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Abstract

In this paper, we present some inequalities for the growth and derivatives of a
polynomial with zeros outside a circle of arbitrary radius k£ > 0. Our results provide
improvements and generalizations of some well known polynomial inequalities.
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1 Introduction and statement of results
Let P, be the class of polynomials P(z) = io a,z” of degree n. For P € P, define
y=
M(P,r) := rlgl‘a:lz(IP(z)l and m := EE:IP(z)I.

If P € P, then it is known that

M(P’,1) <nM(P,1). (1.1)
Further, if P € P, and P(z) #0in |z| < 1, then

MP' 1) < gM(P, 1. (1.2)
The inequality (1.1) is better known as S. Bernstein’s inequality (for reference, see [12]),

although it first appeared in a paper of M.Riesz [11] and the inequality (1.2) is a well-known
result due to Lax [9] conjectured by Erdos.
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In the literature, there already exists some refinements and extensions of (1.2) (for ex-
ample, see Malik [10], Bidkham and Dewan [2], Dewan and Mir [3], Jain [7]).
It was shown by Malik [10] that if P € P,, and P(z) # 0 in |z| < k, k > 1, then

, n
M(P,l)smM(P, 1). (1.3)

As a generalization of (1.3), Dewan and Bidkham [2] proved that if P € P, and P(z) # 0 in
lzZl <k, k>1,thenforO<r<R<k,

n(R+k)"!

The above inequality (1.4) (for = 1) was further generalized to the s derivative by Jain
[[7], inequality (1.2)] by proving the following result.
Theorem A. If P P, and P(z) # 0in |zl <k, k> 1,thenforO<s<nand 1 <R <k,

d® R+k
{ (%

o1+ () Me . (1.5)

M(P',R) <

M(PY.R) < (5 i =)

Equality holds in (1.5) (with s = 1) for P(z) = (z +k)".
In this paper, we obtain certain extensions and refinements of (1.5) and hence of in-
equalities (1.2), (1.3) and (1.4) as well. More precisely, we prove

Theorem 1.1. [f Pe P, and P(z) #0in |zl <k, k>0, then for0<s<nand 0 <r <R <k,

we have
‘ c(n, R + |5 [ks+! d®
M(P(b)’R) S{ s+1 s+1 a(z- s+1ps 2s }|:{d (s) (d+ x”)} ]
c(n, )(k* + Ro*Y) + |22 |(kS+1 RS + Rk*) X =1
R+k\"

X——] M(P,r). 1.6

() M a6
The result is best possible (with s = 1) and equality in (1.6) holds for P(z) = (z+ k)".

Remark 1.2. Since if P(z) # 0 in |z] < k, k > 0, the polynomial P(tz) # 0 in |z] < £,4 > 1,0 <

;=

t < k. Hence applying inequality (2.2) of Lemma (2.1) to P(¢z), we get for 0 < s < n,

1
ﬂ ts(l_()s < 1’
c(n,s)lagl ‘t
or
1
Bles < 1. (1.7)

c(n,s)lag

The above inequality (1.7) gives
C(}’l, s)ts+l + Z_s ks+lts £
0 forO<t<k. (1.8)

< )
C(l’l, s)(ks+l 4 s+l ) + Z_g’(ks+1ts + ths) 5+ kS

Since R < k, if we take r = R in (1.8), we get
c(n, )R + ’Z—;|k”1 1

< .
c(n, (kS + RS+ + |20 (k1R + Rk2S) — RY+k°

(1.9

as
ao

Using (1.9) in (1.6), the following result immediately follows from Theorem (1.1).
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Corollary 1.3. I[f Pe P, and P(z) #0in |zl <k, k>0, then for 0 < s<nand 0 <r <R <k,
we have
d®

R+k
e

(1 +x")}x:1](—)nM(P,r). (1.10)

M(P(S)’R) = (Rs + ks)

The result is best possible (with s = 1 ) and equality in (1.10) holds for P(z) = (z+k)".

r+k

Remark 1.4. For r = 1, Corollary (1.3) reduces to Theorem A and for s = 1 it gives (1.4).

Next we prove the following theorem which gives an improvement of Corollary (1.3)
(for 1 < s < n), which in turn as a special case provides an improvement and extension of
Theorem A. In fact, we prove

Theorem 1.5. If Pe P, and P(z) #0in |zl <k, k>0, then for | <s<nand 0<r<R<k,
we have

c(n, $)R + ikt o
M(P®,R) s{ 0 }[{ a +x”)} ]
c(n, S)(k”l +RS+1) + |alﬁilm (ks+1Rs +Rk23) dx® -
R+k\"
x(%k) (M(P,r)—m). (1.11)

The result is best possible (with s = 1) and equality in (1.11) holds for P(z) = (z + k)".

Remark 1.6. Since P(z) # 0 in |z] < k, k > 0, therefore, for every A with |1 < 1, it follows
by Rouche’s theorem that the polynomial P(z) — Am, has no zeros in |z| < k, k > 0 and hence
applying inequality (1.7) of Remark (1.2), we get for 1 < s <n,

c(n, s)lag — Am| > |alk*. (1.12)

If in (1.12), we choose the argument of A suitably and note |ag| > m, from Lemma (2.4), we
get

c(n, s)(laol — Alm) = |aslk*. (1.13)
If we let |4] — 1 in (1.13), we get

1 lasl <1

c(n, s) lagl —m

which further implies by using the same arguments as in Remark (1.2), that

c(n, s)R + 1%L_fs+1
RIS <L (1.14)
C(n s)(ks+1 +Rs+1) + ﬂ(kHle +Rk2s) RS+ kS
’ lagl—m

Now, using (1.14) in (1.11), the following improvement of Corollary (1.3) (for 1 <s<n
) and hence of Theorem A immediately follows from Theorem (1.5).

Corollary 1.7. If Pe P, and P(z) #0in |zl <k, k>0, then for 1 <s<nand 0<r <R <k,
we have

d® R+k
{ (=

T+ () (M) —m). (1.15)

The result is best possible (with s = 1 ) and equality in (1.15) holds for P(z) = (z+ k)".

M(P(‘Y)’R) < (Rs _1,_ks)
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2 Lemmas

For the proof of these theorems, we need the following lemmas.

Lemma 2.1. If Pe P, and P(z) #0in |zl <k, k=2 1, and Q(z) = z"P(%), then for 1 <s<n
and |z = 1,

e — (| o
c(n, s) 19 ;
o w
1+ ( as s+1
c(n,s)\ao
and
L Jaslps <y, 2.2)
c(n, s) lag

The above Lemma is due to Aziz and Rather [1]. It is easy to see that (2.1) and (2.2)
holds for s = 0 as well.
In the same paper, Aziz and Rather also proved

Lemma 2.2. If P€ P, and P(z) # 0 in |zl <k, k> 1, then for 1 < s <n,
c(n, s)+ |Z—g|ks+1

c(n, )(1+k+) + | 2| (ks+1 + &25)

M(P(S),l)Sn(n—l)---(n—s+1){ }M(P,l). (2.3)

From Lemma (2.2), we easily get

Lemma 2.3. [fPe P,and P(z) #0in |zl <k, k> 1, then for 0 < s <n,

c(n, s)+’g—g|k”1 }[{ d®

c(n, s)(1 +ks+1) + ’Z_g|(ks+1 +k25) dx(®

M(P(“'),l)s{ (l+x")} ]M(P,l). (2.4)

x=1

Lemma 24. If P P, and P(z) #0 in |z| < k,k > 0, then |P(z)| > m for |z| < k, and in
particular
lag| > m.

The above Lemma is due to Gardner, Govil and Musukula [5].

Lemma 2.5. I[f Pe P, and P(z) #0 in|z| < k,k > O, then for 0 <r < R <k,

r+k\"

M(P,r) > (m) M(P.R). 2.5)
The above Lemma is due to Jain [8].

Lemma 2.6. If P(z) = ap + i ajzj, 1 < u < nis a polynomial of degree n having no zeros

in |zl <k, k>0, then for 0 <j;'u§ R <k,

r#+ kH

RH + kH

+ kH )Z] 2.6)

J e 1= (5

M(P,r) > (
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The above Lemma is due to Dewan, Yadav and Pukhta [4].

Lemma 2.7. The function

1
1 2] )51
" C(n,S)( x ) }
s+1

T(x) — ks+l{ ;
I+ c(n, s)(@)k

is an increasing function of x.

Proof. The proof follows by considering the first derivative test of 7'(x). O
Lemma 2.8. If Pe P,and P(z) #0in |zl <k,k > 1 and Q(2) = z"@, then for |z > 1/k,
|09 @)| 2 mnm-1)...(n— s+ Dlz". 2.7)
The above Lemma is due to Govil [6].
Lemma 2.9. I[f Pe P, and P(z) # 0 in |zl <k, k> 1, then for 1 < s <n,
M(PD, 1) <n(n-1)---(n—s+1)

|aslks+1

{ c(n,s)+ ol
X
c(n, s)(1 +ks+1) + 9l (sl 4 g29)

lag|-m

}(M(P, 1)—m). (2.8)
Proof. Since P(z) has all its zeros in |z > k> 1 and m = lll?irkllP(z)l, therefore,
Z|=
m < |P(z)| for |z| = k.
Hence it follows by Rouche’s theorem that for m > 0 and for every real or complex number

A with |4] < 1, the polynomial P(z) — Am does not vanish in |z| < k,k > 1. Applying inequality
(2.1) of Lemma (2.1) to the polynomial P(z) — Am, we get on |z| = 1 that

P(S) 2)

1+ 1 ( las| )ks—l
kS+l{ C(na S) Iag—/lml }

( las| )S+l
C(I’l, S) |ap—Am|

<|0¥@) - Amn(n—-1)...(n—s+ 17" (2.9)
Since for every A with |4| < 1, we have
lag — Am| = |ao| —|A|m = |ao| — m, (2.10)

and |ag| > m by Lemma (2.4), we get on combining (2.9), (2.10) and Lemma (2.7) that for
every A with 4] < 1,

kS+1 ’ |P(A)(Z)'
1 ( las| )ks+1
C(n’ S) lagl-m
<09 - Amn(n-1)...(n— s+ Dz"™|, for || = 1. .11
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Now choosing the argument of A on the right hand side of (2.11) so thaton |z =1,
|Q(‘Y)(z)—zmn(n -D...(n=s+ 17"
= |Q(S)(Z)|—|/l|mn(n—1)...(n—s+1), (2.12)

which is possible by inequality (2.7) of Lemma (2.8). Hence we conclude from (2.11) that
onlzl=1,

drs|PP@)| < [09@)| - [Amn(n-1)...(n— s+ 1), (2.13)

1
1+ ( ‘a"“{‘m )k‘y"
where ¢, = k! { c(n, s)\"“0 }

1+ ( las| )kerl
c(n, s)\"o"

Letting |1| — 1 in (2.13), we obtain

05| PV @) < [09(@)| - mn(n=1)...(n— s+ 1). (2.14)

Now, if p(z) is a polynomial of degree n having all its zeros in |z| < 1, then g(z) = 7" p(%) has
no zero in |z| < 1. Hence by inequality (2.1) of Lemma (2.1) with k = 1, we have for |z] = 1,

ls9@)| < [P9@)|. (2.15)
Let M = rlleliliglP(z)l, then for every y with |y| > 1, it follows by Rouche’s theorem that the
polynomial 7'(z) = P(z) —yMZ" has all zeros in |z| < 1. Taking S(z) = z”?%) =0@)-yM
and apply inequality (2.15) to T'(z), we get for 1 < s <n and for |z] =1,
Is©@)| < |19,
which implies
'Q(‘Y)(z)l < |P(S)(z) —yMn(n—-1)---(n—s+ l)z"_s| for |z] = 1. (2.16)

Since P(z) is of degree n, it follows for every 1 < s < n,that the polynomial P*)(z) is of
degree (n — s). By the repeated application of (1.1), we obtain for |z] = 1,

|PY@)| <n(n-1)-(n—s+1)M. (2.17)

Choose argument of y suitably and note inequality (2.17), we obtain from inequality (2.16)
for |z =1,

109@)| < Miyln(n—1)---(n— s+ 1)~ [P (2)|. (2.18)
Letting |y| — 1 in (2.18), we get
|PD()] +|09 ()| < Mn(n—1)---(n— s+ 1). (2.19)
Combining inequalities (2.14) and (2.19), we have for |z] = 1,
(1+ 0[PV < [PV +]09@)|-mn(n—1)...(n— s+ 1)
<Mnn-1)---(n—-s+1)—mnn—-1)...(n—-s+1)
=nn-1)..(n—s+1)(M-m),

which is equivalent to (2.8) and this completes the proof of Lemma (2.9). O
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3 Proofs of theorems

Proof of theorem (1.1). Since P(z) # 0 in 7] < k, k > 0, the polynomial P(Rz) has no zero in
lz| < 1—';, k> 1. Hence using Lemma (2.3), we have for 0 < s < n,

c(n,s)+|5 Rs(ﬁ)s+1 }
c(n,s)(1+ (L) (LY +(5)™)

a®
X [{d G )(1 +x”)}x:l]M(P,R),

as

RS M(P),R) {

which gives

as

c(n, )R + 'Z—g|ks+1 }
c(n, $)(k5H + Rs+1) + o

M(P®,R) s{
(ks+1Rs + Rst)

d® ;
X[{d (S)(l +x )}le M(P,R). 3.1
Now, if 0 < r < R < k, then by Lemma (2.5), we get,
M(P,R) < (R—-i-k) M(P,r). 3.2)
r+k

Combining (3.1) and (3.2), we obtain
c(n, )R+
c(n, s)(kS*1 + Rs+1) +
R+k\"
x (=) M),
r+k

which proves Theorem (1.1).
Proof of theorem (1.5). Since P(z) has no zero in |z| < k, k > 0, the polynomial P(Rz) has no

as

i),
+Xx
o (ks+1Rs +Rk2s) dx(® 1

M(P®,R) s{

as

zero in |z] < —, % = 1. Hence using Lemma (2.9), we have for 1 < s <n,
| s s+1
c(n, s)+ R3(L)
lao|— R
RSM(P(S),R) S{ kas+l = |::| s kNSt | rkN2s }
cn, )1+ (%) )+ iR (R) +(®)7)
a®
X (1+x") (M(P,R)—m’), 3.3)
dx(® -l
where m’ = m1n|P(Rz)| = Ilnlan(z)l = m.
=%
This gives
c(n, s)R + |aé|, ks*l
M(P.R) s{ o }
c(n, )(kSt1 + Rs+1) + = (kS*1RS + Rk?S)

X

d®
{d (S)(1+x”)} B (M(P,R)—m). (3.4)

The above inequality when combined with Lemma (2.6) (for 4 = 1) gives inequality (1.11)
and this completes the proof of Theorem (1.5).
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