Rational Pairing Rank of a Map

Toshiniro Yamaguchi*
Kochi University, 2-5-1, Kochi, 780-8520, JAPAN

Abstract

We define a rational homotopy invariant, the rational pairing rank $v_{0}(f)$ of a map $f: X \rightarrow Y$, which is a natural generalization of the rational pairing rank $v_{0}(X)$ of a space X [16]. It is upper-bounded by the rational LS-category cat (f) and lower-bounded by an invariant $g_{0}(f)$ related to the rank of Gottlieb group. Also it has a good estimate for a fibration $X \xrightarrow{j} E \xrightarrow{p} Y$ such as $v_{0}(E) \leq v_{0}(j)+v_{0}(p) \leq v_{0}(X)+v_{0}(Y)$.

AMS Subject Classification: 55P62, 55M30, 55R05, 55Q70.
Keywords: Gottlieb group, LS-category of a map, pairing rank of a map, Gottlieb rank of a map, Sullivan model, rational homotopy, Halperin conjecture.

1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational LS-category [4] and maps are based. In [16], the author has introduced a homotopy invariant, which is called the rational pairing rank of a space, being inspired by the notion of pairing of a map in [10]. We begin with the definition of the invariant.

Definition 1.1. ([16]) The pairing rank $v_{0}(X)$ of a space X in the rational homotopy group is the maximal integer n such that there is a map μ_{X} in the homotopy commutative diagram:

for some linearly independent elements $a_{i_{1}}, . ., a_{i_{n}}$ of $\pi_{o d d}(X)_{\mathbb{Q}}=\oplus_{i>0} \pi_{2 i+1}(X) \otimes \mathbb{Q}$ with $\left|a_{i_{k}}\right|=$ l_{k}.

For example, for a map $f: G \rightarrow X$ from a compact Lie group G to a space $X, \operatorname{dim} \operatorname{Im} \pi_{*}(f)_{\mathbb{Q}} \leq$ $v_{0}(X)$. In particular, if $\pi_{*}(f)$ Q is injective, then rank $G \leq v_{0}(X)$.

Note that the restriction on the odd degree elements in $\pi_{*}(X)_{\mathbb{Q}}$ in Definition 1.1 is suitable because $\pi_{4 k-1}\left(S^{2 k}\right)_{\mathbb{Q}} \cong \mathbb{Q}$ for any $k>0$ [5]. The definition is naturally generalized as follows.

[^0]Definition 1.2. The pairing rank $v_{0}(f)$ of a map $f: X \rightarrow Y$ in the rational homotopy group is the maximal integer n such that there is a map μ_{f} in the homotopy commutative diagram (*):

for some linearly independent elements $a_{i_{1}}, . ., a_{i_{n}}$ of $\pi_{o d d}(Y)_{\mathbb{Q}}$ with $\left|a_{i_{k}}\right|=l_{k}$.
Then it induces $v_{0}\left(i d_{X}\right)=v_{0}(X)$ and $v_{0}(f)=v_{0}(g)$ if $f_{\mathbb{Q}} \simeq g_{\mathbb{Q}}$. In this paper, we consider this rational homotopy invariant $v_{0}(f)$ of a map f.

Lemma 1.3. Let $f: X \rightarrow Y$ be a map. Then
(1) $v_{0}(f) \leq \operatorname{dim} \operatorname{Im}\left(\pi_{*}(f)_{\mathbb{Q}}\right)$.
(2) $v_{0}(f) \leq \min \left\{v_{0}(X), v_{0}(Y)\right\}$.
(3) $v_{0}(f)=0$ if f is rationally constant, i.e.; $f \simeq_{\mathbb{Q}}$.
(4) $v_{0}(f)=v_{0}(X)$ if $\pi_{*}(f)_{\mathbb{Q}}$ is injective.
(5) $v_{0}(f)=v_{0}(Y)$ if f has a rational homotopy section, i.e.; there is a map s: $Y_{\mathbb{Q}} \rightarrow X_{\mathbb{Q}}$ with $f_{\mathrm{Q}} \circ s \simeq i d_{Y \mathrm{Q}}$.
(6) $v_{0}(g \circ f) \leq \min \left\{v_{0}(f), v_{0}(g)\right\}$ for a map $g: Y \rightarrow Z$.
(7) $v_{0}\left(f_{1} \vee f_{2}\right)=\max \left\{v_{0}\left(f_{1}\right), v_{0}\left(f_{2}\right)\right\}$ for maps $f_{i}: X_{i} \rightarrow Y_{i}(i=1,2)$.
(8) $v_{0}\left(f_{1} \times f_{2}\right)=v_{0}\left(f_{1}\right)+v_{0}\left(f_{2}\right)$ for maps $f_{i}: X_{i} \rightarrow Y_{i}(i=1,2)$.

Recall the definition of the rational $\operatorname{LS}\left(\right.$ Lusternik-Schnirelmann)-category $\operatorname{cat}_{0}(f)$ of a map $f: X \rightarrow Y$ [2]. It is the minimal integer n such that there exists a map $\eta(n)$ which makes the diagram (**):

homotopy commutative. Here $X_{\mathbb{Q}}$ and $f_{\mathbb{Q}}$ are the rationalizations of X and f, respectively [7] and $p_{n}: E_{n}(Y) \rightarrow Y$ is the n-th Ganea map of Y [2]. Then $\operatorname{cat}_{0}\left(i d_{X}\right)=\operatorname{cat}_{0}(X)$, where $i d_{X}$ is the identity map of X and $\operatorname{cat}_{0}(X)$ is the rational LS-category of a space X. It does not hold that $\operatorname{cat}_{0}\left(f_{1} \times f_{2}\right)=\operatorname{cat}_{0}\left(f_{1}\right)+\operatorname{cat}_{0}\left(f_{2}\right)$ as (8) in general [12]. By using Sullivan models [13] in §2, we have

Theorem 1.4. For a map $f: X \rightarrow Y, v_{0}(f) \leq \operatorname{cat}_{0}(f)$.
Recall the n-th Gottlieb group $G_{n}(X)$ [6] of a CW complex X for $n>0$, which is the subgroup of the $\pi_{n}(X)$ consisting of homotopy classes of maps $a: S^{n} \rightarrow X$ such that the wedge $\left(a \mid i d_{X}\right): S^{n} \vee X \rightarrow X$ extends to a map $F_{a}: S^{n} \times X \rightarrow X$ in the homotopy commutative diagram:

Note that a map $f: X \rightarrow Y$ does not induce $\pi_{n}(f): G_{n}(X) \rightarrow G_{n}(Y)$ in general. Let $G_{*}(X)=$ $\oplus_{n>0} G_{n}(X)$ and $G_{n}(X)_{\mathbb{Q}}=G_{n}(X) \otimes \mathbb{Q}$. Note $G_{*}(X)_{\mathbb{Q}}=G_{\text {odd }}(X)_{\mathbb{Q}}[4]$. Recall that it holds that $\operatorname{dim} G_{*}(X)_{\mathbb{Q}} \leq v_{0}(X) \leq \operatorname{cat}_{0}(X)$ [16].

Definition 1.5. The Gottlieb rank $g_{0}(f)$ of a map $f: X \rightarrow Y$ is given by

$$
g_{0}(f):=\operatorname{dim} \operatorname{Im}\left(\pi_{*}(f)_{\mathbb{Q}}: G_{*}(X)_{\mathbb{Q}} \rightarrow \pi_{*}(Y)_{\mathbb{Q}}\right) .
$$

Then $g_{0}(f)=g_{0}\left(f^{\prime}\right)$ if $f_{\mathbb{Q}} \simeq f_{\mathbb{Q}}^{\prime}$ and $g_{0}(f) \leq \operatorname{dim} G_{*}(X)_{\mathbb{Q}}$. In particular, $g_{0}\left(i d_{X}\right)=\operatorname{dim} G_{*}(X)_{\mathbb{Q}}$ and $g_{0}(f)=0$ when f is a rationally constant map. We often denote $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}$ as $g_{0}(X)$. For maps $f_{i}: X_{i} \rightarrow Y_{i}$ for $i=1,2, g_{0}\left(f_{1} \times f_{2}\right)=g_{0}\left(f_{1}\right)+g_{0}\left(f_{2}\right)$. There do not hold (6) and (7) in Lemma 1.3 for Gottlieb rank of a map (see Example 3.5).

Theorem 1.6. For a map $f: X \rightarrow Y, g_{0}(f) \leq v_{0}(f)$.
Proof. Let $g_{0}(f)=n$. Then there is a homotopy commutative diagram:

for some linearly independent elements $a_{i_{1}}, \ldots, a_{i_{n}}$ of $\pi_{o d d}(Y)_{\mathbb{Q}}$ with $\left|a_{i_{k}}\right|=l_{k}$, as $\S 1(*)$ in [16]. It means $n \leq v_{0}(f)$ since the diagram induces the above $(*)$ by restrictions.

From Theorem 1.4 and Theorem 1.6, we have $g_{0}(f) \leq v_{0}(f) \leq \operatorname{cat}_{0}(f)$. In particular, when a map f is the projection $p_{Y}: X \times Y \rightarrow Y$ or the inclusion $i_{X}: X \rightarrow X \times Y$, they are equal. The author does not know when does it hold that $g_{0}(f)=v_{0}(f)=\operatorname{cat}_{0}(f)$ in general. Finally we consider a relation between $v_{0}(j)+v_{0}(p)$ and $v_{0}(E)$ for a fibration $\xi: X \xrightarrow{j} E \xrightarrow{p} Y$. Recall the inequation $v_{0}(E) \leq v_{0}(X)+v_{0}(Y)$ [16]. In this paper, we see

Theorem 1.7. For a fibration $\xi: X \xrightarrow{j} E \xrightarrow{p} Y, v_{0}(E) \leq v_{0}(j)+v_{0}(p)$.
In §2, we give the proofs of the above theorems by using Sullivan models. In §3, we illustrate some examples. In $\S 4$, we comment a relation with Halperin conjecture on fibration [5, page 516].

2 Sullivan model

Recall the Sullivan minimal model $M(X)$ [13] of a simply connected space X of finite type. It is a free \mathbb{Q}-commutative differential graded algebra (DGA) $(\Lambda V, d)$ with a \mathbb{Q}-graded vector space $V=\bigoplus_{i>1} V^{i}$ of $\operatorname{dim} V^{i}<\infty$ and a decomposable differential d. Denote the degree of a homogeneous element x of a graded algebra as $|x|$. A fibration $p: E \rightarrow Y$ has a minimal model which is a DGA-map $M(p): M(Y) \rightarrow M(E)$. It is induced by a relative model

$$
M(Y)=\left(\Lambda W, d_{Y}\right) \rightarrow(\Lambda W \otimes \Lambda V, D)
$$

where $(\Lambda V, \bar{D})=\left(\Lambda V, d_{X}\right)$ is the minimal model of the homotopy fibre X of p and there is a quasi-isomorphism $\rho_{E}: M(E) \xrightarrow{\sim}(\Lambda W \otimes \Lambda V, D)$. Notice that $M(X)$ determines the rational homotopy type of X, especially $H^{*}(X ; \mathbb{Q}) \cong H^{*}(M(X))$ as graded algebras and $\pi_{i}(X) \otimes \mathbb{Q} \cong$ $\operatorname{Hom}\left(V^{i}, \mathbb{Q}\right)$. We refer to [5] for a general introduction and the standard notations. The above Definition 1.2 is replaced with

Lemma 2.1. For a map $f: X \rightarrow Y, v_{0}(f) \geq n$ if and only if there is a $D G A$-map:

$$
\begin{equation*}
\mu_{f}:(\Lambda W \otimes \Lambda V, D) \rightarrow\left(\Lambda\left(w_{1}, \cdots, w_{n}\right), 0\right) \tag{1}
\end{equation*}
$$

such that $\mu_{f}\left(w_{i}\right)=w_{i}$ for some linearly independent elements w_{1}, \cdots, w_{n} of $W^{\text {odd }}$.
Proof of Lemma 1.3. We can check that (5) follows from Lemma 2.1 since, after a suitable change of basis, $D V \subset \Lambda W \otimes \Lambda^{+} V$ [14]. The others immediately hold from Definition 1.2.

In the following, we often use the same symbols $\mu_{X}: M(X)=(\Lambda V, d) \rightarrow\left(\Lambda\left(v_{1}, \cdots, v_{n}\right), 0\right)$ with some linearly independent elements v_{1}, \cdots, v_{n} of V in [16, Lemma 2.1] for an n-pairing $\mu_{X}: S^{k_{1}} \times \cdots \times S^{k_{n}} \rightarrow X$ of $k_{i}=\left|v_{i}\right|$ and μ_{f} in Lemma 2.1(1) for μ_{f} in Definition 1.2.

Proof of Theorem 1.4. In the rational models, the diagram $(* *)$ of $\S 1$ is given as the DGAcommutative diagram:

where i_{n} is the relative model of proj_{n} (see [3, Theorem 10.6], [4], [2]). Suppose $v_{0}(f)=n$. From Lemma 2.1, there is a map μ_{f} in (1). Then there is no map $\eta(n-1)$ in the DGAcommutative diagram induced from (2):

Indeed, if it exists, the zero element is sent to the non-zero element $w_{1} \cdots w_{n}$ in the composition

$$
H^{*}\left(\Lambda W / \Lambda^{\geq n} W\right) \stackrel{\left(\rho_{n-1}^{*}\right)^{-1}}{=} H^{*}\left(\Lambda W \otimes \Lambda U^{\prime}\right) \stackrel{\mu_{f}^{*} \circ \eta(n-1)^{*}}{\longrightarrow} \Lambda\left(w_{1}, \cdots, w_{n}\right)
$$

since $\rho_{n-1}\left(w_{1} \cdots w_{n}+a\right)=0$ and $\mu_{f} \circ \eta(n-1)\left(w_{1} \cdots w_{n}+a\right)=w_{1} \cdots w_{n}$ for a suitable element $a \in \Lambda W \otimes \Lambda^{+} U^{\prime}$ such that $w_{1} \cdots w_{n}+a$ is a D_{Y}^{\prime}-(exact) cocycle. Thus we have $\operatorname{cat}_{0}(f)>n-1$.

Proof of Theorem 1.7. It is the similar argument as the proof of Thorem 1.6(1) in [16]. Let $v_{0}(E)=n$ by $\mu_{E}: S^{l_{1}} \times \cdots \times S^{l_{n}} \rightarrow E$. Then there is an integer $m(\leq n)$ such that there are the homotopy commutative diagrams:

and

$$
\text { (ii) } \begin{array}{ccc}
S^{k_{m+1}} \times \cdots \times S^{k_{n}} \xrightarrow{\mu_{j}} & X_{\mathbb{Q}} \\
& \cup \uparrow \\
& S^{k_{m+1}} \vee \cdots \vee S^{k_{n}} \xrightarrow{\left\langle a_{\left.i_{m+1}, \cdots, a_{i n}\right\rangle}\right.} E_{\mathbb{Q}}
\end{array}
$$

with $\left\{k_{1}, \ldots, k_{n}\right\}=\left\{l_{1}, . ., l_{n}\right\}$. Here μ_{p} is a homotopy restriction of μ_{E} and μ_{j} is a homotopy lift of a restriction of μ_{E}.

Indeed, let

$$
\left(\Lambda W, d_{Y}\right) \rightarrow(\Lambda W \otimes \Lambda V, D) \xrightarrow{q}\left(\Lambda V, d_{X}\right)
$$

be the model (Koszul-Sullivan extension) of ξ and $M(E)=\left(\Lambda U, d_{E}\right)$. Then there is an inclusion $U \subset W \oplus V$ inducing $U \cong H^{*}(W \oplus V, Q(D))(Q(D)$ is the linear part of $D)$ so that a diagram

is commutative (up to sign) [5, Proposition 15.13]. Suppose that there is a DGA-map μ_{E} : $\left(\Lambda U, d_{E}\right) \rightarrow\left(\Lambda\left(u_{1}, \cdots, u_{n}\right), 0\right)$ for $u_{i} \in U$ given as Lemma 2.1 of [16]. Without loss of generality, we can assume that there is an integer $m(\leq n)$ with $\left\{u_{1}, . ., u_{n}\right\}=\left\{w_{1}, . ., w_{m}, v_{1}, . ., v_{n-m}\right\} \subset$ $W^{\text {odd }} \oplus V^{\text {odd }}$. Then (i) is obvious and (ii) is guaranteed by the DGA homotopy commutative diagram

$$
\begin{array}{ccc}
\left(\Lambda\left(v_{1}, \cdots, v_{n-m}\right), 0\right) & \stackrel{\overline{\mu_{E}^{*}}}{\longleftarrow} & \left(\Lambda V, d_{X}\right) \\
\bar{q} \uparrow & q \uparrow \\
\left(\Lambda\left(w_{1}, . ., w_{m}, v_{1}, \ldots, v_{n-m}\right), 0\right) & \stackrel{\mu_{E}^{*}}{\longleftarrow}(\Lambda W \otimes \Lambda V, D),
\end{array}
$$

where the induced map $\overline{\mu_{E}^{*}}$ gives the model of μ_{j}.

Corollary 2.2. For a fibration $\xi: X \xrightarrow{j} E \xrightarrow{p} Y$ with $v_{0}(E)=n$, there is an integer $m \leq n$ such that a diagram with k_{i} odd

is homotopy commutative. Here μ_{j}^{\prime} and μ_{p}^{\prime} are certain restrictions of μ_{j} and μ_{p} as in Definition $1.2(*)$, respectively.

Remark 2.3. In the above corollary, the integer m is not unique since μ_{E} is not unique. For example, for a fibration $S^{3} \times S^{7} \rightarrow E \rightarrow S^{5}$ given by

$$
(\Lambda(w), 0) \rightarrow(\Lambda(w, x, y), D) \rightarrow(\Lambda(x, y), 0)
$$

with $|x|=3,|y|=7,|w|=5, D y=w x, D x=D w=0$, we have $v_{0}(E)=v_{0}(j)=2$ and $v_{0}(p)=1$. Then there are two diagrams as

where $m=1$ and $m=0$, respectively.
Corollary 2.4. If a fibration $\xi: X \xrightarrow{j} E \rightarrow Y$ is weakly rational trivial; i.e., $\pi_{*}(E)_{\mathbb{Q}}=\pi_{*}(X)_{\mathbb{Q}} \oplus$ $\pi_{*}(Y)_{\mathbb{Q}}$, we have $v_{0}(j)=v_{0}(X) \leq v_{0}(E)$.

3 Examples

Let $\mathbb{C} P^{n}$ be the n-dimensional complex projective space. A space X is formal if there is a quasi-isomorphism $M(X) \rightarrow\left(H^{*}(X ; \mathbb{Q}), 0\right)$. For example, $S^{n}, \mathbb{C} P^{n}$, Lie groups and their products are formal. It is known that $\operatorname{cup}_{0}(X)=\operatorname{cat}_{0}(X)$ when X is formal [2]. Recall the cup-length of a map

$$
\operatorname{cup}_{0}(f):=\max \left\{n \mid f^{*}\left(b_{1} \cdots b_{n}\right) \neq 0 \text { for some } b_{i} \in H^{+}(Y ; \mathbb{Q})\right\}
$$

for a map $f: X \rightarrow Y$. It is known that $\operatorname{cup}_{0}(f) \leq \operatorname{cat}_{0}(f)\left[2\right.$, p.43] and $\operatorname{cup}_{0}(f)=\operatorname{cat}_{0}(f)$ when f is a map between formal spaces X and Y.

Example 3.1. In general, it does not hold that $v_{0}(f) \leq \operatorname{cup}_{0}(f)$ though $v_{0}(f) \leq c a t_{0}(f)$. Let Y be a simply connected 11-dimensional manifold such that $M(Y)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}\right), d\right)$ with $\left|w_{1}\right|=\left|w_{2}\right|=3,\left|w_{3}\right|=5, d\left(w_{1}\right)=d\left(w_{2}\right)=0, d\left(w_{3}\right)=w_{1} w_{2}$. It is the pullback of the sphere bundle of the tangent bundle of S^{6} by the canonical degree 1 map $S^{3} \times S^{3} \rightarrow S^{6}$. It is not formal since $H^{*}(Y ; \mathbb{Q})$ contains indecomsable elements [$w_{1} w_{3}$] and [$w_{2} w_{3}$]. Then $\operatorname{cat}_{0}(Y)=3$ but $\operatorname{cup}_{0}(Y)=2$ since $\left[w_{1}\right]\left[w_{2} w_{3}\right]$ is the fundamental class of Y. Consider a map $f: X=S^{3} \times S^{5} \rightarrow Y$ with $f^{*}: M(Y)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}\right), d\right) \rightarrow\left(\Lambda\left(w_{1}, w_{3}\right), 0\right)=M(X)$ given by $f^{*}\left(w_{1}\right)=w_{1}, f^{*}\left(w_{2}\right)=0$ and $f^{*}\left(w_{3}\right)=w_{3}$. Then $\operatorname{cup}_{0}(f)=1$. On the other hand, $v_{0}(f)=\operatorname{cat}_{0}(f)=2$ from Lemma 2.1(1) and (2).

Example 3.2. The following fibrations $\xi: X \xrightarrow{j} E \xrightarrow{p} Y$ satisfy the condition that $v_{0}(E)=$ $v_{0}(j)+v_{0}(p)$. We can verify them by using Lemma 2.1. Of course, it holds if ξ is a trivial fibration.
(1) Let a fibration $S^{3} \xrightarrow{j} S^{2} \times S^{2 n-1} \xrightarrow{p} \mathbb{C} P^{n}$ be given by the model

$$
\left(\Lambda(x, y), d_{Y}\right) \rightarrow(\Lambda(x, y, v), D) \rightarrow(\Lambda(v), 0)
$$

with $|x|=2,|y|=2 n+1,|v|=3, D x=d_{Y} x=0, D v=x^{2}$ and $D y=d_{Y} y=x^{n+1}$. Then the following diagram is DGA-commutative:

Thus $v_{0}(E)=2=1+1=v_{0}(p)+v_{0}(j)$.
(2) For the Hopf fibration $S^{3} \xrightarrow{j} S^{7} \xrightarrow{p} S^{4}$, the model is given by

$$
\left(\Lambda(x, y), d_{Y}\right) \rightarrow(\Lambda(x, y, v), D) \rightarrow(\Lambda(v), 0)
$$

with $|x|=4,|y|=7,|v|=3, D y=d_{Y} y=x^{2}$ and $D v=x$. Notice $v_{0}(j)=0$ since $M\left(S^{7}\right)=$ $(\Lambda(y), 0) \simeq(\Lambda(x, y, v), D)$. Also the projectivization $P\left(E^{n}\right)$ of a non-trivial complex n-vector bundle E^{n} over $S^{2 n}$ is given as the total space of a fibration: $\mathbb{C} P^{n-1} \xrightarrow{j} \mathbb{C} P^{2 n-1} \xrightarrow{p} S^{2 n}$ [1]. The model is given by

$$
\left(\Lambda(x, y), d_{Y}\right) \rightarrow(\Lambda(x, y, u, v), D) \rightarrow\left(\Lambda(u, v), d_{X}\right)
$$

with $|x|=2 n,|y|=4 n-1,|u|=2,|v|=2 n-1, d_{Y} y=x^{2}, D v=u^{n}+x$ and $d_{X} v=u^{n}$. Then $v_{0}(j)=0$ since $M\left(\mathbb{C} P^{2 n-1}\right)=\left(\Lambda(u, y), d_{E}\right) \simeq(\Lambda(x, y, u, v), D)$ with $d_{E} u=0$ and $d_{E} y=u^{2 n}$.
(3) For an even interger m, let a fibration $S^{3 m-1} \xrightarrow{j} E \xrightarrow{p} S_{1}^{3} \times \cdots \times S_{m}^{3}$ be given as $M(E)=\left(\Lambda\left(w_{1}, . ., w_{m}, v\right), D\right)$ with $\left|w_{i}\right|=3,|v|=3 m-1, D w_{i}=0$ and $D v=w_{1} \cdots w_{m}$. Then the following diagram is DGA-commutative:

Thus $v_{0}(E)=m=(m-1)+1=v_{0}(p)+v_{0}(j)$.
(4) Let a fibration $S^{6} \times S^{9} \xrightarrow{j} E \xrightarrow{p} S^{3} \times S^{4}$ be given by the model

$$
\left(\Lambda(x, y, z), d_{Y}\right) \rightarrow(\Lambda(x, y, z, a, b, c), D) \rightarrow\left(\Lambda(a, b, c), d_{X}\right)
$$

where $|x|=4,|y|=3,|z|=7,|a|=6,|b|=9,|c|=11, D x=D y=0, D z=x^{2}, D a=x y$, $D b=x a+y z, D c=a^{2}+2 y b, d_{X} a=d_{X} b=0$ and $d_{X} c=a^{2}$. Then the following diagram is DGA-commutative:

Thus $v_{0}(E)=3=1+2=v_{0}(p)+v_{0}(j)$.
The computation above is summarized as follows.

ξ	$v_{0}(E)$	$v_{0}(X)$	$v_{0}(Y)$	$v_{0}(j)$	$v_{0}(p)$
(1)	2	1	1	1	1
(2)	1	1	1	0	1
(3)	m	1	m	1	$m-1$
(4)	3	2	2	2	1

Remark 3.3. The total space E of Example 3.2 (4) is also one of a fibration $S U(6) / S U(3) \times$ $S U(3) \rightarrow E \rightarrow S^{3}$, where the fiber is the (non-formal) homogeneous space of special unitary groups $S U(3) \times S U(3) \subset S U(6)$ (with blockwise inclusion). It is given as

$$
(\Lambda(y), 0) \rightarrow(\Lambda(x, y, z, a, b, c), D) \rightarrow\left(\Lambda(x, a, z, b, c), d_{X}\right)
$$

with $d_{X} x=d_{X} a=0, d_{X} b=x y$ and $d_{X} c=a^{2}$. Then we have $v_{0}(E)=3<4=3+1=v_{0}(j)+$ $v_{0}(p)=v_{0}(X)+v_{0}(Y)$ since there is a DGA-map $\mu_{j}:\left(\Lambda(x, a, z, b, c), d_{X}\right) \rightarrow(\Lambda(z, b, c), 0)$.

Problem 3.4. When $v_{0}(E)=v_{0}(j)+v_{0}(p)$?
Let A be a DGA $A=\left(A^{*}, d_{A}\right)$ with $A^{*}=\oplus_{i \geq 0} A^{i}, A^{0}=\mathbb{Q}, A^{1}=0$ and the argumentation $\epsilon: A \rightarrow \mathbb{Q}$. Define $\operatorname{Der}_{i} A$ the vector space of derivations of A decreasing the degree by $i>0$, where $\theta(x y)=\theta(x) y+(-1)^{i|x|} x \theta(y)$ for $\theta \in \operatorname{Der}_{i} A$. We denote $\oplus_{i>0} D e r_{i} A$ by $\operatorname{Der} A$. The boundary operator $\delta: \operatorname{Der}_{*} A \rightarrow \operatorname{Der}_{*-1} A$ is defined by $\delta(\sigma)=d_{A} \circ \sigma-(-1)^{|\sigma|} \sigma \circ d_{A}$. For the minimal model $M(Z)=(\Lambda V, d)$ of a finite complex Z and the $\operatorname{argumentation~} \epsilon: \Lambda V \rightarrow \mathbb{Q}$, according to [4],

$$
G_{n}(Z)_{\mathbb{Q}} \cong \operatorname{Im}\left(H_{n}\left(\epsilon_{*}\right): H_{n}(\operatorname{Der}(\Lambda V, d)) \rightarrow \operatorname{Hom}\left(V^{n}, \mathbb{Q}\right)\right) .
$$

Example 3.5. (1) For maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, it does not hold that $g_{0}(g \circ f) \leq$ $\min \left\{g_{0}(f), g_{0}(g)\right\}$ in general. Let $X=Z=S^{3} \times S^{3} \times S^{3}$ be given by the Sullivan model $M(X)=M(Z)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}\right), 0\right)$ with $\left|w_{i}\right|=3$. Let Y be given by the Sullivan model $M(Y)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}, u, v\right), d_{Y}\right)$ with $|u|=3,|v|=11, d_{Y} w_{i}=d_{Y} u=0$ and $d_{Y} v=w_{1} w_{2} w_{3} u$. Then there are DGA-maps $M(f): M(Y) \rightarrow M(X)$ and $M(g): M(Z) \rightarrow M(Y)$ preserving w_{i} and $M(f)(u)=M(f)(v)=0$. They induces $g_{0}(f)=3, g_{0}(g)=0$ and $g_{0}(g \circ f)=g_{0}\left(i d_{X}\right)=$ $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=3$.
(2) For maps $f_{i}: X_{i} \rightarrow Y_{i}$ for $i=1,2$, it does not hold that $g_{0}\left(f_{1} \vee f_{2}\right)=\max \left\{g_{0}\left(f_{1}\right), g_{0}\left(f_{2}\right)\right\}$ in general. Let f_{i} be the identity maps $i d_{S^{3}}: S^{3} \rightarrow S^{3}$ of $X_{i}=S^{3}=Y_{i}$. Then $g_{0}\left(f_{1}\right)=g_{0}\left(f_{2}\right)=$ 1 but $g_{0}\left(f_{1} \vee f_{2}\right)=0$ since $G_{*}\left(S^{3} \vee S^{3}\right)_{\mathbb{Q}}=0$ [11].

Example 3.6. It does not hold that $\operatorname{cat}_{0}(E) \leq \operatorname{cat}_{0}(j)+c a t_{0}(p)$ in general. For example, for the fibration $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{2 n-1} \rightarrow S^{2 n}$ in Example 3.2(2), we have cat $\left(\mathbb{C} P^{2 n-1}\right)=2 n-1$, $\operatorname{cat}_{0}(j)=n-1$ and $\operatorname{cat}_{0}(p)=1$.

Example 3.7. Let a fibration $S_{1}^{3} \times \cdots \times S_{n}^{3} \times S^{5} \xrightarrow{j} E \xrightarrow{p} S_{1}^{3} \times \cdots \times S_{n}^{3}$ be given by

$$
\left(\Lambda\left(w_{1}, . ., w_{n}\right), 0\right) \rightarrow\left(\Lambda\left(w_{1}, . ., w_{n}, v_{1}, . . v_{n}, v\right), D\right) \rightarrow\left(\Lambda\left(v_{1}, . . v_{n}, v\right), 0\right)
$$

with $\left|w_{i}\right|=\left|v_{i}\right|=3,|v|=5, D v_{i}=0$ and $D v=w_{1} v_{1}+\cdots+w_{n} v_{n}$. Then $v_{0}(j)=n+1, v_{0}(p)=n$ and $v_{0}(E)=n+1$. Also $g_{0}(j)=n+1, g_{0}(p)=0$ and $\operatorname{dim} G_{*}(E)_{\mathbb{Q}}=1$. Thus both $v_{0}(j)+$ $v_{0}(p)-v_{0}(E)$ and $g_{0}(j)+g_{0}(p)-g_{0}(E)$ can be arbitrarily large. Note that $g_{0}(E)=g_{0}(j)+$ $g_{0}(p)$ for the fibrations in Example 3.2 (1), (2), (3) but not (4) as

ξ	$g_{0}(E)$	$g_{0}(X)$	$g_{0}(Y)$	$g_{0}(j)$	$g_{0}(p)$
(1)	2	1	1	1	1
(2)	1	1	1	0	1
(3)	1	1	m	1	0
(4)	1	2	2	2	0

We see that $g_{0}(j)=3, g_{0}(p)=0$ and $g_{0}(E)=1$ for the fibration of Ramark 3.3.
Problem 3.8. For all fibrations $X \xrightarrow{j} E \xrightarrow{p} Y$ of finite complexes, does it hold that $g_{0}(E) \leq$ $g_{0}(j)+g_{0}(p)$?

Refer [15] for an estimate of $\operatorname{dim} G_{*}(E)_{\mathbb{Q}}$.
Example 3.9. (1) The integer $\operatorname{cat}_{0}(f)-v_{0}(f)$ can be arbitarily large. For example, for the natural inclusion map $f: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+1}$, we have $v_{0}(f)=0$ and $c a t_{0}(f)=n$.
(2) The integer $v_{0}(f)-g_{0}(f)$ can be arbitarily large. For example, for the map $E \xrightarrow{p}$ $S_{1}^{3} \times \cdots \times S_{m}^{3}$ in Example 3.2 (3), we have $g_{0}(p)=0$ and $v_{0}(p)=m-1$.

4 Halperin conjecture

A space X is said to be elliptic when $\operatorname{dim} H^{*}(X ; \mathbb{Q})<\infty$ and $\operatorname{dim} \pi_{*}(X)_{\mathbb{Q}}<\infty$. An elliptic space X is said to be an F_{0}-space when $H^{*}(X ; \mathbb{Q})$ is evenly graded, which is equivalent to be isomorphic to $\mathbb{Q}\left[x_{1}, . ., x_{n}\right] /\left(f_{1}, . ., f_{n}\right)$ for some $x_{1}, . ., x_{n}$ and homogeneous polynomials $f_{1}, . ., f_{n} \in \mathbb{Q}\left[x_{1}, . ., x_{n}\right]$. Then $M(X)=\left(\Lambda\left(x_{1}, \cdots, x_{n}\right) \otimes \Lambda\left(y_{1}, \cdots, y_{n}\right), d\right)$ with $\left|x_{i}\right|$ even, $\left|y_{i}\right|$ odd, $d x_{i}=0$ and $d y_{i}=f_{i}$. Halperin has conjectured that any fibration $\xi: X \xrightarrow{j} E \rightarrow B$ with X an F_{0}-space c-splits; i.e., $H^{*}(E ; \mathbb{Q}) \cong H^{*}(X ; \mathbb{Q}) \otimes H^{*}(B ; \mathbb{Q})$ additively. It is equivalent to that ξ is totally non-cohomologous to zero (abbreviated TNCZ); i.e., $j^{*}: H^{*}(E ; \mathbb{Q}) \rightarrow H^{*}(X ; \mathbb{Q})$ is surjective. The Halperin conjecture is equivalent to requiring that any fibration $X \rightarrow E \rightarrow$ $S^{\text {odd }}$ is rationally trivial [9, Theorem 2.2]. Here $S^{\text {odd }}$ means $S^{2 n+1}$ for any $n>0$.

Proposition 4.1. For a fibration $X \xrightarrow{j} E \rightarrow S^{2 n+1}$ with X an F_{0}-space given by

$$
(\Lambda w, 0) \rightarrow(\Lambda w \otimes \Lambda V, D) \rightarrow(\Lambda V, d)=\left(\Lambda\left(x_{1}, \cdots, x_{n}\right) \otimes \Lambda\left(y_{1}, \cdots, y_{n}\right), d\right),
$$

it holds that $v_{0}(E)=n+1=v_{0}(j)+1=v_{0}(X)+1$ if and only if

$$
\begin{equation*}
D y_{i} \in \Lambda(w) \otimes \Lambda^{+}\left(x_{1}, \cdots, x_{n}\right) \otimes \Lambda\left(y_{1}, \cdots, y_{n}\right) \tag{3}
\end{equation*}
$$

for $i=1, \cdots, n$.
Proof. It follows since $\left(\Lambda w \otimes \Lambda\left(y_{1}, \cdots, y_{n}\right), \bar{D}\right)$ is DGA-isomorphic to $\left(\Lambda w \otimes \Lambda\left(y_{1}, \cdots, y_{n}\right), 0\right)$ only under the condition (3).

Theorem 4.2. For a fibration $\xi: X \xrightarrow{j} E \rightarrow S^{2 n+1}$ over an odd-sphere, $v_{0}(j)=v_{0}(X) \leq v_{0}(E) \leq$ $v_{0}(X)+1$. In particular, when X is an F_{0}-space, $v_{0}(E)=v_{0}(X)+1$ if Halperin conjecture is true.

Proof. The former follows from Corollary 2.4 since ξ is weakly rational trivial [14]. The latter follows since ξ is rationally trivial [9, Theorem 2.2].

Remark 4.3. A comment that "We know $v_{0}(E)=n+1$ " in [16, Remark 2.6] may be incorrect from Proposition 4.1. On the other hand, even if $v_{0}(E)=v_{0}(X)+1$ for any fibration $X \rightarrow E \rightarrow$ $S^{\text {odd }}$, it does not indicate Halperin conjecture to be true, again from Proposition 4.1. Notice that, for any fibration $X \rightarrow E \rightarrow S^{o d d}, g_{0}(E)=g_{0}(X)+1$ if and only if Halperin conjecture is true [15, Corollary A]. But $\operatorname{cat}_{0}(E)=\operatorname{cat}_{0}(X)+1$ for any F_{0}-space X [9, Theorem 4.7].

Finally, we propose a weak form of Halperin conjecture.
Problem 4.4. When X is an F_{0}-space, does it hold that $v_{0}(E)=v_{0}(X)+1$ for any fibration $X \rightarrow E \rightarrow S^{\text {odd }}$?

References

[1] R.Bott and L.Tu, Differential forms in algebraic topology, G.T.M. 82 Springer 1982
[2] O.Cornea, G.Lupton, J.Oprea and D.Tanré, Lusternik-Schnirelmann category, Math. Survey and Mono. 103, A.M.S. 2003
[3] Y.Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176 S.M.F. 1989
[4] Y.Félix and S.Halperin, Rational LS category and its applications, Trans.A.M.S. 273 (1982) 1-38
[5] Y.Félix, S.Halperin and J.-C.Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, 2001
[6] D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969) 729-756
[7] P.Hilton, G.Mislin and J.Roitberg, Localization of nilpotent groups and spaces, NorthHolland Math. Studies, 151975
[8] B.Jessup and G.Lupton, Free torus actions and two-stage spaces, Math. Proc. Cambridge Philos. Soc. 137(1) (2004) 191-207
[9] G.Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center Publ. 45 (1998) 115-135
[10] N.Oda, Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math. Sci. Kyoto Univ. 28 (1992) 83-97
[11] S.B.Smith, Rational evaluation subgroups, Mat.Z. 221 (1996) 387-400
[12] D.Stanley, On the Lusternik-Schnirelmann category of maps, Cand. J. Math. 54 (2002) 608-633
[13] D.Sullivan, Infinitesimal computations in topology, I.H.E.S. 47 (1978) 269-331
[14] J.-C.Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier, Grenoble 31 (1981) 71-90
[15] T.Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. 15 (2008) 663-675
[16] T.Yamaguchi, Pairing rank in rational homotopy group, African Diaspora J. of Math. 17 (2014) 85-92

[^0]: *E-mail address: tyamag@kochi-u.ac.jp

