GLOBAL SOLUTIONS OF EINSTEIN-DIRAC EQUATION *

QIKENG LU^{\dagger}, SHIKUN WANG ${ }^{\ddagger}$, AND KE WU ${ }^{\S}$

Abstract

The conformal space \mathfrak{M} was introduced by Dirac in 1936. It is an algebraic manifold with a spin structure and possesses naturally an invariant Lorentz metric. By carefully studying the birational transformations of \mathfrak{M}, we obtain explicitly the transition functions of the spin bundle over \mathfrak{M}. Since the transition functions are closely related to the propagation in physics, we get a kind of solutions of the Dirac equation by integrals constructed from the propagation. Moreover, we prove that the invariant Lorentz metric together with one of such solutions satisfies the Einstein-Dirac combine equation.

1. The main results. In general relativity the 4 -dimensional Lorentz manifold is used. It is Penrose [1] who began to apply 2-component spinor analysis for studying Einstein equation. It implied that the spin group $\operatorname{Spin}(1,3)$ of a Lorentz spin manifold \mathfrak{M} is locally isomorphic to the group $S L(2, \mathbb{C})$ such that there is a Lie group homeomorphism

$$
\iota: S L(2, \mathbb{C}) \longrightarrow S O(1,3)
$$

which is a two to one covering map. Then a two component Dirac operator \mathfrak{D} : $V_{2}(x) \rightarrow V_{2}^{*}(x)$ and $\mathfrak{D}: V_{2}^{*}(x) \rightarrow V_{2}(x)$ can be defined, where $V_{2}(x)$ is the vector space of spinors at $x \in \mathfrak{M}$ and $V_{2}^{*}(x)$ is the conjugate vector space of $V_{2}(x)$.

We will use the following lemma for studying the Dirac equation.
Lemma 1 . If ψ is a two component spinor field on \mathfrak{M} and satisfies

$$
\begin{equation*}
\mathfrak{D}^{2} \psi=\mathfrak{D} \mathfrak{D} \psi=-m^{2} \psi \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\Psi=\binom{\psi}{\varphi^{*}}, \quad \varphi^{*}=\frac{i}{m} \mathfrak{D} \psi \tag{1.2}
\end{equation*}
$$

is a 4-component spinor on \mathfrak{M} and satisfies the Dirac equation

$$
\not D \Psi=\left(\begin{array}{cc}
0 & \mathfrak{D} \tag{1.3}\\
\mathfrak{D} & 0
\end{array}\right) \Psi=-i m \Psi .
$$

The first purpose of this paper is to solve the equation (1.1) in the case that \mathfrak{M} is the conformal space.

The conformal space \mathfrak{M} was introduced by Dirac [2]. It is a quadratic algebraic 4-dimensional manifold defined by

$$
\mathfrak{x}_{1}^{2}+\mathfrak{x}_{2}^{2}-\mathfrak{x}_{3}^{2}-\mathfrak{x}_{4}^{2}-\mathfrak{x}_{5}^{2}-\mathfrak{x}_{6}^{2}=0
$$

[^0]where $\mathfrak{x}=\left(\mathfrak{x}_{1}, \mathfrak{x}_{2}, \cdots, \mathfrak{x}_{6}\right)$ is the homogeneous coordinate of the real project space $\mathbb{R}^{5}{ }^{5}$, and it is the boundary of the 5 -dimensional anti-de-Sitter space $A d S_{5}$:
$$
\mathfrak{x}_{1}^{2}+\mathfrak{x}_{2}^{2}-\mathfrak{x}_{3}^{2}-\mathfrak{x}_{4}^{2}-\mathfrak{x}_{5}^{2}-\mathfrak{x}_{6}^{2}>0 .
$$

So to study the field theory of the conformal space would be useful to study the problem of AdS/CFT corresponding, a research hot point in recent years (see the references in [3]). It should be noted that AdS is also introduced by Dirac [4] and is one kind of space-time studied in [5].

We use heavily the birational transformations of algebraic geometry to study in detail the transition functions of the Lorentz spin manifold \mathfrak{M} so that the solutions Ψ of the Dirac equation can be expressed explicitly by integrals.

Let

$$
\begin{equation*}
d s^{2}=g_{j k} d s^{j} d s^{k}=\sum_{j, k=0}^{3} g_{j k} d x^{j} d x^{k}=\eta_{a b} \omega^{a} \omega^{b} \tag{1.4}
\end{equation*}
$$

be a Lorentz metric on \mathfrak{M}, where $\left(\eta_{a b}\right)=\{1,-1,-1,-1\}$ is a diagonal matrix and

$$
\begin{equation*}
\omega^{a}=e_{j}^{(a)} d x^{j},(a=0,1,2,3) ; \quad \text { and } \quad X_{a}=e_{(a)}^{j} \frac{\partial}{\partial x^{j}} \quad(a=0,1,2,3) \tag{1.5}
\end{equation*}
$$

are the Lorentz coframe and the dual frame respectively.
The second purpose of this paper is to find solutions of $g_{j k}$ and Ψ which satisfy the Einstein-Dirac equation

$$
\begin{equation*}
R_{j k}-\frac{1}{2} R g_{j k}-\Lambda g_{j k}=\mathcal{X} T_{j k}, \quad \mathcal{D} \Psi=-i m \Psi \tag{1.6}
\end{equation*}
$$

where Λ, \mathcal{X} and $m(>0)$ are constants and $T_{j k}$ is the energy-momentum tensor of Ψ such that

$$
\begin{equation*}
T_{j k}=\frac{i}{2}\left[\eta_{a b} \bar{\Psi}^{*^{\prime}} \gamma^{b}\left(e_{j}^{(a)} \nabla_{k} \Psi+e_{k}^{(a)} \nabla_{j} \Psi\right)-\eta_{a b}\left(e_{j}^{(a)}{\overline{\nabla_{k} \Psi^{*}}}^{\prime}+e_{k}^{(a)} \overline{\nabla_{j} \Psi^{*^{\prime}}}\right) \gamma^{b} \Psi\right] . \tag{1.7}
\end{equation*}
$$

Here we denote \bar{A} the complex conjugate of a matrix A and A^{\prime} the transpose of A and

$$
\begin{equation*}
\Psi^{*}=\binom{\varphi^{*}}{\psi} . \tag{1.8}
\end{equation*}
$$

Besides, $\gamma^{a}(a=0,1,2,3$,$) are Dirac matrices and \nabla_{j}$ is the covariant differentiation of 4 -component spinor such that

$$
\begin{equation*}
\mathscr{D}=\gamma^{a} e_{(a)}^{j} \nabla j . \tag{1.9}
\end{equation*}
$$

We at first map the conformal space \mathfrak{M} by birational transformation into the compactized Minkowski space \bar{M}, which can be mapped by birational transformation [6] to the group manifold $U(2) \cong U(1) \times S U(2)$, and we will prove that $S U(2) \cong$ $\bar{M} \cap \mathbf{P}_{0}$, where \mathbf{P}_{0} is a hyperplane. It known that $U(1) \cong S^{1}$ and $S U(2) \cong S^{3}$. So we can introduce a Lorentz metric $d s^{2}$ on \mathfrak{M} such that

$$
\begin{equation*}
d s^{2}=d s_{1}^{2}-d s_{3}^{2} \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
d s_{1}^{2}=\left(d x^{0}\right)^{2} \quad \text { and } \quad d s_{3}^{2}=\frac{\delta_{\alpha \beta}}{\left(1+x x^{\prime}\right)^{2}} d x^{\alpha} d x^{\beta} \tag{1.11}
\end{equation*}
$$

are the Riemann metrics of $U(1)$ and $S U(2) \cong S^{3}$ respectively.
Since $S U(2) \cong \bar{M} \cap \mathbf{P}_{0}$ is a Riemann spin manifold, there is a principal bundle

$$
\operatorname{Spin}\left\{\bar{M} \cap \mathbf{P}_{0}, S U(2)\right\}
$$

with base manifold $\bar{M} \cap \mathbf{P}_{0}$ and structure group $S U(2)$. The transition functions of this principal bundle can be written out explicitly.

Lemma 2. The isometric automorphism $T_{u}: \bar{M} \cap \mathbf{P}_{0} \rightarrow \bar{M} \cap \mathbf{P}_{0}$ can be expressed by admissible local coordinates such that

$$
y^{\alpha} \sigma_{\alpha}=U_{0}^{-1} \Phi(x, u) U_{0}, \quad \Phi(x, u)=\left(\sigma_{0}+x^{\mu} u^{\nu} \sigma_{\mu} \sigma_{\nu}\right)^{-1}\left(x^{\alpha}-u^{\alpha}\right) \sigma_{\alpha}
$$

where $U_{0} \in S U(2), \sigma_{0}$ is the 2×2 identity matrix and $\sigma_{\alpha}(\alpha=1,2,3)$ are Pauli matrices. The transition function associated to T_{u} is

$$
\mathfrak{A}_{T_{u}}(x)=U_{0}^{-1} U(x, u)^{-1}
$$

where

$$
U(x, u)=\left[\left(1+x u^{\prime}\right)^{2}+x x^{\prime} u u^{\prime}-\left(x u^{\prime}\right)^{2}\right]^{-\frac{1}{2}}\left[\left(1+x u^{\prime}\right) \sigma_{0}+i x^{\mu} u^{\nu} \delta_{\mu \nu \alpha}^{123} \sigma_{\alpha}\right],
$$

which belongs to $S U(2)$ and $x u^{\prime}=\delta_{\alpha \beta} x^{\alpha} u^{\beta}$.
$\mathrm{U}(\mathrm{x}, \mathrm{u})$ is called the propagation.
With the metric (1.10) the 2-component Dirac operator of $S^{1} \times S^{3}$ is

$$
\begin{equation*}
\mathfrak{D}=\sigma_{0} \frac{\partial}{\partial x^{0}}-\mathscr{D}_{s^{3}} \tag{1.12}
\end{equation*}
$$

where $\mathscr{D}_{s^{3}}$ is the Dirac operator of the Riemann spin manifold of S^{3} and x^{0} the local coordinate of S^{1} and $x=\left(x^{1}, x^{2}, x^{3}\right)$ the admissible local coordinate of S^{3}. Hence, if the spinor $\widehat{\psi}(x)$ satisfies the equation

$$
\begin{equation*}
\mathbb{D}_{s^{3}}^{2} \widehat{\psi}=-\left(n^{2}-m^{2}\right) \widehat{\psi} \tag{1.13}
\end{equation*}
$$

then $e^{i n x^{0}} \widehat{\psi}(x)$ is a solution of the equation

$$
\begin{equation*}
\mathfrak{D}^{2}\left[e^{i n x^{0}} \widehat{\psi}(x)\right]=-m^{2} e^{i n x^{0}} \widehat{\psi}(x) \tag{1.14}
\end{equation*}
$$

By Weitzenböck formula of S^{3},

$$
\begin{equation*}
\mathscr{D}_{s^{3}}^{2}=\Delta-\frac{1}{4} R_{S^{3}} \sigma_{0} \tag{1.15}
\end{equation*}
$$

where $R_{S^{3}}$ is the scalar curvature of $d s_{3}^{2}$ and \triangle is an elliptic differential operator. Hence to solve the equation (1.1) on $S^{1} \times S^{3}$ is reduced to solve the equation on S^{3},

$$
\begin{equation*}
\mathcal{D}_{S^{3}}^{2} \widehat{\psi}(x)=-\lambda \widehat{\psi}(x) \tag{1.16}
\end{equation*}
$$

where $\lambda=n^{2}-m^{2}$ should be an eigen-value of $\mathscr{D}_{S^{3}}^{2}$. The λ-eigen kernel is defined by

$$
\begin{equation*}
\mathcal{K}_{\lambda}(x, u)=\sum_{\xi=0}^{N_{\lambda}} \widehat{\psi}_{\xi}(x) \overline{\widehat{\psi}_{\xi}(x)^{\prime}} \tag{1.17}
\end{equation*}
$$

where $\left\{\widehat{\psi}_{\xi}(x)\right\}_{\xi=1,2, \cdots, N_{\lambda}}$ is an orthonormal basis of the vector space of λ-eigen functions of $\mathscr{D}_{S^{3}}^{2}$. The eigen values of (1.16) and the corresponding dimensions N_{λ} are known(c.f. [7]) Then for any spinor $\widehat{\psi}_{0}$ on S^{3},

$$
\begin{equation*}
\widehat{\psi}(x)=\int_{s^{3}} \mathcal{K}_{\lambda}(x, u) \widehat{\psi}_{0}(u) \dot{u}, \tag{1.18}
\end{equation*}
$$

where \dot{u} is the volume element associated to $d s_{3}^{2}$, is a solution of the equation (1.16). The problem to solve the Dirac equation on the conformal space $\mathfrak{M} \cong S^{1} \times S^{3}$ is reduced to construct the λ-eigen kernel \mathcal{K}_{λ} of $\mathscr{D}_{S^{3}}^{2}$ on S^{3} explicitly.

Theorem 1. If we choose on $S^{3} \cong S U(2)$ the metric

$$
\begin{equation*}
d s_{3}^{2}=\frac{\delta_{\alpha \beta}}{\left(1+x x^{\prime}\right)^{2}} d x^{\alpha} d x^{\beta} \tag{1.19}
\end{equation*}
$$

then the λ-eigen kernel of $\mathscr{D}_{S^{3}}^{2}$ is

$$
\mathcal{K}_{\lambda}(x, u)=U(x, u)\left[f\left(\rho^{2}(x, u)\right) \sigma_{0}+h\left(\rho^{2}(x, u)\right) \Phi(x, u)\right]
$$

where $U(x, u)$ and $\Phi(x, u)$ are defined by Lemma 2,

$$
\rho^{2}(x, u)=\frac{(x-u)(x-u)^{\prime}}{1+2 x u^{\prime}+x x^{\prime} u u^{\prime}}
$$

and $f(t)=\overline{f(t)}$ and $h(t)=-\overline{h(t)}$ are functions which satisfy respectively the following differential equations

$$
\left.4 t(1+t)^{2} \frac{d^{2} f}{d t^{2}}+(1+t)[6(1+t)-4 t)\right] \frac{d f}{d t}-(2 t+6) f=-\lambda f
$$

and

$$
\left.4 t(1+t)^{2} \frac{d^{2} h}{d t^{2}}+(1+t)[10(1+t)-4 t)\right] \frac{d h}{d t}-4 h=-\lambda h
$$

In fact, the solutions of the equations are respectively

$$
\begin{equation*}
f(t)=c_{0} F_{0}(t)+c_{1} F_{1}(t) \quad \text { and } \quad h(t)=i c_{2} F_{2}(t)+i c_{3} F_{3}(t) \tag{1.20}
\end{equation*}
$$

where $c_{j}(j=0,1,2,3)$ are real constants,

$$
\begin{align*}
& F_{0}(t)=(1+t)^{1+\sqrt{\lambda} / 2} F\left(\frac{\sqrt{\lambda}}{2}, \frac{3}{2}+\frac{\sqrt{\lambda}}{2}, 1+\sqrt{\lambda}, 1+t\right) \\
& F_{1}(t)=(1+t)^{1-\sqrt{\lambda} / 2} F\left(-\frac{\sqrt{\lambda}}{2}, \frac{3}{2}-\frac{\sqrt{\lambda}}{2}, 1-\sqrt{\lambda}, 1+t\right) \tag{1.21}
\end{align*}
$$

and

$$
\begin{align*}
& F_{2}(t)=(1+t)^{1+\sqrt{\lambda} / 2} F\left(\frac{3}{2}+\frac{\sqrt{\lambda}}{2}, 1+\frac{\sqrt{\lambda}}{2}, 1+\sqrt{\lambda}, 1+t\right) \\
& F_{3}(t)=(1+t)^{1-\sqrt{\lambda} / 2} F\left(\frac{3}{2}-\frac{\sqrt{\lambda}}{2}, 1-\frac{\sqrt{\lambda}}{2}, 1-\sqrt{\lambda}, 1+t\right) \tag{1.22}
\end{align*}
$$

Here $F(\alpha, \beta, \gamma, x)$ is the hypergeometric function. The constants $c_{j}(j=0,1,2$,$) are$ determined from the equality

$$
\begin{equation*}
\int_{S^{3}} \mathcal{K}_{\lambda}(a, x) \mathcal{K}_{\lambda}(x, b) \dot{x}=\mathcal{K}_{\lambda}(a, b) \tag{1.23}
\end{equation*}
$$

Since

$$
\begin{equation*}
{\overline{\mathcal{K}} \lambda_{\lambda}(a, b)}{ }^{\prime}=\mathcal{K}_{\lambda}(b, a), \tag{1.24}
\end{equation*}
$$

there are four independent equations in (1.23) for determining the four constants $c_{j}(j=0,1,2,3)$.

A spinor $\widehat{\psi}_{0}(x)$ on S^{3} is said to be orthogonal invariant if $\widehat{\psi}_{0}(x \Gamma)=U \widehat{\psi}_{0}(x)$, where $\Gamma \in S O(3)$ and $U \in S U(2)$ such that Γ is the image of U by group homeomorphism ι restricted to the group $S U(2)$. The two component spinor

$$
\begin{equation*}
\psi\left(x_{1}\right)=e^{i n x^{0}} \widehat{\psi}(x), \quad x_{1}=\left(x^{0}, x\right) \tag{1.25}
\end{equation*}
$$

where $\widehat{\psi}(x)$ defined by (1.18), is orthogonal invariant, provided that $\widehat{\psi}_{0}(x)$ is orthogonal invariant. By Lemma 1, the 4-component spinor on $S^{1} \times S^{3}$

$$
\begin{equation*}
\Psi=\binom{\psi}{\varphi^{*}}, \quad \varphi^{*}=\frac{i}{m} \mathfrak{D} \psi \tag{1.26}
\end{equation*}
$$

satisfies the Dirac equation and it is orthogonal invariant in the sense that $\varphi^{*}\left(x^{0}, x \Gamma\right)=U \varphi^{*}\left(x_{1}\right)$ whenever ψ is orthogonal. So

$$
\Psi\left(x^{0}, x \Gamma\right)=\left(\begin{array}{cc}
U & 0 \\
0 & U
\end{array}\right) \Psi\left(x^{0}, x\right) .
$$

Theorem 2. If $g_{i j}$ are defined by

$$
g_{00}=1, g_{0 \alpha}=g_{\alpha 0}=0, g_{\alpha \beta}=-\frac{\delta_{\alpha \beta}}{\left(1+x x^{\prime}\right)^{2}}, \quad \alpha, \beta=1,2,3
$$

and Ψ is defined by (1.26), in which ψ is given by (1.25) and $\widehat{\psi}$ by the integral (1.18), and is orthogonal invariant and the energy-momentum tensor $T_{j k}$ of Ψ is not identically zero, then the pair $\left\{g_{j k}, \Psi\right\}$ satisfy the Einstein-Dirac equation with the constants

$$
\Lambda=\frac{-T_{00}(0)}{T_{00}(0)+T_{11}(0)} R_{11}(0)-\frac{1}{2} R(0), \quad \mathcal{X}=\frac{1}{T_{00}(0)+T_{11}(0)} R_{11}(0)
$$

and m is non-negative and satisfies

$$
m^{2}=n^{2}-\lambda
$$

where n is a positive integer and λ is an eigen value of the operator $\mathscr{D}_{s^{3}}^{2}$.
2. The relation between the Dirac operators of 2-component spinor and 4 -component spinor. Let \mathfrak{M} be a four-dimensional Lorentz spin manifold with the Lorentz metric

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{j} d x^{j}=\eta_{a b} \omega^{a} \omega^{b} \tag{2.1}
\end{equation*}
$$

where $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ is an admissible local coordinate of $\mathfrak{M}, \eta_{a b}$ is a diagonal matrix with diagonal elements $\{1,-1,-1,-1\}$ and

$$
\begin{equation*}
\omega^{a}=e_{j}^{(a)} d x^{j}, \quad a=0,1,2,3 \tag{2.2}
\end{equation*}
$$

is a Lorentz co-frame. Let the dual frame of $\left\{\omega^{a}\right\}$ be

$$
\begin{equation*}
\mathbb{X}_{a}=e_{(a)}^{j} \frac{\partial}{\partial x^{j}} \tag{2.3}
\end{equation*}
$$

From the Christoffel symbol associated to $d s^{2}$

$$
\left\{\begin{array}{cc}
l \tag{2.4}\\
j & k
\end{array}\right\}=\frac{1}{2} g^{l i}\left(\frac{\partial g_{j i}}{\partial x^{k}}+\frac{\partial g_{k i}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{i}}\right),
$$

which is an $\mathfrak{g l}(4, \mathbb{R})$-connection, there is a Lorentz connection

$$
\Gamma_{b j}^{a}=e_{k}^{(a)} \frac{\partial e_{(b)}^{k}}{\partial x^{j}}+e_{l}^{(a)}\left\{\begin{array}{c}
l \tag{2.5}\\
k
\end{array} \quad j\right\} e_{(b)}^{k}
$$

We denote the matrix

$$
\begin{equation*}
\Gamma_{j}=\left(\Gamma_{b j}^{a}\right)_{0 \leq a, b \leq 3} \tag{2.6}
\end{equation*}
$$

If we change the local coordinate $\widetilde{x}^{\alpha}=\widetilde{x}^{\alpha}(x)$ and the corresponding Lorentz co-frame as follows

$$
\begin{equation*}
\widetilde{\omega}^{a}(\widetilde{x})=\ell_{b}^{a}(x) \omega^{b}(x), \quad L(x)=\left(\ell_{b}^{a}(x)\right)_{0 \leq a, b \leq 3} \in O(1,3) \tag{2.7}
\end{equation*}
$$

then the Lorentz connection $\widetilde{\Gamma}_{j}$ satisfies the relation

$$
\begin{equation*}
\widetilde{\Gamma}_{j}=\left(L \Gamma_{k} L^{-1}-\frac{\partial L}{\partial x^{k}} L^{-1}\right) \frac{\partial x^{k}}{\partial \widetilde{x}^{j}} . \tag{2.8}
\end{equation*}
$$

Since Γ_{j} for each j belongs to the of Lie algebra of $O(1,3)$ and this algebra is $\mathfrak{s o}(1,3)$, we have

$$
\begin{equation*}
\operatorname{Tr}\left(\Gamma_{j}\right)=0 \tag{2.9}
\end{equation*}
$$

There is a Lie group homeomorphism

$$
\begin{equation*}
\iota: S L(2, \mathbb{C}) \rightarrow S O(1,3) \tag{2.10}
\end{equation*}
$$

which is defined by the following manner. Let

$$
\begin{align*}
& \sigma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{2.11}
\end{align*}
$$

which form a base of the vector space of all 2×2 Hermitian matrices. For any $\mathfrak{A} \in S L(2, \mathbb{C})$ we denote the transpose matrix and the complex conjugate matrix of \mathfrak{A} by \mathfrak{A}^{\prime} and $\overline{\mathfrak{A}}$ respectively. Each matrix $\mathfrak{A} \sigma_{j} \overline{\mathfrak{A}}^{\prime}$ is a Hermitian matrix, so it can be expressed as a linear combination of σ_{k}. That is

$$
\begin{equation*}
\mathfrak{A} \sigma_{j} \overline{\mathfrak{A}}^{\prime}=\ell_{j}^{k} \sigma_{k} \tag{2.12}
\end{equation*}
$$

It is proved (see [8] Th. 2.4.1) that the corresponding matrix

$$
\begin{equation*}
L=\left(\ell_{k}^{j}\right)_{0 \leq j, k \leq 3} \in S O(1,3) \tag{2.13}
\end{equation*}
$$

and the homeomorphism ι is a two to one covering map and hence a local isomorphism. Especially, when $\mathfrak{A} \in S U(2)$, the corresponding L is of the form

$$
L=\left(\begin{array}{cc}
1 & 0 \tag{2.14}\\
0 & K
\end{array}\right), \quad K \text { is a } 3 \times 3 \text { orthogonal matrix. }
$$

Moreover, according to Th. 2.4 .2 in [8], associated to the $\mathfrak{s o}(1,3)$-connection Γ_{j}, there is locally a $\mathfrak{s l}(2, \mathbb{C})$-connection

$$
\mathfrak{B}_{j}=\frac{1}{4} \eta^{c b} \Gamma_{c j}^{a} \sigma_{a} \sigma_{b}^{*}, \quad \sigma_{b}^{*}=\epsilon \bar{\sigma}_{b} \epsilon^{\prime}, \quad \epsilon=\left(\begin{array}{cc}
0 & 1 \tag{2.15}\\
-1 & 0
\end{array}\right) .
$$

This means that, when Γ_{j} suffers the transformation relation (2.8), the corresponding relation of \mathfrak{B} is

$$
\begin{equation*}
\widetilde{\mathfrak{B}}_{j}=\left(\mathfrak{A} \mathfrak{B}_{k} \mathfrak{A}^{-1}-\frac{\partial \mathfrak{A}}{\partial x^{k}} \mathfrak{A}^{-1}\right) \frac{\partial x^{k}}{\partial \widetilde{x}^{j}} \tag{2.16}
\end{equation*}
$$

where \mathfrak{A} corresponds to the matrix L defined by (2.12). When \mathfrak{M} is a Lorentz spin manifold \mathfrak{B}_{j} is globally defined on \mathfrak{M}. We call \mathfrak{B}_{j} the 2-component spinor connection derived from the Lorentz connection of the spin manifold \mathfrak{M}.

A two component spinor ψ on a Lorentz spin manifold \mathfrak{M} is a vector

$$
\psi(x)=\binom{\psi^{1}(x)}{\psi^{2}(x)}
$$

on each admissible local coordinate neighborhood \mathfrak{V} and x is the local coordinate of this neighborhood. Let $\widetilde{\psi}(\widetilde{x})$ is the vector defined on another admissible local coordinate neighborhood $\tilde{\mathfrak{V}}$ and \widetilde{x} is the corresponding local coordinate of $\widetilde{\mathfrak{V}}$. When $\mathfrak{V} \cap \widetilde{\mathfrak{V}} \neq \emptyset$, there a matrix $\mathfrak{A} \in S L(2, \mathbb{C})$ such that

$$
\begin{equation*}
\widetilde{\psi}(\widetilde{x})=\mathfrak{A}(x) \psi(x) . \tag{2.17}
\end{equation*}
$$

The matrix $\mathfrak{A}(x)$ is the transition function of the spin manifold \mathfrak{M}.
A spinor ψ corresponds to a conjugate spinor

$$
\begin{equation*}
\psi^{*}=\epsilon \bar{\psi} . \tag{2.18}
\end{equation*}
$$

Then under the coordinate transformation between two admissible local coordinates,

$$
\begin{equation*}
\widetilde{\psi}^{*}(\widetilde{x})=\overline{\mathfrak{A}}^{\prime-1} \psi^{*}(x) \tag{2.19}
\end{equation*}
$$

because for any 2×2 matrix A

$$
\begin{equation*}
A \epsilon A^{\prime}=(\operatorname{det} A) \epsilon \tag{2.20}
\end{equation*}
$$

Now we can define the covariant differential \mathfrak{D}_{j} of a spinor ψ by the connection \mathfrak{B}_{j} such that

$$
\begin{equation*}
\mathfrak{D}_{j} \psi=\frac{\partial \psi}{\partial x^{j}}+\mathfrak{B}_{j} \psi . \tag{2.21}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\widetilde{\mathfrak{D}}_{j} \tilde{\psi}=\frac{\partial x^{k}}{\partial \widetilde{x}^{j}} \mathfrak{A} \mathfrak{D}_{k} \psi . \tag{2.22}
\end{equation*}
$$

under admissible coordinate transformation. This means that $\mathfrak{D}_{j} \psi$ is still a spinor, but a covariant vector with respect to the index j. If we operate again to $\mathfrak{D}_{j} \psi$ by \mathfrak{D}_{k} and wish $\mathfrak{D}_{k} \mathfrak{D}_{j} \psi$ still be covariant, then it needs in addition a $\mathfrak{g l}(4, \mathbb{R})$ connection to define the covariant differentiation of $\mathfrak{D}_{j} \psi$. In usual tensor calculus, a covariant differentiation ∇_{j} of a contravariant vector can be extended to operate on any mixed tensors. We can do the same to define \mathfrak{D}_{j} such that it can operate on mixed tensors.

Since

$$
\begin{equation*}
\mathfrak{B}_{j}=\left(\mathfrak{B}_{B j}^{A}\right)_{1 \leq A, B \leq 2} \tag{2.23}
\end{equation*}
$$

is derived from the $\mathfrak{s o}(1,3)$-connection $\Gamma_{b j}^{a}$ by (2.15) and $\Gamma_{b j}^{a}$ is derived from the $\mathfrak{g l}(4, \mathbb{R})$-connection $\left\{\begin{array}{c}l \\ j k\end{array}\right\}$ by (2.5) and (2.4). \mathfrak{D}_{j} can be extended to operate on mixed tensor of $S L(2, \mathbb{C})$-, $S O(1,3)$ - and $G L(4, \mathbb{R})$-type. For example, the components of the spinor ψ are $\psi^{A} \quad(A=1,2)$. (2.21) can be rewritten into

$$
\begin{equation*}
\mathfrak{D}_{j} \psi^{A}=\frac{\partial \psi^{A}}{\partial x^{j}}+\mathfrak{B}_{B j}^{A} \psi^{B} \tag{2.24}
\end{equation*}
$$

which is contravariant with respect to the spinor index A and covariant with respect to the index j. Then $\mathfrak{D}_{k} \mathfrak{D}_{j} \psi^{A}$ is defined as

$$
\mathfrak{D}_{k} \mathfrak{D}_{j} \psi^{A}=\frac{\partial}{\partial x^{k}} \mathfrak{D}_{j} \psi^{A}+\mathfrak{B}_{B k}^{A} \mathfrak{D}_{j} \psi^{B}-\left\{\begin{array}{c}
l \tag{2.25}\\
k j
\end{array}\right\} \mathfrak{D}_{l} \psi^{A},
$$

which is still a mixed tensor, contravariant with respect to spin index A and $G L(2, \mathbb{R})$ covariant with respect to the indices j and k. Moreover, if

$$
T_{a B \bar{D}}^{j A \bar{C}}
$$

is a tensor $G L(4, \mathbb{R})$-contravariant w.r.t. $j, S O(1,3)$-covariant w.r.t. a, spin tensor w.r.t. A, B, C, D, then its covariant differentiation is defined as follows

$$
\begin{align*}
\mathfrak{D}_{k} T_{a B \bar{D}}^{j A \bar{C}} & =\frac{\partial}{\partial x^{k}} T_{a B \bar{D}}^{j A \bar{C}}+\mathfrak{B}_{E k}^{A} T_{a B \bar{D}}^{j E \bar{C}}-\mathfrak{B}_{B k}^{E} T_{a E \bar{D}}^{j A \bar{C}} \\
& +\overline{\mathfrak{B}}_{E k}^{C} T_{a B \bar{D}}^{j A \bar{E}}-\overline{\mathfrak{B}}_{D k}^{E} T_{a B \bar{E}}^{j A \bar{C}}-\Gamma_{a k}^{b} T_{b B \bar{D}}^{j A \bar{C}}+\left\{\begin{array}{c}
j \\
l k
\end{array}\right\} T_{a B \bar{D}}^{l A \bar{C}} \tag{2.26}
\end{align*}
$$

which is a mixed tensor of the same type plus $G L(4, \mathbb{R})$-covariant w.r.s. to the index k.

If ψ is a spinor,

$$
\begin{equation*}
\psi^{*}=\epsilon \bar{\psi} \tag{2.27}
\end{equation*}
$$

is called the conjugate spinor of ψ. The covariant differentiation can be also extended to the conjugate spinor ψ^{*} such that

$$
\begin{equation*}
\mathfrak{D}_{j} \psi^{*}=\frac{\partial \psi^{*}}{\partial x^{j}}+\mathfrak{B}_{j}^{*} \psi^{*} \quad \mathfrak{B}_{j}^{*}=\epsilon \overline{\mathfrak{B}}_{j} \epsilon^{\prime} \tag{2.28}
\end{equation*}
$$

After this extension of the definition of covariant differentiation we can find its application. Since the following formula

$$
\eta_{a b}=\eta_{c d} \ell_{a}^{c} \ell_{b}^{d}, \quad \text { for any } \quad L=\left(\ell_{b}^{a}\right)_{0 \leq a, b \leq 3} \in S O(1,3)
$$

means that $\eta_{a b}$ is an $S O(1,3)$-covariant with respect to indices a and b, we have

$$
\mathfrak{D}_{j} \eta_{a b}=\frac{\partial}{\partial x^{j}} \eta^{a b}-\Gamma_{a j}^{c} \eta_{c b}-\Gamma_{b j}^{c} \eta_{a c}=0 .
$$

Similarly, let

$$
\sigma_{a}=\left(\sigma_{a}^{A \bar{B}}\right)_{1 \leq A, B \leq 2}, \quad a=0,1,2,3, \quad \mathfrak{A}=\left(\mathfrak{A}_{B}^{A}\right)_{1 \leq A, B \leq 2}
$$

(2.12) can be written as

$$
\sigma_{a}^{A \bar{B}}=\sigma_{b}^{C \bar{D}}\left(L^{-1}\right)_{a}^{b} \mathfrak{A}_{C}^{A} \overline{\mathfrak{A}}_{D}^{B}
$$

which is $S O(1,3)$-covariant w.r.t. a, spin contravariant w.r.t. to A and complex conjugate spin contravariant w.r.t. \bar{B}. Then

$$
\mathfrak{D}_{j} \sigma_{a}^{A \bar{B}}=\frac{\partial}{\partial x^{j}} \sigma_{a}^{A \bar{B}}-\Gamma_{a j}^{b} \sigma_{b}^{A \bar{B}}+\mathfrak{B}_{C j}^{A} \sigma_{a}^{C \bar{B}}+\overline{\mathfrak{B}}_{C j}^{B} \sigma_{a}^{A \bar{C}}=0
$$

The 2-component Dirac operator is defined by

$$
\begin{equation*}
\mathfrak{D}=\eta^{a b} e_{(a)}^{j} \sigma_{b}^{*} \mathfrak{D}_{j} . \tag{2.29}
\end{equation*}
$$

If ψ is a spinor on \mathfrak{M}, then according to the definition of σ_{b}^{*} and the formula (2.22), we have

$$
\begin{equation*}
\widetilde{\mathfrak{D}} \widetilde{\psi}=\overline{\mathfrak{A}}^{\prime-1} \mathfrak{D} \psi, \quad \widetilde{\mathfrak{D}} \widetilde{\psi}^{*}=\mathfrak{A} \mathfrak{D} \psi^{*} . \tag{2.30}
\end{equation*}
$$

This means that \mathfrak{D} is a map

$$
\mathfrak{D}: V_{2}(x) \rightarrow V_{2}^{*}(x) \text { and } \mathfrak{D}: V_{2}^{*}(x) \rightarrow V_{2}(x)
$$

where $V_{2}(x)$ is the vector space of 2 -component spinors of \mathfrak{M} at x and $V_{2}^{*}(x)$ the conjugate vector space. Obviously,

$$
\begin{equation*}
\mathfrak{D}^{2}=\mathfrak{D D}: \quad V_{2}(x) \rightarrow V_{2}(x) \quad \text { and } \quad \mathfrak{D}^{2}: V_{2}^{*}(x) \rightarrow V_{2}^{*}(x) \tag{2.31}
\end{equation*}
$$

The equation

$$
\begin{equation*}
\mathfrak{D}^{2} \psi=-m^{2} \psi \tag{2.32}
\end{equation*}
$$

is called the wave equation of spinor on \mathfrak{M}.
A solution ψ of the wave equation will give a solution of the 4 -component Dirac equation. Before proving this assertion, we at first make clear the relation between the 2 -component spinor and 4 -component spinor.

Let

$$
\gamma^{a}=\eta^{a b}\left(\begin{array}{cc}
0 & \sigma_{b} \tag{2.33}\\
\sigma_{b}^{*} & 0
\end{array}\right), \quad a, b=0,1,2,3
$$

According to the relation

$$
\begin{equation*}
\sigma_{a} \sigma_{b}^{*}+\sigma_{b} \sigma_{a}^{*}=2 \eta_{a b} \sigma_{0} \tag{2.34}
\end{equation*}
$$

we have the relation

$$
\begin{equation*}
\gamma^{a} \gamma^{b}+\gamma^{b} \gamma^{a}=2 \eta^{a b} I \tag{2.35}
\end{equation*}
$$

where I is the 4×4 identity matrix and according to (2.12)

$$
\begin{equation*}
\gamma^{a} \mathcal{R}(\mathfrak{A})=\ell_{b}^{a}(\mathfrak{A}) \mathcal{R}(\mathfrak{A}) \gamma^{b} \tag{2.36}
\end{equation*}
$$

where $\ell_{b}^{a}(\mathfrak{A})$ is the element corresponding to \mathfrak{A} by (2.12) and

$$
\mathcal{R}(\mathfrak{A})=\left(\begin{array}{cc}
\mathfrak{A} & 0 \tag{2.37}\\
0 & \overline{\mathfrak{A}^{\prime-1}}
\end{array}\right)
$$

is a representation of the group $S L(2, \mathbb{C})$. The relation (2.35) shows that $\left\{\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right\}$ is a set of Dirac matrices and the relation (2.36) means that the group

$$
\begin{equation*}
\operatorname{Spin}(1,3)=\{\mathcal{R}(\mathfrak{A})\}_{\mathfrak{A} \in S L(2, \mathbb{C})} \tag{2.38}
\end{equation*}
$$

is an 2 to 1 homeomorphism to the group $S O(1,3)$. The 4 -component vector

$$
\begin{equation*}
\Psi=\binom{\psi}{\varphi^{*}} \tag{2.39}
\end{equation*}
$$

where ψ is a 2 -component spinor and φ^{*} a conjugate spinor, obviously satisfies the relation

$$
\begin{equation*}
\widetilde{\Psi}=\mathcal{R}(\mathfrak{A}) \Psi \tag{2.40}
\end{equation*}
$$

and conversely any $\operatorname{Spin}(1,3) 4$-component spinor must be of the form (2.39).
The Dirac operator \mathscr{D} is defined by

$$
\mathscr{D}=\left(\begin{array}{cc}
0 & \mathfrak{D} \tag{2.41}\\
\mathfrak{D} & 0
\end{array}\right) \quad \text { and } \quad \nabla_{j}=\left(\begin{array}{cc}
\mathfrak{D}_{j} & 0 \\
0 & \mathfrak{D}_{j}
\end{array}\right)
$$

and the Dirac equation is

$$
\begin{equation*}
\not D \Psi=-i m \Psi \tag{2.42}
\end{equation*}
$$

If the 2-component spinor ψ is a solution of the wave equation (2.32), then we set

$$
\begin{equation*}
\varphi^{*}=\frac{i}{m} \mathfrak{D} \psi \tag{2.43}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
\mathfrak{D} \varphi^{*}=\frac{i}{m} \mathfrak{D}^{2} \psi=-i m \psi \tag{2.44}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi=\frac{i}{m} \mathfrak{D} \varphi^{*} \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{D} \psi=\frac{i}{m} \mathfrak{D}^{2} \varphi^{*}=\frac{-1}{m^{2}} \mathfrak{D}^{3} \psi=\mathfrak{D} \psi=-i m \varphi^{*} . \tag{2.46}
\end{equation*}
$$

Hence Ψ defined by (2.39) satisfies the Dirac equation

$$
\begin{equation*}
\not D \Psi=-i m \Psi \tag{2.47}
\end{equation*}
$$

This proves Lemma 1 in $\S 1$.
It should be noted that

$$
\begin{aligned}
\mathscr{D} \Psi & =\binom{\mathfrak{D} \varphi^{*}}{\mathfrak{D} \psi}=\binom{(\mathfrak{D} \varphi)^{*}}{\mathfrak{D} \psi}=\binom{\eta^{a b} e_{(a)}^{j} \sigma_{b} \mathfrak{D}_{j} \varphi^{*}}{\eta^{a b} e_{(a)}^{j} \sigma_{b}^{*} \mathfrak{D}_{j} \varphi} \\
& =\eta^{a b} e_{(a)}^{j}\left(\begin{array}{cc}
0 & \sigma_{b} \\
\sigma_{b}^{*} & 0
\end{array}\right)\binom{\mathfrak{D}_{j} \psi}{\mathfrak{D}_{j} \varphi^{*}} .
\end{aligned}
$$

That is

$$
\begin{equation*}
\not \supset \Psi=\gamma^{a} e_{(a)}^{j} \nabla_{j} \Psi \tag{2.48}
\end{equation*}
$$

when we define the covariant differentiation of the 4 -component spinor $\Psi=\binom{\psi}{\varphi^{*}}$ by

$$
\begin{equation*}
\nabla_{j} \Psi=\binom{\mathfrak{D}_{j} \psi}{\mathfrak{D}_{j} \varphi^{*}} \tag{2.49}
\end{equation*}
$$

3. The spin structure of S^{3}. It is well-known that S^{3} is a Riemann spin manifold. For solving the Dirac equation on S^{3} we need to describe the transition functions of the principal bundle $\operatorname{Spin}\left\{S^{3}, S U(2)\right\}$ explicitly.

$$
S^{3}=\left\{\left.(a, b) \in \mathbf{C}^{2}|\quad| a\right|^{2}+|b|^{2}=1\right\}
$$

is equivalent to $S U(2)$ by the map

$$
(a, b) \rightarrow\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right)
$$

The unitary group $U(2)$ is the characteristic manifold of the classical domain

$$
\Re_{I}(2,2)=\left\{W \in \mathbf{C}^{2 \times 2} \mid \quad I-W W^{\dagger}>0\right\}
$$

where $W^{\dagger}=\bar{W}^{\prime}$. Since $\Re_{I}(2,2)$ is a domain in the complex Grassmann manifold $\mathfrak{F}(2,2), U(2)$ is a submanifold of $\mathfrak{F}(2,2)$. Since $S U(2)$ is a subgroup of $U(2), S U(2)$ is also a submanifold of $\mathfrak{F}(2,2)$. The complex Grassmann manifold can be described by complex matrix homogeneous coordinate \mathfrak{Z}, which is a 2×4 complex matrix satisfying

$$
\mathfrak{Z} \mathfrak{Z}^{\dagger}=I
$$

and two matrix homogeneous coordinates \mathfrak{Z}_{1} and \mathfrak{Z}_{2} represent a same point of $\mathfrak{F}(2,2)$ iff there is a 2×2 unitary matrix U such that $\mathfrak{Z}_{1}=U \mathfrak{Z}_{2}$.
$\mathfrak{F}(2,2)$ is a complex spin manifold because for any $T \in S U(4)$ there is a holomorphic automorphism defined by

$$
\begin{equation*}
\mathfrak{W}=U_{T} \mathfrak{Z} T, \quad U_{T} \in U(2) \tag{3.1}
\end{equation*}
$$

where U_{T} is the transition function of the principal bundle $E\{\mathfrak{F}(2,2), U(2)\}$ (c.f.[9]), and the transition function of the reduced bundle $\operatorname{Spin}\{\mathfrak{F}(2,2), S U(2)\}$ is

$$
\begin{equation*}
\mathfrak{A}_{T}=\left(\operatorname{det} U_{T}\right)^{-\frac{1}{2}} U_{T} \tag{3.2}
\end{equation*}
$$

Without lose of generality we assume that in $\mathfrak{Z}=\left(Z_{1}, Z_{2}\right)$ and $\mathfrak{W}=\left(W_{1}, W_{2}\right)$ the submatrices Z_{1} and W_{1} are non-singular. We write

$$
T=\left(\begin{array}{cc}
A & C \tag{3.3}\\
B & D
\end{array}\right)
$$

where A, B, C, D are 2×2 matrices satisfying

$$
\begin{equation*}
A A^{\dagger}+C C^{\dagger}=I, \quad A B^{\dagger}+C D^{\dagger}=0, \quad B B^{\dagger}+D D^{\dagger}=I \tag{3.4}
\end{equation*}
$$

Comparing the submatrices of (3.1) we obtain

$$
\begin{equation*}
U_{T}=W_{1}\left(Z_{1} A+Z_{2} B\right)^{-1}=W_{1}(A+Z B)^{-1} Z_{1}^{-1} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=Z_{1}^{-1} Z_{2} \quad \text { and } \quad W=W_{1}^{-1} W_{2} \tag{3.6}
\end{equation*}
$$

are the local coordinates. From

$$
\mathfrak{Z} \mathfrak{Z}^{\dagger}=Z_{1} Z_{1}^{\dagger}+Z_{2} Z_{2}^{\dagger}=Z_{1}\left(I+Z Z^{\dagger}\right) Z_{1}^{\dagger}=I
$$

we have a unique positively definite Hermitian matrix $Z_{1}=\left(I+Z Z^{\dagger}\right)^{-\frac{1}{2}}$ satisfies the above equation, so that the transition function

$$
\begin{equation*}
U_{T}=\left(I+W W^{\dagger}\right)^{-\frac{1}{2}}(A+Z B)^{-1}\left(I+Z Z^{\dagger}\right)^{\frac{1}{2}} \tag{3.7}
\end{equation*}
$$

When the transformation (3.1) is expressed in local coordinates

$$
\begin{equation*}
W=(A+Z B)^{-1}(C+Z D) \tag{3.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
I+W W^{\dagger}=(A+Z B)^{-1}\left(I+Z Z^{\dagger}\right)(A+Z B)^{\dagger-1} \tag{3.9}
\end{equation*}
$$

The classical domain $\mathfrak{R}_{I}(2,2)$ can be transformed to the Siegel domain

$$
\mathfrak{H}_{I}(2,2)=\left\{Z \in \mathbf{C}^{2 \times 2} \left\lvert\, \quad \frac{1}{2 i}\left(Z-Z^{\dagger}\right)>0\right.\right\}
$$

by the transformation

$$
\begin{equation*}
W=(I-i Z)^{-1}(I+i Z) \tag{3.10}
\end{equation*}
$$

such that the characteristic manifold $U(2)$ is transformed to \bar{M} by

$$
\begin{equation*}
U=(I-i H)^{-1}(I+i H), \quad H^{\dagger}=H \tag{3.11}
\end{equation*}
$$

Let \mathcal{G} be the subgroup of $S U(4)$ such that the submatrices in (3.3) satisfy

$$
\begin{equation*}
C=-B, \quad D=A, \quad A^{\dagger} A+B^{\dagger} B=I, \quad B^{\dagger} A=A^{\dagger} B \tag{3.12}
\end{equation*}
$$

The transformation for $T \in \mathcal{G}$

$$
\begin{equation*}
K=(A+H B)^{-1}(-B+H A) \tag{3.13}
\end{equation*}
$$

is an automorphism of \bar{M} i.e., $K^{\dagger}=K$. This transformation must map a certain point, say $H=H_{0}$, to the point $K=0$. Then the condition (3.12) becomes

$$
\begin{equation*}
B=H_{0} A, \quad A=\left(I+H_{0}^{2}\right)^{-\frac{1}{2}} U_{0}, \quad U_{0} \in S U(2) \tag{3.14}
\end{equation*}
$$

and (3.13) can be written into

$$
\begin{equation*}
K=U_{0}^{-1}\left(I+H_{0}^{2}\right)^{\frac{1}{2}}\left(I+H H_{0}\right)^{-1}\left(H-H_{0}\right)\left(I+H_{0}^{2}\right)^{-\frac{1}{2}} U_{0} \tag{3.15}
\end{equation*}
$$

$S U(2)$ is a subgroup of $U(2)$. The transformation (3.11) must map $S U(2)$ into a submanifold of \bar{M}.

Lemma 3. The necessary and sufficient that $U \in S U(2)$ in transformation (3.11) is $\operatorname{Tr}(H)=0$.

Proof. Since the Hermitian matrix H can be written into $H=x^{j} \sigma_{j}$, the condition

$$
\begin{equation*}
\operatorname{Tr}(H)=0 \quad \text { equivalent } \quad x^{0}=0 \tag{3.16}
\end{equation*}
$$

When the above condition is satisfied we write

$$
H=H_{x}=x^{\alpha} \sigma_{\alpha}
$$

which satisfies the relations

$$
\begin{equation*}
\operatorname{det} H_{x}=-x x^{\prime} \quad \text { and } \quad H_{x}^{2}=x x^{\prime} \sigma_{0}, \quad x=\left(x^{1}, x^{2}, x^{3}\right) \tag{3.17}
\end{equation*}
$$

The above relation implies that the characteristic roots of H_{x} are $\sqrt{x x^{\prime}}$ and $-\sqrt{x x^{\prime}}$ so that there is a $V \in S U(2)$ such that

$$
\begin{equation*}
H_{x}=\sqrt{x x^{\prime}} V \sigma_{3} V^{\dagger} \tag{3.18}
\end{equation*}
$$

According to (3.11)

$$
\operatorname{det} U=\operatorname{det}\left[V\left(I+i \sqrt{x x^{\prime}} \sigma_{3}\right)^{-1}\left(I-i \sqrt{x x^{\prime}} \sigma_{3}\right) V^{\dagger}\right]=1
$$

This means that $U \in S U(2)$. Conversely, if $U \in S U(2)$, then the inverse of (3.11) is

$$
H=i(I+U)^{-1}(I-U)=\frac{i}{|1+a|^{2}+|b|^{2}}\left(\begin{array}{cc}
1+\bar{a} & b \tag{3.19}\\
-\bar{b} & 1+a
\end{array}\right)\left(\begin{array}{cc}
1-a & b \\
-\bar{b} & 1-\bar{a}
\end{array}\right)
$$

so that $\operatorname{Tr}(H)=0$ because $|a|^{2}+|b|^{2}=1$. The lemma is proved.
Since $x^{0}=0$ is a hyperplane \mathbf{P}_{0} in \bar{M}, Lemma 3 implied that $S U(2) \cong \bar{M} \cap \mathbf{P}_{0}$ and we can use the admissible local coordinate of $\bar{M} \cap \mathbf{P}_{0}$ as the local coordinate of $S U(2) \cong S^{3}$. Consequently,

$$
\mathfrak{M} \cong \bar{M} \cong U(2) \cong U(1) \times S U(2) \cong S^{1} \times S^{3} \cong U(1) \times \mathbf{M}_{1}
$$

where we set

$$
\begin{equation*}
\mathbf{M}_{1}=\bar{M} \cap \mathbf{P}_{0} \tag{3.20}
\end{equation*}
$$

Now we take in the transformation (3.15)

$$
\begin{equation*}
H_{0}=H_{a}=a^{\alpha} \sigma_{\alpha} . \quad a=\left(a^{1}, a^{2}, a^{3}\right) \tag{3.21}
\end{equation*}
$$

Since $H_{0}^{2}=a a^{\prime} \sigma_{0}$, the transformation becomes

$$
\begin{equation*}
K=U_{0}^{-1}\left(I+H H_{a}\right)^{-1}\left(H-H_{a}\right) U_{0} \tag{3.22}
\end{equation*}
$$

Lemma 4. The transformation (3.22) is an automorphism of \bar{M}_{1}, in other words, it transforms $\operatorname{Tr}(H)=0$ to $\operatorname{Tr}(K)=0$.

Proof. Since $\operatorname{Tr}(H)=0$, it can be written into $H_{x}=x^{\alpha} \sigma_{\alpha}$ and

$$
\begin{align*}
H_{x} H_{a} & =x^{\mu} a^{\nu} \sigma_{\mu} \sigma_{\nu}=\frac{1}{2} x^{\mu} a^{\nu}\left[\left(\sigma_{\mu} \sigma_{\nu}+\sigma_{\nu} \sigma_{\mu}\right)+\left(\sigma_{\mu} \sigma_{\nu}-\sigma_{\nu} \sigma_{\mu}\right)\right] \\
& =x^{\mu} a^{\nu}\left[\delta_{\mu \nu} \sigma_{0}+i \delta_{\mu \nu \alpha}^{123} \sigma_{\alpha}\right]=x a^{\prime} \sigma_{0}+i f^{\alpha}(x, a) \sigma_{\alpha} \tag{3.23}
\end{align*}
$$

where

$$
\begin{equation*}
f^{\alpha}(x, a)=x^{\mu} a^{\nu} \delta_{\mu \nu \alpha}^{123} . \tag{3.24}
\end{equation*}
$$

Since

$$
\begin{gathered}
\left(I+H_{x} H_{a}\right)\left(\left(I+H_{x} H_{a}\right)^{\dagger}=\left[\left(1+x a^{\prime}\right) I+i H_{f}\right]\left[\left(1+x a^{\prime}\right) I+i H_{f}\right]^{\dagger}\right. \\
=\left(1+x a^{\prime}\right)^{2} I+H_{f}^{2}=\left[\left(I+x a^{\prime}\right)^{2}+f f^{\prime}\right] I=\chi^{2} I
\end{gathered}
$$

where

$$
\begin{equation*}
\chi=\chi(x, a)=\left[\left(1+x a^{\prime}\right)^{2}+x x^{\prime} a a^{\prime}-x a^{\prime} x a^{\prime}\right]^{\frac{1}{2}} \tag{3.25}
\end{equation*}
$$

the matrix

$$
\begin{equation*}
U(x, a)=\chi^{-1}\left(I+H_{x} H_{a}\right) \tag{3.26}
\end{equation*}
$$

is a unitary matrix with $\operatorname{det} U(x, a)=1$ and

$$
\begin{gather*}
\left(I+H_{x} H_{a}\right)^{-1}\left(H_{x}-H_{a}\right)=\chi^{-2}\left(\left(1+x a^{\prime}\right) I-i H_{f}\right) H_{(x-a)} \\
=\chi^{-2}\left[\left(1+x a^{\prime}\right) H_{(x-a)}-i f(x, a)(x-a)^{\prime} \sigma_{0}+f^{\alpha}(f(x, a), x-a) \sigma_{\alpha}\right] \tag{3.27}
\end{gather*}
$$

Hence

$$
\operatorname{Tr}(K)=0
$$

because

$$
f(x, a)(x-a)^{\prime}=x^{\mu} a^{\nu} \delta_{\mu \nu \alpha}^{123}\left(x^{\alpha}-a^{\alpha}\right)=0 .
$$

The lemma is proved.
By Lemma 4, we can write

$$
K=H_{y}=y^{\alpha} \sigma_{\alpha}
$$

and according to (3.27) the transformation (3.22) can be written into usual manner

$$
\begin{equation*}
y^{\nu}=\chi^{-2}\left\{x^{\mu}-a^{\mu}+x a^{\prime}\left(x^{\mu}-a^{\mu}\right)+\left[x(x-a)^{\prime} a^{\mu}-a(x-a)^{\prime} x^{\mu}\right]\right\} \gamma_{\mu}^{\nu} \tag{3.28}
\end{equation*}
$$

where $\left(\gamma_{\beta}^{\alpha}\right) \in S O(3)$. Moreover all such transformations form a group, which is a group of automorphism of \mathbf{M}_{1}, or all the matrices of the form

$$
T_{a}=\left(1+a a^{\prime}\right)^{-\frac{1}{2}}\left(\begin{array}{cc}
I & -H_{a} \tag{3.29}\\
H_{a} & I
\end{array}\right)\left(\begin{array}{cc}
U_{0} & 0 \\
0 & U_{0}
\end{array}\right)
$$

form a group \mathcal{G}_{1} which is a subgroup of \mathcal{G}. So when $T_{a} \in \mathcal{G}_{1}$ the transition function (3.7) becomes, according to (3.9) and (3.26),
$U_{T_{a}}=\left[\left(A+H_{x} B\right)^{-1}\left(I+H_{x}^{2}\right)\left(A+H_{x} B\right)^{\dagger-1}\right]^{-\frac{1}{2}}\left(A+H_{x} B\right)^{-1}\left(I+H_{x}^{2}\right)^{\frac{1}{2}}=U_{0}^{\dagger} U(x, a)^{-1}$,
and $\operatorname{det} U_{T_{a}}=1$. Hence

$$
\begin{equation*}
\mathfrak{A}_{T_{a}}=U_{T_{a}}=U_{0}^{\dagger} U(x, a)^{-1} \tag{3.31}
\end{equation*}
$$

This proves Lemma 2 in $\S 1$.
In S^{3} there is a natural Riemann metric

$$
\begin{equation*}
d s_{3}^{2}=\frac{1}{4}\left(|d a|^{2}+|d b|^{2}\right)=\frac{1}{8} \operatorname{Tr}\left(d U d U^{\dagger}\right) \tag{3.32}
\end{equation*}
$$

where

$$
U=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right), \quad|a|^{2}+|b|^{2}=1
$$

Differentiating (3.11) and substituting $d U$ into (3.32) we have

$$
\begin{equation*}
d s_{3}^{2}=\frac{1}{2} \operatorname{Tr}\left[\left(I+H_{x}^{2}\right)^{-1} d H_{x}\left(I+H_{x}^{2}\right)^{-1} d H_{x}\right]=\frac{\delta_{\mu \nu}}{\left(1+x x^{\prime}\right)^{2}} d x^{\mu} d x^{\nu} \tag{3.33}
\end{equation*}
$$

Differentiating (3.13) we have

$$
\begin{equation*}
d H_{y}=\left(A+H_{x} B\right)^{-1} d H_{x}\left(A+H_{x} B\right)^{-1} \tag{3.34}
\end{equation*}
$$

Applying (3.9) and (3.34) we obtain

$$
\begin{align*}
& d s_{3}^{2}=\frac{\delta_{\mu \nu}}{\left(1+y y^{\prime}\right)^{2}} d y^{\mu} d y^{\nu}=\frac{1}{2} \operatorname{Tr}\left[\left(I+H_{y}^{2}\right)^{-1} d H_{y}\left(I+H_{y}^{2}\right)^{-1} d H_{y}\right] \\
= & \frac{1}{2} \operatorname{Tr}\left[\left(I+H_{x}^{2}\right)^{-1} d H_{x}\left(I+H_{x}^{2}\right)^{-1} d H_{x}\right]=\frac{\delta_{\mu \nu}}{\left(1+x x^{\prime}\right)^{2}} d x^{\mu} d x^{\nu} . \tag{3.35}
\end{align*}
$$

This means that the $d s_{3}^{2}$ is invariant under the group \mathcal{G}_{1}. When we set

$$
\begin{equation*}
a=\xi^{0}+i \xi^{3}, \quad b=\xi^{1}+i \xi^{2} \tag{3.36}
\end{equation*}
$$

and use (3.11),

$$
\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right)=\left(I-i H_{x}\right)^{-1}\left(I+i H_{x}\right)=\left(1+x x^{\prime}\right)^{-1}\left(\begin{array}{cc}
1-x x^{\prime}+2 i x^{3} & -2 x^{2}+2 i x^{1} \\
2 x^{2}+2 i x^{1} & 1-x x^{\prime}-2 i x^{3}
\end{array}\right),
$$

we obtain the coordinate transformation

$$
\begin{equation*}
\xi^{0}=\frac{1-x x^{\prime}}{1+x x^{\prime}}, \quad \xi^{\alpha}=\frac{2 x^{\alpha}}{1+x x^{\prime}}, \quad \alpha=1,2,3 \tag{3.37}
\end{equation*}
$$

such that

$$
\begin{equation*}
d s_{3}^{2}=\frac{1}{4} \delta_{j k} d \xi^{j} d \xi^{k}=\frac{\delta_{\mu \nu}}{\left(1+x x^{\prime}\right)^{2}} d x^{\mu} d x^{\nu} \tag{3.38}
\end{equation*}
$$

4. The harmonic analysis of Dirac spinors on $S^{1} \times S^{3}$. Now we discuss the case that $\mathfrak{M} \cong S^{1} \times S^{3}$ with the metric (1.4) as its Lorentz metric. It is obvious that $S^{1} \times S^{3}$ is a Lorentz spin manifold and S^{3} a Riemann spin manifold with the metric

$$
\begin{equation*}
d s_{3}^{2}=\frac{\delta_{\mu \nu}}{\left(1+x x^{\prime}\right)^{2}} d x^{\mu} d x^{\nu} \tag{4.1}
\end{equation*}
$$

Since in S^{1}

$$
\begin{equation*}
d s_{1}^{2}=\left(d x^{0}\right)^{2} \tag{4.2}
\end{equation*}
$$

the tensor $g_{j k}$ in (1.4) is of the form

$$
\begin{cases}g_{00}=1, \quad g_{0 \mu}=g_{\mu 0}=0, \quad \mu=1,2,3 \tag{4.3}\\ g_{\mu \nu}=\frac{-1}{\left[1+r^{2}\left(x_{1}\right)\right]^{2}} \delta_{\mu \nu}, \quad \mu, \nu=1,2,3\end{cases}
$$

and the Christoffel symbol is

$$
\left\{\begin{array}{c}
l \tag{4.4}\\
j k
\end{array}\right\}=0, \quad \text { when one of the indices } l, j, k \text { equals to } 0
$$

and

$$
\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\}, \quad \lambda, \mu, \nu=1,2,3
$$

is the Christoffel symbol of $d s_{3}^{2}$. The coefficients of the Lorentz coframe of $d s^{2}$ are

$$
e_{0}^{(0)}=1, \quad e_{\mu}^{(0)}=0, \quad \mu=1,2,3
$$

and

$$
\begin{equation*}
e_{\nu}^{(\alpha)}=\left(1+x x^{\prime}\right)^{-1} \delta_{\nu}^{\alpha}, \quad(\alpha, \nu=1,2,3) . \tag{4.5}
\end{equation*}
$$

The later ones are the coefficients of the Riemann co-frame of $d s_{3}^{2}$. Since $g_{\mu \nu}$ do not depend on the coordinate x^{0}, the Lorentz connection

$$
\Gamma_{b j}^{a}=0 \quad \text { when one of the indices } a, b, j \text { equal to } 0
$$

and is a $\mathfrak{s o}(1,3)$-connection. So the connection defined by (2.15) is

$$
\begin{equation*}
\mathfrak{B}_{j}=\frac{1}{4} \sigma_{\alpha} \sigma_{\beta} \Gamma_{\beta j}^{\alpha} \quad \text { because } \quad \sigma_{\alpha}^{*}=-\sigma_{\alpha} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{B}_{0}=0, \quad \mathfrak{B}_{\mu}=\frac{1}{4} \sigma_{\alpha} \sigma_{\beta} \Gamma_{\beta \mu}^{\alpha} . \tag{4.8}
\end{equation*}
$$

Then the covariant differentiation defined by (2.21) is

$$
\begin{equation*}
\mathfrak{D}_{0} \psi=\frac{\partial \psi}{\partial x^{0}}, \quad \mathfrak{D}_{\mu} \psi=\frac{\partial \psi}{\partial x^{\mu}}+\mathfrak{B}_{\mu} \psi \tag{4.9}
\end{equation*}
$$

where \mathfrak{B}_{μ} is an $s u(2)$-connection on S^{3}, so

$$
\begin{equation*}
\mathfrak{D}=\sigma_{0} \frac{\partial}{\partial x^{0}}-\mathcal{D}_{S^{3}}, \quad \mathscr{D}_{S^{3}}=e_{(\alpha)}^{\mu} \sigma_{\alpha} \mathfrak{D}_{\mu} \tag{4.10}
\end{equation*}
$$

where $\mathscr{D}_{S^{3}}$ is the Dirac operator of the Riemann spin manifold of S^{3}. Hence

$$
\begin{equation*}
\mathfrak{D}^{2} \psi=\frac{\partial^{2} \psi}{\left(\partial x^{0}\right)^{2}}-\mathscr{D}_{S^{3}}^{2} \psi . \tag{4.11}
\end{equation*}
$$

where $\mathcal{D}_{S^{3}}^{2}$ does not depend on the coordinate x^{0}. So we use the method of separating variables to solve (1.1). Let

$$
\begin{equation*}
\psi^{(n)}\left(x_{1}\right)=e^{i n x^{0}} \widehat{\psi}(x) \tag{4.12}
\end{equation*}
$$

where $\widehat{\psi}$ is a spinor on S^{3} and $e^{i n x^{0}}$ is defined on S^{1}, then $e^{i n x^{0}}$ should be a periodic function with n being an integer and $\widehat{\psi}$ should satisfy

$$
\begin{equation*}
\mathscr{D}_{S^{3}}^{2} \widehat{\psi}=-\left(n^{2}-m^{2}\right) \widehat{\psi} \tag{4.13}
\end{equation*}
$$

if ψ satisfies (1.1). Since the eigen value of $\mathscr{D}_{S^{3}}^{2}$ is known $[7]$ to be of the form

$$
\begin{equation*}
n^{2}-m^{2}=\left(l+\frac{1}{2}\right)^{2} \tag{4.14}
\end{equation*}
$$

where l is a positive integer. So the integer n must be sufficiently large so that

$$
\begin{equation*}
n^{2}-m^{2}>0 \tag{4.15}
\end{equation*}
$$

Using Weitzenböck formulae for Riemann spin manifold S^{3}, we have

$$
\begin{equation*}
\mathcal{D}_{S^{3}}^{2} \widehat{\psi}=\triangle \widehat{\psi}-\frac{1}{4} R_{S^{3}} \widehat{\psi} \tag{4.16}
\end{equation*}
$$

where

$$
\begin{align*}
& \triangle \widehat{\psi}=g^{\mu \nu}\left(\frac{\partial^{2} \widehat{\psi}}{\partial x^{\mu} \partial x^{\nu}}-\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\} \frac{\partial \widehat{\psi}}{\partial x^{\lambda}}\right)+g^{\mu \nu}\left(\frac{\partial \mathfrak{B}_{\mu}}{\partial x^{\nu}}-\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\} \mathfrak{B}_{\lambda}\right) \widehat{\psi} \tag{4.17}\\
& +g^{\mu \nu}\left(\mathfrak{B}_{\mu} \frac{\partial \widehat{\psi}}{\partial x^{\nu}}+\mathfrak{B}_{\nu} \frac{\partial \widehat{\psi}}{\partial x^{\mu}}\right)+g^{\mu \nu} \mathfrak{B}_{\mu} \mathfrak{B}_{\nu} \widehat{\psi}
\end{align*}
$$

and $R_{S^{3}}$ is the scalar curvature of S^{3}. It is known $R_{S^{3}}=24$. Hence, to solve the equation (1.1) is reduced to solve the following equation

$$
\begin{equation*}
\mathbb{D}_{S^{3}}^{2} \widehat{\psi}=-\left(n^{2}-m^{2}\right) \widehat{\psi} \tag{4.18}
\end{equation*}
$$

Since $\mathscr{D}_{S^{3}}^{2}$ is an elliptic differential operator and S^{3} is compact, there is, in general, no solution of (4.18) for arbitrary $m>0$ unless $\lambda=n^{2}-m^{2}$ is an eigenvalue of the operator $\mathscr{D}_{S^{3}}^{2}$. In this case the linear independent solutions of (4.18) is finite. Let

$$
\begin{equation*}
\widehat{\psi}_{\xi}\left(\lambda, x^{1}, x^{2}, x^{3}\right), \quad \xi=1,2, \cdots N_{\lambda} \tag{4.19}
\end{equation*}
$$

be an orthonormal base of the λ-eigen function space such that

$$
\begin{equation*}
\int_{S^{3}}{\overline{\widehat{\psi}^{\prime}}}_{\xi} \widehat{\psi}_{\eta} \sqrt{-g} d x^{1} d x^{2} d x^{3}=\delta_{\xi \eta} \tag{4.20}
\end{equation*}
$$

where $g=\operatorname{det}\left(g_{i j}\right)_{0 \leq i, j \leq 3}=-\operatorname{det}\left(g_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq 3}$.
Now we let

$$
x_{1}=\left(x^{0}, x\right) \quad \text { and } \quad H_{x_{1}}=x^{j} \sigma_{j}
$$

and construct the kernel of λ-eigen space

$$
\begin{equation*}
\mathcal{H}_{\lambda}\left(H_{x_{1}}, H_{y_{1}}\right)=\sum_{\xi=1}^{N_{\lambda}} \psi_{\xi}^{(n)}\left(\lambda, x_{1}\right){\bar{\psi} \psi_{\xi}^{(n)}\left(\lambda, y_{1}\right)}^{\prime} \tag{4.21}
\end{equation*}
$$

which is an 2×2 matrix of matrix variables $H_{x_{1}}$ and $H_{y_{1}}$. We set

$$
\begin{equation*}
\psi_{\xi}^{(n)}\left(\lambda, x_{1}\right)==\frac{1}{\sqrt{2 \pi}} e^{i n x^{0}} \widehat{\psi}_{\xi}(\lambda, x) \tag{4.22}
\end{equation*}
$$

It should be noted that

$$
\begin{equation*}
\lambda=n^{2}-m^{2} \tag{4.23}
\end{equation*}
$$

is positive.
According to the (3.22) given in $\S 3$, the transformation $T_{a_{1}}$

$$
\begin{equation*}
y^{0}=x^{0}-a^{0}, \quad H_{y}=\left(A+H_{x} B\right)^{-1}\left(-B+H_{x} A\right), \quad B=H_{a} A \tag{4.24}
\end{equation*}
$$

is an automorphism of $S^{1} \times S^{3}$ and it transforms the point $x_{1}=a_{1}$ to $y_{1}=0$. Since $d s^{2}$ is invariant under the transformation, the co-frame is changed as follows:

$$
\omega^{0}=1, \quad \omega^{\alpha}(y)=\omega^{\alpha}(x) \ell_{\alpha}^{\beta}(x), \quad\left(\ell_{\beta}^{\alpha}(x)\right)_{1 \leq \alpha, \beta \leq 3} \in S O(3)
$$

and the spinor

$$
\begin{equation*}
\psi_{T_{a_{1}}}\left(y_{1}\right)=\mathfrak{A}_{T_{a_{1}}}\left(x_{1}\right) \psi\left(x_{1}\right) \tag{4.25}
\end{equation*}
$$

where $\mathfrak{A}_{T_{a_{1}}}\left(x_{1}\right)=\mathfrak{A}_{T_{a}}(x)$ is defined by (3.31) and belongs to $S U(2)$. Let

$$
\psi_{T_{a_{1}}, \xi}\left(y_{1}\right)=\mathfrak{A}_{T_{a_{1}}}\left(x_{1}\right) \psi_{\xi}\left(x_{1}\right)
$$

Since

$$
\begin{equation*}
{\overline{\psi_{T_{a_{1}}, \xi}^{(n)}\left(\lambda, y_{1}\right)}}^{\prime} \psi_{T_{a_{1}, \eta}}^{(n)}\left(\lambda, y_{1}\right)={\overline{\psi_{\xi}}\left(\lambda, x_{1}\right)}^{\prime} \psi_{\eta}^{(n)}\left(\lambda, x_{1}\right) \tag{4.26}
\end{equation*}
$$

the

$$
\begin{equation*}
\left\{\psi_{T_{a_{1}}, \eta}^{(n)}\left(\lambda, y_{1}\right)\right\} \tag{4.27}
\end{equation*}
$$

is a base of spinors of λ-eigenvalue in $S^{1} \times S^{3}$. If $u_{1} \in S^{1} \times S^{3}$ is another point which is mapped to the point v_{1} under the same transformation $T_{a_{1}}$, we have

$$
\begin{equation*}
\mathcal{H}_{\lambda}\left(H_{y_{1}}, H_{v_{1}}\right)=\mathfrak{A}_{T_{a_{1}}}\left(x_{1}\right) \mathcal{H}_{\lambda}\left(H_{x_{1}}, H_{u_{1}}\right) \mathfrak{A}_{T_{a_{1}}}\left(u_{1}\right)^{-1} \tag{4.28}
\end{equation*}
$$

According to the definition (4.21), we have

$$
\begin{equation*}
\mathcal{H}_{\lambda}\left(H_{x_{1}}, H_{u_{1}}\right)=e^{i n\left(x^{0}-u^{0}\right)} \mathcal{K}_{\lambda}\left(H_{x}, H_{u}\right) \tag{4.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{K}_{\lambda}\left(H_{x}, H_{u}\right)=\sum_{\xi=1}^{N_{\lambda}} \widehat{\psi}_{\xi}(\lambda, x){\overline{\widehat{\psi}_{\xi}(\lambda, u)}}^{\prime} \tag{4.30}
\end{equation*}
$$

is the kernel of λ-eigen functions of the operator $\mathscr{D}_{S^{3}}^{2}$ of the Riemann manifold S^{3} with the metric $d s_{3}^{2}$. Under the transformation (4.24),

$$
\begin{equation*}
\mathcal{K}_{\lambda}\left(H_{y}, H_{v}\right)=\mathfrak{A}_{T_{a}}(x) \mathcal{K}_{\lambda}\left(H_{x}, H_{u}\right) \mathfrak{A}_{T_{a}}(u)^{-1} \tag{4.31}
\end{equation*}
$$

Since $\mathscr{D}_{S^{3}}^{2}$ is a covariant differentiation, we have

$$
\begin{equation*}
\mathscr{D}_{S^{3}}^{2}(y) \mathcal{K}_{\lambda}\left(H_{y}, H_{v}\right)=\mathfrak{A}_{T_{a}}(x) \mathscr{D}_{S^{3}}^{2}(x) \mathcal{K}_{\lambda}\left(H_{x}, H_{u}\right) \mathfrak{A}_{T_{a}}(u)^{-1} \tag{4.32}
\end{equation*}
$$

where $\mathscr{D}_{S^{3}}(x)$ means that $\mathcal{D}_{S^{3}}$ operates with respect to the variable x.
Since

$$
\begin{equation*}
T_{a}: \quad H_{x} \rightarrow \quad H_{y}=U_{0}^{\dagger}\left(I+H_{x} H_{a}\right)^{-1}\left(H_{x}-H_{a}\right) U_{0} \tag{4.33}
\end{equation*}
$$

we have

$$
\begin{align*}
{\left[\mathscr{P}_{S^{3}}^{2}(y) \mathcal{K}_{\lambda}\left(H_{y}, H_{v}\right)\right]_{v=0} } & =\mathfrak{A}_{T_{a}}(x)\left[\mathscr{D}_{S^{3}}^{2}(x) \mathcal{K}_{\lambda}(x, a)\right] \mathfrak{A}_{T_{a}}(a)^{-1} \tag{4.34}\\
& =-\lambda \mathfrak{A}_{T_{a}}(x) \mathcal{K}_{\lambda}(x, a) \mathfrak{A}_{T_{a}}(a)^{-1} .
\end{align*}
$$

Since $\mathfrak{A}_{T_{a}}(x)$ is known explicitly by (3.31) and (3.26), it remains to calculate $\mathcal{D}_{S^{3}}^{2}(x) \mathcal{K}_{\lambda}\left(H_{x}, 0\right)$ in (4.34).

According to (2.12), (2.14) and (4.31),

$$
\mathcal{K}_{\lambda}\left(U H_{x} U^{\dagger}, 0\right)=\mathcal{K}_{\lambda}\left(H_{x K}, 0\right)=U \mathcal{K}_{\lambda}\left(H_{x}, 0\right) U^{\dagger}
$$

for any $U \in S U(2), \mathcal{K}_{\lambda}\left(H_{x}, 0\right)$ can be expanded into power series of the matrix variable H_{x} such that

$$
\begin{align*}
\mathcal{K}_{\lambda}\left(H_{x}, 0\right) & =\sum_{n=0}^{\infty} C_{n} H_{x}^{n}=\sum_{n=0}^{\infty} C_{2 n} H_{x}^{2 n}+\sum_{n=0}^{\infty} C_{2 n+1} H_{x}^{2 n+1} \\
& =\sum_{n=0}^{\infty} C_{2 n} r^{2 n}(x) I+\sum_{n=0}^{\infty} C_{2 n+1} r^{2 n}(x) H_{x}=f\left(r^{2}(x)\right) I+h\left(r^{2}(x)\right) H_{x} \tag{4.35}
\end{align*}
$$

where C_{n} are complex constants $r^{2}(x)=x x^{\prime}$ and f and h are functions of $r^{2}(x)$ but not real values in general.

We set $u=a$ in (4.31) and have by Lemma 2

$$
\begin{equation*}
\mathcal{K}_{\lambda}\left(H_{x}, H_{a}\right)=\mathfrak{A}_{T_{a}}(x)^{-1} \mathcal{K}_{\lambda}\left(H_{y}, 0\right) U_{0}^{-1}=U(x, a)[f I+h \Phi(x, a,)], \tag{4.36}
\end{equation*}
$$

where we have written in (3.22) that

$$
H=H_{x} \quad \text { and } \quad K=H_{y}
$$

so that (3.22) becomes

$$
\begin{equation*}
H_{y}=U_{0}^{-1} \Phi(x, a) U_{0}, \quad \Phi(x, a)=\left(I+H_{x} H_{a}\right)^{-1} H_{x-a} . \tag{4.37}
\end{equation*}
$$

By the definition of \mathcal{K}_{λ},

$$
\begin{equation*}
\mathcal{K}_{\lambda}\left(H_{x}, H_{a}\right)^{\dagger}=\mathcal{K}_{\lambda}\left(H_{a}, H_{x}\right) \tag{4.38}
\end{equation*}
$$

and, by (3.26) and $H_{x}^{\dagger}=H_{x}$,

$$
\begin{equation*}
U(x, a)^{\dagger}=U(a, x) \tag{4.39}
\end{equation*}
$$

So from (4.36) we have the equality

$$
\left.\bar{f} U(a, x)+\bar{h} \Phi(x, a)^{\dagger} U(a, x)=f U(a, x)+h U a, x\right) \Phi(a, x)
$$

or

$$
\begin{equation*}
\bar{f} I+\bar{h} \Phi(x, a)^{\dagger}=f I+h U(a, x) \Phi(a, x) U(a, x)^{-1} \tag{4.40}
\end{equation*}
$$

According to Lemma $4 \Phi(x, a)$ is Hermitian and $\operatorname{Tr}[\Phi(x, a)]=0$. So the trace of (4.40) implies

$$
\begin{equation*}
\bar{f}=f \tag{4.41}
\end{equation*}
$$

and then

$$
\begin{equation*}
\bar{h} \Phi(x, a)^{\dagger}=h U(a, x) \Phi(a, x) U(a, x)^{-1} \tag{4.42}
\end{equation*}
$$

We let $x=0$ in (4.42) and have

$$
\bar{h}\left(a a^{\prime}\right) H_{-a}=h\left(a a^{\prime}\right) H_{a}
$$

or

$$
\begin{equation*}
\bar{h}=-h . \tag{4.43}
\end{equation*}
$$

Moreover, we have the following formulas

$$
\begin{equation*}
\frac{\partial \mathcal{K}_{\lambda}\left(H_{x}, 0\right)}{\partial x^{\mu}}=2 f^{\prime} x^{\mu} I+2 h^{\prime} x^{\mu} H_{x}+h \sigma_{\mu} \tag{4.44}
\end{equation*}
$$

and
$\frac{\partial^{2} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)}{\partial x^{\mu} x^{\nu}}=\left(4 f^{\prime \prime} x^{\mu} x^{\nu}+2 f^{\prime} \delta_{\mu \nu}\right) I+\left(4 h^{\prime \prime} x^{\mu} x^{\nu}+2 h^{\prime} \delta_{\mu \nu}\right) H_{x}+2\left(h^{\prime} x^{\mu} \sigma_{\nu}+h^{\prime} x^{\nu} \sigma_{\mu}\right)$.
The Christoffel symbol associated to $d s_{3}^{2}$ is

$$
\left\{\begin{array}{c}
\alpha \tag{4.46}\\
\beta \mu
\end{array}\right\}=-\frac{2}{1+x x^{\prime}}\left(x^{\mu} \delta_{\beta}^{\alpha}+x^{\beta} \delta_{\mu}^{\alpha}-x^{\alpha} \delta_{\beta \mu}\right)
$$

and

$$
g^{\beta \mu}\left\{\begin{array}{c}
\alpha \tag{4.47}\\
\beta \mu
\end{array}\right\}=2\left(1+x x^{\prime}\right) x^{\alpha}
$$

The Riemann connection is

$$
\begin{equation*}
\Gamma_{\beta \mu}^{\alpha}=\frac{2}{1+x x^{\prime}}\left(x^{\alpha} \delta_{\mu}^{\beta}-x^{\beta} \delta_{\mu}^{\alpha}\right) \tag{4.48}
\end{equation*}
$$

And the spin connection is

$$
\begin{equation*}
\mathfrak{B}_{\mu}=\frac{1}{2\left(1+x x^{\prime}\right)}\left[H_{x}, \sigma_{\mu}\right]=\frac{1}{2\left(1+x x^{\prime}\right)}\left(H_{x} \sigma_{\mu}-\sigma_{\mu} H_{x}\right) \tag{4.49}
\end{equation*}
$$

We have the following formulae:
(i)

$$
g^{\mu \nu} \frac{\partial^{2} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)}{\partial x^{\mu} x^{\nu}}=\left(1+r^{2}\right)^{2}\left[\left(4 f^{\prime \prime} r^{2}+6 f^{\prime}\right) I+\left(4 h^{\prime \prime} r^{2}+10 h^{\prime}\right) H_{x}\right]
$$

(ii)

$$
g^{\mu \nu}\left\{\begin{array}{c}
\alpha \\
\mu \nu
\end{array}\right\} \frac{\partial \mathcal{K}_{\lambda}\left(H_{x}, 0\right)}{\partial x^{\alpha}}=2\left(1+r^{2}\right)\left[2 f^{\prime} r^{2} I+\left(2 h^{\prime} r^{2}+h\right) H_{x}\right]
$$

(iii)

$$
g^{\mu \nu} \frac{\partial \mathfrak{B} \mu}{\partial x^{\nu}}=0
$$

(iv)

$$
-g^{\mu \nu}\left\{\begin{array}{c}
\alpha \\
\mu \nu
\end{array}\right\} \mathfrak{B}_{\alpha} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)=0
$$

(v)

$$
g^{\mu \nu}\left[\mathfrak{B}_{\mu} \frac{\partial}{\partial x^{\nu}} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)+\mathfrak{B}_{\nu} \frac{\partial}{\partial x^{\mu}} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)\right]=4\left(1+r^{2}\right) h H_{x}
$$

(vi)

$$
g^{\mu \nu} \mathfrak{B}_{\mu} \mathfrak{B}_{\nu} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)=-2 r^{2} f I-2 h r^{2} H_{x}
$$

From (i) to (vi) and the Weizenböck formula we have

$$
\begin{aligned}
& \mathbb{D}_{S^{3}}^{2} \mathcal{K}_{\lambda}\left(H_{x}, 0\right)=\Delta \mathcal{K}_{\lambda}\left(H_{x}, 0\right)-6\left(f I+h H_{x}\right) \\
& =\left\{4 r^{2}\left(1+r^{2}\right)^{2} f^{\prime \prime}+\left(1+r^{2}\right)\left[6\left(1+r^{2}\right)-4 r^{2}\right] f^{\prime}-\left(2 r^{2}+6\right) f\right\} I \\
& +\left\{4 r^{2}\left(1+r^{2}\right)^{2} h^{\prime \prime}+\left(1+r^{2}\right)\left[10\left(1+r^{2}\right)-4 r^{2}\right] h^{\prime}+\left[2\left(1+r^{2}\right)-2 r^{2}-6\right] h\right\} H_{x} \\
& =-\lambda\left(f I+h H_{x}\right)
\end{aligned}
$$

This means that $f(t)$ and $h(t)\left(t=r^{2}\right)$ should satisfy the following differential equations respectively

$$
\begin{equation*}
4 t(1+t)^{2} f^{\prime \prime}+(1+t)[6(1+t)-4 t] f^{\prime}-(2 t+6) f=-\lambda f \tag{4.50}
\end{equation*}
$$

and

$$
\begin{equation*}
4 t(1+t)^{2} h^{\prime \prime}+(1+t)[10(1+t)-4 t] h^{\prime}-4 h=-\lambda h . \tag{4.51}
\end{equation*}
$$

For simplicity we write $\mathcal{K}_{\lambda}(x, a)=\mathcal{K}_{\lambda}\left(H_{x}, H_{a}\right)$.
Theorem 1 in $\S 1$ is proved.
5. The solution of the Einstein-Dirac equation. Let $\widehat{\psi}_{0}(x)$ be a spinor in S^{3} which is orthogonal invariant. Obviously, the spinor

$$
\begin{equation*}
\widehat{\psi}(x)=\int_{S^{3}} \mathcal{K}_{\lambda}(x, u) \widehat{\psi}_{0}(u) \dot{u}, \quad \dot{u}=\sqrt{-g} d u^{1} d u^{2} d u^{3} \tag{5.1}
\end{equation*}
$$

is orthogonal invariant. This spinor satisfies

$$
\begin{equation*}
\mathcal{D}_{S^{3}}^{2} \widehat{\psi}(x)=-\lambda \widehat{\psi}(x) \tag{5.2}
\end{equation*}
$$

where λ is a eigenvalue of $\mathbb{D}_{S^{3}}^{2}$, and the spinor

$$
\begin{equation*}
\psi(x)=e^{i n x^{0}} \widehat{\psi}\left(x_{1}\right) \tag{5.4}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\mathfrak{D}^{2} \psi(x)=-m^{2} \psi(x) \tag{5.4}
\end{equation*}
$$

when m is taken as $\lambda=n^{2}-m^{2}$. Moreover, according to Theorem 1, the 4component spinor obtained by the following formula

$$
\begin{equation*}
\Psi=\binom{\psi}{\varphi^{*}}, \quad \varphi^{*}=\frac{i}{m} \mathfrak{D} \psi \tag{5.5}
\end{equation*}
$$

satisfies the Dirac equation

$$
\begin{equation*}
\not D \Psi=-i m \Psi \tag{5.6}
\end{equation*}
$$

If the energy-momentum tensor $T_{j k}$ of Ψ is not identically zero, then the tensor at $x=0$ must be of the form

$$
\left(T_{j k}(0)\right)=\left(\begin{array}{cc}
c_{0} & 0 \tag{5.7}\\
0 & c_{1} I
\end{array}\right) .
$$

In fact, since the metric $d s^{2}$ is invariant under \mathcal{G}_{1}, the tensor $T_{j k}$ must be invariant under \mathcal{G}_{1}. That is

$$
\begin{equation*}
T_{j k}\left(y_{1}\right)=T_{p q}\left(x_{1}\right) \frac{\partial x^{p}}{\partial y^{j}} \frac{\partial x^{q}}{\partial y^{k}} \tag{5.8}
\end{equation*}
$$

where $y^{0}=x^{0}-a^{0}$ and y^{μ} is defined by (3.28). Especially, if we choose $a_{1}=\left(a^{0}, a\right)=$ 0 , we have

$$
\begin{equation*}
T_{j k}(0)=T_{p q}(0) \ell_{j}^{p} \ell_{k}^{q} \tag{5.9}
\end{equation*}
$$

where

$$
L=\left(\ell_{k}^{j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \Gamma
\end{array}\right), \quad \Gamma \in S O(3)
$$

Therefore, (5.9) can be written into matrix form

$$
\left(T_{j k}(0)\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \Gamma
\end{array}\right)\left(T_{j k}(0)\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \Gamma^{\prime}
\end{array}\right)
$$

for arbitrary Γ. Hence $T_{j k}(0)$ must be the form (5.7).
We assert $c_{0}+c_{1} \neq 0$. In fact, c_{0} and c_{1} can be not zero simultaneously, otherwise $T_{j k}\left(x_{1}\right) \equiv 0$ according to (5.8), because \mathcal{G}_{1} acts transitively on $S^{1} \times S^{3}$. Moreover, according to the definition of $T_{j k}$, we have

$$
\begin{align*}
g^{j k} T_{j k}= & \frac{i}{2}\left[\bar{\Psi}^{* \prime} \eta_{a b} \gamma^{b}\left(\eta^{a c} e_{(c)}^{k} \nabla k \Psi+\eta^{a c} e_{(c)}^{j} \nabla_{j} \Psi\right)\right] \\
& \quad-\frac{i}{2}\left[\eta_{a b}\left(\eta^{a c} e_{(c)}^{k} \overline{\nabla_{k} \Psi^{* \prime}}+\eta^{a c} e_{(c)}^{j} \overline{\nabla{ }_{j} \Psi^{* \prime}}\right) \gamma^{b} \Psi\right] \tag{5.10}\\
= & i\left[\overline{\Psi^{*}} \not \overline{\mathcal{D}} \Psi-\overline{\left.\left(\mathcal{D} \Psi^{*}\right)^{\prime} \Psi\right]=-m\left[\overline{\Psi^{* \prime}} \Psi-\overline{\Psi^{* \prime}} \Psi\right]=0 .} .\right.
\end{align*}
$$

Especially,

$$
\begin{equation*}
\left(g^{j k} T_{j k}\right)_{x=0}=c_{0}-3 c_{1}=0, \quad \text { or } \quad c_{0}=3 c_{1} . \tag{5.11}
\end{equation*}
$$

So $c_{0}+c_{1}=4 c_{1} \neq 0$.
Hence the Einstein equation at $x=0$ is

$$
\begin{equation*}
R_{j k}(0)-\frac{1}{2} g_{j k}(0) R(0)-\Lambda g_{j k}(0)=\mathcal{X} T_{j k}(0) \tag{5.12}
\end{equation*}
$$

According to the orthogonal invariant of $R_{j k}(0)$ and $R_{0 j}=R_{j 0}=0$, we have (5.12) in form of matrix

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & R_{11}(0) I
\end{array}\right)-\frac{1}{2} R(0)\left(\begin{array}{cc}
1 & 0 \\
0 & -I
\end{array}\right)-\Lambda\left(\begin{array}{cc}
1 & 0 \\
0 & -I
\end{array}\right)=\mathcal{X}\left(\begin{array}{cc}
c_{0} & 0 \\
0 & c_{1} I
\end{array}\right)
$$

or

$$
\left\{\begin{array}{c}
-\frac{1}{2} R(0)-\Lambda=\mathcal{X} c_{0} \\
R_{11}(0)+\frac{1}{2} R(0)+\Lambda=\mathcal{X} c_{1}
\end{array}\right.
$$

If we choose

$$
\mathcal{X}=\frac{1}{c_{0}+c_{1}} R_{11}(0), \quad \Lambda=\frac{-c_{0}}{c_{0}+c_{1}} R_{11}(0)-\frac{1}{2} R(0)
$$

then (5.12) is satisfied and the Einstein equation is also satisfied at any point of $S^{1} \times S^{3}$ because it is invariant under \mathcal{G}_{1}.

Theorem 2 given in $\S 1$ is proved.

REFERENCES

[1] R. Penrose, A spinor approach to general relativity, Ann. Phys., (N.Y.), 10 (1960), pp. 171-201.
[2] P.A.M. Dirac, Wave equation in the conformal space, Ann. Math., 37 (1936), pp. 429-442.
[3] E. Witten, Anti-de-Sitter space and holograph, Adv. Theor. Math. Phys., 2 (1998), pp. $253-$ 291.
[4] P.A.M. Dirac, The electron wave equation in de-Sitter space, Ann Math., 36 (1935), pp. 657-669.
[5] K. H. Look(=Qikeng Lu), G. L. Tsou(=Zhenlong Zhuo), H.Y. Kou(=Hanying Guo), The kinematic effect in the classical domains and the red-shift phenomena of ectragalactic objects(in Chinese), Acta Physica Sinica, 23 (1974), pp. 225-238.
[6] Qikeng Lu, Classical Manifolds and Classical Domains(in Chinese), Science Press, Beijing, 1963.
[7] R. Canporesi and A.Higuchi, On the eigen functions of the Dirac operator on sphere and real hyperbolic space, J. Geom. Phys., 20 (1996), pp. 1-43.
[8] Qi-keng Lu, Differential Geometry and its application to physics (in Chinese), Science Press, Beijing, 1982.
[9] Qikeng Lu, A global solution of Einstein-Yang-Mills equation on the conformal space, Science in China, Series A, 5 (2002), pp. 343-355.

[^0]: *Received March 28, 2003; accepted for publication May 30, 2003. The project partially supported by National Natural Science Foundation of China (\#10231050 and 10375087) and Natural Science Foundation of the Chinese Academy of Sciences, the latter two authors also by 973 project, and the last one by Fundation of Jiao-Wei at Beijing.
 ${ }^{\dagger}$ Institute of Mathematics, AMSS, CAS, Beijing 100080, China (luqik@public.bta.net.cn).
 ${ }^{\ddagger}$ Institute of Applied Mathematics, AMSS, CAS, Beijing 100080, China (xyswsk@pku.edu.cn).
 ${ }^{\S}$ Dept. Math., Capital Normal University, Beijing 100080, China (wuke@itp.ac.cn).

