RATIONAL PAIRING RANK OF A MAP

Toshihiro Yamaguchi* Kochi University, 2-5-1, Kochi, 780-8520, JAPAN

Abstract

We define a rational homotopy invariant, the rational pairing rank $v_0(f)$ of a map $f: X \to Y$, which is a natural generalization of the rational pairing rank $v_0(X)$ of a space X [16]. It is upper-bounded by the rational LS-category $cat_0(f)$ and lower-bounded by an invariant $g_0(f)$ related to the rank of Gottlieb group. Also it has a good estimate for

a fibration $X \xrightarrow{j} E \xrightarrow{p} Y$ such as $v_0(E) \le v_0(j) + v_0(p) \le v_0(X) + v_0(Y)$.

AMS Subject Classification: 55P62, 55M30, 55R05, 55Q70.

Keywords: Gottlieb group, LS-category of a map, pairing rank of a map, Gottlieb rank of a map, Sullivan model, rational homotopy, Halperin conjecture.

1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational LS-category [4] and maps are based. In [16], the author has introduced a homotopy invariant, which is called the rational pairing rank of a space, being inspired by the notion of pairing of a map in [10]. We begin with the definition of the invariant.

Definition 1.1. ([16]) The pairing rank $v_0(X)$ of a space X in the rational homotopy group is the maximal integer *n* such that there is a map μ_X in the homotopy commutative diagram:

$$\begin{array}{cccc} S^{l_1} \times \cdots \times S^{l_n} & \xrightarrow{\mu_X} & X_{\mathbb{Q}} \\ & & & & & \parallel \\ S^{l_1} \vee \cdots \vee S^{l_n} & \xrightarrow{\langle a_1, \cdots, a_i \rangle} & X_{\mathbb{Q}} \end{array}$$

for some linearly independent elements $a_{i_1}, ..., a_{i_n}$ of $\pi_{odd}(X)_{\mathbb{Q}} = \bigoplus_{i>0} \pi_{2i+1}(X) \otimes \mathbb{Q}$ with $|a_{i_k}| = l_k$.

For example, for a map $f: G \to X$ from a compact Lie group *G* to a space *X*, dim Im $\pi_*(f)_{\mathbb{Q}} \le v_0(X)$. In particular, if $\pi_*(f)_{\mathbb{Q}}$ is injective, then rank $G \le v_0(X)$.

Note that the restriction on the odd degree elements in $\pi_*(X)_{\mathbb{Q}}$ in Definition 1.1 is suitable because $\pi_{4k-1}(S^{2k})_{\mathbb{Q}} \cong \mathbb{Q}$ for any k > 0 [5]. The definition is naturally generalized as follows.

^{*}E-mail address: tyamag@kochi-u.ac.jp

Definition 1.2. The pairing rank $v_0(f)$ of a map $f : X \to Y$ in the rational homotopy group is the maximal integer *n* such that there is a map μ_f in the homotopy commutative diagram (*):

$$\begin{array}{cccc} S^{l_1} \times \cdots \times S^{l_n} & \xrightarrow{\mu_f} & X_{\mathbb{Q}} \\ & & & \downarrow^{f_{\mathbb{Q}}} \\ S^{l_1} \vee \cdots \vee S^{l_n} & \xrightarrow{\langle a_{i_1}, \cdots, a_{i_n} \rangle} & Y_{\mathbb{Q}} \end{array}$$

for some linearly independent elements $a_{i_1}, .., a_{i_n}$ of $\pi_{odd}(Y)_{\mathbb{Q}}$ with $|a_{i_k}| = l_k$.

Then it induces $v_0(id_X) = v_0(X)$ and $v_0(f) = v_0(g)$ if $f_{\mathbb{Q}} \simeq g_{\mathbb{Q}}$. In this paper, we consider this rational homotopy invariant $v_0(f)$ of a map f.

Lemma 1.3. Let $f : X \to Y$ be a map. Then

 $(1) v_0(f) \leq \dim \operatorname{Im}(\pi_*(f)_{\mathbb{Q}}).$ $(2) v_0(f) \leq \min\{v_0(X), v_0(Y)\}.$ $(3) v_0(f) = 0 \text{ if } f \text{ is rationally constant, i.e.; } f \simeq_{\mathbb{Q}} *.$ $(4) v_0(f) = v_0(X) \text{ if } \pi_*(f)_{\mathbb{Q}} \text{ is injective.}$ $(5) v_0(f) = v_0(Y) \text{ if } f \text{ has a rational homotopy section, i.e.; there is a map } s : Y_{\mathbb{Q}} \to X_{\mathbb{Q}}$ with $f_{\mathbb{Q}} \circ s \simeq id_{Y_{\mathbb{Q}}}.$ $(6) v_0(g \circ f) \leq \min\{v_0(f), v_0(g)\} \text{ for a map } g : Y \to Z.$

(7) $v_0(f_1 \lor f_2) = \max\{v_0(f_1), v_0(f_2)\}$ for maps $f_i : X_i \to Y_i \ (i = 1, 2)$.

(8) $v_0(f_1 \times f_2) = v_0(f_1) + v_0(f_2)$ for maps $f_i : X_i \to Y_i$ (i = 1, 2).

Recall the definition of the rational LS(Lusternik-Schnirelmann)-category $cat_0(f)$ of a map $f: X \to Y$ [2]. It is the minimal integer n such that there exists a map $\eta(n)$ which makes the diagram (**):

$$\begin{array}{cccc} X_{\mathbb{Q}} & \xrightarrow{\eta(n)} & E_n(Y)_{\mathbb{Q}} \\ & & & & \downarrow^{p_{n_{\mathbb{Q}}}} \\ & & & & \downarrow^{p_{n_{\mathbb{Q}}}} \\ X_{\mathbb{Q}} & \xrightarrow{f_{\mathbb{Q}}} & & Y_{\mathbb{Q}} \end{array}$$

homotopy commutative. Here $X_{\mathbb{Q}}$ and $f_{\mathbb{Q}}$ are the rationalizations of X and f, respectively [7] and $p_n : E_n(Y) \to Y$ is the *n*-th Ganea map of Y [2]. Then $cat_0(id_X) = cat_0(X)$, where id_X is the identity map of X and $cat_0(X)$ is the rational LS-category of a space X. It does not hold that $cat_0(f_1 \times f_2) = cat_0(f_1) + cat_0(f_2)$ as (8) in general [12]. By using Sullivan models [13] in §2, we have

Theorem 1.4. For a map $f : X \to Y$, $v_0(f) \le cat_0(f)$.

Recall the *n*-th *Gottlieb group* $G_n(X)$ [6] of a CW complex X for n > 0, which is the subgroup of the $\pi_n(X)$ consisting of homotopy classes of maps $a : S^n \to X$ such that the wedge $(a|id_X) : S^n \lor X \to X$ extends to a map $F_a : S^n \times X \to X$ in the homotopy commutative diagram:

$$\begin{array}{ccc} X \times S^n & \xrightarrow{F_a} & X \\ \text{incl.} \uparrow & & \uparrow \nabla \\ X \vee S^n & \xrightarrow{id_X \vee a} & X \vee X \end{array}$$

Note that a map $f: X \to Y$ does not induce $\pi_n(f): G_n(X) \to G_n(Y)$ in general. Let $G_*(X) = \bigoplus_{n>0} G_n(X)$ and $G_n(X)_{\mathbb{Q}} = G_n(X) \otimes \mathbb{Q}$. Note $G_*(X)_{\mathbb{Q}} = G_{odd}(X)_{\mathbb{Q}}$ [4]. Recall that it holds that dim $G_*(X)_{\mathbb{Q}} \leq v_0(X) \leq cat_0(X)$ [16].

Definition 1.5. The Gottlieb rank $g_0(f)$ of a map $f : X \to Y$ is given by

$$g_0(f) := \dim \operatorname{Im}(\pi_*(f)_{\mathbb{Q}} : G_*(X)_{\mathbb{Q}} \to \pi_*(Y)_{\mathbb{Q}}).$$

Then $g_0(f) = g_0(f')$ if $f_{\mathbb{Q}} \simeq f'_{\mathbb{Q}}$ and $g_0(f) \le \dim G_*(X)_{\mathbb{Q}}$. In particular, $g_0(id_X) = \dim G_*(X)_{\mathbb{Q}}$ and $g_0(f) = 0$ when f is a rationally constant map. We often denote $\dim G_*(X)_{\mathbb{Q}}$ as $g_0(X)$. For maps $f_i : X_i \to Y_i$ for $i = 1, 2, g_0(f_1 \times f_2) = g_0(f_1) + g_0(f_2)$. There do not hold (6) and (7) in Lemma 1.3 for Gottlieb rank of a map (see Example 3.5).

Theorem 1.6. For a map $f : X \to Y$, $g_0(f) \le v_0(f)$.

Proof. Let $g_0(f) = n$. Then there is a homotopy commutative diagram:

$$\begin{array}{cccc} X_{\mathbb{Q}} \times S^{l_1} \times \dots \times S^{l_n} & \longrightarrow & X_{\mathbb{Q}} \\ & & & & \downarrow^{f_{\mathbb{Q}}} \\ X_{\mathbb{Q}} \vee S^{l_1} \vee \dots \vee S^{l_n} & \xrightarrow{\langle f_{\mathbb{Q}}, a_{i_1}, \cdots, a_{i_n} \rangle} & Y_{\mathbb{Q}} \end{array}$$

for some linearly independent elements $a_{i_1}, .., a_{i_n}$ of $\pi_{odd}(Y)_{\mathbb{Q}}$ with $|a_{i_k}| = l_k$, as §1 (*) in [16]. It means $n \le v_0(f)$ since the diagram induces the above (*) by restrictions.

From Theorem 1.4 and Theorem 1.6, we have $g_0(f) \le v_0(f) \le cat_0(f)$. In particular, when a map f is the projection $p_Y : X \times Y \to Y$ or the inclusion $i_X : X \to X \times Y$, they are equal. The author does not know when does it hold that $g_0(f) = v_0(f) = cat_0(f)$ in general. Finally we consider a relation between $v_0(j) + v_0(p)$ and $v_0(E)$ for a fibration $\xi : X \xrightarrow{j} E \xrightarrow{p} Y$. Recall the inequation $v_0(E) \le v_0(X) + v_0(Y)$ [16]. In this paper, we see

Theorem 1.7. For a fibration $\xi : X \xrightarrow{j} E \xrightarrow{p} Y$, $v_0(E) \le v_0(j) + v_0(p)$.

In §2, we give the proofs of the above theorems by using Sullivan models. In §3, we illustrate some examples. In §4, we comment a relation with Halperin conjecture on fibration [5, page 516].

2 Sullivan model

Recall the *Sullivan minimal model* M(X) [13] of a simply connected space X of finite type. It is a free Q-commutative differential graded algebra (DGA) ($\Lambda V, d$) with a Q-graded vector space $V = \bigoplus_{i>1} V^i$ of dim $V^i < \infty$ and a decomposable differential d. Denote the degree of a homogeneous element x of a graded algebra as |x|. A fibration $p : E \to Y$ has a minimal model which is a DGA-map $M(p) : M(Y) \to M(E)$. It is induced by a relative model

$$M(Y) = (\Lambda W, d_Y) \to (\Lambda W \otimes \Lambda V, D),$$

where $(\Lambda V, \overline{D}) = (\Lambda V, d_X)$ is the minimal model of the homotopy fibre X of p and there is a quasi-isomorphism $\rho_E : M(E) \xrightarrow{\sim} (\Lambda W \otimes \Lambda V, D)$. Notice that M(X) determines the rational homotopy type of X, especially $H^*(X; \mathbb{Q}) \cong H^*(M(X))$ as graded algebras and $\pi_i(X) \otimes \mathbb{Q} \cong Hom(V^i, \mathbb{Q})$. We refer to [5] for a general introduction and the standard notations. The above Definition 1.2 is replaced with

Lemma 2.1. For a map $f: X \to Y$, $v_0(f) \ge n$ if and only if there is a DGA-map:

$$\mu_f: (\Lambda W \otimes \Lambda V, D) \to (\Lambda(w_1, \cdots, w_n), 0)$$
(1)

such that $\mu_f(w_i) = w_i$ for some linearly independent elements w_1, \dots, w_n of W^{odd} .

Proof of Lemma 1.3. We can check that (5) follows from Lemma 2.1 since, after a suitable change of basis, $DV \subset \Lambda W \otimes \Lambda^+ V$ [14]. The others immediately hold from Definition 1.2.

In the following, we often use the same symbols $\mu_X : M(X) = (\Lambda V, d) \to (\Lambda(v_1, \dots, v_n), 0)$ with some linearly independent elements v_1, \dots, v_n of V in [16, Lemma 2.1] for an *n*-pairing $\mu_X : S^{k_1} \times \dots \times S^{k_n} \to X$ of $k_i = |v_i|$ and μ_f in Lemma 2.1(1) for μ_f in Definition 1.2.

Proof of Theorem 1.4. In the rational models, the diagram (**) of §1 is given as the DGA-commutative diagram:

$$(\Lambda W \otimes \Lambda U, D_Y) \xrightarrow{\rho_n} (\Lambda W / \Lambda^{>n} W, \overline{d_Y})$$

$$\| \qquad \uparrow^{proj_n}$$

$$(\Lambda W \otimes \Lambda U, D_Y) \xleftarrow{i_n} (\Lambda W, d_Y)$$

$$\eta^{(n)} \downarrow \qquad \|$$

$$(\Lambda W \otimes \Lambda V, D) \xleftarrow{(\Lambda W, d_Y)}$$

$$(2)$$

where i_n is the relative model of proj_n (see [3, Theorem 10.6], [4], [2]). Suppose $v_0(f) = n$. From Lemma 2.1, there is a map μ_f in (1). Then there is no map $\eta(n-1)$ in the DGA-commutative diagram induced from (2):

Indeed, if it exists, the zero element is sent to the non-zero element $w_1 \cdots w_n$ in the composition

$$H^*(\Lambda W/\Lambda^{\geq n}W) \stackrel{(\varphi_{n-1}^*)^{-1}}{\cong} H^*(\Lambda W \otimes \Lambda U') \stackrel{\mu_f^* \circ \eta(n-1)^*}{\longrightarrow} \Lambda(w_1, \cdots, w_n)$$

since $\rho_{n-1}(w_1 \cdots w_n + a) = 0$ and $\mu_f \circ \eta(n-1)(w_1 \cdots w_n + a) = w_1 \cdots w_n$ for a suitable element $a \in \Lambda W \otimes \Lambda^+ U'$ such that $w_1 \cdots w_n + a$ is a D'_Y -(exact) cocycle. Thus we have $cat_0(f) > n-1$.

Proof of Theorem 1.7. It is the similar argument as the proof of Thorem 1.6(1) in [16]. Let $v_0(E) = n$ by $\mu_E : S^{l_1} \times \cdots \times S^{l_n} \to E$. Then there is an integer $m(\leq n)$ such that there are the homotopy commutative diagrams:

$$(i) \qquad \begin{array}{c} S^{k_1} \times \cdots \times S^{k_m} & \xrightarrow{\mu_p} & E_{\mathbb{Q}} \\ \downarrow^{p_{\mathbb{Q}}} & & \downarrow^{p_{\mathbb{Q}}} \\ S^{k_1} \vee \cdots \vee S^{k_m} & \xrightarrow{\langle a_{i_1}, \cdots, a_{i_m} \rangle} & Y_{\mathbb{Q}} \end{array}$$

and

$$(ii) \qquad S^{k_{m+1}} \times \cdots \times S^{k_n} \xrightarrow{\mu_j} X_{\mathbb{Q}}$$
$$(ii) \qquad \cup \uparrow \qquad \qquad \downarrow^{j_{\mathbb{Q}}}$$
$$S^{k_{m+1}} \vee \cdots \vee S^{k_n} \xrightarrow{\langle a_{i_{m+1}}, \cdots, a_{i_n} \rangle} E_{\mathbb{Q}}$$

with $\{k_1, ..., k_n\} = \{l_1, ..., l_n\}$. Here μ_p is a homotopy restriction of μ_E and μ_j is a homotopy lift of a restriction of μ_E .

Indeed, let

$$(\Lambda W, d_Y) \to (\Lambda W \otimes \Lambda V, D) \xrightarrow{q} (\Lambda V, d_X)$$

be the model (Koszul-Sullivan extension) of ξ and $M(E) = (\Lambda U, d_E)$. Then there is an inclusion $U \subset W \oplus V$ inducing $U \cong H^*(W \oplus V, Q(D))$ (Q(D) is the linear part of D) so that a diagram

is commutative (up to sign) [5, Proposition 15.13]. Suppose that there is a DGA-map μ_E : $(\Lambda U, d_E) \rightarrow (\Lambda(u_1, \dots, u_n), 0)$ for $u_i \in U$ given as Lemma 2.1 of [16]. Without loss of generality, we can assume that there is an integer $m(\leq n)$ with $\{u_1, \dots, u_n\} = \{w_1, \dots, w_m, v_1, \dots, v_{n-m}\} \subset W^{odd} \oplus V^{odd}$. Then (*i*) is obvious and (*ii*) is guaranteed by the DGA homotopy commutative diagram

$$(\Lambda(v_1, \cdots, v_{n-m}), 0) \xleftarrow{\mu_E^*} (\Lambda V, d_X)$$

$$\bar{q} \uparrow \qquad q \uparrow$$

$$\Lambda(w_1, \dots, w_m, v_1, \dots, v_{n-m}), 0) \xleftarrow{\mu_E^*} (\Lambda W \otimes \Lambda V, D)$$

where the induced map $\overline{\mu_E^*}$ gives the model of μ_j .

5

Corollary 2.2. For a fibration $\xi : X \xrightarrow{j} E \xrightarrow{p} Y$ with $v_0(E) = n$, there is an integer $m \le n$ such that a diagram with k_i odd

is homotopy commutative. Here μ'_j and μ'_p are certain restrictions of μ_j and μ_p as in Definition 1.2 (*), respectively.

Remark 2.3. In the above corollary, the integer *m* is not unique since μ_E is not unique. For example, for a fibration $S^3 \times S^7 \to E \to S^5$ given by

$$(\Lambda(w), 0) \rightarrow (\Lambda(w, x, y), D) \rightarrow (\Lambda(x, y), 0)$$

with |x| = 3, |y| = 7, |w| = 5, Dy = wx, Dx = Dw = 0, we have $v_0(E) = v_0(j) = 2$ and $v_0(p) = 1$. Then there are two diagrams as

$$S^{7} \longrightarrow S^{7} \times S^{5} \longrightarrow S^{5} \qquad S^{3} \times S^{7} \longrightarrow S^{3} \times S^{7} \longrightarrow \bullet$$

$$\downarrow \qquad \mu_{E} \downarrow \qquad \qquad \parallel \qquad and \qquad \parallel \qquad \mu_{E} \downarrow \qquad \qquad \downarrow$$

$$X_{\mathbb{Q}} \xrightarrow{j} E_{\mathbb{Q}} \xrightarrow{p} Y_{\mathbb{Q}} \qquad X_{\mathbb{Q}} \xrightarrow{j} E_{\mathbb{Q}} \xrightarrow{p} Y_{\mathbb{Q}},$$

where m = 1 and m = 0, respectively.

Corollary 2.4. If a fibration $\xi : X \xrightarrow{j} E \to Y$ is weakly rational trivial; i.e., $\pi_*(E)_{\mathbb{Q}} = \pi_*(X)_{\mathbb{Q}} \oplus \pi_*(Y)_{\mathbb{Q}}$, we have $v_0(j) = v_0(X) \le v_0(E)$.

3 Examples

Let $\mathbb{C}P^n$ be the *n*-dimensional complex projective space. A space *X* is *formal* if there is a quasi-isomorphism $M(X) \to (H^*(X; \mathbb{Q}), 0)$. For example, S^n , $\mathbb{C}P^n$, Lie groups and their products are formal. It is known that $cup_0(X) = cat_0(X)$ when *X* is formal [2]. Recall the cup-length of a map

$$cup_0(f) := \max\{n \mid f^*(b_1 \cdots b_n) \neq 0 \text{ for some } b_i \in H^+(Y; \mathbb{Q})\}$$

for a map $f : X \to Y$. It is known that $cup_0(f) \le cat_0(f)$ [2, p.43] and $cup_0(f) = cat_0(f)$ when f is a map between formal spaces X and Y.

Example 3.1. In general, it does not hold that $v_0(f) \le cup_0(f)$ though $v_0(f) \le cat_0(f)$. Let *Y* be a simply connected 11-dimensional manifold such that $M(Y) = (\Lambda(w_1, w_2, w_3), d)$ with $|w_1| = |w_2| = 3$, $|w_3| = 5$, $d(w_1) = d(w_2) = 0$, $d(w_3) = w_1w_2$. It is the pullback of the sphere bundle of the tangent bundle of S^6 by the canonical degree 1 map $S^3 \times S^3 \to S^6$. It is not formal since $H^*(Y; \mathbb{Q})$ contains indecomsable elements $[w_1w_3]$ and $[w_2w_3]$. Then $cat_0(Y) = 3$ but $cup_0(Y) = 2$ since $[w_1][w_2w_3]$ is the fundamental class of *Y*. Consider a map $f : X = S^3 \times S^5 \to Y$ with $f^* : M(Y) = (\Lambda(w_1, w_2, w_3), d) \to (\Lambda(w_1, w_3), 0) = M(X)$ given by $f^*(w_1) = w_1$, $f^*(w_2) = 0$ and $f^*(w_3) = w_3$. Then $cup_0(f) = 1$. On the other hand, $v_0(f) = cat_0(f) = 2$ from Lemma 2.1(1) and (2). **Example 3.2.** The following fibrations $\xi : X \xrightarrow{j} E \xrightarrow{p} Y$ satisfy the condition that $v_0(E) = v_0(j) + v_0(p)$. We can verify them by using Lemma 2.1. Of course, it holds if ξ is a trivial fibration.

(1) Let a fibration $S^3 \xrightarrow{j} S^2 \times S^{2n-1} \xrightarrow{p} \mathbb{C}P^n$ be given by the model

$$(\Lambda(x,y),d_Y) \to (\Lambda(x,y,v),D) \to (\Lambda(v),0)$$

with |x| = 2, |y| = 2n + 1, |v| = 3, $Dx = d_Y x = 0$, $Dv = x^2$ and $Dy = d_Y y = x^{n+1}$. Then the following diagram is DGA-commutative:

$$\begin{array}{cccc} (\Lambda(x,y),d_Y) & \longrightarrow & (\Lambda(x,y,v),D) & \longrightarrow & (\Lambda(v),0) \\ \mu_p & & \mu_E & & \mu_j \\ (\Lambda(y),0) & \longrightarrow & (\Lambda(y,v),0) & \longrightarrow & (\Lambda(v),0). \end{array}$$

Thus $v_0(E) = 2 = 1 + 1 = v_0(p) + v_0(j)$.

(2) For the Hopf fibration $S^3 \xrightarrow{j} S^7 \xrightarrow{p} S^4$, the model is given by

 $(\Lambda(x,y),d_Y) \to (\Lambda(x,y,v),D) \to (\Lambda(v),0)$

with |x| = 4, |y| = 7, |v| = 3, $Dy = d_Y y = x^2$ and Dv = x. Notice $v_0(j) = 0$ since $M(S^7) = (\Lambda(y), 0) \simeq (\Lambda(x, y, v), D)$. Also the projectivization $P(E^n)$ of a non-trivial complex *n*-vector bundle E^n over S^{2n} is given as the total space of a fibration: $\mathbb{C}P^{n-1} \xrightarrow{j} \mathbb{C}P^{2n-1} \xrightarrow{p} S^{2n}$ [1]. The model is given by

$$(\Lambda(x,y),d_Y) \to (\Lambda(x,y,u,v),D) \to (\Lambda(u,v),d_X)$$

with |x| = 2n, |y| = 4n - 1, |u| = 2, |v| = 2n - 1, $d_Y y = x^2$, $Dv = u^n + x$ and $d_X v = u^n$. Then $v_0(j) = 0$ since $M(\mathbb{C}P^{2n-1}) = (\Lambda(u, y), d_E) \simeq (\Lambda(x, y, u, v), D)$ with $d_E u = 0$ and $d_E y = u^{2n}$.

(3) For an even interger *m*, let a fibration $S^{3m-1} \xrightarrow{j} E \xrightarrow{p} S_1^3 \times \cdots \times S_m^3$ be given as $M(E) = (\Lambda(w_1, ..., w_m, v), D)$ with $|w_i| = 3$, |v| = 3m-1, $Dw_i = 0$ and $Dv = w_1 \cdots w_m$. Then the following diagram is DGA-commutative:

$$(\Lambda(w_1,...,w_m),0) \longrightarrow (\Lambda(w_1,...,w_m,v),D) \longrightarrow (\Lambda(v),0)$$
$$\mu_p \downarrow \qquad \mu_E \downarrow \qquad \mu_j \downarrow$$
$$(\Lambda(w_2,...,w_m),0) \longrightarrow (\Lambda(w_2,...,w_m,v),0) \longrightarrow (\Lambda(v),0).$$

Thus $v_0(E) = m = (m-1) + 1 = v_0(p) + v_0(j)$.

(4) Let a fibration $S^6 \times S^9 \xrightarrow{j} E \xrightarrow{p} S^3 \times S^4$ be given by the model

$$(\Lambda(x, y, z), d_Y) \to (\Lambda(x, y, z, a, b, c), D) \to (\Lambda(a, b, c), d_X)$$

where |x| = 4, |y| = 3, |z| = 7, |a| = 6, |b| = 9, |c| = 11, Dx = Dy = 0, $Dz = x^2$, Da = xy, Db = xa + yz, $Dc = a^2 + 2yb$, $d_Xa = d_Xb = 0$ and $d_Xc = a^2$. Then the following diagram is DGA-commutative:

$$(\Lambda(x, y, z), d_Y) \longrightarrow (\Lambda(x, y, z, a, b, c), D) \longrightarrow (\Lambda(a, b, c), d_X)$$

$$\mu_p \downarrow \qquad \mu_E \downarrow \qquad \mu_j \downarrow$$

$$(\Lambda(z), 0) \longrightarrow (\Lambda(z, b, c), 0) \longrightarrow (\Lambda(b, c), 0).$$

Thus $v_0(E) = 3 = 1 + 2 = v_0(p) + v_0(j)$.

The computation above is summarized as follows.

ξ	$v_0(E)$	$v_0(X)$	$v_0(Y)$	$v_0(j)$	$v_0(p)$
(1)	2	1	1	1	1
(2)	1	1	1	0	1
(3)	m	1	т	1	m-1
(4)	3	2	2	2	1

Remark 3.3. The total space *E* of Example 3.2 (4) is also one of a fibration $SU(6)/SU(3) \times SU(3) \rightarrow E \rightarrow S^3$, where the fiber is the (non-formal) homogeneous space of special unitary groups $SU(3) \times SU(3) \subset SU(6)$ (with blockwise inclusion). It is given as

 $(\Lambda(y), 0) \rightarrow (\Lambda(x, y, z, a, b, c), D) \rightarrow (\Lambda(x, a, z, b, c), d_X)$

with $d_X x = d_X a = 0$, $d_X b = xy$ and $d_X c = a^2$. Then we have $v_0(E) = 3 < 4 = 3 + 1 = v_0(j) + v_0(p) = v_0(X) + v_0(Y)$ since there is a DGA-map $\mu_j : (\Lambda(x, a, z, b, c), d_X) \to (\Lambda(z, b, c), 0)$.

Problem 3.4. When $v_0(E) = v_0(j) + v_0(p)$?

Let *A* be a DGA $A = (A^*, d_A)$ with $A^* = \bigoplus_{i \ge 0} A^i$, $A^0 = \mathbb{Q}$, $A^1 = 0$ and the argumentation $\epsilon : A \to \mathbb{Q}$. Define Der_iA the vector space of derivations of *A* decreasing the degree by i > 0, where $\theta(xy) = \theta(x)y + (-1)^{i|x|}x\theta(y)$ for $\theta \in Der_iA$. We denote $\bigoplus_{i>0} Der_iA$ by DerA. The boundary operator $\delta : Der_*A \to Der_{*-1}A$ is defined by $\delta(\sigma) = d_A \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A$. For the minimal model $M(Z) = (\Lambda V, d)$ of a finite complex *Z* and the argumentation $\epsilon : \Lambda V \to \mathbb{Q}$, according to [4],

$$G_n(Z)_{\mathbb{Q}} \cong \operatorname{Im}(H_n(\epsilon_*) : H_n(\operatorname{Der}(\Lambda V, d)) \to \operatorname{Hom}(V^n, \mathbb{Q})).$$

Example 3.5. (1) For maps $f : X \to Y$ and $g : Y \to Z$, it does not hold that $g_0(g \circ f) \leq \min\{g_0(f), g_0(g)\}$ in general. Let $X = Z = S^3 \times S^3 \times S^3$ be given by the Sullivan model $M(X) = M(Z) = (\Lambda(w_1, w_2, w_3), 0)$ with $|w_i| = 3$. Let Y be given by the Sullivan model $M(Y) = (\Lambda(w_1, w_2, w_3, u, v), d_Y)$ with |u| = 3, |v| = 11, $d_Y w_i = d_Y u = 0$ and $d_Y v = w_1 w_2 w_3 u$. Then there are DGA-maps $M(f) : M(Y) \to M(X)$ and $M(g) : M(Z) \to M(Y)$ preserving w_i and M(f)(u) = M(f)(v) = 0. They induces $g_0(f) = 3$, $g_0(g) = 0$ and $g_0(g \circ f) = g_0(id_X) = \dim G_*(X)_{\mathbb{Q}} = 3$.

(2) For maps $f_i : X_i \to Y_i$ for i = 1, 2, it does not hold that $g_0(f_1 \lor f_2) = \max\{g_0(f_1), g_0(f_2)\}$ in general. Let f_i be the identity maps $id_{S^3} : S^3 \to S^3$ of $X_i = S^3 = Y_i$. Then $g_0(f_1) = g_0(f_2) = 1$ but $g_0(f_1 \lor f_2) = 0$ since $G_*(S^3 \lor S^3)_{\mathbb{Q}} = 0$ [11].

Example 3.6. It does not hold that $cat_0(E) \le cat_0(j) + cat_0(p)$ in general. For example, for the fibration $\mathbb{C}P^{n-1} \to \mathbb{C}P^{2n-1} \to S^{2n}$ in Example 3.2(2), we have $cat_0(\mathbb{C}P^{2n-1}) = 2n - 1$, $cat_0(j) = n - 1$ and $cat_0(p) = 1$.

Example 3.7. Let a fibration $S_1^3 \times \cdots \times S_n^3 \times S^5 \xrightarrow{j} E \xrightarrow{p} S_1^3 \times \cdots \times S_n^3$ be given by

$$(\Lambda(w_1,..,w_n),0) \to (\Lambda(w_1,..,w_n,v_1,..,v_n,v),D) \to (\Lambda(v_1,..,v_n,v),0)$$

with $|w_i| = |v_i| = 3$, |v| = 5, $Dv_i = 0$ and $Dv = w_1v_1 + \dots + w_nv_n$. Then $v_0(j) = n + 1$, $v_0(p) = n$ and $v_0(E) = n + 1$. Also $g_0(j) = n + 1$, $g_0(p) = 0$ and dim $G_*(E)_{\mathbb{Q}} = 1$. Thus both $v_0(j) + v_0(p) - v_0(E)$ and $g_0(j) + g_0(p) - g_0(E)$ can be arbitrarily large. Note that $g_0(E) = g_0(j) + g_0(p)$ for the fibrations in Example 3.2 (1), (2), (3) but not (4) as

ξ	$g_0(E)$	$g_0(X)$	$g_0(Y)$	$g_0(j)$	$g_0(p)$
(1)	2	1	1	1	1
(2)	1	1	1	0	1
(3)	1	1	т	1	0
(4)	1	2	2	2	0

We see that $g_0(j) = 3$, $g_0(p) = 0$ and $g_0(E) = 1$ for the fibration of Ramark 3.3.

Problem 3.8. For all fibrations $X \xrightarrow{j} E \xrightarrow{p} Y$ of finite complexes, does it hold that $g_0(E) \le g_0(j) + g_0(p)$?

Refer [15] for an estimate of dim $G_*(E)_{\mathbb{Q}}$.

Example 3.9. (1) The integer $cat_0(f) - v_0(f)$ can be arbitarily large. For example, for the natural inclusion map $f : \mathbb{C}P^n \to \mathbb{C}P^{n+1}$, we have $v_0(f) = 0$ and $cat_0(f) = n$.

(2) The integer $v_0(f) - g_0(f)$ can be arbitarily large. For example, for the map $E \xrightarrow{p} S_1^3 \times \cdots \times S_m^3$ in Example 3.2 (3), we have $g_0(p) = 0$ and $v_0(p) = m - 1$.

4 Halperin conjecture

A space X is said to be elliptic when dim $H^*(X;\mathbb{Q}) < \infty$ and dim $\pi_*(X)_{\mathbb{Q}} < \infty$. An elliptic space X is said to be an F_0 -space when $H^*(X;\mathbb{Q})$ is evenly graded, which is equivalent to be isomorphic to $\mathbb{Q}[x_1,..,x_n]/(f_1,..,f_n)$ for some $x_1,..,x_n$ and homogeneous polynomials $f_1,..,f_n \in \mathbb{Q}[x_1,..,x_n]$. Then $M(X) = (\Lambda(x_1,\cdots,x_n) \otimes \Lambda(y_1,\cdots,y_n),d)$ with $|x_i|$ even, $|y_i|$ odd, $dx_i = 0$ and $dy_i = f_i$. Halperin has conjectured that any fibration $\xi : X \xrightarrow{j} E \to B$ with X an F_0 -space c-splits; i.e., $H^*(E;\mathbb{Q}) \cong H^*(X;\mathbb{Q}) \otimes H^*(B;\mathbb{Q})$ additively. It is equivalent to that ξ is totally non-cohomologous to zero (abbreviated TNCZ); i.e., $j^* : H^*(E;\mathbb{Q}) \to H^*(X;\mathbb{Q})$ is surjective. The Halperin conjecture is equivalent to requiring that any fibration $X \to E \to$ S^{odd} is rationally trivial [9, Theorem 2.2]. Here S^{odd} means S^{2n+1} for any n > 0.

Proposition 4.1. For a fibration $X \xrightarrow{j} E \rightarrow S^{2n+1}$ with X an F_0 -space given by

$$(\Lambda w, 0) \to (\Lambda w \otimes \Lambda V, D) \to (\Lambda V, d) = (\Lambda(x_1, \cdots, x_n) \otimes \Lambda(y_1, \cdots, y_n), d),$$

it holds that $v_0(E) = n + 1 = v_0(j) + 1 = v_0(X) + 1$ *if and only if*

$$Dy_i \in \Lambda(w) \otimes \Lambda^+(x_1, \cdots, x_n) \otimes \Lambda(y_1, \cdots, y_n)$$
 (3)

for $i = 1, \cdots, n$.

Proof. It follows since $(\Lambda w \otimes \Lambda(y_1, \dots, y_n), \overline{D})$ is DGA-isomorphic to $(\Lambda w \otimes \Lambda(y_1, \dots, y_n), 0)$ only under the condition (3).

Theorem 4.2. For a fibration $\xi : X \xrightarrow{j} E \to S^{2n+1}$ over an odd-sphere, $v_0(j) = v_0(X) \le v_0(E) \le v_0(X) + 1$. In particular, when X is an F_0 -space, $v_0(E) = v_0(X) + 1$ if Halperin conjecture is true.

Proof. The former follows from Corollary 2.4 since ξ is weakly rational trivial [14]. The latter follows since ξ is rationally trivial [9, Theorem 2.2].

Remark 4.3. A comment that "We know $v_0(E) = n + 1$ " in [16, Remark 2.6] may be incorrect from Proposition 4.1. On the other hand, even if $v_0(E) = v_0(X) + 1$ for any fibration $X \to E \to S^{odd}$, it does not indicate Halperin conjecture to be true, again from Proposition 4.1. Notice that, for any fibration $X \to E \to S^{odd}$, $g_0(E) = g_0(X) + 1$ if and only if Halperin conjecture is true [15, Corollary A]. But $cat_0(E) = cat_0(X) + 1$ for any F_0 -space X [9, Theorem 4.7].

Finally, we propose a weak form of Halperin conjecture.

Problem 4.4. When X is an F_0 -space, does it hold that $v_0(E) = v_0(X) + 1$ for any fibration $X \to E \to S^{odd}$?

References

- [1] R.Bott and L.Tu, Differential forms in algebraic topology, G.T.M. 82 Springer 1982
- [2] O.Cornea, G.Lupton, J.Oprea and D.Tanré, *Lusternik-Schnirelmann category*, Math. Survey and Mono. **103**, A.M.S. 2003
- [3] Y.Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176 S.M.F. 1989
- [4] Y.Félix and S.Halperin, *Rational LS category and its applications*, Trans.A.M.S. 273 (1982) 1-38
- [5] Y.Félix, S.Halperin and J.-C.Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics 205, Springer-Verlag, 2001
- [6] D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969) 729-756
- [7] P.Hilton, G.Mislin and J.Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Math. Studies, 15 1975
- [8] B.Jessup and G.Lupton, *Free torus actions and two-stage spaces*, Math. Proc. Cambridge Philos. Soc. 137(1) (2004) 191-207
- [9] G.Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center Publ. 45 (1998) 115-135
- [10] N.Oda, Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math. Sci. Kyoto Univ. 28 (1992) 83-97
- [11] S.B.Smith, Rational evaluation subgroups, Mat.Z.221 (1996) 387-400

- [12] D.Stanley, On the Lusternik-Schnirelmann category of maps, Cand. J. Math. 54 (2002) 608-633
- [13] D.Sullivan, Infinitesimal computations in topology, I.H.E.S. 47 (1978) 269-331
- [14] J.-C.Thomas, *Rational homotopy of Serre fibrations*, Ann. Inst. Fourier, Grenoble 31 (1981) 71-90
- [15] T.Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. 15 (2008) 663-675
- [16] T.Yamaguchi, *Pairing rank in rational homotopy group*, African Diaspora J. of Math. 17 (2014) 85-92