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Abstract. Let (M,g) and (N,h) be compact Riemannian manifolds, where (N,h) is symmetric,
v ∈W1,2((M,g), (N,h)), and τ is the tension field for mappings from (M,g) into (N,h). We consider
the nonlinear eigenvalue problem τ(u)−λexp−1

u v = 0, for u ∈W1,2(M,N) such that u|∂M = v|∂M , and
λ ∈ R. We prove, under some assumptions, that the set of all λ, such that there exists a solution
(u,λ) of this problem and a non trivial Jacobi field V along u, is contained in R+, is countable, and
has no accumulation point in R. This result generalizes a well known one about the spectrum of the
Laplace - Beltrami operator ∆ for functions from (M,g) into R.
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1 Introduction

Let (M,g) and (N,h) be Riemannian manifolds, and u : M→ N a smooth mapping. Let v :]−1,1[×]−
1,1[×M → N, (r, s, x) 7→ vr,s(x) be a C2 - mapping such that v0,0 = u, and vr,s|∂M = u|∂M ,∀(r, s) ∈
]−1,1[2 in case ∂M , ∅. The energy of u is

E(u) =
1
2

∫
M
‖du‖2 (x)dx,

where dx is the Riemannian measure on (M,g).
In local coordinates one has

‖du‖2 (x) = gi j(x)
∂uα

∂xi (x)
∂uβ

∂x j (x)hαβ(u(x)).

It is well known, see e.g. [8], that

∂2

∂r∂s
|r=s=0 E(vr,s) =

∫
M

〈
−[∇ei∇eiV −∇∇ei eiV]−RN(V,deiu)deiu,W

〉
(x)dx

−

∫
M

〈
∇r
∂vr,s

∂s
|r=s=0 , τ(u)

〉
(x)dx,



46 Moussa KOUROUMA

where

V :=
∂vr,s

∂r
|r=s=0 and W :=

∂vr,s

∂s
|r=s=0

are vector fields along u,
τ(u) := trace (∇du) = ∇eideiu−d∇ei eiu

is the tension field of u, and (ei)i is a local orthonormal frame. We are using the summation conven-
tion of Einstein.

If one assumes that τ(u) = 0, i.e. u is harmonic, then one has

∂2

∂r∂s
|r=s=0 E(vr,s) =

∫
M

〈
−[∇ei∇eiV −∇∇ei eiV]−RN(V,deiu)deiu,W

〉
(x)dx.

For a harmonic mapping u, some V ∈ Γ(u−1(T N)) is called a Jacobi field along u when

∇ei∇eiV −∇∇ei eiV +RN(V,deiu)deiu = 0 on M.

One sees also that when r 7→ vr,0 is a geodesic, then even when u is not harmonic, one has

d2

dr2 |r=0 E(vr,0) =
∫

M

〈
−[∇ei∇eiV −∇∇ei eiV]−RN(V,deiu)deiu,V

〉
(x)dx.

The existence of non vanishing Jacobi fields along a harmonic mapping u makes it difficult to
know whether u is locally energy minimizing or not, and it gives informations about the uniqueness
of u in its homotopy class. When (N,h) has nonpositive sectional curvature, it has been proved by
Hartman in [5] that such a Jacobi field V satisfies

∇V = 0 and
〈
RN(V,deiu)deiu,V

〉
= 0 on M.

In our work [12] we tried to extend in some way this result of Hartman to cases where the
sectional curvature of (N,h) is no more nonpositive, but (N,h) being symmetric. We proved (
roughly said ) in that work that given such a Jacobi field V , if it is integrable, i.e. there exists
v :]−1,1[×M→ N a smooth mapping such that v(0, .) = u, v(t, .) is harmonic, for any t ∈]−1,1[ and
V(x) = ∂v(t,x)

∂t |t=0 ,∀x ∈ M, then ∇[‖V‖−1 V] = 0.
In our work [9] we introduced, together with Prof. Jost, the functional

Eλ(u) =
1
2

[
∫

M
‖du‖2 (x)dx−λ

∫
M

d2(u(x),w(x))dx]

for some fixed λ ∈ R and w ∈ C1(M,N), where d(., .) is the Riemannian distance function on (N,h).
We have been motivated by the sake of developing a generalisation of the eigenvalue problem of
the Laplace - Beltrami operateur ∆, as it has been done by J. Eells and J. H. Sampson in [3] to
generalize the concept of harmonic functions to the one of harmonic mappings between Riemannian
manifolds. For negative λ this functional generalizes also the Mumford - Shah functional ( which is
used in image approximation, see e.g. [1] ) to the case of mappings between Riemannian manifolds.

We have from [9]
d
dt |t=0

Eλ(vt,0) = −
∫

M

〈
τ(u)−λexp−1

u w,V
〉

dx.

So, u is a critical point of Eλ if and only if

Lλ(u) := L(λ,u) := τ(u)−λexp−1
u w = 0. (1.1)
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A solution u of (1.1) is called an eigenmapping of the tension field τ associated to the eigenvalue λ (
for the model mapping w ). In [9] we proved that the spectrum of τ in this sense may be continuous
and the set of eigenvalues and eigenmappings may bifurcate, even when (N,h) has nonpositive
sectional curvature. This eigenvalue problem generalizes the one for the Laplace - Beltrami operator
∆ for functions defined on (M,g), since, for (N,h) = R and w = 0 one has

τ(u)−λexp−1
u w = ∆u+λu.

In our work [11] we proved some first eigenvalue estimates for τ. In these studies, the case where
the model mapping w is harmonic is the most close to the case of the real valued functions.

From [9] we have

∂2

∂r∂s
|r=s=0 Eλ(vr,s) =

∫
M

[
〈
−[∇ei∇eiV −∇∇ei eiV],W

〉
(x)

−
〈
RN(V,deiu)deiu−λ∇V exp−1

. w,W
〉

(x)]dx,

where u is a solution of (1.1).
V ∈ Γ(u−1(T N)) is called a Jacobi field along a solution u of (1.1) when

∇V Lλ(u) := ∇ei∇eiV −∇∇ei eiV +RN(V,deiu)deiu−λ∇V exp−1
. w = 0. (1.2)

In the present work we make a qualitative study of the solutions of the equations (1.1) and (1.2).
For a fixed (λ,u) the equation (1.2) is linear in the unknown V . This equation is very close to

the linear elliptic partial differential equations, at the difference that V is not here a function, but a
section of some vector bundle.

Let’s fix u. Then equation (1.2) gives a linear eigenvalue problem. We prove in this work
that the spectrum for this problem is made of a nondecreasing sequence, which converges to +∞.
Furthermore, each eigenspace is a finite dimensional real vector space, the first eigenvalue is simple
and the corresponding eigenvectors are positive in some sense made precise in Theorem 2. So,
the spectral problem defined by (1.2) has many of the properties of the spectrum of the Laplace -
Beltrami operator ∆. Actually, our proofs rely heavily on the same ideas as for the spectral problem
for ∆, as they can be found in the books [4] and [7].

For the solutions of (1.1), we know already a few, as we said above. One can see that (1.1) is
not linear in u. In the present work we are interested in those λ ( called degenerate eigenvalue of τ
) such that, there exists a solution u of (1.1) and a nontrivial solution V of (1.2). The set of all such
λ is called the degenerate spectrum of τ. We will prove that the degenerate spectrum is

1◦) nonnegative
2◦) finite, or is made of a sequence which converges to +∞. Furthermore, if λ∗2 is the smallest

degenerated eigenvalue of τ, then the set of the corresponding Jacobi fields is a one dimensional real
vector space, and those Jacobi fields are nonnegative in the sense of Theorem 2. So the degenerate
spectrum has also many of the properties of the spectrum of ∆. One can see that, when (N,h) = R
and w = 0, the equations (1.1) and (1.2) are the same. We will see also that the spectrum of τ is
bounded from below.

The proof that the degenerate spectrum is discrete is based on the bifurcation property which
we studied in [9], and the proved fact that the sets of solutions of our equations (1.1) and (1.2) are
closed under W1,2- weak convergence. The proof that λ∗2 is simple is just an adaptation of the same
proof for equation (1.2): Here, both (1.1) and (1.2) have to be satisfied at the same time. To prove
the nonnegativeness of the degenerate spectrum, we show first that a Jacobi field corresponding to
λ∗2 is integrable, and then use some nonexistence result of integrable Jacobi fields for negative λ
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which is in [13]. Here, we must point out an important typewriting mistake in [13]: In Theorem 2.6
of that work, the assumption ” 0 < K1 ≤ Riem(N,h) ≤ K, should be ” −K1 ≤ Riem(N,h) ≤ K, with K > 0
and K1 > 0 ”, so one must replace K1 by −K1 everywhere.

2 Definitions and results

2.1 Definitions

2.1.1. Let us assume that (N,h) is isometrically embedded into some Euclidean space Rk. Then

W1,2(M,N) := {v ∈W1,2(M,Rk) / v(x) ∈ N for a.e. x ∈ M}

where W1,2(M,Rk) is the usual Sobolev space of all maps in L2(M,Rk) whose derivative in the sense
of distributions is square integrable.
2.1.2. Let v ∈ W1,2(M,N). One can extend the metric h on N to T N by using the Levi - Civita
connexion of (N,h), to get a Riemannian metric h′ on T N. By using the isometric embedding of
(T N,h′) into some Euclidean space Rq, one can define

L2(v−1(T N)) : = Γ(v−1(T N))∩L2(M,Rq) and

Γ
1,2
0 (v−1(T N)) : =W1,2(M,T N)∩{V ∈ Γ(v−1(T N)) / V|∂M = 0},

where Γ(v−1(T N)) is the vector space of all sections of the pullback bundle v−1(T N).
2.1.3. For any y ∈ N, in j(y) is the injectivity radius of the Riemannian manifold (N,h) at the point y.

For x,y ∈ N such that d(x,y) < in j(x), ‖yx will denote the parallel transport from x to y along the
unique minimizing geodesic going from x to y.
2.1.4. RN is the curvature tensor of (N,h) and Riem(N,h) is the sectional curvature of (N,h). ∇ desig-
nates invariably the Levi - Civita covariant derivative, and the from it defined covariant derivatives
on tensors. Ker(∇.L) is the Kernel of the linear operator ∇.L. ∀y ∈ N,expy is the usual exponential
mapping which is defined from some neighborhood of 0 in TyN into N.
2.1.5. Let u ∈ C2(M,N), U an open subset of M on which there is a coordinates system (x1, ..., xm),
such that there exists a coordinates system (y1, ...,yn) on some neighborhood of u(U). Then: ∀x ∈U
we have

τ(u)(x) =

= gi j(x)[
∂2uα

∂xi∂x j (x)−
∂uα

∂xk (x) MΓk
i j(x)+

∂uβ

∂xi (x)
∂uδ

∂x j (x) NΓαβδ(u(x))]
∂

∂yα
(u(x))

= [∆uα(x)+gi j(x)
∂uβ

∂xi (x)
∂uδ

∂x j (x) NΓαβδ(u(x))]
∂

∂yα
(u(x)),

where MΓk
i j(x) is the Christofell symbol, and ∆ is the Laplace - Beltrami operator of (M,g).

2.1.6. Some V ∈ Γ1,2
0 (v−1(T N)) is said to be harmonic when it is a weak solution of the equation

∇ei∇eiV −∇∇ei eiV = 0.

2.1.7. For V,W ∈ Γ1,2
0 (v−1(T N))

〈V,W〉L2 :=
∫

M
〈V,W〉 (x)dx.
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For u,v ∈ L2(M,N),

dL2(u,v)2 :=
∫

M
d2(u(x),v(x))dx.

2.1.8. Throughout this work w ∈C1(M,N) and θ ∈C0(M,R) is such that

θ(x) ∈]0,min{in j(w(x)),
π

2
√

K
}[,∀x ∈ M,

where K > 0 is an upper bound for the sectional curvature of (N,h). We set

W1,2(M,N)w :=

{v ∈W1,2(M,N) / v|∂M = w|∂M and d(w(x),v(x)) ≤ θ(x),∀x ∈ M},

and for any v ∈W1,2(M,N)w,

Qv(V) := ∇ei∇eiV −∇∇ei eiV +RN(V,deiv)deiv, ∀V ∈ Γ1,2
0 (v−1(T N)),

and
Eλ,v := {V ∈ Γ1,2

0 (v−1(T N))\{0} / Qv(V)−λ∇V exp−1
. w = 0},∀λ ∈ R.

2.2 Results

Theorem 2.1. Let (M,g) and (N,h) be compact Riemannian manifolds.
Let v ∈W1,2(M,N)w and

∀χ > 0, Λχ :=
{
λ ∈ R / ∃u ∈W1,2(M,N)w such that

dL2(u,w) ≤ χ, Lλ(u) = 0, and Eλ,u , ∅}
}
.

Then:

1◦) a) For any λ ∈ R, the real vector space Eλ,v∪{0} has finite dimension.

b) The set of all λ ∈ R such that Eλ,v , ∅, is a nondecreasing sequence which converges to
+∞.

We assume that (N,h) is symmetric. Then:

2◦) There exists χ > 0 such that Λχ is either finite, or there exists a nondecreasing sequence (λn)n∈N

such that lim
n→+∞

λn = +∞ and Λχ = {λn / n ∈ N}.

3◦) If χ is as in 2◦) and the model mapping w is harmonic, then Λχ is not finite.

Theorem 2.2. Let (M,g) and (N,h) be compact Riemannian manifolds with (N,h) symmetric.
Assume v ∈W1,2(M,N)w and λ1 is the infimum of all λ ∈ R such that Eλ,v , ∅.
Then:

1◦) Eλ1,v , ∅.

Furthermore, under the assumption that〈
RN(X,Y)Y,Z

〉
= 0 when 〈X,Z〉 = 0

we have:
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2◦) The real vector space Eλ1,v∪{0} is one dimensional.

3◦) For V ∈ Eλ1,v and W ∈ Γ1,2
0 (v−1(T N)) harmonic such that W(x) , 0,∀x ∈ M, we have either

〈V,W〉 ≡ 0, 〈V,W〉 > 0 or 〈V,W〉 < 0.

Theorem 2.3. Let (M,g) and (N,h) be compact Riemannian manifolds with (N,h) symmetric. Let
λ∗2 be the infimum of all λ ∈ R such that, there exists v ∈W1,2(M,N)w such that

Lλ(v) = 0 and Eλ,v , ∅.

Then:

1◦) There exists v ∈C2(M,N)∩W1,2(M,N)w such that

Lλ∗2(v) = 0 and Eλ∗2,v , ∅.

2◦) Let’s assume that 〈
RN(X,Y)Y,Z

〉
= 0 when 〈X,Z〉 = 0

Then, for v ∈W1,2(M,N)w such that Lλ∗2(v) = 0, the set Eλ∗2,v has the same properties as Eλ1,v

in Theorem 2.2.

3◦) λ∗2 ≥ 0.

Corollary 2.4. Let (M,g) and (N,h) be compact Riemannian manifolds with (N,h) symmetric. If
λ < 0 and there exists u ∈ W1,2(M,N)w such that Lλ(u) = 0 , then, for any α ∈ [λ,0[, there exists
uα ∈W1,2(M,N)w such that Lα(uα) = 0.

Remark 2.5. The assumption dL2(u,w) ≤ χ in the definition of Λχ will be used to insure that one has
bifurcation at (λ,u) as in [9].

The assumption ”
〈
RN(X,Y)Y,Z

〉
= 0 when 〈X,Z〉 = 0 ” is satisfied in the case (N,h) = Rn, the

sphere S n, or the hyperbolic space Hn. See e.g. [8].

3 Proofs of the results

3.1 Proof of Theorem 2.1

3.1.1 Proof of 1◦).

This proof follows the line given in [7] to prove the analogous assertion for the Laplace - Beltrami
operator on a compact Riemannian manifold.

If λ ∈ R is such that Eλ,v , ∅, then λ ≥ λ1 where

λ1 := inf
V∈Γ1,2

0 (v−1(T N))\{0}

〈
∇V exp−1

. w,V
〉−1

L2

∫
M

[
〈
RN(V,deiv)deiv,V

〉
−‖∇V‖2](x)dx.

Since the sectional curvature of (N,h) is bounded, we have that λ1 ∈ R. We will see later that
Eλ1,v , ∅.

Let’s point out that∫
M

[
〈
RN(V,deiv)deiv,V

〉
−‖∇V‖2](x)dx = 〈Qv(V),V〉L2 .
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Let us set

‖V‖1,2 := [−
〈
∇V exp−1

. w,V
〉

L2 +

∫
M
‖∇V‖2 (x)dx]1/2,∀V ∈ Γ1,2

0 (v−1(T N)).

From p. 156 of [8] there exists C2 > 0 such that:

∀V ∈ Γ1,2
0 (v−1(T N)),∀x ∈ M,−

〈
∇V exp−1

. w,V
〉

(x) ≥C2 ‖V(x)‖2 .

It follows that ‖.‖1,2 is a norm defined by a scalar product on Γ1,2
0 (v−1(T N)). From the row definition

of the covariant derivative, one can see that this norm is equivalent to the Sobolev norm ‖.‖W1,2 . To
see this equivalence one can proceed as follows:

Let U be the domain of some coordinates (x1, ..., xm) of M such that v(U) is contained in the
domain of some coordinates (y1, ...,yn) of N. Let V ∈ Γ1,2

0 (v−1(T N)). Then, ∀x ∈ U,

‖∇V‖2 (x) = gi j(x)hαβ(v(x))[
∂Vα

∂xi

∂Vβ

∂x j +2Vρ ∂Vα

∂xi

∂vγ

∂x j
NΓ

β
γρ ◦ v (3.1)

+VρVσ ∂vγ

∂xi

∂vθ

∂x j (NΓαγρ ◦ v)(NΓ
β
θσ ◦ v)](x)

= ‖DV‖2 (x)+2 〈DV,S (V)〉 (x)

+gi j(x)hαβ(v(x))VρVσ ∂vγ

∂xi

∂vθ

∂x j (NΓαγρ ◦ v)(NΓ
β
σθ ◦ v)](x)

where the definition of S (V) is obvious, and DV is the usual differential of V as a mapping from M
into T N. Since v is C1 we have that Dv is bounded. By covering N with a finite number of domains
of normal coordinates, we may assume that

‖Dv‖ (x)
∣∣∣∣Γk

i j(v(x))
∣∣∣∣ ≤ 1

4
C2,∀x ∈ M,∀1 ≤ i, j,k ≤ n.

Then using the inequality ab ≤ 1
2 a2+ 1

2 b2, one gets that ‖V‖21,2 is controlled from below by ‖V‖2W1,2 .
The control from above is given by the Hölder’s inequality.

It follows that (Γ1,2
0 (v−1(T N)),‖.‖1,2) is a Hilbert space.

Let (Vn)n∈N ⊆ [Γ1,2
0 (v−1(T N))]N be such that

−
〈
∇Vn exp−1

. w,Vn
〉

L2 =: ‖Vn‖
2
Lv,2 = 1,∀n ∈ N,

and
λ1 = lim

n→+∞

∫
M

[−
〈
RN(Vn,deiv)deiv,Vn

〉
+ ‖∇Vn‖

2](x)dx.

Then the sequence (
∫

M ‖∇Vn‖
2 (x)dx)n∈N is bounded. The theorem of Rellich - Kondrachov

then gives us the existence of a subsequence of (Vn)n∈N, which we denote again by (Vn)n, which
converges in Lv,2 and weakly in (Γ1,2

0 (v−1(T N)),‖.‖1,2) and in (Γ1,2
0 (v−1(T N)),‖.‖W1,2) to some Z1 ∈

Γ
1,2
0 (v−1(T N)). It follows that

‖Z1‖Lv,2 = 1.

One knows that V 7→
∫

U ‖DV‖2 (x)dx is lower semi - continuous w.r.t. W1,2 - weak convergence.
It follows from formula (3.1) the lower semi - continuity of the functional V 7→

∫
U ‖∇V‖2 (x)dx w.r.t.

W1,2 - weak convergence. Since M is equal a.e. to the disjoint union of such U, we have that the
functional V 7→

∫
M ‖∇V‖2 (x)dx is lower semi - continuous w.r.t. W1,2 - weak convergence. It follows

λ1 =

∫
M

[−
〈
RN(Z1,deiv)deiv,Z1

〉
+ ‖∇Z1‖

2](x)dx.
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Let’s prove that Z1 ∈ Eλ1,v.
Let V ∈ Γ1,2

0 (v−1(T N)). Then we have

0 =
d
dt |t=0

〈
∇Z1+tV exp−1

. w,Z1+ tV
〉−1

L2 〈Qv(Z1+ tV),Z1+ tV〉L2

= 2[−
〈
∇Z1 exp−1

. w,Z1
〉−2

L2

〈
∇Z1 exp−1

. w,V
〉

L2 〈Qv(Z1),Z1〉L2

+
〈
∇Z1 exp−1

. w,Z1
〉−1

L2 〈Qv(Z1),V〉L2]

= 2[
〈
∇Z1 exp−1

. w,V
〉

L2 λ1−〈Qv(Z1),V〉L2]

= −2
〈
Qv(Z1)−λ1∇Z1 exp−1

. w,V
〉

L2 . So Z1 ∈ Eλ1 .

Let’s assume now that we have found (λi,Zi), i = 1,2, ..., p−1 such that :
* λ1 ≤ λ2 ≤ .... ≤ λp−1
* Zi ∈ Eλi,v,∀i = 1,2, ..., p−1
*−
〈
∇Zi exp−1

. w,Z j
〉

L2 = δi j,∀i, j ∈ {1,2, ..., p−1}.
LetHp be the Lv,2 - orthogonal complement of the real vector space generated by {Z1, ...,Zp−1},

and
λp := inf

V∈Hp\{0}

〈
∇V exp−1

. w,V
〉−1

L2 〈Qv(V),V〉L2 .

ThenHp is a Hilbert space and λp ≥ λp−1 sinceHp ⊆Hp−1.
In the same way as we did for Z1, there exists Zp ∈ Hp such that:
* −
〈
∇Zp exp−1

. w,Zp
〉

L2 = 1

* λp = −
〈
Qv(Zp),Zp

〉
L2

* Zp ∈ Eλp,v.
In this way we have constructed a nondecreasing sequence (λp)p∈N∗ and an orthonormal (Zp)p∈Nµ

in (L2(v−1(T N)),−
〈
∇. exp .−1w, .

〉
L2) such that: ∀p ∈ N∗, Zp ∈ Eλp,v. It is easy to see that (λp)p∈N∗

is not bounded. In fact: If (λp)p∈N∗ is bounded then so will also (
∥∥∥Zp
∥∥∥

1,2)p∈N∗ and there will exist
a subsequence of (Zp)p∈N∗ which will converge in Lv,2 , contradicting the facts that

∥∥∥Zp
∥∥∥

Lv,2 = 1 and〈
Zp,Zq

〉
Lv,2 = 0, ∀p , q ∈ N∗.

3.1.2 Proof of 2◦).

Let χ > 0 be fixed.
Let’s assume that there exists a sequence (λk)k≥1 ⊆ Λχ of pairwise distinct values which con-

verges to some λ ∈ R.
We will prove that λ ∈ Λχ and then we will use some results of [9] to get a contradiction. Our

result will then follow.
Let, for any k ∈ N:

uk ∈ W1,2(M,N) such that uk|∂M = w|∂M and

d(w(x),uk(x)) ≤ θ(x),∀x ∈ M

and Vk ∈ Γ
1,2
0 (u−1

k (T N))\{0} such that −
〈
∇Vk exp−1

. w,Vk
〉

L2 = 1,

Lλk (uk) = 0, and Quk (Vk)−λk∇Vk exp−1
. w = 0.

As we already said in earlier works such as [13], the regularity theory developed in [10], al-
though concerned by sections, applies to the solutions of (1.1). So one has that the solutions of this
equation are C3 since the model w is C1.
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Step 1: The convergence of some subsequence of (uk)k.
We have

Lλk (uk) = 0,∀k ∈ N.

Let k ∈ N be fixed.
We have 〈

τ(uk),exp−1
uk

w
〉
=
〈
∇eideiuk −d∇ei eiuk,exp−1

uk
w
〉

= [Dei

〈
deiuk,exp−1

uk
w
〉
−
〈
d∇ei eiuk,exp−1

uk
w
〉
]−
〈
deiuk,∇ei(exp−1

uk
w)
〉

= div(F)−
〈
deiuk,∇dei uk (exp−1

. w)
〉
−
〈
deiuk,Ddei w(exp−1

uk
.)
〉

,

where the definition of the vector field F is obvious.
It follows by the divergence theorem:∫

M

〈
τ(uk),exp−1

uk
w
〉

(x)dx = −

∫
M

〈
deiuk,∇dei uk (exp−1

. w)
〉

(x)dx

−

∫
M

〈
deiuk,Ddei w(exp−1

uk
.)
〉

(x)dx.

On the other hand, since τ(uk) = λk exp−1
uk

w, we have∫
M

〈
τ(uk),exp−1

uk
w
〉

(x)dx = λk

∫
M

d2(uk,w)(x)dx,

and then

−

∫
M

〈
deiuk,∇dei uk (exp−1

. w)
〉

(x)dx =

∫
M

〈
deiuk,Ddei w(exp−1

uk
.)
〉

(x)dx (3.2)

+λk

∫
M

d2(uk,w)(x)dx.

We have
−
〈
deiuk,∇dei uk (exp−1

. w)
〉
≥C2

∥∥∥deiuk
∥∥∥2 ,

and ∣∣∣∣〈deiuk,Ddei w(exp−1
uk
.)
〉∣∣∣∣ ≤ ∥∥∥deiuk

∥∥∥∥∥∥Ddei w(exp−1
uk
.)
∥∥∥

≤
1
2

C2
∥∥∥deiuk

∥∥∥2+ 1
2C2

∥∥∥Ddei w(exp−1
uk
.)
∥∥∥2 .

Putting this into (3.2) gives
1
2

C2

∫
M

∥∥∥deiuk
∥∥∥2 (x)dx ≤

1
2C2

∫
M

∥∥∥Ddei w(exp−1
uk
.)
∥∥∥2 (x)dx+λk

∫
M

d2(uk,w)(x)dx.

Since our manifolds are compact and w is C1, we get that there exists C3 > 0 such that∫
M

∥∥∥deiuk
∥∥∥2 (x)dx ≤C3,∀k ∈ N.

It follows by Rellich - Kondrachov that (uk)k admits a subsequence, denoted again by (uk)k,
which converges in L2 and weakly in W1,2 to some u ∈W1,2(M,N).

The lower semi - continuity of the energy w.r.t. the weak convergence in W1,2 gives us

E(u) ≤ lim inf
k→+∞

E(uk) ≤ 2C3.

From [13] there is a subsequence of (uk)k, denoted again by (uk)k, which converges in W1,2 to
u, and

τ(u) = λexp−1
u w.
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Step 2: The convergence of the sequence (Vk)k.
We have

Quk (Vk) = λk∇Vk exp−1
. w,∀k ∈ N.

Let k ∈ N be fixed in a first time.
By taking the scalar product of the last equation with Vk we get∫

M
‖∇Vk‖

2 (x)dx =

∫
M

〈
RN(Vk,deiuk)deiuk,Vk

〉
(x)dx−λk

∫
M

〈
∇Vk exp−1

. w,Vk
〉

(x)dx.

From [13], there exists C4 > 0 such that

‖duk‖ (x) ≤C4,∀k ∈ N,∀x ∈ M.

It follows that, there exists C5 > 0 such that∫
M
‖∇Vk‖

2 (x)dx ≤C5,∀k ∈ N

by using the assumption that

−
〈
∇Vk exp−1

. w,Vk
〉

L2 = 1,∀k ∈ N.

Let [0,1] 3 t 7→ Vt(x) be the parallel transport of Vk(x) along the unique minimizing geodesic
ut(x) from uk(x) to u(x) which is parametrized on [0,1].

Let Wk(x) be the value of Vt(x) at t = 1, for any x ∈ M.
The parallel transport is an isometry, and the mapping M×N 3 (x,y) 7→ exp−1

y w(x) is uniformly
continuous in the C1 - norm because of the dependence of the geodesics on their endpoints. It
follows that there exists C6 > 0 such that∣∣∣∣〈∇Vt exp−1

. w,Vt
〉

L2

∣∣∣∣ ≤C6,∀k ∈ N,∀t ∈ [0,1].

We have

d
dt

∫
M
‖∇Vt‖

2 (x)dx = 2
∫

M
[
〈
∇ei∇ ∂

∂t
Vt,∇eiVt

〉
+

〈
RN(

∂ut

∂t
,deiut)Vt,∇eiVt

〉
]dx

= 2
∫

M

〈
RN(

∂ut

∂t
,deiut)Vt,∇eiVt

〉
dx.

It follows that, there exists C7 > 0 such that∫
M
‖∇Wk‖

2 (x)dx ≤C7,∀k ∈ N.

So the sequence (Wk)k is bounded in Γ1,2
0 (u−1(T N)). The theorem of Rellich - Kondrachov then

gives the existence of a subsequence of (Wk)k, denoted again by (Wk)k, which converges in L2 and
weakly in W1,2 to some V ∈ Γ1,2

0 (u−1(T N)).
We want now to prove that V , 0.
The L2 - convergence of (Wk)k to V gives that

lim
k→+∞

〈
∇Wk exp−1

. w,Wk
〉

L2 =
〈
∇V exp−1

. w,V
〉

L2 .
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Let W ∈ Γ1,2
0 (u−1(T N)) and Zk its parallel transport to uk, for any k ∈ N.

Since (uk)k∈N converges to u in L2, one theorem of Riesz in integration theory insures the
existence of a subsequence of (uk)k which converges simply a.a. to u. The mapping (x,y) 7→
(∇exp−1

. w(x))(y) is uniformly continuous on M×N. It follows that

lim
k→+∞

‖uuk
[(∇exp−1

. w(x))(uk(x))] = (∇exp−1
. w(x))(u(x)), for a.a. x ∈ M.

So
lim

k→+∞
‖uuk

[∇Zk exp−1
. w(x)] = ∇W exp−1

. w(x), for a.a. x ∈ M,

and then
lim

k→+∞

〈
‖uuk

[∇Zk exp−1
. w(x)],W

〉
L2 =
〈
∇W exp−1

. w(x),W
〉

L2 .

It follows
lim

k→+∞

〈
∇Zk exp−1

. w(x),Zk
〉

L2 =
〈
∇W exp−1

. w(x),W
〉

L2 .

As a consequence we have

lim
k→+∞

〈
∇Vk exp−1

. w,Vk
〉

L2 = lim
k→+∞

〈
∇Wk exp−1

. w,Wk
〉

L2 .

Since
〈
∇Vk exp−1

. w,Vk
〉

L2 = 1,∀k ∈ N, we get

〈
∇V exp−1

. w,V
〉

L2 = 1, and then V , 0.

Step 3: We prove that V satisfies Qu(V) = λ∇V exp−1
. w.

Let k ∈ N be fixed in a first time.
For any t ∈ [0,1], let

Bt := ∇ei∇eiVt −∇∇ei eiVt +RN(Vt,deiut)deiut −λk∇Vt exp−1
. w ∈ Γ(u−1

t (T N)).

We assume that things are regular enough to allow the following computations. That is no
restriction since we will use only the weak version of these equations.

We have

∇tBt = ∇ei∇t∇eiVt +RN(
∂ut

∂t
,deiut)∇eiVt −∇∇ei ei∇tVt −RN(

∂ut

∂t
,d∇ei eiut)Vt

+(∇t(RN ◦ut))(Vt,deiut)deiut +RN(∇tVt,deiut)deiut

+RN(Vt,∇tdeiut)deiut +RN(Vt,deiut)∇tdeiut −λk∇t∇Vt exp−1
. w

= ∇ei∇ei∇tVt +∇ei[R
N(
∂ut

∂t
,deiut)Vt]+RN(

∂ut

∂t
,deiut)∇eiVt −∇∇ei ei∇tVt

−RN(
∂ut

∂t
,d∇ei eiut)Vt + (∇t(RN ◦ut))(Vt,deiut)deiut

+RN(∇tVt,deiut)deiut +RN(Vt,∇ei

∂ut

∂t
)deiut +RN(Vt,deiut)∇ei

∂ut

∂t
−λk∇t∇Vt exp−1

. w.
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Since ∇tVt = 0 and ∇RN = 0, we get

∇tBt = [∇ei[R
N(
∂ut

∂t
,deiut)Vt]−RN(

∂ut

∂t
,d∇ei eiut)Vt]+RN(

∂ut

∂t
,deiut)∇eiVt

+RN(Vt,∇ei

∂ut

∂t
)deiut +RN(Vt,deiut)∇ei

∂ut

∂t
−λk∇t∇Vt exp−1

. w

= [∇ei[R
N(
∂ut

∂t
,deiut)Vt]−RN(

∂ut

∂t
,d∇ei eiut)Vt]+RN(

∂ut

∂t
,deiut)∇eiVt

+∇ei[R
N(Vt,

∂ut

∂t
)deiut)]−RN(∇eiVt,

∂ut

∂t
)deiut −RN(Vt,

∂ut

∂t
)∇eideiut

+∇ei[R
N(Vt,deiut)

∂ut

∂t
]−RN(∇eiVt,deiut)

∂ut

∂t
−RN(Vt,∇eideiut)

∂ut

∂t
−λk∇t∇Vt exp−1

. w

= [∇ei[R
N(
∂ut

∂t
,deiut)Vt]−RN(

∂ut

∂t
,d∇ei eiut)Vt]+ [∇ei[R

N(Vt,
∂ut

∂t
)deiut]

−RN(Vt,
∂ut

∂t
)d∇ei eiut]+ [∇ei[R

N(Vt,deiut)
∂ut

∂t
]−RN(Vt,d∇ei eiut)

∂ut

∂t
]

−RN(Vt,
∂ut

∂t
)τ(ut)−RN(Vt, τ(ut))

∂ut

∂t
+RN(

∂ut

∂t
,deiut)∇eiVt −

RN(∇eiVt,
∂ut

∂t
)deiut −RN(∇eiVt,deiut)

∂ut

∂t
−λk∇t∇Vt exp−1

. w

= 2[∇ei[R
N(Vt,deiut)

∂ut

∂t
]−RN(Vt,d∇ei eiut)

∂ut

∂t
]+ [∇ei[R

N(Vt,
∂ut

∂t
)deiut]

−RN(Vt,
∂ut

∂t
)d∇ei eiut]−2RN(∇eiVt,

∂ut

∂t
)deiut

−λk∇t∇Vt exp−1
. w−RN(Vt,

∂ut

∂t
)τ(ut)−RN(Vt, τ(ut))

∂ut

∂t
,

where we used the first Bianchi identity.
Let Z ∈ Γ1,2

0 (u−1(T N)), and Zt its parallel transport along t 7→ u1−t. Then

d
dt
〈Bt,Z1−t〉 = 〈∇tBt,Z1−t〉

= 2[Dei

〈
RN(Vt,deiut)

∂ut

∂t
,Z1−t

〉
−

〈
RN(Vt,d∇ei eiut)

∂ut

∂t
,Z1−t

〉
]

−2
〈
RN(Vt,deiut)

∂ut

∂t
,∇eiZ1−t

〉
−2
〈
RN(∇eiVt,

∂ut

∂t
)deiut,Z1−t

〉
−λk

d
dt

〈
∇Vt exp−1

. w,Z1−t
〉
−

〈
RN(Vt,

∂ut

∂t
)τ(ut),Z1−t

〉
−

〈
RN(Vt, τ(ut))

∂ut

∂t
,Z1−t

〉
+ [Dei

〈
RN(Vt,

∂ut

∂t
)deiut,Z1−t

〉
−

〈
RN(Vt,

∂ut

∂t
)d∇ei eiut,Z1−t

〉
]−
〈
RN(Vt,

∂ut

∂t
)deiut,∇eiZ1−t

〉
.

By integrating this on M and after on [0,1] we get

〈B1,Z1〉L2 −〈B0,Z0〉L2 =
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−2
∫ 1

0
[
〈
RN(Vt,deiut)

∂ut

∂t
,∇eiZ1−t

〉
L2
+

1
2

〈
RN(Vt,

∂ut

∂t
)deiut,∇eiZ1−t

〉
L2

+

〈
RN(∇eiVt,

∂ut

∂t
)deiut,Z1−t

〉
L2

]dt

−

∫ 1

0

〈
RN(Vt,

∂ut

∂t
)τ(ut)+RN(Vt, τ(ut))

∂ut

∂t
,Z1−t

〉
L2

dt

−λk[
〈
∇V1 exp−1

. w,Z1
〉

L2 −
〈
∇V0 exp−1

. w,Z0
〉

L2].

Since
Quk (Vk) = λk∇Vk exp−1

. w, we have B0 = 0.

It follows
〈B1,Z1〉L2 =

−2
∫ 1

0
[
〈
RN(Vt,deiut)

∂ut

∂t
,∇eiZ1−t

〉
L2
+

1
2

〈
RN(Vt,

∂ut

∂t
)deiut,∇eiZ1−t

〉
L2

+

〈
RN(∇eiVt,

∂ut

∂t
)deiut,Z1−t

〉
L2

]dt

−

∫ 1

0

〈
RN(Vt,

∂ut

∂t
)τ(ut)+RN(Vt, τ(ut))

∂ut

∂t
,Z1−t

〉
L2

dt

−λk[
〈
∇V1 exp−1

. w,Z1
〉

L2 −
〈
∇V0 exp−1

. w,Z0
〉

L2].

Since our geodesics depend smoothly on their endpoints, we have

lim
k→+∞

[
〈
∇V1 exp−1

. w,Z1
〉
−
〈
∇V0 exp−1

. w,Z0
〉
](x) = 0,∀x ∈ M,

and also, there exists C8 > 0 such that

‖τ(ut)(x)‖ ≤C8,∀x ∈ M,∀t ∈ [0,1].

We have ∥∥∥∥∥∂ut

∂t
(x)
∥∥∥∥∥ = d(uk(x),u(x)),∀x ∈ M.

Since
‖du‖ (x),‖duk‖ (x) ≤ 1+C4,∀x ∈ M, ∀k ∈ N,

there exists C9 > 0 such that

‖dut‖ (x) ≤C9,∀x ∈ M, ∀t ∈ [0,1],∀k ∈ N.

It follows that there exists C10 > 0,C11 > 0 such that: ∀k ∈ N,

∣∣∣〈B1,Z1〉L2

∣∣∣ ≤ C10[
∫

M
d(uk,u)‖Vk‖‖∇Z‖dx+

∫
M

d(uk,u)‖Z‖‖∇Vk‖dx]

+C11

∫
M

d(uk,u)‖Z‖
∫ 1

0
‖Vt‖dtdx,
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where ∣∣∣∣∣∣
∫ 1

0

〈
RN(Vt,

∂ut

∂t
)τ(ut)+RN(Vt, τ(ut))

∂ut

∂t
,Z1−t

〉
L2

dt

∣∣∣∣∣∣
≤ C11

∫
M

d(uk,u)‖Z‖
∫ 1

0
‖Vt‖dtdx .

From Hölder’s inequality we have∫
M

d(uk,u)‖Z‖‖Vk‖dx ≤ ‖Vk‖L2 [
∫

M
d2(uk,u)‖Z‖2 dx]1/2,

∫
M

d(uk,u)‖Vk‖‖∇Z‖dx ≤ ‖Vk‖L2 [
∫

M
d2(uk,u)‖∇Z‖2 dx]1/2,

and ∫
M

d(uk,u)‖Z‖‖∇Vk‖dx ≤ ‖∇Vk‖L2 [
∫

M
d2(uk,u)‖Z‖2 dx]1/2.

Since (uk)k∈N converges a.e. to u, the usual Lebesgue’s dominated convergence theorem from inte-
gration theory then gives that

lim
k→+∞

[
∫

M
d(uk,u)‖Z‖‖Vk‖dx+

∫
M

d(uk,u)‖Vk‖‖∇Z‖dx

+

∫
M

d(uk,u)‖Z‖‖∇Vk‖dx] = 0,

and then

lim
k→+∞

〈B1,Z1〉L2 = 0.

We have

〈B1,Z1〉L2 =

∫
M

[
〈
∇eiWk,∇eiZ1

〉
+
〈
RN(Wk,deiu)deiu,Z1

〉
−λk
〈
∇Wk exp−1

. w,Z1
〉
]dx.

Since (Wk)k∈N converges in L2 and weakly in W1,2 to V , and Z1 converges in W1,2 to Z, we get

0 = lim
k→+∞

〈B1,Z1〉L2

=

∫
M

[
〈
∇eiV,∇eiZ1

〉
+
〈
RN(V,deiu)deiu,Z1

〉
−λ
〈
∇V exp−1

. w,Z1
〉
]dx,

i.e. V is a weak solution of Qu(V) = λ∇V exp−1
. w. From the regularity of such solutions, we

have that V is a strong solution of Qu(V) = λ∇V exp−1
. w.

Step 4: The assumption on χ. We will assume in a first time that

dim Ker(∇.Lλk )(uk) = 1,∀k ∈ N.

Let ξk ∈ Γ
1,2
0 (u−1

k (T N)) be such that

Ker(∇.Lλk )(uk) = Rξk with ‖ξk‖L2 = 1,∀k ∈ N.



Degenerate Spectrum of the Tension Field 59

We are going to prove that, there exists χ > 0 such that the two assumptions used in [9] to have
bifurcation, namely

π(DλDαv) > 0 and π(D2
λv)π(D2

αv)− [π(DλDαv)]2 < 0

are satisfied for v = vk the solution of the bifurcation equation at (λk,uk), where π is the L2 - orthog-
onal projection onto Rξk, see Step 5 for details.

From equation (3.11) and the formula just after in [9] we have

π(DλDαvk) = −π[∇ξk exp−1
. w+ (∇Dλvk∇ξk Lλk )](uk), (3.3)

with
−
〈
∇ξk exp−1

. w, ξk
〉
≥C2 ‖ξk‖

2 ,∣∣∣∣〈(∇Dλvk∇ξk Lλk )(uk), ξk
〉

(x)
∣∣∣∣ ≤ (3.4)

d(w(x),uk(x))
∥∥∥[(∇.Lλk )(uk)+π]−1(x)

∥∥∥∥∥∥(∇2
. L)(λk,uk)

∥∥∥ (x)‖ξk(x)‖2 ,∀x ∈ M.

From the last formula at page 94 of [9] we have: ∀Wk ∈ Γ
1,2
0 (u−1

k (T N)),

(∇2
. Lλk )(uk)(Wk,Wk) = −4RN(deiuk,Wk)∇eiWk +RN(Wk, τ(uk))Wk (3.5)

+λkRN(Wk,exp−1
uk

w)Wk

= −4RN(deiuk,Wk)∇eiWk, since τ(uk)−λk exp−1
uk

w = 0.

Let
Wk =Wk,1+Wk,2 ∈ Rξk ⊕ (Rξk)⊥ = Γ1,2

0 (u−1
k (T N)).

Then

[(∇.Lλk )(uk)+π](Wk) = (∇Wk,2 Lλk )(uk)+Wk,1,〈
[(∇.Lλk )(uk)+π](Wk),Wk

〉
L2 =

〈
(∇Wk,2 Lλk )(uk),Wk,2

〉
L2 +
∥∥∥Wk,1

∥∥∥2
L2 ,

since (∇.Lλk )(uk) is self adjoint,

=
∥∥∥∇Wk,2

∥∥∥2
L2 +

∫
M

[
〈
RN(deiuk,Wk,2)deiuk,Wk,2

〉
−λ
〈
∇Wk,2 exp−1

. w,Wk,2
〉
]dx+

∥∥∥Wk,1
∥∥∥2

L2 .

Let Wk,i,t ( i = 1,2 ) be the parallel transport of Wk,i along the geodesic ut, t ∈ [0,1], Hk,i its value
for t = 1, and

Wk,t :=Wk,1,t +Wk,2,t, Hk := Hk,1+Hk,2,∀(t,k) ∈ [0,1]×N.

It is clear that

lim
k→+∞

∫
M

〈
RN(deiuk,Wk,2)deiuk,Wk,2

〉
dx =

∫
M

〈
RN(deiu,H(2))deiu,H(2)

〉
dx,

where H(i) is the L2 - limit and weak W1,2 - limit of (Hk,i)k∈N. Then, ∀k ∈ N we have

∇Hk,2 exp−1
. w−‖uuk

∇Wk,2 exp−1
. w = ∇Hk,2[exp−1

. w−‖uuk
exp−1

. w]

+∇Hk,2[‖uuk
exp−1

. w]−‖uuk
∇Wk,2 exp−1

. w.
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Let (Zk,l,t)1≤l≤n be an pointwise orthonormal family of vector fields along ut which are parallel along
the geodesic t 7→ ut. We have

exp−1
ut

w =
〈
exp−1

ut
w,Zk,l,t

〉
Zk,l,t,∀t ∈ [0,1],

and then

∇Wk,2 exp−1
. w = DWk,2

〈
exp−1

uk
w,Zk,l,0

〉
Zk,l,0+

〈
exp−1

uk
w,Zk,l,0

〉
∇Wk,2Zk,l,0,∀k ∈ N.

It follows: ∀k ∈ N,

‖uuk
exp−1

uk
w =

〈
exp−1

uk
w,Zk,l,0

〉
Zk,l,1,

‖uuk
∇Wk,2 exp−1

. w = [DWk,2

〈
exp−1

uk
w,Zk,l,0

〉
]Zk,l,1

+
〈
exp−1

uk
w,Zk,l,0

〉
‖uuk
∇Wk,2Zk,l,0.

There is no problem with the injectivity of u. We have: ∀(t,k) ∈ [0,1]×N,

∇Hk,2[‖uuk
exp−1

uk
w] = [DWk,2

〈
exp−1

uk
w,Zk,l,0

〉
]Zk,l,1+

〈
exp−1

uk
w,Zk,l,0

〉
∇Hk,2Zk,l,1,

and
∇t∇Wk,2,t Zk,l,t = RN(

∂ut

∂t
,Wk,2,t)Zk,l,t, since ∇tZk,l,t = 0.

By integrating this in the basis (Zk,l,t)1≤l≤n we get

∇Hk,2Zk,l,1−‖
u
uk
∇Wk,2Zk,l,0 = [

∫ 1

0

〈
RN(

∂ut

∂t
,Wk,2,t)Zk,l,t,Zk,p,t

〉
dt]Zk,p,1.

And finally: ∀k ∈ N,
∇Hk,2[‖uuk

exp−1
uk

w] = ‖uuk
∇Wk,2 exp−1

. w

+
〈
exp−1

uk
w,Zk,l,0

〉
[
∫ 1

0

〈
RN(

∂ut

∂t
,Wk,2,t)Zk,l,t,Zk,p,t

〉
dt]Zk,p,1.

It follows: ∀k ∈ N,

∇Hk,2 exp−1
. w−‖uuk

∇Wk,2 exp−1
. w = ∇Hk,2[exp−1

. w−‖uuk
exp−1

. w]

+
〈
exp−1

uk
w,Zk,l,0

〉
[
∫ 1

0

〈
RN(

∂ut

∂t
,Wk,2,t)Zk,l,t,Zk,p,t

〉
dt]Zk,p,1,

and then
lim

k→+∞

∫
M

∥∥∥∇Hk,2 exp−1
. w−‖uuk

∇Wk,2 exp−1
. w
∥∥∥2 dx = 0.

We then have proved that

lim
k→+∞

〈
[(∇.Lλk )(uk)+π](Wk),Wk

〉
L2 = 〈[(∇.Lλ)(u)+π](H),H〉L2 ,

where H := H(1)+H(2), and that there exists a subsequence of (uk)k such that

lim
k→+∞

∥∥∥(∇.Lλk )(uk)+π
∥∥∥ (x) = ‖(∇.Lλ)(u)+π‖ (x) for a.a. x ∈ M.

It follows
lim

k→+∞

∥∥∥[(∇.Lλk )(uk)+π]−1(x)
∥∥∥ = ∥∥∥[(∇.Lλ)(u)+π]−1(x)

∥∥∥ , for a.a. x ∈ M.
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One has from (3.5) that there exists C12 > 0 such that∥∥∥(∇2
. L)(λk,uk)

∥∥∥ (x) ≤C12,∀x ∈ M,∀k ∈ N.

From the regularity theory for linear elliptic pde’s, ∃C13 > 0 such that

‖ξk(x)‖ ≤C13,∀x ∈ M,∀k ∈ N.

Using the Lebesgue’s dominated convergence theorem we then have

lim
k→+∞

∫
M

d(w(x),uk(x))
∥∥∥[(∇.Lλk )(uk)+π]−1(x)

∥∥∥∥∥∥(∇2
. L)(λk,uk)

∥∥∥ (x)‖ξk(x)‖2 dx =∫
M

d(w(x),u(x))
∥∥∥[(∇.Lλ)(u)+π]−1(x)

∥∥∥∥∥∥(∇2
. L)(λ,u)

∥∥∥ (x)‖ξ(x)‖2 dx,

where ξ is the a.e. pointwise limit of (ξk)k∈N.
It follows from (3.4) and (3.3) that, for χ small enough, we have: ∃k0 ∈N such that π(DλDαvk)>

0,∀k ≥ k0. From the formulae (3.6), (3.8) and (3.13) of [9] one has:

πDλvk = −πexp−1
uk

w,

πD2
λvk = −2π∇Dλvk (exp−1

. w)−π[(∇2
. Lλk )(uk)(Dλvk,Dλvk)],

and
πD2

αvk = −π[(∇2
. Lλk )(uk)(ξk, ξk)].

It follows that: for χ small enough, there k0 ∈ N such that: ∀k ≥ k0

π(D2
λvk)π(D2

αvk)− [π(DλDαvk)]2 < 0.

Step 5: The conclusion
We want to conclude by using the bifurcation behaviour of solutions of (1.1) at which one has a

non trivial Jacobi field, which we studied in [9].
Since dim[Ker(∇.Lλk )(uk)] = 1,∀k, we get from Step 3 that dim[Ker(∇.Lλ̃)(u)] ≥ 1 where λ̃ := λ

in this part of the work.
We have seen in [9] that in any case (uk,λk) ( for k ≥ k0 ) and (u, λ̃) are bifurcation points,

and we gave in each case the precise bifurcation behaviour. Actually, we studied only the case
dim[Ker(∇.Lλ̃)(u)] = 1 in [9]. But one can check that the higher dimensional case is similar. From
the general bifurcation theory in [15], for dim[Ker(∇.Lλ̃)(u)] ≥ 1, (λ̃,u) is a bifurcation point in any
case and the number of solutions of our equation (1.1) is finite and is given by (u, λ̃) and Lλ̃. One
uses the implicit function theorem to find the solutions of the equation (1.1) as in [9].

For sake of completeness we want to precise a little what happens at (λ̃,u) under the assumption
that dim[Ker(∇.Lλ̃)(u)] = 2. For more details, see [9].

Let ξ1, ξ2 ∈ Ker(∇.Lλ̃)(u) be such that

Ker(∇.Lλ̃)(u) = Rξ1+Rξ2.

Let’s set
L̃λ̃(v) := Lλ̃(v)+ ‖vu [π1(exp−1

u v)],

for v as in the theorem, where π1 is the L2 - orthogonal projection onto Ker(∇.Lλ̃)(u). Then we have

Lλ̃(v) = 0⇔ L̃λ̃(v) =‖vu [π1(exp−1
u v)],
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and
∇V L̃λ̃ = ∇V Lλ̃+π1(V),∀V ∈ Γ1,2

0 (u−1(T N))

and then (∇.L̃λ̃)(u) is a continuous linear isomorphism of Γ1,2
0 (u−1(T N)).

For α1,α2 ∈ R we consider the equation

L̃λ̃(v) =‖vu (α1ξ1+α2ξ2)⇔‖uv Lλ̃(v)+π1(exp−1
u v) = α1ξ1+α2ξ2. (3.6)

Since (∇.L̃λ̃)(u) is an isomorphism, the implicit function theorem applied to (3.6) gives: there exists
I× J×V a neighborhood of (λ̃, (0,0),u) in R×R2×C2(M,N), and a mapping v : I× J→V such that:
v(λ̃, (0,0)) = u and ∀(λ̃, (α1,α2),w) ∈ I× J×V: (λ̃, (α1,α2),w) solution of (3.6) iff w = v(λ̃, (α1,α2)),
i.e. Lλ̃(w) = 0 iff ∃(α1,α2) ∈ J such that w = v(λ̃, (α1,α2)).

We assume that (λ̃, (α1,α2)) ∈ I× J. Then

Lλ̃(v(λ̃, (α1,α2))) = 0⇔ π1(exp−1
u v(λ̃, (α1,α2))) = α1ξ1+α2ξ2.

So solving the equation

π1(exp−1
u v(λ̃, (α1,α2))) = α1ξ1+α2ξ2, for (λ̃, (α1,α2)) ∈ I× J, (3.7)

is equivalent to solve the equation

Lλ̃(w) = 0, for (λ̃,w) ∈ I×V.

To find the number of solutions of equation (3.7), one sets λ̃ = λ̂+β, and then takes the asymp-
totic expansion near (β,α := (α1,α2)) = (0, (0,0)) of equation (3.7). Then using the fact ( proved in
[9] ) that

π1[Dαv(λ̃, (0,0))] = IdKer(∇.Lλ̃)(u),

one gets

0 = βπ1(Dλ̃v)+
1
2
β2π1(D2

λ̃
v)+β[α1π1(Dλ̃Dα1v)+α2π1(Dλ̃Dα2v)]

+
1
2

[α2
1π1(D2

α1
v)+α2

2π1(D2
α2

v)

+2α1α2π1(Dα1 Dα2v)+ higher order terms in β,α1 and α2,

where Dλ̃v is the partial derivative of v(λ̃, (α1,α2)) w.r.t λ̃ at (λ̂, (0,0)) and π1(Dλ̃v) ∈ Rξ1+Rξ2. One
can then discuss the number of solutions for a given β. In any case the number of solutions is finite
and given by informations at (λ̃,u)

Let’s go back to our sequence (λk,uk). There exists k1 ≥ k0 ∈ N such that: ∀k ≥ k1, (λk = λ̃+

βk,uk) ∈ I ×V and Lλk (uk) = 0. It follows that uk = v(λk, (α1,k,α2,k)) with (α1,k,α2,k) ∈ J, for k ≥ k1.
That is impossible since the set of solutions bifurcates also at (λk,uk).

We conclude at this stage that Λ is either finite, or is made of a sequence which converges to
+∞ or −∞.

By taking also the infimum over the set of all admissible v in the definition of λ1 in the proof of
1◦), one sees that the sequence in Λ cannot converge to −∞.

3.1.3 Proof of 3◦)

Let’s assume now that w is harmonic and Λ is bounded from above by some α ∈ R.
For any λ ∈]α,+∞[, w is a solution of (1.1). From 1◦), there exists β>α such that Ker(∇.Lβ)(u),

{0}. That is a contradiction since (w,β) is a solution of (1.1).
We conclude that Λ is not bounded from above.
In this way our theorem is proved
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3.2 Proof of Theorem 2.2

Let v ∈W1,2(M,N)w and V ∈ Γ1,2
0 (v−1(T N))\{0} be such that

Qv(V)−λ∇V exp−1
. w = 0. (3.8)

We have 〈
Qv(V)−λ∇V exp−1

. w,V
〉

L2 =

−

∫
M

[
∥∥∥∇eiV

∥∥∥2− 〈RN(V,deiv)deiv,V
〉
+λ
〈
∇V exp−1

. w,V
〉
]dx,

so
λ = R(v,V) := −

〈
∇V exp−1

. w,V
〉−1

L2

∫
M

[
∥∥∥∇eiV

∥∥∥2− 〈RN(V,deiv)deiv,V
〉
]dx. (3.9)

It follows that
λ1 = inf

W∈Γ1,2
0 (v−1(T N))\{0}

R(v,W).

Then, by taking a minimizing sequence, one knows from the proof of 1◦) in theorem 1 that there
exists V ∈ Γ1,2

0 (v−1(T N))\{0}, such that λ1 = R(v,V) and V is a solution of (3.8) for λ = λ1.

Let W ∈ Γ1,2
0 (v−1(T N)) be harmonic such that W(x) , 0,∀x ∈ M. Then we have

∆ 〈V,W〉 = Dei Dei 〈V,W〉−D∇ei ei 〈V,W〉

= Dei[
〈
∇eiV,W

〉
+
〈
V,∇eiW

〉
]−
〈
∇∇ei eiV,W

〉
−
〈
V,∇∇ei eiW

〉
=
〈
∇ei∇eiV −∇∇ei eiV,W

〉
+2
〈
∇eiV,∇eiW

〉
+
〈
V,∇ei∇eiW −∇∇ei eiW

〉
= −

〈
RN(V,deiv)deiv−λ∇V exp−1

. w,W
〉
+2
〈
∇eiV,∇eiW

〉
.

Because of our assumption on the curvature tensor of (N,h), if 〈V,W〉 (x) = 0 for some x ∈ M, then
the RHS of our last equation vanishes at x, by taking normal coordinates centered at x. We may
then assume that

V = 〈V,W〉‖W‖−2 W.

It follows

∇eiV = [[Dei 〈V,W〉]‖W‖
−2−〈V,W〉‖W‖−4 Dei ‖W‖

2]W

+ 〈V,W〉‖W‖−2∇eiW,

and then 〈
∇eiV,∇eiW

〉
= [Dei 〈V,W〉]‖W‖

−2 〈W,∇eiW
〉

−
1
2
‖W‖−4 [Dei ‖W‖

2]2 〈V,W〉+
1
2
‖W‖−2

∥∥∥∇eiW
∥∥∥2 〈V,W〉

=
1
2

[Dei 〈V,W〉]‖W‖
−2 Dei ‖W‖

2−
1
2
‖W‖−4 [Dei ‖W‖

2]2 〈V,W〉

+
1
2
‖W‖−2

∥∥∥∇eiW
∥∥∥2 〈V,W〉 .
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By using these last informations we have

∆ 〈V,W〉 = ‖W‖−2 [[Dei ‖W‖
2]Dei 〈V,W〉+

[−
〈
RN(W,deiv)deiv,W

〉
+
λ

2
D2(d2(w, .))(W,W)

−‖W‖−2 (Dei ‖W‖
2)2+

∥∥∥∇eiW
∥∥∥2] 〈V,W〉].

Let’s assume that 〈V,W〉 (x0)> 0 for some x0. By multiplying 〈V,W〉 by−1 where ever it is necessary,
one gets some V1 ∈ Γ

1,2
0 (v−1(T N))\{0} such that 〈V1,W〉 ≥ 0 and λ1 = R(v,V1). It follows that V1 is

a solution of (3.8) for λ = λ1, and then 〈V1,W〉 is a solution of

∆ f = ‖W‖−2 [[Dei ‖W‖
2]Dei f + (3.10)

[−
〈
RN(W,deiv)deiv,W

〉
+
λ

2
D2(d2(w, .))(W,W)

−‖W‖−2 (Dei ‖W‖
2)2+

∥∥∥∇eiW
∥∥∥2] f ].

From the Harnack inequality for nonnegative solutions of such linear elliptic partial differential
equations, we have that 〈V1,W〉 > 0 in the interior of M. It follows that actually 〈V,W〉 > 0 in the
interior of M, because of the local uniqueness of the solution of (3.10).

It remains to prove the simpleness of λ1.
Let V2 be another solution of (3.8) which is orthogonal to V in L2.
Let’s assume that there exists x3 ∈ M such that 〈V,V2〉 (x3) , 0.
Then we have 〈V2,V〉 > 0 in the interior of M, or 〈V2,V〉 < 0 in the interior of M. It follows that

V2 cannot be orthogonal to V in L2. In fact 〈V,V2〉 is a solution of an equation similar to (3.10). So
we must have 〈V2,V〉 ≡ 0. Since the set of our solutions is a vector space, there exist x ∈ M, and
α,β ∈ R such that αV +βV2 is a solution and 〈αV +βV2,V〉 (x) , 0. So V2 doesn’t exist.

3.3 Proof of Theorem 2.3

3.3.1 Proof of 1◦) :

For any n ∈ N, let λ(n) ∈ R be such that, there exists (vn,Vn) ∈ W1,2(M,N)w × Eλ(n),vn
such that

Lλ(n)(vn) = 0 and limn→+∞λ
(n) = λ∗2. Then, in the same way as in the proof of 2◦) of Theorem 1,

there exists a subsequence of (vn,Vn) and (v,V) ∈W1,2(M,N)w×Eλ∗2,v such that (vn)n∈N converges to
v in W1,2, (Vn)n∈N converges to V in W1,2, and Lλ∗2(v) = 0.

3.3.2 Proof of 2◦) :

Let v ∈W1,2(M,N)w,λ ∈ R and V ∈ Γ1,2
0 (v−1(T N))\{0} be such that

Lλ(v) = 0 and Qv(V)−λ∇V exp−1
. w = 0.

We have 〈
τ(v)−λexp−1

v w,exp−1
v w
〉

L2 = −

∫
M

[
〈
∇dei v exp−1

. w,deiv
〉

+
〈
deiv,Ddei w(exp−1

v .)
〉
]dx−λd2

L2(v,w),
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by the divergence theorem, so

λ = F (v) := −d−2
L2 (v,w)

∫
M

[
〈
∇dei v exp−1

. w,deiv
〉
+
〈
deiv,Ddei w(exp−1

v .)
〉
]dx.

From (3.9) we have also

λ = R(v,V) = −
〈
∇V exp−1

. w,V
〉−1

L2

∫
M

[
∥∥∥∇eiV

∥∥∥2− 〈RN(V,deiv)deiv,V
〉
]dx.

Let’s set

A : = {v ∈W1,2(M,N)w / LF (v)(v) = 0,F (v) is degenerated },

Bv : = {V ∈ Γ1,2
0 (v−1(T N)) /R(v,V) ≥ F (v)},

and
λ∗3 := inf

v∈A,V∈Bv
R(v,V).

We are going next to prove that there exists v ∈ W1,2(M,N)w such that Lλ∗3(v) = 0, and there
exists V ∈ Γ1,2

0 (v−1(T N)) such that R(v,V) = λ∗3.
Let (vn,Vn) be a minimizing sequence for R(v,V) in the considered set. We may assume w.l.o.g.

that Vn minimizes R(vn, .) under the constraint V ∈ Γ1,2
0 (v−1

n (T N)) and R(vn,V) ≥ F (vn), and

−
〈
∇Vn exp−1

. w,Vn
〉

L2 = 1,∀n ∈ N. (3.11)

Since F (vn) is degenerated, we have F (vn) ≥ R(vn,Vn),∀n ∈ N. So F (vn) = R(vn,Vn),∀n ∈ N. It
follows that Vn ∈ EF (vn),vn ,∀n ∈ N.

We have
R(vn,Vn) = F (vn),∀n ∈ N, and lim

n→+∞
R(vn,Vn) = λ∗3 ∈ R.

It follows from [13] that, there exists v ∈W1,2(M,N)w and a subsequence of (vn)n∈N which converges
in W1,2 to v and Lλ∗3(v) = 0. From the same work, we have that there exists C14 > 0 such that

‖dvn‖ (x) ≤C14,∀x ∈ M,∀n ∈ N.

Using this, and since our manifolds are compact, there exists C15 > 0 such that∣∣∣∣〈RN(Vn,deivn)deivn,Vn
〉

(x)
∣∣∣∣ ≤C15 ‖Vn‖

2 (x),∀x ∈ M,∀n ∈ N.

From (3.11), there exists C16 > 0 such that∣∣∣∣∣∫
M

〈
RN(Vn,deivn)deivn,Vn

〉
(x)dx

∣∣∣∣∣ ≤C16,∀n ∈ N.

Since the sequence (R(vn,Vn))n is bounded, there exists C17 > 0 such that∫
M
‖∇Vn‖

2 (x)dx ≤C17,∀n ∈ N.

The theorem of Rellich - Kondrachov then gives the existence of a subsequence of (Vn)n∈N which
converges in L2 and weakly in W1,2 to some V ∈ Γ1,2

0 (v−1(T N)). It follows that

‖V‖2L2 := −
〈
∇V exp−1

. w,V
〉

L2 = 1.

And, as in the proof of Theorem 2, we have that V ∈ Eλ∗3,v, since Vn ∈ EF (vn),vn ,∀n ∈ N.
From the definition of λ∗3 we have λ∗3 ≤ λ

∗
2. Since F (v) = R(v,V) = λ∗3, Lλ∗3(v) = 0 and V ∈ Eλ∗3,v,

we have λ∗2 ≤ λ
∗
3. We conclude that λ∗2 = λ

∗
3.

From this point the remaining part of this proof is the same as in the proof of Theorem 2.
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3.3.3 Proof of 3◦) :

Let v ∈W1,2(M,N)w and V ∈ Γ1,2
0 (v−1(T N))\{0} be such that

Lλ∗2(v) = 0 and Qv(V)−λ∗2∇V exp−1
. w = 0.

We have seen in 2◦) that Ker(∇.Lλ∗2)(v) = RV . We are going to use this fact to prove that V is
integrable. Once that is proved, our result will follow directly from the nonexistence result for
integrable Jacobi field, for λ < 0, which is in [13].

Let ε > 0 be such that

θ(x)+ε < min{in j(w(x)),
π

2
√

K
},∀x ∈ M.

Let
W1,2(M,N)′w :=

{v ∈W1,2(M,N) / u|∂M = w|∂M and d(w(x),v(x)) < θ(x)+ε,∀x ∈ M}.

We are going to look at the structure near v of the set

Gw := {u ∈W1,2(M,N)′w / Lλ∗2(u) = 0}.

The mapping ψ : u 7→ exp−1
w u is a bijection from W1,2(M,N)′w onto an open subset of Γ1,2

0 (w−1(T N)).
The structure of manifold we consider on W1,2(M,N)′w is the one defined by this bijection and the
structure of R - Banach space of Γ1,2

0 (w−1(T N)).
Let’s set

Hw := ∪u∈W1,2(M,N)′wΓ
1,2
0 (u−1(T N)).

ThenHw is a vector bundle over W1,2(M,N)′w, u 7→ Lλ∗2(u) is a section of this bundle, and, by using
the parallel transport from each u ∈W1,2(M,N)′w to w, we have

Hw 'W1,2(M,N)′w×Γ
1,2
0 (w−1(T N)).

It follows that: ∀u ∈W1,2(M,N)′w, we have

Lλ∗2(u) = (u, L̃λ∗2(u)) where L̃λ∗2(u) :=‖vu ◦Lλ∗2(u) ∈ Γ1,2
0 (v−1(T N)).

So, we have Lλ∗2(u) = 0⇐⇒ L̃λ∗2(u) = 0.
Let vt be a variation of v in W1,2(M,N)′w, i.e. a differentiable mapping ]−1,1[→W1,2(M,N)′w, t 7→

vt such that v0 = v. Let V1 := ∂vt
∂t |t=0 .

In local coordinates one has

L̃λ∗2(vt)(x) = [Lλ∗2(vt)(x)]α ‖vvt
[
∂

∂yα
(vt(x))],∀t ∈]−1,1[.

Since [∇t ‖
v
vt

]|t=0 = 0, we have
d
dt |t=0

L̃λ∗2(vt)(x) = ∇V1 Lλ∗2 ,

and then: ∀W ∈ Γ1,2
0 (w−1(T N)),

d
dt |t=0

〈
L̃λ∗2(vt),W

〉
L2 =

〈
d
dt |t=0

L̃λ∗2(vt),W
〉

L2
=
〈
DV1 L̃λ∗2 ,W

〉
L2

=
〈
∇V1 Lλ∗2 ,‖

v
w W
〉

L2 .
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Let’s assume that∇W Lλ∗2 , 0. Then there exists some variation vt of v such that d
dt |t=0

〈
L̃λ∗2(vt),W

〉
L2 ,

0. It follows that the function u 7→
〈
L̃λ∗2(u),W

〉
L2 is of rank one at the point v, and then the set

{u ∈W1,2(M,N)′w /
〈
L̃λ∗2(u),Wn

〉
L2 = 0}

is a submanifold of W1,2(M,N)′w. Let (Wn)n∈N be an orthonormal basis ( w.r.t. L2 - product ) of
Γ

1,2
0 (w−1(T N)). We may assume that Wn , V,∀n ∈ N. Then

Gw = ∩n∈N{u ∈W1,2(M,N)′w /
〈
L̃λ∗2(u),Wn

〉
L2 = 0}

= ∩n∈N∩0≤m≤n {u ∈W1,2(M,N)′w /
〈
L̃λ∗2(u),Wm

〉
L2 = 0}.

(∩0≤m≤n{u ∈W1,2(M,N)′w /
〈
L̃λ∗2(u),Wm

〉
L2 = 0})n≥1 is a nonincreasing sequence of submanifolds of

W1,2(M,N)′w, so Gw is a submanifold of W1,2(M,N)′w.
We have v ∈ Gw and the tangent space of Gw at v is

TvGw = ∩n∈NTv{u ∈W1,2(M,N)′w /
〈
L̃λ∗2(u),Wn

〉
L2 = 0}

= ∩n∈N{V1 ∈ Γ
1,2
0 (v−1(T N)) /

〈
∇V1 Lλ∗2 ,‖

v
w Wn
〉

L2 = 0}.

It is obvious that V ∈ TvGw since ∇V Lλ∗2 = 0. It follows that V is integrable. In this way 3◦) is proved

3.4 Proof of Corollary 2.4

Let’s assume that

β := sup{α ∈ [λ,0[ / ∃uα ∈W1,2(M,N)w satisfying Lα(uα) = 0} < 0.

Let (αn)n∈N ∈ [λ,0[N be converging to β such that: For any n ∈ N, there exists uαn ∈ W1,2(M,N)w

satisfying Lαn(uαn) = 0 and the same assumptions as u. We have seen in the proof of 2◦) of Theorem
1 that there exists v ∈W1,2(M,N)w such that Lβ(v) = 0. Since β < 0 we have that Ker(∇.Lβ)(v) = {0}.
From the implicit function theorem as we used it in the description of the bifurcation behaviour,
there exists r > 0 such that ]β,β+ r[⊆ [λ,0[ and, for any α ∈ ]β,β+ r[, there exists uα ∈W1,2(M,N)w

satisfying Lα(uα) = 0. This contradicts the definition of β. We conclude that β = 0
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