J0

|s1|αj+j.q.κ.ρj .

But, by definition of κ, we have for any j ∈ [1, k]

αj + j.q.κ ≥ q,

so for s1 �= 0 we obtain

1 ≤ R.

j=k∑
j=1

ρj ≤ R.ρ

1 − ρ
≤ 1

2

which is absurd ! Thus we conclude that for any s ∈ 1
2D̄ \ Σ we have

|Xs| ∩ { (t, z) ∈ Ū ′ × ∆̄′ | ||(t, z)|| ≤ ρ.|s1|q.κ } = ∅.
This implies that there exists a constant C > 0 such that in Ū ′ × ∆̄′

dist(0, |Xs|) ≥ C.|s1|q.κ

for any s ∈ 1
2D̄.

(2.10) Corollary. Assume the hypothesis of (2.5) and let s0 be a point in Σ
where both |Σ| and S are smooth. Denote by q the multiplicity of the divisor Σ
near s0 and denote by κ the rational number associated with the analytic family
of hypersurfaces (f∗Xs)s∈S at s0. Let ψα be a Martinelli representative of ∂

(α)
0

in W \ {0} such that f∗ψα is X−proper near s0. Then for every holomorphic
n−form ω on W and for every holomorphic function g on Z the meromorphic
function

s �→
∫

Xs

g.f∗(ψα ∧ ω)

has a pole of order ≤ q.κ(1 + |α|) along |Σ| near s0. In other words the pole
order of the meromorphic function is bounded by q.κ.(order of ψα ∧ ω).
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Proof. This is a direct consequence of lemma (2.7) and proposition (2.9).

(2.11). The natural question to ask now, is whether we get the same kind of
bound as in corollary (2.10), if we replace g.f∗ω by any holomorphic n−form on
Z; in other words, does the meromorphic function

s �→
∫

Xs

f∗(ψα) ∧ ϕ

have a pole of order ≤ q.κ(1 + |α|) for all holomorphic n−forms ϕ on Z ?
The following example shows that the answer to this question is no !

(2.12) Example. We consider C3 with coordinates (z1, z2, x) and let (Xs)s∈C

be the analytic family of 1−cycles defined by

Xs := {z1 = xk − s} ∩ {z2 = (z1 + s).x}

where k ≥ 2 is a integer. We shall denote by X the graph of this family.
Let Y = {z1 = z2 = 0} and let pr : C3 → C2 be the projection pr(z1, z2, x) =
(z1, z2). For any s the direct image pr∗(Xs) is a well-defined 1−cycle in C2 and
it is easy to see that it is the hypersurface given by

Ps(z1, z2) = zk
2 − (z1 + s)k+1 = 0.

Thus the incidence divisor of Y is given by σ(s) = −sk+1 = 0 as a Cartier divisor
in C. So with the terminology introduced above we have q = k + 1 and k = k is
the multiplicity of the origin in the cycle pr∗(X0). The integers αj are given by
αj = k + 1 − j for j ∈ [1, k − 1] and αk = 0. Consequently

κ =
1
q

sup
{
q − j

j

∣∣∣ j ∈ [1, k]
}

=
1
k
.

Let ψ(0,k) be a X−proper Martinelli representative of ∂
((0,k))
0 in the open set

C2 \ {(0, 0)}. The ∂̄−closed (1, 1)−form w := pr∗ψ(0,k) ∧dx has order k+1 along
Y and we shall show that the pole order of the meromorphic function F (s) =

∫
Xs
w

at s = 0 is k+ 3, which is strictly bigger than q.κ.(k+ 1) = (k+1)2

k = k+ 2 + 1
k

14.
On Xs we have the identity x.(z1 +s) = z2 from which we deduce s.x = z2−x.z1
and thus

s2.x = s.(z2 − x.z1) = s.z2 − (z2 − x.z1).z1 = s.z2 − z1.z2 + x.z2
1 .

From this and Stokes’ formula we deduce

s2.F (s) =s2.
∫

Xs

pr∗ψ(0,k) ∧ dx = s2.

∫
Xs

x.pr∗dψ(o,k)

=s.
∫

pr∗Xs

z2.dψ(0,k) −
∫

pr∗Xs

z1.z2.dψ(0,k) +
∫

Xs

x.pr∗(z2
1 .dψ(0,k)) .

14Note that for the new order defined by the conormal filtration (see (2.13) ) the order of w is

k + 2 and we have q.κ.(k + 2) =
(k+1)(k+2)

k
≥ k + 3, ∀k ∈ N.
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Since the image of z2
1 .dψ(0,k) in H2

[0](C
2,Ω1

C2) is zero, the function s �→∫
Xs
x.pr∗(z2

1 .dψ(0,k)) is holomorphic near s = 0. The polar part of s2.F (s) at
s = 0 is thus equal to the polar part of

s2.F (s) = s.

〈
dPs

Ps
, z2.d∂

((0,k))
0

〉
−
〈
dPs

Ps
, z1.z2.d∂

((0,k))
0

〉
= s.

〈
dPs

Ps
,−∂((1,k−1))

0 .dz1 − k.∂
((0,k))
0 .dz2

〉
−
〈
dPs

Ps
,−∂((0,k−1))

0 .dz1

〉
= s.

[
1

(k − 1)!
∂k+1

∂z1∂zk
2

(LogPs)(0, 0) − k + 1
k!

∂k+1

∂z1∂zk
2

(LogPs)(0, 0)
]
−

1
(k − 1)!

∂k

∂zk
2

(LogPs)(0, 0)

= s.

[
k(k + 1)
sk+2

− (k + 1)2

sk+2

]
+

k

sk+1
=

−1
sk+1

.

We conclude that F (s) has a pole of order k + 3 at s = 0.

(2.13). Theorem (1.2) gives us the best possible bound for the pole order along
the incidence divisor of a meromorphic function, obtained by integrating a meromor-
phic cohomology class on an analytic family of hypersurfaces. To get a similar kind
of bound in the case of an analytic family of cycles of codimension greater than one,
we will have to modify the definition of order for the meromorphic classes. Before we
do that let us recall the usual definition:

Let Y be a locally complete intersection of codimension n+ 1 in a complex manifold
Z defined by the OZ−ideal IY . The usual order, which we shall from now on call
the naive order, is derived from the filtration

F̆1 ⊂ F̆2 ⊂ · · · ⊂ Hn+1
[Y ] (Ωn

Z),

where F̆k := Ann(Ik
Y ) is the OZ−submodule of Hn+1

[Y ] (Ωn
Z) consisting of all elements

which are annihilated by Ik
Y .

An element ξ in Hn+1
[Y ] (Z,Ωn

Z) is said to have naive order k if k is the smallest

integer such that ξ defines a global section of the OZ−submodule F̆k.

The new order that we are going to introduce now will be defined in the same way as
the naive order but with respect to a different filtration.
We begin with the canonical identification of OZ−modules

Hn+1
[Y ] (OZ) ⊗OZ

Ωn
Z � Hn+1

[Y ] (Ωn
Z) (10)

and with the naive filtration on Hn+1
[Y ] (OZ) formed by the submodules

Fk := Ann(Ik
Y ) ⊂ Hn+1

[Y ] (OZ), k ≥ 1. (11)

Let dIY be the image of IY by the exterior differentiation map d : OZ → Ω1
Z and let

OZ .dIY be the OZ−submodule of Ω1
Z generated by dIY . Then let Gk denote

the image of Λn−k(OZ .dIY ) ⊗ Ωk
Z in Ωn

Z .
Let us give a description of Gk in terms of local generators:
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Let z0 be a point in Y and let (x1, . . . , xn+p) be a system of local coordinates for Z
centred at z0. If f0, . . . , fn generate IY near z0 then the elements dfi and fidxj

with i ∈ [0, n] and j ∈ [1, n + p] form a set of generators for OZ .dIY near z0.
Consequently the set of all elements of the form fαdxI ∧ dfJ , where |J | ≤ n − k,
|I| = n− |J | and |α| = |I| − k, is a generating set for the OZ−module Gk near z0.
From this we get

Gk =
n∑

m=k

∑
|J|=n−m

Im−k
Y .Ωm

Z ∧ dfJ

and in particular

G0 =
n∑

m=0

∑
|J|=n−m

Im
Y .Ω

m
Z ∧ dfJ

in a neighbourhood of the point z0.
Then we define a (increasing) filtration (Φm)m∈N on Hn+1

[Y ] (Ωn
Z) as the image of

the tensor-product filtration (F• ⊗OZ
G•) on Hn+1

[Y ] (OZ) ⊗OZ
Ωn

Z by the previous
identification (10); in other words, for all m ≥ 0 we put

Φm :=
m∑

k=0

Fk ⊗OZ
Gm−k.

(2.14) Definition. The filtration (Φm)m∈N is called the conormal filtration
on Hn+1

[Y ] (Ωn
Z) . An element ξ in Hn+1

[Y ] (Z,Ωn
Z) is said to have conormal order m

if m is the smallest integer such that ξ defines a global section of the OZ−submodule
Φm.

(2.15) Lemma. Assume the hypotheses of (2.5). Then the OZ,0−module
Hn+1

[Y ] (OZ)0 is generated by f∗(Hn+1
[0] (OCn+1)). Moreover f∗(Ann(Mk)) generates

Ann(Ik
Y ) for every k ∈ N, where M denotes the maximal ideal of OCn+1,0.

Proof. To simpify the writing we put O := OCn+1 . We recall that
Ann(Mk) and Ann(Ik

Y ) can be naturally identified with Extn+1(O0/Mk,O0) and
Extn+1(OZ,0/Ik

Y,0,OZ,0) respectively. The ring OZ,0 is a O0−module via the mor-
phism f and since the morphism f is flat we get for each k ≥ 0 an isomorphism

Extn+1(O0/Mk,O0) ⊗O0 OZ,0 � Extn+1(OZ,0/Ik
Y,0,OZ,0).

This means that f∗(Ann(Mk)) generates Ann(Ik
Y ) for every k ∈ N, so to conclude

the proof we only have to use the facts that

Hn+1
[0] (O) = lim

→
k

Extn+1(O0/Mk,O0) and

(Hn+1
[Y ] (OZ))0 = lim

→
k

Extn+1(OZ,0/Ik
Y,0,OZ,0) .
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(2.16). Let Z be an open neighbourhood of the origin in Cn+p and let
x1, . . . , xn+p be coordinates (OZ,0)n+1. Let I be the ideal generated by f0, . . . , fn

and endow it with the canonical topology of a finitely generated OZ,0−module. We
shall define elementary transformations T ε

i,j,k from I⊕n+1 into I⊕n+1 as follows :
Fix ε ≥ 0, i ∈ [1, n+ p] and (j, k) ∈ [0, n]2. For g = (g0, . . . , gn) ∈ I⊕n+1 define
the elementary transform T ε

i,j,k(g)15 by the rule

Tj,k,i(g)l =
{

gl if l �= j
gj + ε.xi.gk if l = j.

For a fixed ε we shall only consider elements g that can be obtained from f by a
finite number of elementary transforms. When an element g can be obtained from
f by at most r elementary transforms we shall write 〈g〉 ≤ r.
Let r be a fixed integer. Since the mapping R+ → I⊕n+1 defined by ε �→ T ε

i,j,k(f) is
continuous, lemma A.1 in the Appendix implies that for all sufficiently small ε > 0,
every g in I⊕n+1 with 〈g〉 ≤ r generates I.
We shall always assume that r ≤ 100.n and that ε > 0 is small enough to ensure
that every g with 〈g〉 ≤ r generates the ideal I.
For any g such that 〈g〉 ≤ r, we define the OZ,0−submodule Eg of Ωn

Z,0 by

Eg :=
∑

j∈[0,n]

OZ,0.dg0 ∧ · · · d̂gj · · · ∧ dgn .

(2.17) Proposition. Let V be an open neighbourhood of f in I⊕n+1 endowed
with its canonical topology. Then for small enough ε > 0 we have

• if g is such that 〈g〉 ≤ n, then g ∈ V,
• ∑

〈g〉≤n

Eg = G0,

where G0 is the image of the n− th exterior product of OZ,0.dI in Ωn
Z,0 .

Proof. We can choose ε > 0 small enough to ensure that 〈g〉 ≤ n implies g ∈ V
(see the above). Let such a number ε > 0 be fixed for the rest of the proof.

To prove the second assertion note first that from the description of G0 in (2.13) we
clearly get the inclusion

∑
〈g〉≤n

Eg ⊂ G0.

To prove the reverse inclusion we begin with an easy formula. Fix j ∈ [0, n] and
i ∈ [1, n+ p]. Then

ε.gj .dxi = d((1 + ε.xi).gj) − (1 + ε.xi).dgj .

Let J ⊂ [0, n] with |J | ≤ n. For j ∈ J and any l ∈ [0, n] this formula implies

ε.gj .dxi ∧ dgJ = d(gl + ε.xi.gj) ∧ dgJ − dgl ∧ dgJ .

If we put g′ := Tl,j,i(g), then this equation can be written, when l �∈ J , as

ε.gj .dxi ∧ dgJ = ±(dg′J∪l − dgJ∪l). (12)

15We shall omit the subscript ε when there is no ambiguity.
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For j /∈ J we see in the same way that the formula implies, with g′ = Tj,j,i(g) :

ε.gj .dxi ∧ dgJ = ±(dg′J∪j − (1 + ε.dxi).dgJ∪j). (13)

Let us now show, by induction on m0 ∈ [0, n], that for any integer r 16 we have∑
〈g〉≤r

∑
m≤m0

∑
|J|=n−m

Im.Ωm
Z,0 ∧ dgJ ⊂

∑
〈g〉≤m0+r

Eg. (14)

Once this has been proved we finish the proof of the proposition by taking r = 0 and
m0 = n.

The statement is obvious for m0 = 0. Assume that it is true for m0 ∈ [0, n− 1] and
consider g with 〈g〉 ≤ r, α = (α0, . . . , αn) ∈ Nn+1 with |α| = m0 + 1, J ⊂ [0, n]
with |J | = n − (m0 + 1) and I ⊂ [1, n + p] with |I| = m0 + 1. Then we shall
produce l ∈ [0, n] \ J and g′ such that 〈g′〉 ≤ r + 1 having the following property

gαdxI ∧ dgJ ∈ Im0 .Ωm0
Z,0 ∧ dgJ∪l + Im0 .Ωm0

Z,0 ∧ dg
′
J∪l. (15)

Consider first the case where for some j ∈ J we have αj > 0. Pick any i ∈ I, put
I ′ := I \ i and write

gαdxI ∧ dgJ = ±gβ .dxI′ ∧ gj .dxi ∧ dgJ

with β + 1j = α, where 1j is the element in Nn+1 which has 1 in the j−th place
and 0 in all the others. Now choose any l ∈ [0, n] \ J and put g′ = Tl,j,i(g). Then
formula (12) gives (15).
If αj = 0, for all j ∈ J , then pick any l ∈ [0, n] with αl > 0 and any i ∈ I, put
I ′ := I \ i and write

gαdxI ∧ dgJ = ±gβ .dxI′ ∧ gl.dxi ∧ dgJ

where β + 1l = α. Then by putting g′ = Tl,l,i(g) we get (15) from (13).
Since 〈g〉 ≤ r implies 〈g′〉 ≤ r + 1 our induction hypothesis combined with (15)
then gives (14) for m0 + 1 .
Thus (14) is true for every m0 ∈ [0, n] and every r and the proof is completed.

(2.18). Assume the hypotheses of (2.5) and let s0 be a point in Σ where both
|Σ| and S are smooth. Suppose further that the cycle Xs0 only intersects Y at
the origin.
Put kf := mult0f�X0 and let κf denote the positive rational number associated
with the family (f∗Xs)s∈S at s0 [see theorem (1.2) ]. In section 3 we shall see that
κf is independent of f so from now on we will simply denote it by κ.
Evidently, the number kf only depends on the germ of f at the origin.
Put k := min

f
kf , where the minimum is taken over all generating regular sequences

that define the germ of Y at the origin. This minimum is attained on an open dense
set of regular sequences at the origin17.

16 r ≤ 99.n ; in fact we are doing an induction on m0 + r ≤ 100.n .
17See A.4 in the Appendix.



INTEGRATION OF MEROMORPHIC COHOMOLOGY CLASSES 195

(2.19) Lemma. Consider the situation described above and let (z0, . . . , zn) be
the standard coordinates in Cn+1. Then every germ in Hn+1

[Y ] (Ωn
Z)0 can be written

as a finite OZ,0−linear combination of elements of the form

g∗(ϕ ∧ dz0 ∧ · · · d̂zi · · · ∧ dzn) = (g∗ϕ) ∧ dg0 ∧ · · · d̂gi · · · ∧ dgn

where ϕ is in Hn+1
[0] (OCn+1) and g is a flat morphism defined by a generating

regular sequence for IY at 0, with kg = k.
Moreover the conormal order of each element in the linear combination is less than
or equal to the conormal order of the original element .

Proof. Let (x1, · · · , xn+p) be the standard coordinates of Cn+p. Then every
element in Hn+1

[Y ] (Ωn
Z)0 is a finite OZ,0−linear combination of elements of the type

ψ ∧ dxI with |I| = n and ψ ∈ Hn+1
[Y ] (OZ)0 . Let f be a flat morphism defined by

a generating regular sequence for IY at 0 , with kf = k. Then by lemma (2.15)
each ψ is a finite OZ,0−linear combination of elements of the form f∗(η) where
η ∈ Hn+1

[0] (OCn+1) and such that the orders of these elements are less than or equal to
the order of ψ. Since any element of order m in Hn+1

[0] (OCn+1) is a finite C−linear

combination of the family (∂(α)
0 )0≤|α|≤m, it is sufficient to prove that (f∗∂(α)

0 )∧dxI

can be written in the desired way.
From the identity ∂

(α)
0 = zn

0 .∂
(β)
0 where β = (α0 + n, α1, · · · , αn) we deduce that

(f∗∂(α)
0 ) ∧ dxI = f∗(zn

0 .∂
(β)
0 ) = f∗(∂(β)

0 ) ∧ fn
0 dxI .

Choose an open neigbourhood V of f in I⊕n+1
Y,0 such that kg = k for every

g ∈ V18 and take ε > 0 such that the two conditions in proposition (2.17) are
satisfied. Then every element of the form fn

0 dxI with |I| = n is a finite OZ,0−linear
combination of elements of type dg0 ∧ · · · d̂gi · · · ∧ dgn where g is a flat morphism
defined by a regular sequence generating IY,0 with kg = k. Thus every element in
Hn+1

[Y ] (Ωn
Z)0 can be written as a finite OZ,0−linear combination of elements of type

f∗(∂(β)
0 ) ∧ g∗(dz0 ∧ · · · d̂zi · · · ∧ dzn) with g in V.

Now consider a certain element of the form f∗(∂(β)
0 )∧ g∗(dz0 ∧ · · · d̂zi · · · ∧dzn) with

g fixed. Then by lemma (2.15), we can write f∗(∂(β)
0 ) as a finite OZ,0−linear

combination of elements of the form g∗(ϕ) where ϕ is an element of order ≤ |β| in
Hn+1

[0] (OCn+1). This completes the proof.

(2.20) Remark. In the terminology of (2.13) (see also definition (2.14)) the
above lemma implies in particular the identity Φm = Fm ⊗ G0, for all m.

(2.21) Definition. Let S be a (reduced) complex space, let Σ be a divisor
in S, let s0 ∈ Σ and let f be a continuous function on S \ Σ. We say that
f has an analytic singularity along Σ near s0 if there exists an open set
V ⊂ S containing s0, a continuous function g in V and a holomorphic function
h ∈ O(V \ V ∩ Σ) such that on V \ V ∩ Σ we have

f = g + h.

18See A.4 in the Appendix.
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If moreover h can be choosen to be meromorphic along Σ we say that f is almost
meromorphic along Σ near s0.

(2.22) Remark. Let f be an almost meromorphic function and let f = g + h
and f = g1 + h1 be two decompositions of f on V \ V ∩ Σ as in the above
definition. Then h1−h is a continuous extension of the holomorphic function g−g1
to the set V . In the case where S is a normal space this means that g − g1 has
a holomorphic extension to the set V . Consequently f has a well-defined polar
part in H1

V ∩Σ(V,OS). In particular f has a well-defined pole order along each
component of |Σ|.

(2.23) Theorem. Let Z be a Stein open neighbourhood of the origin in Cn+p

(where p ≥ 1 ) and let (Xs)s∈S be an analytic family of n−cycles in Z with graph
X . Let Y be a finite pole for the family and let Σ be the associated incidence
divisor. Let s0 be a point in Σ where both S and |Σ| are smooth and such that
Xs0 only intersects Y at the origin. Let q denote the multiplicity of Σ near s0
and let k and κ be defined as in (2.18). Then for every ∂̄−closed (n, n)−form ϕ
on Z \ Y of finite order along Y and for every ρ ∈ C∞

c (Z) such that ρ ≡ 1 in a
neighbourhood of the origin the function s �→ ∫

Xs
ρ.ϕ is almost meromorphic along

Σ near s0.
Moreover, if m is the (conormal) order of ϕ then the order of this almost mero-
morphic function is ≤ q.κ.m along |Σ| near s0.

Proof. Let ϕ be a ∂̄−closed (n, n)−form on Z \ Y of (conormal) order m
along Y . First we note that the assertion is independant of the choice of ρ. For if
ρ1 is another such function, then (ρ − ρ1).ϕ is a C∞ form with compact support
which does not intersect |Xs| ∩ |Y | for all s close enough to s0. Thus the function
s �→ ∫

Xs
(ρ− ρ1).ϕ is continuous in a neighbourhood of s0 .

By lemma (2.19) we know that the image of ϕ in Hn+1
[Y ] (Ωn

Z)0 can be written as

ν=N∑
ν=1

hν .(fν)∗ην

where hν ∈ OZ,0, ην is an element of order less than or equal to m in Hn+1
[0] (Ωn

Cn+1)
and fν is a germ of a flat morphism (Cn+p, 0) → (Cn+1, 0). Shrinking Z around
the origin, we may assume that for each ν the germs hν and fν have representatives
in Z, which will also be denoted by hν and fν .
By lemma (2.6) there exists, for each ν, an open neighbourhood Uν of the origin in
Z and Martinelli representatives ψν for ην on fν(Uν) \ {0} such that (fν |Uν

)∗ψν

is X|Uν
−proper. So in a Stein open neighbourhood Z ′ of the origin in U1∩· · ·∩UN

we obtain

ϕ =
ν=N∑
ν=1

hν .(fν |Uν
)∗ψν + ∂̄ω

where ω is a C∞−form on Z ′\Z ′∩Y of type (n, n−1). For a function ρ ∈ C∞
c (Z ′),

with ρ ≡ 1 near the origin we thus get∫
Xs

ρ.ϕ =
ν=N∑
ν=1

∫
Xs

ρ.hν .(fν |Uν
)∗ψν +

∫
Xs

ρ.∂̄ω.
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Write ∫
Xs

ρ.hν(fν |Uν
)∗ψν = −

∫
Xs

(1 − ρ).hν(fν |Uν
)∗ψν +

∫
Xs

hν(fν |Uν
)∗ψν ,

∫
Xs

ρ.∂̄ω =
∫

Xs

∂̄(ρ.ω) −
∫

Xs

∂̄ρ ∧ ω

and choose an open neighbourhood S′ of s0 in S such that

Xs ∩ Y ⊂ {ρ ≡ 1}
for all s ∈ S′. Then the functions s �→ ∫

Xs
(1−ρ).hν .(fν |Uν

)∗ψν and s �→ ∫
Xs
∂̄ρ∧ω

are continuous in S′ because the forms (1 − ρ).hν .(fν |Uν
)∗ψν and ∂̄ρ ∧ ω have

X−proper supports such that, for all s ∈ S′ , they do not intersect |Xs| ∩ |Y |. The
function s �→ ∫

Xs
∂̄(ρ.ω) is identically zero on S′ \ S′ ∩ Σ and by corollary (2.10)

the function s �→ ∫
Xs
hν(fν)∗ψν is holomorphic on S′ \S′∩Σ having a pole of order

≤ k.κ.m along |Σ| near s0. This completes the proof.

(2.24) Remark. If ϕ is a ∂̄−closed (n, n)−form on Z \ Y of (conormal)
order m and with an X−proper support near s0, then the function s �→ ∫

Xs
ϕ is

holomorphic on Z \ Y and the preceding theorem implies that it has a pole of order
≤ q.κ.m along |Σ| near s0.

(2.25). Assume the hypothesis of the theorem and let η be an element of
(conormal) order m in

(
Hn+1

[Y ] (Ωn
Z)
)

0
. Then there exists an open neighbourhood

Z
′

of the origin in Z and a ∂̄−closed (n, n)−form ϕ on Z
′ \Y ∩Z ′

of (conormal)
order m which represents η. Let ρ ∈ C∞

c (Z
′
) such that ρ ≡ 1 in a neighbourhood

of the origin.Then it is clear from the proof of theorem (2.23) that the polar part in(
H1

[Σ](OS)
)

s0

defined by the function s �→ ∫
Xs
ρ.ϕ is independent of the choice of

ϕ. Hence we get a well defined integration map∫
X

:
(
Hn+1

[Y ] (Ωn
Z)
)

0
→

(
H1

[Σ](OS)
)

s0

.

(2.26) Corollary. Assume the hypotheses of theorem (2.23) . Let γ be the
defining function for |Σ| near s0 and let

∫
X be the integration map defined above.

Then for every integer µ ≥ 1 there exists an integer m in [µ, µ+k[ and an element
ξ of (conormal) order m in

(
Hn+1

[Y ] (Ωn
Z)
)

0
such that q.κ.m is an integer and such

that

lim
s→s0

γq.κ.m(s)
∫
X

(ξ) (s) �= 0 .

In particular
∫
X (η) is of order q.κ.m in

(
H1

[Σ](OS)
)

s0

.

Proof. Let µ be a positive integer and let f be a flat morphism defined by a
generating regular sequence for IY at the origin with kf = k . Then by theorem
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(1.2) and remark (1.3) 1) there exist an integer m and an element η of order m
in Hn+1

[0] (Ωn
Cn+1) such that q.κ.m is an integer and

lim
s→s0

γq.κ.m(s)
∫
X

(η) (s) �= 0 .

But
∫

f∗X (η) =
∫
X (f∗η) so the element ξ := f∗η has the desired properties.

3. Global results. We want to deduce a more general and more precise state-
ment for the filtered integration of meromorphic cohomology classes on an analytic
family of cycles, including the case of a proper and generically finite pole.

(3.1) The multiplicity of the local incidence divisor. Let (Xs)s∈S be an
analytic family of n-cycles in a complex manifold Z, let Y be a proper, generically
finite pole for (Xs)s∈S and let Σ be the corresponding incidence divisor.
Here we shall only assume that Y is a cycle of codimension n + 1 in Z without
any given subspace structure. Let X ⊂ S×Z be the graph (as an analytic subset) of
the family (Xs)s∈S and let p : X → Z and π : X → S be the canonical projections.
Then by definition p−1(|Y |) is proper and generically finite via π on its image |ΣY |
in S, which is the support of the Cartier incidence divisor ΣY by [B.K.03] .
Let U be the dense Zariski open subset of |ΣY | consisting of all points σ where |ΣY |
is smooth and such that π−1(σ)∩p−1(Y ) is finite. Then for (σ, y) ∈ π−1(U)∩p−1(Y )
we define q(σ, y) as the multiplicity of |Σ| in the incidence divisor defined by Y
for the family (Xs ∩ Vy)s∈S where Vy is an open neighbourhood of y in Z such
that

|Y | ∩ |Xσ| ∩ Vy = {y}.
Note that, by additivity of the relative trace, if we have

π−1(σ) ∩ p−1(Y ) = {(σ, y1), · · · , (σ, yl)}

then ΣY =

(
l∑

j=1

q(σ, yj)

)
.|ΣY | near σ.

We define a locally constant function q′ : U → N∗ by

q′(σ) =
l∑

j=1

q(σ, yj) .

Hence, if (Cα)α∈A are the irreducible components of |ΣY | , then

ΣY =
∑
α∈A

q′α.Cα with q′α = q′|U∩Cα
.

We shall also use the notation q′C to denote the value of the constant function
q′|U∩C .

(3.2) The κ−function. From now on we shall assume that Y is given by a
coherent ideal IY in OZ . In general we shall also assume that Y is a locally
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complete intersection in Z, but we do not need this additional hypothesis for the
definition of the function κ .
We begin with the following general setting:
Let V be a reduced complex space and let s and x be holomorphic functions
on V . Denote by (x) the ideal generated by the function x and suppose that
s ∈ √

(x). Let W = {v ∈ V | x(v) = 0} and assume that W is nowhere dense in
V and that the function s is not identically 0 in a neighbourhood of any point of
W . We then define a function

κ : W → Q∗
+

in the following way

κ(w) := sup{κ ∈ Q∗
+ | ∃U(w),∃C > 0 |s(v)| ≤ C.|x(v)|κ ∀v ∈ U(w)}

where U(w) is an open neighbourhood of w in V .
Note that our hypothesis implies that there exists, locally around each point w in
W , a positive integer q(w) such that sq(w) ∈ (x)w.
Hence κ(w) ≥ 1

q(w) > 0.

(3.3) Lemma. In the setting described above let

λ(w) = sup{b/a ∈ Q∗
+ | sa ∈ Intg(xb)w}

where Intg(xb) denotes the integral closure of the ideal (xb). Then we have :
1) λ(w) ∈ Q∗

+ and λ(w) = β
α implies sα ∈ Intg(xβ)w .

2) λ(w) = κ(w) .
3) The function κ : W → Q∗

+ is constructible on W 19.

Proof. Consider the normalization map ν : Ṽ → V . Outside of an analytic subset
of codimension ≥ 2 the space Ṽ is smooth and there exists locally a holomorphic
function z such that dz �= 0 and such that ν∗(x) = zp and ν∗(s) = h.zq with h
invertible . The conclusion follows easily.

Now we may extend our setting :

(3.4) Proposition. Let V be a reduced complex space and I, J be two
coherent ideals in OV such that I ⊂ √J . Put W := Supp(OV /I) and assume
that W is nowhere dense in V and that Supp(I) = V . For every w ∈W we put

κ(w) := sup{b/a ∈ Q∗
+ | Ia

w ⊂ Intg(J b
w)}

Then the function κ takes its values in Q∗
+ and is constructible on W . For any

w ∈W with κ(w) = β
α we have Iα

w ⊂ Intg(J β
w ) .

Proof. By blowing up I and J in V we can reduce the proposition to the
previous lemma; we just have to use the inequalities to go down thanks to the following
standard equivalence on integral dependence :

19This means that for any κ0 ∈ R the set {w ∈ W | κ(w) ≥ κ0} is a closed analytic subset of
W .
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The germ s ∈ OV,w belongs to the integral closure of the ideal in OV,w generated
by g1, · · · , gp if and only if there exits an open neighbourhood U(w) of w in V
and a constant C > 0 such that

|s(v)| ≤ C.

p∑
j=1

|gj(v)| ∀v ∈ U(w).

This κ−function associated to a pair of ideals I and J in OV satisfying the
condition I ⊂ √J has the following nice functorial property.

(3.5) Lemma. In the situation of the previous proposition, assume that we have
a holomorphic map f : V ′ → V and consider the pull-backs f∗(I) and f∗(J ) .
Define W ′ = Supp(O′

V /f
∗(I)) and assume that W ′ is nowhere dense in V ′ and

that Supp(f∗(I)) = V ′. Then for any w′ ∈W ′ we have the inequality

κ(w′) ≤ κ(f(w′)).

Moreover this inequality is an equality as soon as the map f is open in a neighbour-
hood of w′.

Proof. This is an easy exercise using the defining inequality for κ.

(3.6). Now let us come back to the original situation in (3.1) and put
V := X ⊂ S ×Z and W := p−1(|Y |). Fix (σ, y) ∈ π−1(U) and let Vy be an open
neighbourhood of y in Z such that

|Xs| ∩ Y ∩ Vy = {y}.
Let I be the (locally) principal ideal in OX which is obtained by pulling back the
defining ideal of the (Cartier) incidence divisor associated with the pole Y and the
analytic family of n−cycles (Xs ∩Vy)s∈S to its graph. Put J := p∗(IY )|π−1(U) and
define κ(σ, y) with respect to the ideals I and J as in the previous proposition20.
Now this function κ is well defined on π−1(U) , takes its values in Q∗

+ and is
locally constructible21.
Let U0 ⊂ U be a dense Zariski open set in |Σ| such that the map π restricted
to p∗(|Y |) induces an unramified finite covering on U0. Then κ is globally
constructible on π−1(U0) and so there exists a dense Zariski open set U1 ⊂ U0 such
that κ is locally constant on π−1(U1) .
Now on π−1(U1) the functions q and κ are locally constant .

(3.7) Definition. Assume the hypotheses in (3.6) and suppose also that S is
compact22. Put

p−1(Y )max :=
{

(σ, y′) ∈ π−1(U1) | q(σ, y).κ(σ, y) is maximal in p−1(Y ) ∩ π−1(σ)
}

Then p−1(Y )max is a union of irreducible components of p−1(|Y |) and
p(p−1(Y )max) =: Ymax is a compact analytic subset of Y .

20Note that on the graph X the relation I ⊂ √J is satisfied .
21From the previous proposition we only obtain the constructibility on Vy .
22This is to ensure that |Σ| has only a finite number of irreducible components.
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Of course when Y is a proper and generically finite pole, the restriction

π : p−1(Y )max → |Σ|
is proper, generically finite and surjective.

(3.8) The κ′−filtration on H1
[ΣY ](OS). For any irreducible component C of

|Σ| define the rational number κ′
C ∈]0, 1] as follows : let σ ∈ C be a generic point

(in the open set U1 ∩ C), and let |Xσ| ∩ |Y | = {y1, · · · , yl} . Using the functions q
and κ defined above on p−1(|Y |) ∩ π−1(U1) we define

κ′
C :=

1
q′(σ)

sup
j∈[1,l]

{
q(σ, yj).κ(σ, yj)

}
.

Of course this has a meaning because the functions q(σ, y) and κ(σ, y) are locally
constant on p−1(|Y |) ∩ π−1(U1) .
Recall that q′(σ) =

∑l
j=1 q(σ, yj) = q′C .

Now define the κ′−filtration on the sheaf H1
[ΣY ](OS) as follows :

Let ν : S̃ → S be the normalization map .
We shall say that a section τ ∈ H1

[ΣY ](OS) has order ≤ m for the κ′−filtration if
and only if the pole order of ν∗(τ) is bounded by q′C .κ

′
C .m along the generic point

of ν∗(C) for any irreducible component C of |ΣY | which meets the open set where
τ is defined .
It will be clear from our local theorem (2.23) above (see the first claim in the proof
of the theorem below ) that for a finite pole we have a filtered integration map near
the generic points of |ΣY |

π∗p∗Hn+1
[Y ] (Ωn

Z) → H1
[ΣY ](OS)

relative to the conormal filtration defined on Hn+1
[Y ] (Ωn

Z) (see (2.14)) and the
κ′−filtration of H1

[ΣY ](OS) .

Let us restate and prove theorem (0.11) of our introduction :

(3.9) Theorem. Let (Xs)s∈S be an analytic family of n−cycles in a complex
manifold Z, parametrized by a reduced complex space S and let Y be a proper and
generically finite pole for this family.
Then there exists a quasi-filtered 23 integration map :

π∗p∗Hn+1
[Y ] (Ωn

Z) → H1
[ΣY ](OS)

when we endow the sheaf Hn+1
[Y ] (Ωn

Z) with the conormal filtration and the sheaf
H1

[ΣY ](OS) with the κ′−filtration .

Proof. We begin by proving the following claim.

Claim. The integration map is filtered at the generic points of Σ.

23Quasi-filtered means that locally on ΣY there exits m0 ∈ N such that the map respects
filtrations in degrees ≥ m0 .



202 D. BARLET AND J. MAGNÚSSON

Proof of the claim. Let C be an irreducible component of |Σ|. Let σ0 ∈ C
be generic and put Eσ0 := |Y | ∩ |Xσ0 |. For each y in Eσ0 we choose an open
neighbourhood Uy of y and a ∂̄−closed (n, n)−form ϕy on Uy \ Y ∩ Uy which
represents ξ. For each y we also take ρy ∈ C∞

c (Uy) such that ρ ≡ 1 in a
neighbourhood of y in Uy. Then the order of

∫
X (ξ) along |Σ| near σ0 is equal

to the order of the almost meromorphic function

s �→
∑

y∈Eσ0

∫
Xs

ρy.ϕy

along |Σ| near σ0 and from theorem (2.23) we know that this order is ≤ q′C .κ
′
C .m.

Hence the claim is proved because of our definition of κ′−filtration.

Proof of theorem continued. Now let us take into account the non generic points
in |Σ|.
Let T ⊂ |ΣY | be the closed analytic subset corresponding to positive dimensional
fibers of the map (1). Then we have codimS(T ) ≥ 2 by assumption24.

Claim. The sheaf H0
T (H1

[Σ](OS)) = H1
[T ](OS) is coherent.

Proof of the claim. Let ν : S̃ → S be the normalization map for S and put
T̃ := ν∗(T ).Then we have

H1
[T ](OS) � H0

T (ν∗OS̃/OS)

because H0
T̃
(ν∗OS̃) and H1

T̃
(ν∗OS̃) vanish. Since ν∗OS̃ is OS−coherent this

completes the proof of the claim.

Proof of theorem continued. Now from [B.K.03] we have an integration map

π∗p∗Hn+1
|Y | (Ωn

Z) → H1
|ΣY |(OS) (2)

defined by cup-product with the relative fundamental class CZ
X/S and S−relative

trace. This is compatible with the local integration map defined in [B.Mg.98] in the
case of a finite pole. So on |ΣY | \ T we may apply the theorem (2.23) . But the
coherency of H1

[T ](OS) allows us to find, locally on |ΣY |, an integer l such that
Il
|ΣY |.H

1
[T ](OS) = 0 .

This gives the fact that (2) induces a quasi-filtered map for the required filtrations.

(3.10) Remark. We shall use this precise “quasi-filtered” integration theorem
in order to produce global sections of powers of the line bundle associated with the
(Cartier) incidence divisor ΣY assuming both S and Y compact. But there
is no reason for the κ′−filtration used in the previous theorem to correspond to a
Q−Cartier divisor (with support in |ΣY |). Consequently we shall have to ignore the
components of |ΣY | where κ′ is not maximal, and we shall only produce (with
suitable hypothesis) global sections of powers of the line bundle associated to the
Cartier incidence divisor ΣY which separate points around generic points of the
κ′−maximal components !

24In fact we know from [B.Ka.03] that |Σ| is the support of a Cartier divisor in S .
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(3.11) Remark. We have κ′
C = 1 if and only if the generic cycle in C meets Y

in a single point and at that point the cycle is smooth and not tangent to Y .

(3.12) Lemma. Let (Xs)s∈S be an analytic family of n−cycles in a complex
manifold Z. Let Y be a proper, generically finite pole for this family and denote
by Σ the corresponding incidence divisor. Let σ ∈ Σ be such that both S and
|Σ| are smooth near σ. Let C be the irreducible component of |Σ| containing
σ and let γ be a defining function for |Σ| near σ. Put E := |Xσ| ∩ Y and let
M(σ) be the defining ideal for E in Z. Then there exists an integer ν such that
for all ξ in Γ(E,Hn+1

[Y ] (Ωn
Z)) for all g in Γ(E,Mν(σ)) we have

lim
s→σ

γj(s)
∫

Xs

(g.ξ) = 0 if j ≥ q′C .κ
′
C .(conormal order of ξ).

Proof. We note first that in the limit above we have chosen representatives for
the germs g, ξ and

∫
X (gξ) , but the assertion is clearly independent of the choices.

Let p : X → Z and π : X → S be the canonical projections and let m(σ) denote
the defining ideal of σ in S. Then we have

Supp(π∗m(σ)) + p∗IY ) = Supp(π∗m(σ)) ∩ Supp(p∗IY )

= |π−1(σ)| ∩ |p−1(Y )| = {σ} × E.

Hence every element of M(σ), considered as a function on X , is identically zero
on {σ} × E. It then follows from the Nullstellensatz that there exists an integer ν
such that M(σ)ν ⊂ (π∗m(σ) + p∗IY ). This implies that every g in M(σ)ν can
be written g(z) = f(s, z) + h(z) with f(σ, z) = 0 and h in IY . Let ξ be an
element of (conormal) order m in Γ(E,Hn+1

[Y ] (Ωn
Z)). Then h.ξ is of (conormal)

order ≤ m− 1 and consequently

lim
s→σ

γj(s)
∫
X

(hξ)(s) = 0

because j > q′C .κ
′
C .(m− 1) . We also see that

lim
s→σ

γj(s)
∫
X

(hξ)(s) = 0

because f(σ, z) = 0 . This completes the proof of the lemma.

(3.13) Remark. In the situation of the previous lemma, a class ξ of conormal
order m such that j := q′C .κ

′
C .m ∈ N defines by the principal polar part of its

integral on the cycles a section of the j−th power of the line bundle associated to Σ
near σ . The value at σ of this section is zero if and only if

lim
s→σ

γj(s).
∫

Xs

(ξ) = 0 .

(3.14) Definition. Let Z be a compact complex manifold and let Y be a
compact locally complete intersection in Z. We say that Y is an ample subvariety
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of Z if its normal bundle is ample, or equivalently if the zero section of its conormal
bundle is an exceptional analytic subset.

(3.15) Theorem. Let Z be a complex manifold and let (Xs)s∈S be an analytic
family of n−cycles in Z . Let Y be an ample locally complete intersection in
Z which is a proper and generically finite pole for the family and let Σ be the
corresponding incidence divisor. Then for every irreducible component C of |Σ|
there exist an arbitrarily big integer m and an element ξ in Hn+1

[Y ] (Z,Ωn
Z) of

(conormal) order m such that j := q′C .κ
′
C .m is an integer and such that for generic

σ in C we have lim
s→σ

γj(s).
∫

Xs
(ξ) �= 0, where γ is a defining function for |Σ|

near σ.

Proof. We observe first that the generic point σ in C satisfies the conditions
in lemma (3.12). Let σ be such a point in C and let E, M(σ), ν and γ be
defined as in lemma (3.12). Put Oν(s0) := OZ/Mν(s0) and consider the conormal
filtration

Φ1 ⊂ Φ2 ⊂ · · · ⊂ Hn+1
[Y ] (Ωn

Z).

Let ξ be an element of (conormal) order m in Hn+1
[Y ] (Z,Ωn

Z). Then lemma (3.12)
implies that for all j ≥ q′C .κ

′
C .m the limit lim

s→σ
γj(s)

∫
X (ξ)(s) �= 0 only depends on

the image of ξ in
(
Φm/Φm−1

)
⊗Oν(σ).

Let f be a flat morphism defined by a generating regular sequence for IY in a
neighbourhood V of E and consider the image family of hypersurfaces (f∗Xs)s∈S

in f(V ), which is defined for all s near σ. Then from lemma (3.5) we know that the
rational number associated with the image family (with the origin as a pole) is equal to
κ′

C
25, and by theorem (1.2) we know that in every interval of length k in N there is an

integer m and an element η of order m in Hn+1
[0] (Z,Ωn

Cn+1) such that j := q′C .κ
′
C .m

is an integer and such that lim
s→σ

γj(s)
∫

f∗X (η)(s) �= 0. Since
∫

f∗X (η) =
∫
X (f∗η) we

see that the element f∗η belongs to Γ(E,Φm) and lim
s→σ

γj(s)
∫
X (f∗η)(s) �= 0.

Thus to finish the prove of the theorem it is sufficient to show that the canonical
morphism

Γ(Z,Φm) → Γ(Es0 ,
(
Φm/Φm−1

)
⊗Oν(s0))

is surjective for m >> 0.
From the local description of G0 in (2.13) and the fact that IY Fm = Fm−1 for
all m ≥ 1 we deduce that IY Φm = Φm−1 and consequently that Φm/Φm−1 is
isomorphic to Fm/Fm−1 ⊗G0/IY G0 for all m ≥ 1. From lemme 6 in [B.Mg. 99] we
know that Fm/Fm−1 is isomorphic to Sm−1(NY |Z)⊗Extn+1

OZ
(OY ,OZ) where NY |Z

is the locally free normal bundle sheaf of Y in Z. From the facts that the sheaf
G0/IY G0 is coherent on Y and that the sheaf NY |Z is ample on Y we then deduce
(by the same argument as in lemme 6 in [B.Mg. 99]) that the canonical morphism

Γ(Z,Φm) → Γ(Es0 ,
(
Φm/Φm−1

)
⊗Oν(s0))

25We use the map induced by idS × f between the graphs of (Xs)s∈S and of (f∗Xs)s∈S .
Then we let I be the ideal of definition of Σ and J be the ideal of definition for the origin in
Cn+1.
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is surjective for m >> 0.

(3.16) Remarks.

1) To obtain a representative ξ̂ in Hn(Z \ Y,Ωn
Z) for the cohomology class ξ in

the previous theorem (for an arbitrarily big m ), it would be enough to have
dim

(
Hn+1(Z,Ωn

Z)
)
< +∞. This is of course the case (see [A-G]) when Z

is a n−convex manifold (a fortiori when Z is compact!). In this case we
obtain a holomorphic function on S \ Σ with a well controlled pole order
along the irreducible component C without assuming S compact.

2) If dimY ≤ n then there exists an arbitrarily small n−complete neighbourhood
V of Y in Z (see [B. 80]) and consequently the class ξ can be represented
by a class ξ̂ in Hn(V \Y,Ωn

Z) in this case. Of course this gives meromorphic
functions defined in a neighbourhood of ΣY with controlled pole order along
ΣY .

(3.17). Let πm : p−1(Y )max → |Σ| be induced by the canonical mapping π.
Clearly it is proper, surjective and generically finite (see 3.7 ). For each irreducible
component C of |Σ| we denote by lC the degree of πm over C. Then there exist an
open dense subset C ′ of C and a holomorphic multisection ϕ0

C : C ′ → SymlC (Ymax)
that associates to each point in C ′ the points in its πm-fiber.
For a generic point in C the divisor Σ has a well defined multiplicity which we
shall denote by qC . Then for a generic point σ in C we have (see 3.8)

q′C =
∑

(σ,y)∈π−1(σ)

q(σ, y).

(3.18) Definition. We say that the analytic family (Xs)s∈S is separated at
order 0 along Y if there exists an irreducible component C of Σ with κ′

C = κ′

such that the mapping ϕ0
C is finite.

(3.19) Remark. If the cycles of the family (Xs)s∈S are the fibres of an (equidi-
mensional) morphism π : Z → S then it is separating of order 0 along Y 26.

(3.20). Let C be an irreducible component of |Σ| and let lC , C ′ and ϕ0
C be

defined as before. Let σ ∈ C ′ and let y be a point in |Xσ| ∩ |Y | such that y is a
smooth point of Xσ where Xσ is not tangent to Y . Then the image of TXσ,y in
NY |Z,y is a hyperplane27 and, as such, defines an element in P(NY |Z,y) = P(NY |Z)y.
Suppose that we have a dense open subset of C, which we shall also denote by C ′,
such that for every σ in C ′ every y in |Xs| ∩ Ymax the cycle Xσ is smooth at
y and not tangent to Y at y. Then we obtain a well defined holomorphic mapping

ϕ1
C : C ′ → SymlC (P(NY |Z)|Ymax)

over SymlC (Ymax) .

26Assuming, of course, that Y is a proper, generically finite pole for the family !
27This is precisely the definition of ”non tangent”.
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(3.21) Definition. We say that the analytic family (Xs)s∈S is separated at
order 1 along Y if there exists an irreducible component C of |Σ| with κ′

C = κ′

where the mapping

ϕ1
C : C ′ → SymlC(P(NY |Z)|Ymax)

is well defined and generically finite.

(3.22). Let C be an irreducible component of |Σ| with lC = 1 and let σ ∈ C
such that {y} = |Xσ| ∩Ymax. Let CXσ,y denote the Zariski tangent cone of Xσ at
y28. If the restriction of the canonical mapping TZ,y → NY |Z,y to |CXs,y| is injective
then CXs,y has a well defined image in NY |Z,y and hence defines a hypersurface of
degree kσ in P(NY |Z,y).
Let us denote by kC = k the generic value of kσ for σ ∈ C . Now let
Hk(P(NY |Z)|Ymax) be the bundle space over Ymax whose fibre over a point y is
the set of hypersurfaces of degree k in P(NY |Z,y), and let ϕT

C(σ) be the element
defined by CXσ,y in Hk(P(NY |Z)|Ymax) for a generic σ ∈ C .

(3.23) Definition. We say that the analytic family (Xs)s∈S is separated by
tangent cones along Y if there exists an irreducible component C of |Σ| with
κ′

C = κ′ and lC = 1 such that C contains an open dense subset C ′ having the
following properties :

• gcd(q′C , kC) = 1
• the mapping ϕT

C : C ′ → Hk(P(NY |Z)|Ymax) is well defined and has finite
fibres.

(3.24) Theorem. Let Z be a complex manifold and let (Xs)s∈S be an analytic
family of n−cycles in Z with S compact and connected. Let Y be a compact and
generically finite pole with respect to (Xs)s∈S and let Σ denote the associated
incidence divisor. If Y is an ample subvariety 29of Z and if the family is separated
at order 0 , 1 or by tangent cones along Y then Σ is big.

Proof. Let L be the line bundle on S defined by the Cartier divisor Σ. We
observe first that in each of the three cases it is sufficient to prove the following :

For any two points σ0 and σ1 belonging to different fibres of the mapping in
question ( ϕ0

C , ϕ1
C or ϕZ

C) there exist an arbitrarily big integer j and a global
section τ of Lj such that τ(σ0) �= 0 and τ(σ1) = 0.

This is sufficient because in each case it implies the existence of an integer j such that
the Kodaira mapping of Lj has fibres with isolated points. Hence it is generically
finite and consequently L is big.

From now on X will denote the graph of the family (Xs)s∈S .

Claim. Let σ0 and σ1 be two points belonging to the same irreducible
component C of |Σ| with κ′

C = κ′ such that both C and |Σ| are smooth near
{σ0, σ1} and such that the corresponding cycles have only finitely many points of
intersection with Y . Put E := (|Xσ0 | ∪ |Xσ1 |)∩Y and let γ be a (reduced) defining

28 CXσ,y is a n−cycle in TZ,y .
29Recall that this implies that Y is a l.c.i. in Z such that its normal bundle is ample on Y .
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function for |Σ| in a neighbourhood of {σ0, σ1} . If there exist an arbitrarily big
integer m and an element ξ of conormal order m in Γ(E,Hn+1

[Y ] (Ωn
Z)) such that

ν := q′C .κ
′.m is an integer and such that

lim
s→σ0

γν(s).
∫
X

(ξ)(s) �= 0 and lim
s→σ1

γν(s).
∫
X

(ξ)(s) = 0,

then there exist an arbitrarily big integer j and a global section τ of Lj such that
τ(σ0) �= 0 and τ(σ1) = 0.

Proof of the claim. Let M(E) denote the defining ideal of the set E in Z
and put Ol(E) := OZ/Ml(E) for every positive integer l. By lemma (3.12)
there exists an integer l such that for every element ξ of (conormal) order m in
Γ(E,Hn+1

[Y ] (Ωn
Z)) the limit lim

s→σi

γj(s)
∫
X (ξ)(s) only depends on the image of ξ in

Φm/Φm−1 ⊗Ol(E), for all j ≥ q′C .κ
′.m and i = 0, 1.

Then by the same argument as in lemme 6 in [B.Mg. 99] ( already used in the proof
of theorem (3.15) ) we show that the canonical morphism

Γ(Y,Φm/Φm−1) → Γ
(
Y, (Φm/Φm−1) ⊗Ol(E)

)
(16)

is surjective for all m >> 0. Let B1 ⊂ B2 ⊂ . . . denote the |Σ|−filtration on
H1

[Y ](OS) and choose an integer m0 such that both the canonical morphism above
and the canonical mapping

H0
alg(S \ Σ,OS) → H1

[Σ](S,OS)/B[q′
C .κ′.m]−1 (17)

are surjective for all m ≥ m0
30, where [ ] denotes the integral part of a real number.

Let m ≥ m0 and let ξ be an element of (conormal) order m in Γ(E,Hn+1
[Y ] (Ωn

Z))
such that q′C .κ

′.m ∈ N and such that

lim
s→σ0

γq′
C .κ′.m(s).

∫
X

(ξ)(s) �= 0 and lim
s→σ1

γq′
C .κ′.m(s).

∫
X

(ξ)(s) = 0, (18)

Since (16) is surjective there exists an element η in Γ(Y,Φm/Φm−1) having the same
image as ξ in Γ

(
Y, (Φm/Φm−1)⊗Ol(E)

)
, and since (17) is surjective there exists a

holomorphic function g on S \ Σ having a pole of order q′.Cκ′.m along |Σ| near
{σ0, σ1} such that g and η have the same image in H1

[Σ](S,OS)/B[q′
C .κ′.m]−1.

Let γ be a defining function for |Σ| in a neighbourhood of {σ0, σ1}. Then

lim
s→σ0

γq′
C .κ′.m(s).g(s) = lim

s→σ0
γq′

C .κ′.m(s).
∫
X

(ξ)(s) �= 0

and

lim
s→σ1

γq′
C .κ′.m(s).g(s) = lim

s→σ1
γq′

C .κ′.m(s).
∫
X

(ξ)(s) = 0.

Let j be an integer such that κ′.m.j ∈ N∗. Then we obtain

lim
s→σ0

(γq′
C (s))κ

′.m.j .gj(s) �= 0 and lim
s→σ1

(γq′
C (s))κ

′.m.j .gj(s) = 0. (19)

30H0
alg(S \ Σ,OS) is the inverse image of H1

[Σ]
(S,OS) by the morphism H0(S \ Σ,OS) →

H1
Σ(S,OS).
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Since γq′
C is a defining function for Σ in a neighbourhood of {σ0, σ1} we conclude

that gj is a holomorphic function on S \ Σ having a pole of order κ′.m.j along
Σ. Let τ be the global section of Lκ

′.m.j induced by gj . Then (19) implies that
τ(σ0) �= 0 and τ(σ1) = 0. Thus the claim is proved.

Proof of the theorem continued. In each case we will denote by C ′ the open
dense subset of C where the relevant mapping ( ϕ0

C , ϕ1
C or ϕT

C) is defined.
Let σ0 and σ1 be two points belonging to different fibres of the mapping in question
and define E as in the above claim. We want to show that there exist an arbitrarily
big integer m and an element ξ in Γ(E,Hn+1

[Y ] (Ωn
Z)) such that q′C .κ

′.m ∈ N and
such that

∫
X (ξ) satisfies (18). We will treat the three cases separately.

(i) If ϕ0
C(σ0) �= ϕ0

C(σ1) then there exists a point y in |Xσ0 | ∩ Ymax such that
y /∈ |Xσ1 | ∩ Ymax. Then q(σ0, y).κ(σ0, y) = q′C .κ

′ and by corollary (2.26) there
exist an arbitrarily big integer m and an element ξ(y) of (conormal) order m in(
Hn+1

[Y ] (Ωn
Z)
)

y
such that

∫
X (ξ(y)) is of |Σ|−order q′C .κ

′.m near σ0. Let ξ be the

element in Γ(E,Hn+1
[Y ] (Ωn

Z)) defined by ξx = 0 if x �= y and ξy = ξ(y). Then ξ

has the desired properties.

(ii) If ϕ1
C(σ0) �= ϕ1

C(σ1) then we have either |Xσ0 | ∩ Ymax �= |Xσ1 | ∩ Ymax in which
case we get the the result directly from (i) or there exists a point y in E such
that TXσ0 ,y �= TXσ1 ,y. In the latter case we choose a flat morphism f defined by
a generating sequence of IY in a neighbourhood V of y in Z and consider the
image family (f∗(Xs|V )s) in f(V ) defined for s near {σ0, σ1}. Let

P (s, z) = P (s, 0) + P1(s, z) + P2(s, z) + · · ·
be a defining function for the image family, where Pj(s, z) is homogeneous of degree
j in z. Then by hypothesis P1(σ0, z) and P1(σ1, z) are linearly independant. Now,
using the remark (1.3) 2) , we see that in this case we have

κ(σ0, z) = κ((σ1, z) = 1

and thus q(σ0, z) = q(σ1, z) = q′C .κ
′ . Let γ be a defining function for |Σ| near

{σ0, σ1}. Then by theorem (1.2) and remark (1.3) 1) we know that for any element
η of order m in Hn+1

[0] (Ωn
Cn+1) we have

lim
s→σi

γq′
C .κ′m(s).

∫
X

(f∗η)(s) = 0 if and only if 〈P1(σi, z)m, dη〉 = 0,

for i = 0, 1 . Since the polynomials P1(σ0, z) and P1(σ1, z) are linearly independent
Pm

1 (σ0, z) and Pm
1 (σ1, z) are also linearly independent for all m ≥ 1. It follows

that for every integer m ≥ 1 there exists an element η of order m in Hn+1
[0] (Ωn

Cn+1)
such that

〈P1(σ0, z)m, dη〉 �= 0 and 〈P1(σ1, z)m, dη〉 = 0. (20)

Then for any integer m ≥ 1 we pick an element η which satisfies (20) and define ξ
in Γ(E,Hn+1

[Y ] (Ωn
Z)) by ξy = f∗η and ξx = 0 for x �= y.

(iii) Let y be the only point in E. We proceed in the same manner as in case (ii)
and consider a defining function for the image family

P (s, z) = P (s, 0) + P1(s, z) + P2(s, z) + · · · .
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We observe that κ′ =
1
k

and γ(s) = P (s, 0) is a defining function for Σ near

{σ0, σ1}. By theorem (1.2) and remark (1.3) 1) it follows that for any integer m ≥ 1
and any element η of order m.k in Hn+1

[0] (Ωn
Cn+1) we have

lim
s→σi

γm(s).
∫
X

(f∗η)(s) = 0 if and only if 〈Pk(σi, z)m, dη〉 = 0,

for i = 0, 1 . By hypothesis the cycles f∗Xσ0 and f∗Xσ1 have different Zariski tan-
gent cones at the origin and these cones are given by Pk(σ0, z) = 0 and Pk(σ1, z) = 0.
Consequently the homogeneous polynomials Pk(σ0, z) and Pk(σ1, z) are linearly in-
dependent. Hence for any integer of the form m.k we can pick an element η of order
m.k in Hn+1

[0] (Ωn
Cn+1) that satisfies the conditions

〈Pk(σ0, z)m, dη〉 �= 0 and 〈Pk(σ1, z)m, dη〉 = 0

and then ξ := f∗η is an element of (conormal) order m.k in(
Hn+1

[Y ] (Ωn
Z)
)

y
= Γ({y},Hn+1

[Y ] (Ωn
Z))

having the desired properties.

(3.25) Remarks.

1) What is actually proved in the theorem is that the fibres of the mappings ϕ0
C ,

ϕ1
C and ϕT

C can be separated by global sections of some powers of L. Hence
without assuming finite fibres we get the following inequality:

Kodaira dimension of L ≥ dimS − (fibre dimension of ϕi
C)

for i = 0, 1 or Z31.
2) Let Z be a complex manifold and let π : Z → S be an n−equidimensional

morphism where S is a normal complex space. Let Y be a subvariety of Z
whose dimension is equal to dimS − 1. If the restriction of the morphism π
to Y is proper and generically finite onto its image |Σ|, then Y is a proper,
generically finite pole for the analytic family of cycles given by the fibres of
π (see [B.75] ) and this family is obviously separated of order 0 along Y .

4. Applications.
(4.1). In this last section we shall prove the results announced in the introduction.

The theorem (0.7) is an immediate consequence of theorem (3.24). But this is not as
simple in the case of corollary (0.8).

Proof of corollary (0.8). We begin by producing a covering analytic family of
n−cycles in Z. As the map π is n−equidimensional and S is normal, there exists
an analytic map (see [B.75] )

f : S → Cn(Z)

31The mappings ϕ0
C ϕ1

C ϕZ
C are holomorphic on some connected open and dense set in C and

consequently have a well defined fibre dimension.
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such that for s generic in S we have f(s) = |π−1(s)|. The map f defines a
covering analytic family (Xs)s∈S of n−cycles in Z such that for the generic s we
have Xs = |π−1(s)|.
The next step is to prove that Y is a proper and generically finite pole for this
covering family. So we have to prove that the map

π : |Y | → π(|Y |) = |ΣY |
is generically finite on its image. As dim(|Y |) = p− 1 and dim(S) = p, it is enough
to prove that each irreducible component of |ΣY | is of pure codimension 1 in S.
We shall use the n−convexity of Z \ |Y | to prove this. As Y is a locally complete
intersection of codimension n + 1 with a (Griffiths) positive normal bundle, the
n−convexity of Z \ |Y | is a consequence of [F. 76] . Now we may deduce from [B.78]
that S \Σ is holomorphically convex : There is no Kähler metric on Z \Y to allow
us to follow the technique of loc.cit. but we know that for any hemitian C0 metric
on Z the corresponding volume function S → R+ is bounded (by continuity and
compacity of S !)
Then we conclude that each irreducible component of Σ has codimension 1 in S .
Hence Y is a proper, generically finite pole for the covering family (Xs)s∈S . Now
it is easy to use theorem (3.24) because generically the cycles are locally separated
along Y (at order 0 ) for any irreducible component of |ΣY | by remark (3.19).

(4.2) Remark. When the surjective map π is not assumed to be equidimen-
sional, there exist a compact normal complex space S̃ , a modification τ : S̃ → S
along the analytic set T where the fibre dimension of π jumps and a covering
analytic family of compact n−cycles (Xs̃)s̃∈S̃ in Z such that for generic s̃ we have
Xs̃ = |π−1(τ(s̃)|32.
Now to conclude that S is Moishezon it is enough to show that Y is a proper,
generically finite pole for this family and that the local separation condition holds
along Σ̃ := {s̃ ∈ S̃/Xs̃ ∩ Y �= ∅} holds.
This is clear as soon as it is shown that no irreducible component of Σ̃ is
contained in τ−1(T ):
the same proof shows that S̃ \ Σ̃ is holomorphically convex , so Σ̃ is of pure
codimension 1 in S̃. Then our assumption implies that the image by τ of any
irreducible component C of S̃ is an irreducible component of π(|Y |) that has
codimension 1 in S. It follows that we have the equalities of dimensions dim C =
dim τ(C) = p− 1 = dim Y ; thus Y is a generically finite pole.
The separation (at order 0 ) is again obvious from remark (3.19) because for any C
the generic point of C is mapped by τ outside of T.

We show now, using results on holomorphic convexity of cycle spaces, that problem
(0.4) can reduced to a rather special parameter space S and give for these cases a
transcendental analogue of what is expected .

(4.3) Theorem. Let Z a compact connected complex manifold of dimension
n+ p and let Y ⊂ Z be a compact locally complete intersection of dimension p− 1.

32Take for S̃ the normalization of the graph of the meromorphic map S −−− → Cn(Z) given
by the generic fibres of π .
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We assume that
1) NY |Z is positive
2) there exists a compact normal complex space S parametrizing a covering analytic

family of compact n−cycles (Xs)s∈S in Z such that the corresponding
classifying map c : S → Cn(Z) is the normalization of its image, and
such that the generic cycle of this family is irreducible and without multiple
components 33.

Then, either a(Z) ≥ p or dimS = p, S does not contain a compact covering family
of algebraic cycles of positive dimension 34, Σ is of pure codimension 1 in S and
S \ Σ is a proper modification of a Stein space.

Proof. Denote by d the dimension of S , and assume a(S) < p ; of course d ≥ p
because the graph of the covering family has dimension d+ n ≥ n+ p . Assume now
d ≥ p + 1 . Then the strong n−convexity of Z \ Y , which is a consequence of the
positivity of NY |Z thanks to [F. 76] , implies the holomorphic convexity of S \Σ by
the same argument as in the proof of corollary (0.8)35. Since S \Σ is not compact36

we conclude that Σ is of pure codimension 1 in S and that S \ Σ is a proper
modification of its Remmert’s reduction, which is a Stein space of dimension d37.
Now consider the graph S �� Z of our analytic family of cycles and its projections
p and π onto Z and S respectively. The generic fibre of p has dimension
d+n− (n+ p) = d− p ≥ 1 by our assumption, so for generic z ∈ Z its fibre p−1(z)
is a compact analytic subset of S of dimension ≥ 1. If, for a generic z ∈ Z we
have Σ ∩ π(p−1(z)) �= ∅ this means that for such a z there exists s(z) ∈ Σ with
z ∈ Xs(z) . Thus we have Z =

⋃
s∈ΣXs which gives a(Z) ≥ p thanks to remark

(0.6) 3) in the introduction .
Thus we may assume that Σ ∩ π(p−1(z)) = ∅ for generic z ∈ Z. This means that
Γ(z) := ∪Xs�zXs is a compact analytic set of dimension > n in Z \ Y . But care
is required because this set could have some irreducible component of dimension n.
For a generic z there exists s ∈ π(p−1(z)) such that Xs is irreducible . This
implies that at least one irreducible component of Γ(z) containing z has dimension
> n (because the classifying map c is finite and generically injective ). Fix a smooth
exhaustion function on Z \Y which is strongly n−convex outside a compact set K.
Then for a generic z ∈ Z \ Y \K we have a compact irreducible complex subset of
dimension > n of Z \ Y not contained in K and this gives a contradiction .
So we conclude that d ≥ p+ 1 implies a(Z) ≥ p.
Now the only case we are left to consider is the case where d = p.
Assume that S has a covering family (Ct)t∈T of compact algebraic cycles of
dimension k ≥ 1 parametrized by a compact normal complex space T . As before,
without loss of generality, we may assume that for t generic the cycle Ct is irreducible
and has multiplicity 1 and that the corresponding classifying map T → Ck(S) is
finite and generically injective. We define Γt = ∪s∈Ct

Xs for each t ∈ T.

33We can modify the family in order to satisfy these properties when we begin with any covering
family.

34Algebraic means that each component of the cycle is a (reduced) Moishezon complex space.
35Actually the volume of the cycles in our family is uniformly bounded (for any continuous her-

mitian metric on Z) and the method of [B.78] applies here as well.
36The case S = Σ is excluded because it implies a(Z) ≥ p as explained in remark 3 of (0.6) in

the introduction.
37We can separate generic cycles near Σ by global holomorphic functions on S \Σ coming from

integration of (n, n) cohomology classes using our assumption that the generic cycle in the family
is irreducible.
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As we assume that T is normal , the family (Γt)t∈T is an analytic family of compact
(n+k)−cycles in Z 38 such that the generic cycle is irreducible and with multiplicity
1 . If Ct ∩ Σ �= ∅ for all t in T , then T is a Moishezon space because we know
that Σ is a Moishezon space using [C.80]. But T �� S has algebraic fibers over S
( Ct is algebraic by assumption) and there exists an “algebraic section” T �� Σ of
this fibration (because T and Σ are Moishezon !) so , thanks again to [C.80] we
conclude that S is Moishezon .
Thus we may assume Ct ∩ Σ = ∅ for generic t . Then Γt ⊂ Z \ Y for generic
t . As the family (Γt)t∈T covers Z , for a generic t, Γt �⊂ K . This gives a
contradiction , because a compact irreducible analytic subset of dimension > n of
Z \ Y is contained in K .

(4.4) Remarks.

1) When dimS = p and a(S) = p− 1 we can cover S with a compact analytic
family of compact complex curves (using the algebraic reduction of S). So
the proposition applies and for a(S) = p− 1 we have a(Z) ≥ p .

2) Let D := p(π−1(Σ)) and assume that dimS = p and a(Z) < p. Then the
projection of the graph p : S �� Z → Z is generically finite because it is
surjective and dim(S �� Z) = n+ p = dimZ . The composed map

S �� Z \ π−1(Σ) → S \ Σ → R

where the second map is the Remmert’s reduction, can be used to construct p
holomorphic functions on S �� Z\π−1(Σ) that are algebraically independent.
Using traces of powers of these, it is easy to obtain p holomorphic functions
on Z\D that are also algebraically independent. So we have codimZ(D) = 1
and Y ⊂ D.
This is a transcendental analogue of what we are looking for here
(i.e. a(Z) ≥ p).

(4.5) Corollary. Assume that in problem (0.4) we have at least one cycle in
the covering family (Xs)s∈S that intersects Y in a finite non-empty set. Then
a(S) ≥ 1 and consequently a(Z) ≥ 1.

(4.6) Remark. For p = 2 (in which case Y is a curve) and n = 1 the problem
(0.4) is solved by the previous corollary subject to a very weak condition involving
the covering family and Y . Compare with remark (4.4) 1) above.

The proof of the corollary is an immediate consequence of remark (3.16) 1) .

Appendix. Let Y be a locally complete intersection of codimension n+ 1 in
a complex manifold Z .

(A.1) Lemma. Let y be a point in Y . Then the set of all (n + 1)-tuples
(g0, . . . , gn) in I⊕n+1

Y,y such that g0, . . . , gn generate IY,y is an open dense subset of
I⊕n+1

Y,y .

38This means that we can choose multiplicities , generically equal to 1 , to have an analytic
family of cycles ; see [B.75] th.1 .
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Proof. Let m be the defining ideal of y in Z. Since the minimal length of a
generating sequence for IY,y is n+ 1, Nakayama’s lemma tells us that the C vector
space V := IY,y/mIY,y is of dimension n+1. By the same lemma we know that n+1
elements g0, . . . , gn in IY,y generate IY,y if and only if their images g0, . . . , gn in V
form a basis for V . It is clear that the set of all bases (v0, . . . , vn) of V is a Zariski
open dense subset of V n+1, so to finish the proof we only have to note that IY,y and
mIY,y ⊕ V are isomorphic as topological vector spaces.

(A.2) Remark. It is clear from the proof of the preceeding lemma that the
generating (n+ 1)-tuples in a finite-dimensional affine subspace A of I⊕n+1

Y,y form a
Zariski open subset of A. In particular it is connected.

We shall assume from now on that Y is a finite pole for an analytic family (Xs)s∈S

of n−cycles in Z , and we shall denote by Σ the incidence divisor of Y in S .

(A.3). For each s in Σ we put Es := |Xs| ∩ |Y |. We will say that a finite
sequence of elements in Γ(Es, IY ) is a generating sequence for Γ(Es, IY ) if it generates
IY,y for every y in Es; in other words if it generates Γ(Es, IY ) as a Γ(Es,OY )-
module. Let g0, . . . , gn be a generating sequence for Γ(Es, IY ). Then g0, . . . , gn is
a regular sequence and thus defines a flat morphism g = (g0, . . . , gn) from an open
neighbourhood U of Es onto an open neighbourhood of the origin in Cn+1. Let
kg(s) denote the multiplicity of the image cycle g�(Xs|U) at the origin in Cn+1,
i.e. kg(s) = mult0 g�(Xs|U). Then we put

k(s) := min
g

kg(s),

where the minimum is taken over all generating sequences of length n + 1 in
Γ(Es, IY ).

(A.4) Lemma. Let s ∈ S. The set of all g = (g0, . . . , gn) in Γ(Es, IY )n+1 such
that g0, . . . , gn generate Γ(Es, IY ) and such that kg(s) = k(s) is an open dense subset
of Γ(Es, IY )n+1.

Proof. Let U be the set of all g = (g0, . . . , gn) in Γ(Es, IY )n+1 such that g0, . . . , gn

generate Γ(Es, IY ) and put

U ′ := {g ∈ U | kg(s) = k(s)}.
From lemma (3.3) we know that U is a dense open subset of Γ(Es, IY )n+1 so it is
enough to show that U ′ is a dense open subset of U . Let f ∈ U and let V be an open
neighbourhood of f in U such that (g�Xs)g∈V is an analytic family of (germs of)
hypersurfaces at the origin in Cn+1. Let

P : V × (Cn+1, 0) → C

be a defining function for the graph of this family and write

P (g, x) = P0(g, x) + P1(g, x) + P2(g, x) + · · ·
where Pj(g, x) is homogeneous of degree j in x. Then by the definition of k(s) we
have Pj(g, ·) = 0 for all g if j < k(s) and the set of all g in V with kg(s) > k(s) is
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given by the analytic equation Pk(s)(g, ·) = 0; in other words

V \ V ∩ U ′ = {g ∈ V |Pk(s)(g, ·) = 0}.

This shows in particular that U ′ is an open subset of U . Now, suppose that f belongs
to the boundary of U ′ in U and suppose that the neighbourhood V is convex. We will
show that V is contained in the closure of U ′ in U and thereby prove that U ′ is dense
in U . Fix an element g1 in V ∩ U ′ and let g2 be any other element in V. Let L be
the affine line through g1 and g2 in Γ(Es, IY )n+1. Then V ∩ L is an open connected
subset of L that contains g1 and g2. Since

L ∩ (V \ V ∩ U ′) = {g ∈ V ∩ L |Pk(s)(g, ·) = 0}

is an analytic subset of L∩V that does not contain g1, it is a discrete subset of L∩V
and consequently it is contained in the closure of U ′.

REFERENCES
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des cycles d’une variété algébrique, Ann. Scuola Norm. Pisa, 21 (1967), pp. 31–82.
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