Periodic Homogenization of Schrödinger Type Equations with Rapidly Oscillating Potential

Lazarus Signing*
Department of Mathematics and Computer Science,
University of Ngaoundere, P.O.BOX 454 Ngaoundere (Cameroon)

Abstract

This paper is devoted to the homogenization of Shrödinger type equations with periodically oscillating coefficients of the diffusion term, and a rapidly oscillating periodic potential. One convergence theorem is proved and we derive the macroscopic homogenized model. Our approach is the well known two-scale convergence method.

AMS Subject Classification: 35B27; 35B40; 81Q05.
Keywords: Periodic homogenization, Schrödinger type equations, Two-scale convergence.

1 Introduction

Let us consider a (non-empty) smooth bounded open subset Ω of \mathbb{R}_{x}^{N} (the N-numerical space \mathbb{R}^{N} of variables $x=\left(x_{1}, \ldots, x_{N}\right)$, where N is a given positive integer, and let T and ε be real numbers with $T>0$ and $0<\varepsilon<1$. We consider the partial differential operator

$$
\mathcal{A}^{\varepsilon}=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}^{\varepsilon} \frac{\partial}{\partial x_{j}}\right)
$$

in Ω, where $a_{i j}^{\varepsilon}(x)=a_{i j}\left(\frac{x}{\varepsilon}\right) \quad(x \in \Omega), a_{i j} \in L^{\infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)(1 \leq i, j \leq N)$ with

$$
\begin{equation*}
a_{i j}=a_{j i}, \tag{1.1}
\end{equation*}
$$

and the assumption that there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
\sum_{i, j=1}^{N} a_{i j}(y) \zeta_{j} \bar{\zeta}_{i} \geq \alpha|\zeta|^{2} \text { for all } \zeta=\left(\zeta_{j}\right) \in \mathbb{C}^{N} \text { and } \tag{1.2}
\end{equation*}
$$

[^0]for almost all $y \in \mathbb{R}^{N}$, where \mathbb{R}_{y}^{N} is the N-numerical space \mathbb{R}^{N} of variables $y=\left(y_{1}, \ldots, y_{N}\right)$, and where $|\cdot|$ denotes the Euclidean norm in \mathbb{C}^{N}. Let us consider for fixed $0<\varepsilon<1$, the following initial boundary value problem:
\[

$$
\begin{align*}
\mathbf{i} \frac{\partial u_{\varepsilon}}{\partial t}+\mathcal{A}^{\varepsilon} u_{\varepsilon}+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u_{\varepsilon} & =f \text { in } \Omega \times] 0, T[\tag{1.3}\\
u_{\varepsilon} & =0 \text { on } \partial \Omega \times] 0, T[\tag{1.4}\\
u_{\varepsilon}(0) & =0 \text { in } \Omega, \tag{1.5}
\end{align*}
$$
\]

where $\mathcal{V}^{\varepsilon}(x)=\mathcal{V}\left(\frac{x}{\varepsilon}\right)$ is a real potential with $\mathcal{V} \in L^{\infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)$, and where $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. In view of (1.1)-(1.2), we will show later that the initial boundary value problem (1.3)-(1.5) admits a unique solution in $C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$, provided some regularity assumptions on f, and some hypothesis on \mathcal{V}.

The aim here is to investigate the limiting behaviour of u_{ε} solution of (1.3)-(1.5) when ε goes to zero, under the periodicity hypotheses on the coefficients $a_{i j}$ and the potential \mathcal{V}, and the assumption that the mean value of \mathcal{V} is null.

The asymptotic analysis of boundary value problems with rapidly oscillating potential has been studied for the first time in the book of Bensoussan, Lions and Papanicolaou [4] using the asymptotic expansions. Indeed, they considered the following Dirichlet's boundary value problem:

$$
\left\{\begin{aligned}
\mathcal{A}^{\varepsilon} u_{\varepsilon}+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u_{\varepsilon} & =f \text { in } \Omega \\
u_{\varepsilon} & =0 \text { on } \Omega,
\end{aligned}\right.
$$

which is the stationary case of (1.3)-(1.5). They also considered the Schrödinger model

$$
\mathbf{i} \frac{1}{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial t}+\mathcal{A}^{\varepsilon} u_{\varepsilon}+\frac{1}{\varepsilon^{2}} \mathcal{V}^{\varepsilon} u_{\varepsilon}=0 \text { in } \mathbb{R}^{N} \times \mathbb{R}_{+}^{*}
$$

with initial condition, which is scaled differently from (1.3)-(1.5). Recently, Allaire and Piatnitski in [2] have investigated the homogenization of the Schrödinger type equation

$$
\mathbf{i} \frac{\partial u_{\varepsilon}}{\partial t}+\mathcal{A}^{\varepsilon} u_{\varepsilon}+\frac{1}{\varepsilon^{2}} \mathcal{V}^{\varepsilon} u_{\varepsilon}=0 \text { in } \mathbb{R}^{N} \times \mathbb{R}_{+}^{*}
$$

with initial data, using the two-scale convergence method combined with the bloch waves decomposition. Let us recall that, the scaling of the model under investigation is different from the semi-classical scaling which is

$$
\left.\mathbf{i} \frac{\partial u_{\varepsilon}}{\partial t}+\varepsilon \mathcal{A}^{\varepsilon} u_{\varepsilon}+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u_{\varepsilon}=\varepsilon f \text { in } \Omega \times\right] 0, T[.
$$

Further, as the oscillatory potential $\mathcal{V}^{\varepsilon}$ admits a "penalty" factor $\frac{1}{\varepsilon}$, we can also think of the homogenization process for (1.3)-(1.5) as results of the singular perturbations type for

$$
\left\{\begin{array}{r}
\left.\varepsilon\left(\mathbf{i} \frac{\partial u_{\varepsilon}}{\partial t}+\mathcal{A}^{\varepsilon} u_{\varepsilon}\right)+\mathcal{V}^{\varepsilon} u_{\varepsilon}=\varepsilon f \text { in } \Omega \times\right] 0, T[\\
\left.u_{\varepsilon}=0 \text { on } \partial \Omega \times\right] 0, T[\\
u_{\varepsilon}(0)=0 \text { in } \Omega .
\end{array}\right.
$$

Clearly, in our study we present an other point of view concerning the asymptotic analysis of the Schrödinger model, when the potential is scaled as ε^{-1}. The main result of this paper is stated as follows: Suppose that the conditions (3.1)-(3.2) and (3.4)-(3.5) are satisfied. Suppose also that (3.16)-(3.17) are verified. Let $u_{\varepsilon} \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ be the solution to (1.3)-(1.5) for $\varepsilon>0$. Then there exists some $u_{0} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and some $u_{1} \in L^{2}\left(Q ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$ such that u_{ε} converges in $L^{2}(Q)$-strong to u_{0} and ∇u_{ε} weakly two-scale converges in $L^{2}(Q)$ to $\nabla u_{0}+\nabla_{y} u_{1}$ as ε tends to zero. Further, the couple $\mathbf{u}=\left(u_{0}, u_{1}\right)$ is the unique solution to (3.13). This result is proved in Theorem 3.6 and Theorem 3.9. The derived macroscopic homogenized model given by (3.31)-(3.33) is of Schrödinger type with an additional advection term, while the equations at the microscopic scale are given by (3.27)-(3.28) and the global equation (including the macroscopic and the microscopic scales) by (3.13).

This study is motivated by the fact that the asymptotic analysis of (1.3)-(1.5) is connected with the modelling of the wave function for a particle submitted to a potential. Let us note that the classical Schrödinger equation corresponds to the choice $\mathcal{F}^{\varepsilon}=-\Delta$.

Unless otherwise specified, vector spaces throughout are considered over the complex field, \mathbb{C}, and scalar functions are assumed to take complex values. Let us recall some basic notation. If X and F denote a locally compact space and a Banach space, respectively, then we write $C(X ; F)$ for continuous mappings of X into F, and $\mathcal{B}(X ; F)$ for those mappings in $C(X ; F)$ that are bounded. We shall assume $\mathcal{B}(X ; F)$ to be equipped with the supremum norm $\|u\|_{\infty}=\sup _{x \in X}\|u(x)\|(\|\cdot\|$ denotes the norm in $F)$. For shortness we will write $C(X)=$ $\mathcal{C}(X ; \mathbb{C})$ and $\mathcal{B}(X)=\mathcal{B}(X ; \mathbb{C})$. Likewise in the case when $F=\mathbb{C}$, the usual spaces $L^{p}(X ; F)$ and $L_{l o c}^{p}(X ; F)\left(X\right.$ provided with a positive Radon measure) will be denoted by $L^{p}(X)$ and $L_{l o c}^{p}(X)$, respectively. Finally, the numerical space \mathbb{R}^{N} and its open sets are each provided with Lebesgue measure denoted by $d x=d x_{1} \ldots d x_{N}$.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary results on the two-scale convergence, whereas in Section 3 one convergence theorem is established for (1.3)-(1.5).

2 Preliminaries

We set $Y=\left(-\frac{1}{2}, \frac{1}{2}\right)^{N}, Y$ considered as a subset of \mathbb{R}_{y}^{N} (the space \mathbb{R}^{N} of variables $y=$ $\left(y_{1}, \ldots, y_{N}\right)$). We set also $Z=\left(-\frac{1}{2}, \frac{1}{2}\right), Z$ considered as a subset of \mathbb{R}_{τ} (the space \mathbb{R} of variables $\tau)$.

Let us first recall that a function $u \in L_{l o c}^{1}\left(\mathbb{R}_{y}^{N} \times \mathbb{R}_{\tau}\right)$ is said to be $Y \times Z$-periodic if for each $(k, l) \in \mathbb{Z}^{N} \times \mathbb{Z}(\mathbb{Z}$ denotes the integers), we have $u(y+k, \tau+l)=u(y, \tau)$ almost everywhere (a.e.) in $(y, \tau) \in \mathbb{R}^{N} \times \mathbb{R}$. If in addition u is continuous, then the preceding equality holds for every $(y, \tau) \in \mathbb{R}^{N} \times \mathbb{R}$, of course. The space of all $Y \times Z$-periodic continuous complex functions on $\mathbb{R}_{y}^{N} \times \mathbb{R}_{\tau}$ is denoted by $\mathcal{C}_{p e r}(Y \times Z)$; that of all $Y \times Z$-periodic functions in $L_{l o c}^{p}\left(\mathbb{R}_{y}^{N} \times \mathbb{R}_{\tau}\right)(1 \leq p \leq \infty)$ is denoted by $L_{p e r}^{p}(Y \times Z) . C_{p e r}(Y \times Z)$ is a Banach space under the supremum norm on $\mathbb{R}^{N} \times \mathbb{R}$, whereas $L_{p e r}^{p}(Y \times Z)$ is a Banach space under the norm

$$
\|u\|_{L^{p}(Y \times Z)}=\left(\int_{Z} \int_{Y}|u(y, \tau)|^{p} d y d \tau\right)^{\frac{1}{p}}\left(u \in L_{p e r}^{p}(Y \times Z)\right)
$$

The space $H_{\#}^{1}(Y)$ of Y-periodic functions $u \in H_{l o c}^{1}\left(\mathbb{R}_{y}^{N}\right)=W_{l o c}^{1,2}\left(\mathbb{R}_{y}^{N}\right)$ such that $\int_{Y} u(y) d y=$ 0 will be of our interest in this study. Provided with the gradient norm,

$$
\|u\|_{H_{\#}^{1}(Y)}=\left(\int_{Y}\left|\nabla_{y} u\right|^{2} d y\right)^{\frac{1}{2}} \quad\left(u \in H_{\#}^{1}(Y)\right),
$$

where $\nabla_{y} u=\left(\frac{\partial u}{\partial y_{1}}, \ldots, \frac{\partial u}{\partial y_{N}}\right), H_{\#}^{1}(Y)$ is a Hilbert space. We will also need the space $L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$ with the norm

$$
\|u\|_{L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)}=\left(\int_{Z} \int_{Y}\left|\nabla_{y} u(y, \tau)\right|^{2} d y d \tau\right)^{\frac{1}{2}}\left(u \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)
$$

which is a Hilbert space.
Before we can recall the concept of two-scale convergence, let us introduce one further notation. The letter E throughout will denote a family of real numbers $0<\varepsilon<1$ admitting 0 as an accumulation point. For example, E may be the whole interval (0,1); E may also be an ordinary sequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ with $0<\varepsilon_{n}<1$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. In the latter case E will be referred to as a fundamental sequence.

Let Ω be a bounded open set in \mathbb{R}_{x}^{N} and $\left.Q=\Omega \times\right] 0, T\left[\right.$ with $T \in \mathbb{R}_{+}^{*}$, and let $1 \leq p<\infty$.
Definition 2.1. A sequence $\left(u_{\varepsilon}\right)_{\varepsilon \in E} \subset L^{p}(Q)$ is said to:
(i) weakly two-scale converge in $L^{p}(Q)$ to some $u_{0} \in L^{p}\left(Q ; L_{p e r}^{p}(Y \times Z)\right)$ if as $E \ni \varepsilon \rightarrow 0$,

$$
\begin{gather*}
\int_{Q} u_{\varepsilon}(x, t) \psi^{\varepsilon}(x, t) d x d t \rightarrow \iiint_{Q \times Y \times Z} u_{0}(x, t, y, \tau) \psi(x, t, y, \tau) d x d t d y d \tau \tag{2.1}\\
\text { for all } \psi \in L^{p^{\prime}}\left(Q ; C_{p e r}(Y \times Z)\right)\left(\frac{1}{p^{\prime}}=1-\frac{1}{p}\right), \text { where } \psi^{\varepsilon}(x, t)= \\
\psi\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right)((x, t) \in Q) ;
\end{gather*}
$$

(ii) strongly two-scale converge in $L^{p}(Q)$ to some $u_{0} \in L^{p}\left(Q ; L_{p e r}^{p}(Y \times Z)\right)$ if the following property is verified:

$$
\left\{\begin{array}{c}
\text { Given } \eta>0 \text { and } v \in L^{p}\left(Q ; C_{p e r}(Y \times Z)\right) \text { with } \\
\left\|u_{0}-v\right\|_{L^{p}(Q \times Y \times Z)} \leq \frac{\eta}{2} \text {, there is some } \alpha>0 \text { such } \\
\text { that }\left\|u_{\varepsilon}-v^{\varepsilon}\right\|_{L^{p}(Q)} \leq \eta \text { provided } E \ni \varepsilon \leq \alpha,
\end{array}\right.
$$

where $v^{\varepsilon}(x, t)=v\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right)((x, t) \in Q)$.
We will briefly express weak and strong two-scale convergence by writing $u_{\varepsilon} \rightarrow u_{0}$ in $L^{p}(Q)$-weak 2-s and $u_{\varepsilon} \rightarrow u_{0}$ in $L^{p}(Q)$-strong 2-s, respectively.
Remark 2.2. It is of interest to know that if $u_{\varepsilon} \rightarrow u_{0}$ in $L^{p}(Q)$-weak 2-s, then (2.1) holds for $\psi \in C\left(\bar{Q} ; L_{p e r}^{\infty}(Y \times Z)\right)$. See [12, Proposition 10] for the proof.

For more details about the two-scale convergence the reader can refer to [8].
However, we recall below two fundamental results. First of all, let

$$
\mathcal{y}(0, T)=\left\{v \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right): v^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right\} .
$$

$\boldsymbol{y}(0, T)$ is provided with the norm

$$
\|v\|_{y_{(0, T)}}=\left(\|v\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}^{2}+\left\|v^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}^{2}\right)^{\frac{1}{2}} \quad(v \in \mathcal{Y}(0, T))
$$

which makes it a Hilbert space.
Theorem 2.3. Assume that $1<p<\infty$ and further E is a fundamental sequence. Let a sequence $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ be bounded in $L^{p}(Q)$. Then, a subsequence E^{\prime} can be extracted from E such that $\left(u_{\varepsilon}\right)_{\varepsilon \in E^{\prime}}$ weakly two-scale converges in $L^{p}(Q)$.

Theorem 2.4. Let E be a fundamental sequence. Suppose a sequence $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ is bounded in $\mathcal{Y}(0, T)$. Then, a subsequence E^{\prime} can be extracted from E such that, as $E^{\prime} \ni \varepsilon \rightarrow 0$,

$$
\begin{aligned}
& u_{\varepsilon} \rightarrow u_{0} \text { in } \mathcal{Y}(0, T) \text {-weak, } \\
& u_{\varepsilon} \rightarrow u_{0} \text { in } L^{2}(Q) \text {-weak } 2-s, \\
& \frac{\partial u_{\varepsilon}}{\partial x_{j}} \rightarrow \frac{\partial u_{0}}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}} \text { in } L^{2}(Q) \text {-weak } 2-s(1 \leq j \leq N),
\end{aligned}
$$

where $u_{0} \in \mathcal{Y}(0, T), u_{1} \in L^{2}\left(Q ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$.
The proof of Theorem 2.3 can be found in, e.g., [8], [10], whereas Theorem 2.4 has its proof in, e.g., [12].

Let us prove the following lemma.
Lemma 2.5. Let $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ be a bounded sequence in $\mathcal{Y}(0, T)$, where E is a fundamental sequence. There exists a subsequence E^{\prime} extracted from E such that

$$
\begin{equation*}
\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} \psi^{\varepsilon} d x d t \rightarrow \int_{Q} \iint_{Y \times Z} u_{1}(x, t, y, \tau) \psi(x, t, y, \tau) d x d t d y d \tau \tag{2.2}
\end{equation*}
$$

for all $\psi \in \mathcal{D}(Q) \otimes\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)$ as $E^{\prime} \ni \varepsilon \rightarrow 0$, where $u_{1} \in L^{2}\left(Q ; L_{\text {per }}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$.
Proof. As $\left(u_{\varepsilon}\right)_{\varepsilon \in E}$ is a bounded sequence in $\boldsymbol{y}(0, T)$, thanks to Theorem 2.4 , there exists a subsequence E^{\prime} extracted from E and functions $u_{0} \in \mathcal{Y}(0, T)$,
$u_{1} \in L^{2}\left(Q ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$ such that

$$
\begin{align*}
& u_{\varepsilon} \rightarrow u_{0} \text { in } \mathcal{Y}(0, T) \text {-weak, } \\
& u_{\varepsilon} \rightarrow u_{0} \text { in } L^{2}(Q) \text {-weak } 2-s, \tag{2.3}\\
& \tag{2.4}\\
& \frac{\partial u_{\varepsilon}}{\partial x_{j}} \rightarrow \frac{\partial u_{0}}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}} \text { in } L^{2}(Q) \text {-weak 2-s }(1 \leq j \leq N),
\end{align*}
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$. Let $\theta \in \mathcal{D}(Q) \otimes C_{p e r}^{\infty}(Y) \otimes C_{p e r}(Z)$. We have

$$
\frac{1}{\varepsilon}\left(\Delta_{y} \theta\right)^{\varepsilon}=\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\frac{\partial \theta}{\partial y_{i}}\right)^{\varepsilon}-\sum_{i=1}^{N}\left(\frac{\partial^{2} \theta}{\partial x_{i} \partial y_{i}}\right)^{\varepsilon},
$$

as is easily seen by observing that

$$
\frac{\partial \Phi^{\varepsilon}}{\partial x_{i}}=\left(\frac{\partial \Phi}{\partial x_{i}}\right)^{\varepsilon}+\frac{1}{\varepsilon}\left(\frac{\partial \Phi}{\partial y_{i}}\right)^{\varepsilon}, \quad \Phi \in C^{1}\left(Q \times \mathbb{R}_{y}^{N} \times \mathbb{R}_{\tau}\right)
$$

Hence,

$$
\begin{equation*}
\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon}\left(\Delta_{y} \theta\right)^{\varepsilon} d x d t=-\int_{Q} \nabla_{x} u_{\varepsilon} \cdot\left(\nabla_{y} \theta\right)^{\varepsilon} d x d t-\int_{Q} u_{\varepsilon} \sum_{i=1}^{N}\left(\frac{\partial^{2} \theta}{\partial x_{i} \partial y_{i}}\right)^{\varepsilon} d x d t, \tag{2.5}
\end{equation*}
$$

where the dot denotes the Euclidean inner product. On the other hand, according to (2.3) and (2.4) we have

$$
\int_{Q} u_{\varepsilon}\left(\frac{\partial^{2} \theta}{\partial x_{i} \partial y_{i}}\right)^{\varepsilon} d x d t \rightarrow \int_{Q} u_{0}\left(\iint_{Y \times Z} \frac{\partial^{2} \theta}{\partial x_{i} \partial y_{i}} d y d \tau\right) d x d t=0
$$

and

$$
\int_{Q} \nabla_{x} u_{\varepsilon} \cdot\left(\nabla_{y} \theta\right)^{\varepsilon} d x d t \rightarrow \iiint_{Q \times Y \times Z}\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \theta d x d t d y d \tau
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$. Therefore, on letting $E^{\prime} \ni \varepsilon \rightarrow 0$ in (2.5), one has

$$
\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon}\left(\Delta_{y} \theta\right)^{\varepsilon} d x d t \rightarrow \iiint_{Q \times Y \times Z} u_{1} \Delta_{y} \theta d x d t d y d \tau
$$

With this in mind, let $\psi \in \mathcal{D}(Q) \otimes\left(C_{p e r}^{\infty}(Y) / \mathbb{C}\right) \otimes \mathcal{C}_{p e r}(Z)$, i.e.,

$$
\psi=\sum_{i \in I} \varphi_{i} \otimes \psi_{i} \otimes \chi_{i}
$$

with $\varphi_{i} \in \mathcal{D}(Q), \psi_{i} \in C_{p e r}^{\infty}(Y) / \mathbb{C}$ and $\chi_{i} \in C_{p e r}(Z)$, where I is a finite set (depending on ψ). For any $i \in I$, let $\theta_{i} \in H^{1}(Y)$ such that $\Delta_{y} \theta_{i}=\psi_{i}$. In view of the hypoellipticity of the Laplace operator Δ_{y}, the function θ_{i} is of class C^{∞}, thus, it belongs to $C_{p e r}^{\infty}(Y)$. Let

$$
\theta=\sum_{i \in I} \varphi_{i} \otimes \theta_{i} \otimes \chi_{i} .
$$

We have $\theta \in \mathcal{D}(Q) \otimes C_{p e r}^{\infty}(Y) \otimes C_{p e r}(Z)$ and $\Delta_{y} \theta=\psi$. Hence, (2.2) follows and the lemma is proved.

3 Convergence of the homogenization process

3.1 Preliminary results

Let B^{ε} be the linear operator in $L^{2}(\Omega)$ with domain

$$
D\left(B^{\varepsilon}\right)=\left\{v \in H_{0}^{1}(\Omega): \mathcal{A}^{\varepsilon} v+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} v \in L^{2}(\Omega)\right\},
$$

defined by

$$
B^{\varepsilon} u=\mathbf{i} \mathcal{A}^{\varepsilon} u+\frac{\mathbf{i}}{\varepsilon} \mathcal{V}^{\varepsilon} u \quad \text { for all } u \in D\left(B^{\varepsilon}\right)
$$

In the sequel, we suppose that the coefficients $\left(a_{i j}\right)_{1 \leq i, j \leq N}$ verify

$$
\begin{equation*}
a_{i j} \in W^{1, \infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right) \quad(1 \leq i, j \leq N) \tag{3.1}
\end{equation*}
$$

where $W^{1, \infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)$ is the Sobolev space of functions in $L^{\infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)$ with their derivatives of order 1. Then B^{ε} is of dense domain, and skew-adjoint since $\mathcal{A}^{\varepsilon}+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon}$ is self-adjoint (see [6] for more details). Consequently, B^{ε} is a m-dissipative operator in $L^{2}(\Omega)$ by virtue of [6, Corollary 2.4.11]. It follows by the Hille-Yosida-Philips theorem that B^{ε} is the generator of a contraction semi-group. Thus, according to [6, Chapter 4] (1.3)-(1.5) admits a unique solution $u_{\varepsilon} \in \mathcal{C}\left([0, T] ; D\left(B^{\varepsilon}\right)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$, provided $f \in C\left([0, T] ; L^{2}(\Omega)\right)$. Further, in the sequel the potential \mathcal{V} is assumed to satisfy

$$
\begin{equation*}
\left\|\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon}\right\|_{\mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)} \leq \beta \quad(\varepsilon>0) \tag{3.2}
\end{equation*}
$$

where $\beta>0$ is a constant independent of ε and where $\mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$ is the space of linear continuous mappings of $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)\left(\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon}\right.$ is the linear operator of $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$ defined by $\left.u \mapsto \frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u\right)$. For an illustrative example, if the potential \mathcal{V} belongs to $C_{p e r}(Y) \cap C^{2}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)\left(C_{p e r}(Y)\right.$ is the space of Y-periodic continuous complex functions on \mathbb{R}_{y}^{N}) and verifies

$$
\begin{equation*}
\int_{Y} \mathcal{V}(y) d y=0 \tag{3.3}
\end{equation*}
$$

Then, the linear operator $\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon}$ of $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$ verifies (3.2). Indeed, since $\mathcal{V} \in \mathcal{C}_{p e r}(Y)$ and verifies (3.3), the equation

$$
-\Delta_{y} \chi+\mathcal{V}=0
$$

admits a unique solution χ in $H_{\#}^{1}(Y)$ which is sufficiently smooth. Moreover, for all $\varepsilon>0$, we have

$$
-\varepsilon \Delta \chi^{\varepsilon}+\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon}=0
$$

Thus, for any $u \in H_{0}^{1}(\Omega)$, we have

$$
\left(\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u, v\right)=-\varepsilon \int_{\Omega} \nabla \chi^{\varepsilon} \cdot \nabla(u v) d x=-\int_{\Omega}\left(\nabla_{y \chi}\right)^{\varepsilon} \cdot \nabla(u v) d x
$$

for all $v \in \mathcal{D}(\Omega)\left(\mathcal{D}(\Omega)\right.$ is the space of functions in $C^{\infty}(\Omega)$ with compact supports), and this implies

$$
\left|\left(\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u, v\right)\right| \leq c_{0}\left(\|u\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}\right)
$$

where $c_{0}=\max _{1 \leq j \leq N}\left\|\frac{\partial x}{\partial y_{j}}\right\|_{\infty}$. Accordingly,

$$
\left|\left(\frac{1}{\varepsilon} \mathcal{V}^{\varepsilon} u, v\right)\right| \leq 2 c_{0} c_{1}\|u\|_{H_{0}^{1}(\Omega)}\|v\|_{H_{0}^{1}(\Omega)}, \quad \forall v \in \mathcal{D}(\Omega),
$$

c_{1} being the constant in the Poincaré inequality. Thus, by the density of $\mathcal{D}(\Omega)$ in $H_{0}^{1}(\Omega)$, the precedent inequality holds for all $v \in H_{0}^{1}(\Omega)$. Hence, (3.2) follows with $\beta=2 c_{0} c_{1}$.

Now, let us prove some estimates for (1.3)-(1.5).
Lemma 3.1. Suppose that

$$
\begin{equation*}
\alpha>\beta \tag{3.4}
\end{equation*}
$$

(α being the constant in (1.2) and β the one in (3.2)) and

$$
\begin{equation*}
f \in C^{1}\left(0, T ; L^{2}(\Omega)\right) \tag{3.5}
\end{equation*}
$$

Then, there exists a constant $c>0$ independent of ε such that the solution u_{ε} of (1.3)-(1.5) verifies:

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq c \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq c \tag{3.7}
\end{equation*}
$$

Before the proof of this lemma, let us make some useful remarks. Let us put

$$
a^{\varepsilon}(u, v)=\sum_{i, j=1}^{N} \int_{\Omega} a_{i j}^{\varepsilon} \frac{\partial u}{\partial x_{j}} \frac{\overline{\partial v}}{\partial x_{i}} d x \quad \text { for all } u, v \in H^{1}(\Omega)
$$

Remark 3.2. As $u_{\varepsilon} \in C\left([0, T] ; D\left(B^{\varepsilon}\right)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$, the function $t \mapsto a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)$ belongs to $C^{1}([0, T])$ and

$$
\frac{d}{d t} a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)=2 \operatorname{Re}\left(\mathcal{F}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right) \text { for all } t \in[0, T]
$$

On the other hand, we have

$$
\frac{d}{d t}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}(t)\right)=2 \operatorname{Re}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right) \quad(t \in[0, T])
$$

where (,) denotes the scalar product in $L^{2}(\Omega)$. Further, by (3.5) we have

$$
\frac{d}{d t}\left(f(t), u_{\varepsilon}(t)\right)=\left(f^{\prime}(t), u_{\varepsilon}(t)\right)+\left(f(t), u_{\varepsilon}^{\prime}(t)\right) \quad(t \in[0, T])
$$

Proof of Lemma 3.1. Taking the scalar product in $L^{2}(\Omega)$ of (1.3) with u_{ε} yields

$$
\mathbf{i}\left(u_{\varepsilon}^{\prime}(t), u_{\varepsilon}(t)\right)+a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)+\frac{1}{\varepsilon}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}(t)\right)=\left(f(t), u_{\varepsilon}(t)\right) \quad(t \in[0, T])
$$

Using (1.1) and the fact that $a_{i j}$ is real, we see that $t \longmapsto a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)$ is a real valued function. Thus, by the preceding equality we have

$$
\operatorname{Re}\left(u_{\varepsilon}^{\prime}(t), u_{\varepsilon}(t)\right)=-\operatorname{Re}\left(\mathbf{i} f(t), u_{\varepsilon}(t)\right) \quad(t \in[0, T])
$$

i.e.,

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{\varepsilon}(t)\right\|_{L^{2}(\Omega)}^{2}=-\operatorname{Re}\left(\mathbf{i} f(t), u_{\varepsilon}(t)\right) \quad(t \in[0, T])
$$

Integrating the preceding equality in $[0, t]$ with $t \in[0, T]$ leads to

$$
\begin{equation*}
\left\|u_{\varepsilon}(t)\right\|_{L^{2}(\Omega)}^{2} \leq 2 \int_{0}^{T} \int_{\Omega}|f|\left|u_{\varepsilon}\right| d x d t \tag{3.8}
\end{equation*}
$$

Moreover,

$$
2 \int_{0}^{T} \int_{\Omega}|f|\left|u_{\varepsilon}\right| d x d t \leq \int_{0}^{T} \int_{\Omega}\left(2 T|f|^{2}+\frac{1}{2 T}\left|u_{\varepsilon}\right|^{2}\right) d x d t
$$

Consequently, an integration on $[0, T]$ of (3.8) leads to

$$
\begin{equation*}
\frac{1}{2}\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2} \leq 2 T^{2}\|f\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2} \tag{3.9}
\end{equation*}
$$

It follows from the preceding inequality that the sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ is bounded in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$. Now, let us prove (3.6). Taking the scalar product in $L^{2}(\Omega)$ of (1.3) with u_{ε}^{\prime}, one as

$$
\mathbf{i}\left\|u_{\varepsilon}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2}+\left(\mathcal{A}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)+\frac{1}{\varepsilon}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)=\left(f(t), u_{\varepsilon}^{\prime}(t)\right) \quad(t \in[0, T])
$$

By the preceding equality we have,

$$
\operatorname{Re}\left(\mathcal{A}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)+\frac{1}{\varepsilon} \operatorname{Re}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)=\operatorname{Re}\left(f(t), u_{\varepsilon}^{\prime}(t)\right) \quad(t \in[0, T])
$$

Thus, using Remark 3.2 leads to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)+\frac{1}{2 \varepsilon} \frac{d}{d t}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}(t)\right)=\operatorname{Re} \frac{d}{d t}\left(f(t), u_{\varepsilon}(t)\right)-\operatorname{Re}\left(f^{\prime}(t), u_{\varepsilon}(t)\right) \tag{3.10}
\end{equation*}
$$

An integration on $[0, t]$ of (3.10) yields,

$$
\begin{equation*}
\frac{1}{2} a^{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}(t)\right)+\frac{1}{2 \varepsilon}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), u_{\varepsilon}(t)\right)=\operatorname{Re}\left(f(t), u_{\varepsilon}(t)\right)-\operatorname{Re} \int_{0}^{t}\left(f^{\prime}(s), u_{\varepsilon}(s)\right) d s \tag{3.11}
\end{equation*}
$$

It follows from (1.2) and (3.11) that, by (3.2) we have
$\alpha\left\|u_{\varepsilon}(t)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq \beta\left\|u_{\varepsilon}(t)\right\|_{H_{0}^{1}(\Omega)}^{2}+2\|f(t)\|_{L^{2}(\Omega)}\left\|u_{\varepsilon}(t)\right\|_{L^{2}(\Omega)}+2\left\|f^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}$. Integrating on $[0, T]$ the preceding inequality and using (3.9) and (3.4), we see that the sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, and (3.6) follows. Now, we can prove (3.7). By (1.3), we have

$$
\mathbf{i} \int_{0}^{T}\left(u_{\varepsilon}^{\prime}(t), v(t)\right) d t+\int_{0}^{T} a^{\varepsilon}\left(u_{\varepsilon}(t), v(t)\right) d t+\frac{1}{\varepsilon} \int_{0}^{T}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), v(t)\right) d t=\int_{0}^{T}(f(t), v(t)) d t
$$ for all $v \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Hence,

$$
\begin{gathered}
\left|\int_{0}^{T}\left(u_{\varepsilon}^{\prime}(t), v(t)\right) d t\right| \leq c_{2}\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}\|v\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+ \\
\beta\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}\|v\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+c_{0}\|f\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}\|v\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)},
\end{gathered}
$$

where $c_{2}=\max _{1 \leq i, j \leq N}\left\|a_{i j}\right\|_{\infty}, \beta$ is given by (3.2) and c_{0} is the constant in the Poincaré inequality. It follows from the preceding inequality that

$$
\left\|u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq\left(c_{2}+\beta\right)\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+c_{0}\|f\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} .
$$

Then, by (3.6) we conclude that the sequence $\left(u_{\varepsilon}^{\prime}\right)_{\varepsilon>0}$ is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. The lemma is proved.

3.2 A convergence theorem

Let us first introduce some functions spaces.
We consider the space

$$
\mathbb{F}_{0}^{1}=\mathcal{Y}(0, T) \times L^{2}\left(Q ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)
$$

provided with the norm

$$
\|\mathbf{u}\|_{\mathbb{F}_{0}^{1}}=\left(\left\|u_{0}\right\|_{y_{(0, T)}}^{2}+\left\|u_{1}\right\|_{L^{2}\left(Q ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)}^{2}\right)^{\frac{1}{2}} \quad\left(\mathbf{u}=\left(u_{0}, u_{1}\right) \in \mathbb{F}_{0}^{1}\right),
$$

which makes it Hilbert space. We consider also the space

$$
\mathcal{F}_{0}^{\infty}=\mathcal{D}(Q) \times\left[\mathcal{D}(Q) \otimes\left[\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)\right]\right]
$$

which is a dense subspace of \mathbb{F}_{0}^{1}. For $\mathbf{u}=\left(u_{0}, u_{1}\right)$ and $\mathbf{v}=\left(v_{0}, v_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{\text {per }}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$, we set

$$
\mathfrak{a}(\mathbf{u}, \mathbf{v})=\sum_{i, j=1}^{N} \iiint_{\Omega \times Y \times Z} a_{i j}(y)\left(\frac{\partial u_{0}}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}}\right)\left(\overline{\frac{\partial v_{0}}{\partial x_{i}}}+\overline{\frac{\partial v_{1}}{\partial y_{i}}}\right) d x d y d \tau .
$$

This defines a sesquilinear hermitian form on $\left[H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{\text {per }}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)\right]^{2}$ which is continuous and verifies

$$
\begin{equation*}
\mathfrak{a}(\mathbf{v}, \mathbf{v}) \geq \alpha\|\mathbf{v}\|_{H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)}^{2} \quad\left(\mathbf{v} \in H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)\right) \tag{3.12}
\end{equation*}
$$

according to (1.1)-(1.2). Further, we have the following lemma.
Lemma 3.3. Let $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $\mathcal{V} \in L^{\infty}\left(\mathbb{R}_{y}^{N} ; \mathbb{R}\right)$. Then the variational problem

$$
\left\{\begin{array}{l}
\mathbf{u}=\left(u_{0}, u_{1}\right) \in \mathbb{F}_{0}^{1} \text { with } u_{0}(0)=0: \tag{3.13}\\
\boldsymbol{i} \int_{0}^{T}\left\langle u_{0}^{\prime}(t), \overline{v_{0}}(t)\right\rangle d t+\int_{0}^{T} \mathfrak{a}(\mathbf{u}(t), \mathbf{v}(t)) d t+\iiint_{Q \times Y \times Z}\left(u_{1} \overline{v_{0}}+u_{0} \overline{v_{1}}\right) \mathcal{V} d x d t d y d \tau \\
\quad=\int_{0}^{T}\left(f(t), v_{0}(t)\right) d t
\end{array}\right.
$$

admits at most one solution $\left(\langle\right.$,$\rangle is the duality pairing between H^{-1}(\Omega)$ and $\left.H_{0}^{1}(\Omega)\right)$.
Proof. Suppose $\mathbf{u}=\left(u_{0}, u_{1}\right)$ and $\mathbf{w}=\left(w_{0}, w_{1}\right)$ are solutions of (3.13). We set $\mathbf{z}=\mathbf{u}-\mathbf{w}(\mathbf{z}=$ $\left(z_{0}, z_{1}\right)$ with $z_{0}=u_{0}-w_{0}$ and $\left.z_{1}=u_{1}-w_{1}\right)$. By (3.13), we see that \mathbf{z} verifies

$$
\begin{equation*}
\mathbf{i} \int_{0}^{T}\left\langle z_{0}^{\prime}(t), \overline{v_{0}}(t)\right\rangle d t+\int_{0}^{T} \mathfrak{a}(\mathbf{z}(t), \mathbf{v}(t)) d t+\iiint_{Q \times Y \times Z}\left(z_{1} \overline{v_{0}}+z_{0} \overline{v_{1}}\right) \mathcal{V} d x d t d y d \tau=0 \tag{3.14}
\end{equation*}
$$

for all $\mathbf{v}=\left(v_{0}, v_{1}\right) \in \mathbb{F}_{0}^{1}$. Taking in particular $\mathbf{v}=\varphi \otimes \mathbf{v}_{*}$ with $\varphi \in \mathcal{D}(] 0, T[)$ and $\mathbf{v}_{*}=\left(v_{0}, v_{1}\right) \in$ $H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$ in (3.14), we obtain

$$
\mathbf{i}\left\langle z_{0}^{\prime}(t), \overline{v_{0}}\right\rangle+\mathfrak{a}\left(\mathbf{z}(t), \mathbf{v}_{*}\right)+\iiint_{\Omega \times Y \times Z}\left(z_{1}(t) \overline{v_{0}}+z_{0}(t) \overline{v_{1}}\right) \mathcal{V} d x d y d \tau=0 \quad(t \in[0, T])
$$

for all $\mathbf{v}_{*}=\left(v_{0}, v_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)\right)$. Thus, choosing $\mathbf{v}_{*}=\mathbf{z}(t)$ for $t \in[0, T]$ in the preceding equality yields,
$\mathbf{i}\left\langle z_{0}^{\prime}(t), \overline{z_{0}}(t)\right\rangle+\mathfrak{a}(\mathbf{z}(t), \mathbf{z}(t))+\iiint_{\Omega \times Y \times Z}\left(z_{1}(t) \overline{z_{0}}(t)+z_{0}(t) \overline{z_{1}}(t)\right) \mathcal{V} d x d y d \tau=0 \quad(t \in[0, T])$.
But, according to (1.1) and by the fact that $a_{i j}$ is real, $t \mapsto \mathfrak{a}(\mathbf{z}(t), \mathbf{z}(t))$ is a real valued function. Consequently, by the preceding equality we have

$$
\operatorname{Re}\left\langle z_{0}^{\prime}(t), \overline{z_{0}}(t)\right\rangle=0 \quad(t \in[0, T]),
$$

i.e.,

$$
\frac{1}{2} \frac{d}{d t}\left\|z_{0}(t)\right\|_{L^{2}(\Omega)}^{2}=0 \quad(t \in[0, T]) .
$$

Hence $z_{0}(t)=0$ for all $t \in[0, T]$. Then, by (3.12) and (3.15) we see that $\mathbf{z}(t)=0$ for all $t \in[0, T]$, and the lemma follows.

In the sequel the coefficients $a_{i j}(1 \leq i, j \leq N)$ are assumed to verify the periodicity hypothesis

$$
\begin{equation*}
a_{i j}(y+k)=a_{i j}(y) \quad \text { a.e. in } \mathbb{R}^{N}(1 \leq i, j \leq N) \tag{3.16}
\end{equation*}
$$

for all $k \in \mathbb{Z}^{N}$. Moreover, the potential \mathcal{V} is supposed to satisfy

$$
\begin{equation*}
\mathcal{V}(y+k)=\mathcal{V}(y) \quad \text { a.e. in } \mathbb{R}^{N} \tag{3.17}
\end{equation*}
$$

for all $k \in \mathbb{Z}^{N}$, and (3.3). Therefore the functions $a_{i j}(1 \leq i, j \leq N)$ and \mathcal{V} are Y-periodic, where $Y=\left(-\frac{1}{2}, \frac{1}{2}\right)^{N}$. Further, \mathcal{V} is of zero mean value.

Before we can prove our convergence theorem, let us state the following useful lemma whose proof is left to the reader.

Lemma 3.4. There exist a constant $c_{0}=c_{0}(\Omega, Y, T)>0$ and some real number $\varepsilon_{0}>0$ such that for all $w \in\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)$,

$$
\left|\int_{Q} w^{\varepsilon} \varphi d x d t\right| \leq c_{0} \varepsilon\|w\|_{L_{p e r}^{2}(Y \times Z)}\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}
$$

for all $\varepsilon \in E, \varepsilon \leq \varepsilon_{0}$ and for all $\varphi \in \mathcal{D}^{1}(Q)$, where E is a fundamental sequence.
Now, let us make this useful remark.
Remark 3.5. In view of the density of $\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)$ in $L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right)$, if (2.2) holds for any $w \in\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)$, then (2.2) holds for any $w \in L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right)$. Indeed, by virtue of Lemma 3.4, we have

$$
\begin{equation*}
\left|\int_{Q} w^{\varepsilon} \varphi d x d t\right| \leq c_{0} \varepsilon\|w\|_{L_{p e r}^{2}(Y \times Z)}\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \tag{3.18}
\end{equation*}
$$

for all $w \in\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes \mathcal{C}_{p e r}(Z), \varphi \in \mathcal{D}^{1}(Q)$ and all $\varepsilon \in E, \varepsilon<\varepsilon_{0}$. By density, (3.18) holds for all $w \in L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right)$ and all $\varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. In particular, we have

$$
\begin{equation*}
\left|\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} w^{\varepsilon} \varphi d x d t\right| \leq c_{0}\|w\|_{L^{2}(Y \times Z)}\|\varphi\|_{\infty}\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \quad\left(\varepsilon<\varepsilon_{0}\right) \tag{3.19}
\end{equation*}
$$

for all $w \in L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right)$. Now, let $c_{1}>0$ be a constant such that

$$
\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq c_{1}(\text { for all } \varepsilon \in E) \text { and }\left\|u_{1}\right\|_{L^{2}(Q \times Y \times Z)} \leq c_{1} \text {. Further, fix } w \in L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right),
$$ $\varphi \in \mathcal{D}(Q)$ and let $c_{2}>\max \left\{c_{0} c_{1}\|\varphi\|_{\infty}, c_{1}\|\varphi\|_{\infty}\right\}$. Consider an arbitrary real $\eta>0$. By density, choose $\psi \in\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes C_{p e r}(Z)$ such that $\|w-\psi\|_{L^{2}(Y \times Z)} \leq \frac{\eta}{3 c_{2}}$. Now writing

$$
\begin{gathered}
\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} w^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} w u_{1} \varphi d x d t d y d \tau= \\
\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon}\left(w^{\varepsilon}-\psi^{\varepsilon}\right) \varphi d x d t+\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} \psi^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} \psi u_{1} \varphi d x d t d y d \tau \\
+\int_{Q} \iint_{Y \times Z}(\psi-w) u_{1} \varphi d x d t d y d \tau
\end{gathered}
$$

we estimate the first integral on the right-hand side by using (3.19). We obtain

$$
\begin{array}{r}
\left|\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} w^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} w u_{1} \varphi d x d t d y d \tau\right| \\
\leq 2 c_{2}\|w-\psi\|_{L^{2}(Y \times Z)}+\left|\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} \psi^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} \psi u_{1} \varphi d x d t d y d \tau\right| \tag{3.20}
\end{array}
$$

for all $\varepsilon<\varepsilon_{0}$. Finally, using (2.2) we see that there exists $\alpha>0$ such that

$$
\left|\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} \psi^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} \psi u_{1} \varphi d x d t d y d \tau\right| \leq \frac{\eta}{3}
$$

for all $\varepsilon<\alpha$. Thus, by (3.20) we have

$$
\left|\int_{Q} \frac{1}{\varepsilon} u_{\varepsilon} w^{\varepsilon} \varphi d x d t-\int_{Q} \iint_{Y \times Z} w u_{1} \varphi d x d t d y d \tau\right| \leq \frac{2 \eta}{3}+\frac{\eta}{3}=\eta
$$

for all $\varepsilon<\alpha$.
We are now in position to prove our convergence theorem.
Theorem 3.6. Suppose the hypotheses of Lemma 3.1 are satisfied. For fixed $\varepsilon>0$, let u_{ε} be the solution of (1.3)-(1.5). Then, as $\varepsilon \rightarrow 0$, we have:

$$
\begin{align*}
& u_{\varepsilon} \rightarrow u_{0} \text { in } \mathcal{Y}(0, T) \text {-weak }, \tag{3.21}\\
& u_{\varepsilon} \rightarrow u_{0} \text { in } L^{2}(Q) \text {-strong } \tag{3.22}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial u_{\varepsilon}}{\partial x_{j}} \rightarrow \frac{\partial u_{0}}{\partial x_{j}}+\frac{\partial u_{1}}{\partial y_{j}} \text { in } L^{2}(Q) \text {-weak } 2-s \quad(1 \leq i, j \leq N), \tag{3.23}
\end{equation*}
$$

where $\mathbf{u}=\left(u_{0}, u_{1}\right) \in \mathbb{F}_{0}^{1}$ is the unique solution of (3.13).

Proof. According to Lemma 3.1, the sequence $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ is bounded in $\mathcal{Y}(0, T)$. Hence, if E is a fundamental sequence, by virtue of Theorem 2.4 there are some subsequence E^{\prime} extracted from E and some vector function $\mathbf{u}=\left(u_{0}, u_{1}\right) \in \mathbb{F}_{0}^{1}$ such that (3.21)-(3.23) hold when $E^{\prime} \ni \varepsilon \rightarrow 0$. Thus, thanks to Lemma 3.3, the theorem is certainly proved if we can show that \mathbf{u} verifies (3.13). Indeed, we begin by verifying that $u_{0}(0)=0$ (it is worth recalling that u_{0} may be viewed as a continuous mapping of $[0, T]$ into $\left.L^{2}(\Omega)\right)$.

Let $v \in H_{0}^{1}(\Omega)$, and let $\varphi \in C^{1}([0, T])$ with $\varphi(T)=0$. By integration by parts, we have,

$$
\int_{0}^{T}\left\langle u_{\varepsilon}^{\prime}(t), v\right\rangle \varphi(t) d t+\int_{0}^{T}\left\langle u_{\varepsilon}(t), v\right\rangle \varphi^{\prime}(t) d t=-\left\langle u_{\varepsilon}(0), v\right\rangle \varphi(0)=0
$$

since $u_{\varepsilon}(0)=0$. In view of (3.21)-(3.22), we pass to the limit in the preceding equality as $E^{\prime} \ni \varepsilon \rightarrow 0$. We obtain

$$
\int_{0}^{T}\left\langle u_{0}^{\prime}(t), v\right\rangle \varphi(t) d t+\int_{0}^{T}\left\langle u_{0}(t), v\right\rangle \varphi^{\prime}(t) d t=0 .
$$

Since φ and v are arbitrary, we see that $u_{0}(0)=0$.
Finally, let us prove the variational equality of (3.13). Fix any arbitrary two functions

$$
\psi_{0} \in \mathcal{D}(Q) \text { and } \psi_{1} \in \mathcal{D}(Q) \otimes\left[\left(C_{p e r}(Y) / \mathbb{C}\right) \otimes \mathcal{C}_{p e r}(Z)\right]
$$

and let

$$
\psi_{\varepsilon}=\psi_{0}+\varepsilon \psi_{1}^{\varepsilon} \text {, i.e., } \psi_{\varepsilon}(x, t)=\psi_{0}(x, t)+\varepsilon \psi_{1}\left(x, t, \frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \text { for all }(x, t) \in Q \text {, }
$$

where $\varepsilon>0$ is arbitrary. By (1.3), one as
$\mathbf{i} \int_{0}^{T}\left\langle u_{\varepsilon}^{\prime}(t), \bar{\psi}_{\varepsilon}(t)\right\rangle d t+\int_{0}^{T} a^{\varepsilon}\left(u_{\varepsilon}(t), \psi_{\varepsilon}(t)\right) d t+\frac{1}{\varepsilon} \int_{0}^{T}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), \psi_{\varepsilon}(t)\right) d t=\int_{0}^{T}\left(f(t), \psi_{\varepsilon}(t)\right) d t$.
The aim is to pass to the limit in (3.24) as $E^{\prime} \ni \varepsilon \rightarrow 0$. First, we have

$$
\int_{0}^{T}\left\langle u_{\varepsilon}^{\prime}(t), \bar{\psi}_{\varepsilon}(t)\right\rangle d t=-\int_{Q} u_{\varepsilon} \frac{\partial \bar{\psi}_{\varepsilon}}{\partial t} d x d t=-\int_{Q} u_{\varepsilon}\left(\frac{\partial \bar{\psi}_{0}}{\partial t}+\varepsilon\left(\frac{\partial \bar{\psi}_{1}}{\partial t}\right)^{\varepsilon}+\left(\frac{\partial \bar{\psi}_{1}}{\partial \tau}\right)^{\varepsilon}\right) d x d t .
$$

Thus, in view of (3.22) (and using Definition 2.1), we have,

$$
\int_{0}^{T}\left\langle u_{\varepsilon}^{\prime}(t), \bar{\psi}_{\varepsilon}(t)\right\rangle d t \rightarrow-\int_{Q} u_{0} \frac{\partial \bar{\psi}_{0}}{\partial t} d x d t=\int_{0}^{T}\left\langle u_{0}^{\prime}(t), \bar{\psi}_{0}(t)\right\rangle d t
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$, since

$$
\int_{Q}\left(\iint_{Y \times Z} \frac{\partial \bar{\psi}_{1}}{\partial \tau} d y d \tau\right) u_{0} d x d t=0
$$

by virtue of the $Y \times Z$-periodicity of ψ_{1}.
Next, we have

$$
\int_{0}^{T} a^{\varepsilon}\left(u_{\varepsilon}(t), \psi_{\varepsilon}(t)\right) d t \rightarrow \int_{0}^{T} \mathfrak{a}(\mathbf{u}(t), \phi(t)) d t
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$, where $\phi=\left(\psi_{0}, \psi_{1}\right)$ (proceed as in the proof of the similar result in [11, p.179]). On the other hand,

$$
\begin{equation*}
\frac{1}{\varepsilon} \int_{0}^{T}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), \psi_{\varepsilon}(t)\right) d t=\frac{1}{\varepsilon} \int_{Q} \mathcal{V}^{\varepsilon} u_{\varepsilon} \bar{\psi}_{0} d x d t+\int_{Q} \mathcal{V}^{\varepsilon} u_{\varepsilon} \bar{\psi}_{1}^{\varepsilon} d x d t \tag{3.25}
\end{equation*}
$$

In view of Lemma 2.5 and Remark 3.5, and by the fact that \mathcal{V} belongs to $L_{p e r}^{2}\left(Z ; L_{p e r}^{2}(Y) / \mathbb{C}\right)$ (by virtue of (3.3) and (3.17)), we pass to the limit in (3.25). This yields,

$$
\frac{1}{\varepsilon} \int_{0}^{T}\left(\mathcal{V}^{\varepsilon} u_{\varepsilon}(t), \psi_{\varepsilon}(t)\right) d t \rightarrow \iiint_{Q \times Y \times Z}\left(u_{1} \bar{\psi}_{0}+u_{0} \bar{\psi}_{1}\right) \mathcal{V} d x d t d y d \tau
$$

as $E^{\prime} \ni \varepsilon \rightarrow 0$. Hence, passing to the limit in (3.24) as $E^{\prime} \ni \varepsilon \rightarrow 0$ leads to

$$
\begin{gather*}
\mathbf{i} \int_{0}^{T}\left\langle u_{0}^{\prime}(t), \bar{\psi}_{0}(t)\right\rangle d t+\int_{0}^{T} \mathfrak{a}(\mathbf{u}(t), \phi(t)) d t+\iiint_{Q \times Y \times Z}\left(u_{1} \bar{\psi}_{0}+u_{0} \bar{\psi}_{1}\right) \mathcal{V} d x d t d y d \tau \tag{3.26}\\
=\int_{0}^{T}\left(f(t), \psi_{0}(t)\right) d t
\end{gather*}
$$

for all $\phi=\left(\psi_{0}, \psi_{1}\right) \in \mathcal{F}_{0}^{\infty}$. Moreover, since \mathcal{F}_{0}^{∞} is a dense subspace of \mathbb{F}_{0}^{1}, by (3.26) we see that $\mathbf{u}=\left(u_{0}, u_{1}\right)$ verifies (3.13). Thanks to the uniqueness of the solution for (3.13) and the fact that the sequence E is arbitrary, we have (3.21)-(3.23) as $\varepsilon \rightarrow 0$. The theorem is proved.

For further needs, we wish to give a simple representation of the function u_{1} in Theorem 3.6. For this purpose, let us introduce the form $\widehat{\mathfrak{a}}$ on $L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right) \times L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$ defined by

$$
\widehat{\mathfrak{a}}(w, v)=\sum_{i, j=}^{N} \iint_{Y \times Z} a_{i j} \frac{\partial w}{\partial y_{j}} \frac{\overline{\partial v}}{\partial y_{i}} d y d \tau
$$

for all $w, v \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$. By virtue of (1.1)-(1.2), the sesquilinear form $\widehat{\mathfrak{a}}$ is continuous, hermitian and coercive with,

$$
\widehat{\mathfrak{a}}(v, v) \geq \alpha\|v\|_{L_{p e r}}^{2}\left(Z ; H_{\#}^{1}(Y)\right) \text { for all } v \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right) .
$$

Next, for any indice l with $1 \leq l \leq N$, we consider the variational problem

$$
\left\{\begin{array}{c}
\chi^{l} \in L_{\text {per }}^{2}\left(Z ; H_{\#}^{1}(Y)\right) \tag{3.27}\\
\widehat{\mathfrak{a}}\left(\chi^{l}, v\right)=\sum_{i=1}^{N} \iint_{Y \times Z} a_{i l} \overline{\partial v} \\
\quad \text { for all } v \in L_{\text {per }}^{2}\left(Z ; H_{\#}^{1}(Y)\right),
\end{array}\right.
$$

which determines χ^{l} in a unique manner. Further, let $\eta \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$ be the unique function defined by

$$
\begin{equation*}
\widehat{\mathfrak{a}}(\eta, v)=\iint_{Y \times Z} \mathcal{V} \bar{v} d y d \tau \quad \text { for all } v \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right) . \tag{3.28}
\end{equation*}
$$

Lemma 3.7. Under the hypotheses of Theorem 3.6, we have

$$
\begin{equation*}
u_{1}(x, t, y, \tau)=-\sum_{j=1}^{N} \frac{\partial u_{0}}{\partial x_{j}}(x, t) \chi^{j}(y, \tau)+\eta(y, \tau) u_{0}(x, t) \tag{3.29}
\end{equation*}
$$

for almost all $(x, t, y, \tau) \in Q \times Y \times Z$.
Proof. In (3.13) choose the particular test function $\mathbf{v}=\left(v_{0}, v_{1}\right) \in \mathbb{F}_{0}^{1}$ with $v_{0}=0$ and $v_{1}=$ $\varphi \otimes v$, where $\varphi \in \mathcal{D}(Q)$ and $v \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$. This yields

$$
\begin{equation*}
\widehat{\mathfrak{a}}\left(u_{1}(x, t), v\right)=-\sum_{i, j=1}^{N} \frac{\partial u_{0}}{\partial x_{j}}(x, t) \iint_{Y \times Z} a_{i j} \frac{\overline{\partial v}}{\partial y_{i}} d y d \tau+u_{0}(x, t) \iint_{Y \times Z} \mathcal{V} \bar{v} d y d \tau \tag{3.30}
\end{equation*}
$$

almost everywhere in $(x, t) \in Q$ and for all $v \in L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$. But it is clear that $u_{1}(x, t)$ (for fixed $(x, t) \in Q)$ is the sole function in $L_{p e r}^{2}\left(Z ; H_{\#}^{1}(Y)\right)$ solving the variational equation (3.30). On the other hand, in view of (3.27)-(3.28) it is an easy matter to check that the right hand side of (3.29) solves the same variational equation. Hence the lemma follows immediatly.

3.3 The macroscopic homogenized equation

Our aim here is to derive the initial boundary value problem for u_{0}. To begin, for $1 \leq i, j \leq N$, let

$$
\begin{gathered}
q_{i j}=\int_{Y} a_{i j} d y-\sum_{1=1}^{N} \iint_{Y \times Z} a_{i l} \frac{\partial \chi^{j}}{\partial y_{l}} d y d \tau \\
b_{i}=-\iint_{Y \times Z} \chi^{i} \mathcal{V} d y d \tau-\sum_{j=1}^{N} \iint_{Y \times Z} a_{i j} \frac{\partial \eta}{\partial y_{j}} d y d \tau .
\end{gathered}
$$

Fruther, let

$$
\mu=\iint_{Y \times Z} \eta \mathcal{V} d y d \tau
$$

To the coefficients $q_{i j}$ we attach the differential operator Q on Q mapping $\mathcal{D}^{\prime}(Q)$ into $\mathcal{D}^{\prime}(Q)$ $\left(D^{\prime}(Q)\right.$ being the usual space of complex distributions on Q) as

$$
Q u=-\sum_{i, j=}^{N} q_{i j} \frac{\partial^{2} u}{\partial x_{j} \partial x_{i}} \text { for all } u \in \mathcal{D}^{\prime}(Q)
$$

Let

$$
b=\left(b_{i}\right)_{i=1, \ldots, N}
$$

We consider the following initial boundary value problem:

$$
\begin{gather*}
\left.\mathbf{i} \frac{\partial u_{0}}{\partial t}+Q u_{0}+b \cdot \nabla u_{0}+\mu u_{0}=f \text { in } Q=\Omega \times\right] 0, T[\tag{3.31}\\
\left.u_{0}=0 \text { on } \partial \Omega \times\right] 0, T[\tag{3.32}
\end{gather*}
$$

$$
\begin{equation*}
u_{0}(0)=0 \text { in } \Omega \tag{3.33}
\end{equation*}
$$

The initial boundary value problem (3.31)-(3.33) is the so-called macroscopic homogenized equation.

Lemma 3.8. Suppose the hypotheses of Lemma 3.1 are satisfied. Then, the initial boundary value problem (3.31)-(3.33) admits at most one weak solution u_{0} in $\mathcal{Y}(0, T)$.

Proof. It is an easy exercise to show that if $u_{0} \in \mathcal{Y}(0, T)$ verifies (3.31)-(3.33) then $\mathbf{u}=\left(u_{0}, u_{1}\right)$ [with u_{1} given by (3.29)] satisfies (3.13). Hence, the unicity in (3.31)-(3.33) follows by Lemma 3.3.

Theorem 3.9. Suppose the hypotheses of Lemma 3.1 are satisfied. For $\varepsilon>0$, let $u_{\varepsilon} \in$ $\boldsymbol{y}(0, T)$ be defined by (1.3)-(1.5). Then, as $\varepsilon \rightarrow 0$, we have $u_{\varepsilon} \rightarrow u_{0}$ in $\mathcal{y}(0, T)$-weak, where u_{0} is the unique weak solution of (3.31)-(3.33) in $\mathcal{Y}(0, T)$.

Proof. As in the proof of Theorem 3.6, from any fundamental sequence E one can extract a subsequence E^{\prime} such that as $E^{\prime} \ni \varepsilon \rightarrow 0$, we have (3.21)-(3.23), and further (3.26) holds for all $\phi=\left(\psi_{0}, \psi_{1}\right) \in \mathcal{F}_{0}^{\infty}$, where $\mathbf{u}=\left(u_{0}, u_{1}\right) \in \mathbb{F}_{0}^{1}$. Now, substituting (3.29) in (3.26) and then choosing therein the ϕ 's such that $\psi_{1}=0$, a simple computation yields (3.31) with (3.32)-(3.33), of course. Hence the theorem follows by Lemma 3.8 and using of an obvious argument.

Acknowledgments The author wishes to thank kindly the anonymous refrees for their useful remarks and suggestions.

References

[1] G. Allaire, Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation, in Quantum Transport, Modelling, Analysis and Asymptotics, Lecture Notes in Mathematics, Volume 1946, 2008, pp 1-44.
[2] G. Allaire, A. Piatnitski; Homogenization of the Schrödinger equation and effectifive mass theorems, Commun. Math. Phys, 258, 1-22 (2005).
[3] G. Allaire, M. Vanninathan, Homogenization of the Schrödinger equation with a time oscillating potential, Discrete Contin. Dyn. Syst., Ser. B6, No.1, (2006), 1-16.
[4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, 1978.
[5] N. Bourbaki, Intégration, chap. 1-4, Hermaan, Paris, 1966.
[6] T. Cazenave, A. Haraux; An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford 1998.
[7] M.A. Hoefer, M.I. Weinstein, Defect modes and homogenization of periodic Schrödinger operators, SIAM J. Math. Anal. 43, No. 2 (2011), 971-996.
[8] D. Lukkassen, G. Nguetseng and P. Wall; Two-scale convergence, Int. J. Pure and Appl. Math, 2 (2002), 35-86.
[9] O.L. Naraigh, D. OKiely, Homogenization theory for periodic potentials in the Schrödinger equation, Eur. J. Phys. 34, No. 1 (2013), 19-31.
[10] G. Nguetseng; A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
[11] G. Nguetseng; Deterministic homogenization of a semilinear elliptic partial differential equation of order $2 m$, Maths, Reports, 8 (58) (2006), 167-195.
[12] G. Nguetseng, Sigma-convergence of parabolic differential operators. Multiscale problems in biomathematics, mechanics, physics and numerics, 93-132, Gakuto Internat. Ser. Math. Sci. Appl., 31, Tokyo, 2009.

[^0]: *E-mail address: lsigning@univ-ndere.cm

