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Abstract

In this paper, we present some inequalities for the growth and derivatives of a
polynomial with zeros outside a circle of arbitrary radius k > 0. Our results provide
improvements and generalizations of some well known polynomial inequalities.
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1 Introduction and statement of results

Let Pn be the class of polynomials P(z) =
n∑
ν=0

aνzν of degree n. For P ∈ Pn, define

M(P,r) :=max
|z|=r
|P(z)| and m :=min

|z|=k
|P(z)|.

If P ∈ Pn, then it is known that

M(P′,1) ≤ nM(P,1). (1.1)

Further, if P ∈ Pn and P(z) , 0 in |z| < 1, then

M(P′,1) ≤
n
2

M(P,1). (1.2)

The inequality (1.1) is better known as S. Bernstein’s inequality (for reference, see [12]),
although it first appeared in a paper of M.Riesz [11] and the inequality (1.2) is a well-known
result due to Lax [9] conjectured by Erdös.
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In the literature, there already exists some refinements and extensions of (1.2) (for ex-
ample, see Malik [10], Bidkham and Dewan [2], Dewan and Mir [3], Jain [7]).

It was shown by Malik [10] that if P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then

M(P′,1) ≤
n

1+ k
M(P,1). (1.3)

As a generalization of (1.3), Dewan and Bidkham [2] proved that if P ∈ Pn and P(z) , 0 in
|z| < k, k ≥ 1, then for 0 ≤ r ≤ R ≤ k,

M(P′,R) ≤
n(R+ k)n−1

(r+ k)n M(P,r). (1.4)

The above inequality (1.4) (for r = 1) was further generalized to the sth derivative by Jain
[[7], inequality (1.2)] by proving the following result.
Theorem A. If P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then for 0 ≤ s < n and 1 ≤ R ≤ k,

M
(
P(s),R

)
≤
( 1
Rs+ ks

)[{ d(s)

dx(s) (1+ xn)
}

x=1

](R+ k
1+ k

)n
M(P,1). (1.5)

Equality holds in (1.5) (with s = 1) for P(z) = (z+ k)n.
In this paper, we obtain certain extensions and refinements of (1.5) and hence of in-

equalities (1.2), (1.3) and (1.4) as well. More precisely, we prove

Theorem 1.1. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for 0 ≤ s < n and 0 < r ≤ R ≤ k,
we have

M
(
P(s),R

)
≤

{ c(n, s)R+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
ks+1+Rs+1)+ ∣∣∣ as

a0

∣∣∣(ks+1Rs+Rk2s)
}[{

d(s)

dx(s) (1+ xn)
}

x=1

]
×

(R+ k
r+ k

)n
M(P,r). (1.6)

The result is best possible (with s = 1) and equality in (1.6) holds for P(z) = (z+ k)n.
Remark 1.2. Since if P(z) , 0 in |z| < k, k > 0, the polynomial P(tz) , 0 in |z| < k

t ,
k
t ≥ 1,0 <

t ≤ k. Hence applying inequality (2.2) of Lemma (2.1) to P(tz), we get for 0 ≤ s < n,

1
c(n, s)

∣∣∣∣as

a0

∣∣∣∣ts
(k

t

)s
≤ 1,

or
1

c(n, s)

∣∣∣∣as

a0

∣∣∣∣ks ≤ 1. (1.7)

The above inequality (1.7) gives

c(n, s)ts+1+
∣∣∣ as
a0

∣∣∣ks+1ts

c(n, s)
(
ks+1+ ts+1)+ ∣∣∣ as

a0

∣∣∣(ks+1ts+ tk2s) ≤ ts

ts+ ks , for 0 < t ≤ k. (1.8)

Since R ≤ k, if we take t = R in (1.8), we get

c(n, s)R+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
ks+1+Rs+1)+ ∣∣∣ as

a0

∣∣∣(ks+1Rs+Rk2s) ≤ 1
Rs+ ks . (1.9)

Using (1.9) in (1.6), the following result immediately follows from Theorem (1.1).
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Corollary 1.3. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for 0 ≤ s < n and 0 < r ≤ R ≤ k,
we have

M(P(s),R) ≤
( 1
Rs+ ks

)[{ d(s)

dx(s) (1+ xn)
}

x=1

](R+ k
r+ k

)n
M(P,r). (1.10)

The result is best possible (with s = 1 ) and equality in (1.10) holds for P(z) = (z+ k)n.

Remark 1.4. For r = 1, Corollary (1.3) reduces to Theorem A and for s = 1 it gives (1.4).
Next we prove the following theorem which gives an improvement of Corollary (1.3)

(for 1 ≤ s < n), which in turn as a special case provides an improvement and extension of
Theorem A. In fact, we prove

Theorem 1.5. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for 1 ≤ s < n and 0 < r ≤ R ≤ k,
we have

M
(
P(s),R

)
≤

{ c(n, s)R+ |as |
|a0 |−m ks+1

c(n, s)
(
ks+1+Rs+1)+ |as |

|a0 |−m
(
ks+1Rs+Rk2s)

}[{
d(s)

dx(s) (1+ xn)
}

x=1

]
×

(R+ k
r+ k

)n(
M(P,r)−m

)
. (1.11)

The result is best possible (with s = 1) and equality in (1.11) holds for P(z) = (z+ k)n.

Remark 1.6. Since P(z) , 0 in |z| < k, k > 0, therefore, for every λ with |λ| < 1, it follows
by Rouche’s theorem that the polynomial P(z)−λm, has no zeros in |z| < k, k > 0 and hence
applying inequality (1.7) of Remark (1.2), we get for 1 ≤ s < n,

c(n, s)|a0−λm| ≥ |as|ks. (1.12)

If in (1.12), we choose the argument of λ suitably and note |a0| >m, from Lemma (2.4), we
get

c(n, s)(|a0| − |λ|m) ≥ |as|ks. (1.13)

If we let |λ| → 1 in (1.13), we get

1
c(n, s)

|as|

|a0| −m
ks ≤ 1,

which further implies by using the same arguments as in Remark (1.2), that

c(n, s)R+ |as |
|a0 |−m ks+1

c(n, s)
(
ks+1+Rs+1)+ |as |

|a0 |−m
(
ks+1Rs+Rk2s) ≤ 1

Rs+ ks . (1.14)

Now, using (1.14) in (1.11), the following improvement of Corollary (1.3) ( for 1≤ s< n
) and hence of Theorem A immediately follows from Theorem (1.5).

Corollary 1.7. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for 1 ≤ s < n and 0 < r ≤ R ≤ k,
we have

M(P(s),R) ≤
( 1
Rs+ ks

)[{ d(s)

dx(s) (1+ xn)
}

x=1

](R+ k
r+ k

)n(
M(P,r)−m

)
. (1.15)

The result is best possible (with s = 1 ) and equality in (1.15) holds for P(z) = (z+ k)n.
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2 Lemmas

For the proof of these theorems, we need the following lemmas.

Lemma 2.1. If P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, and Q(z) = znP( 1
z ), then for 1 ≤ s < n

and |z| = 1,

ks+1
{1+

1
c(n, s)

( ∣∣∣∣ as
a0

∣∣∣∣ )ks−1

1+
1

c(n, s)

( ∣∣∣∣ as
a0

∣∣∣∣ )ks+1

}∣∣∣P(s)(z)
∣∣∣ ≤ ∣∣∣Q(s)(z)

∣∣∣ (2.1)

and

1
c(n, s)

∣∣∣∣∣as

a0

∣∣∣∣∣ks ≤ 1. (2.2)

The above Lemma is due to Aziz and Rather [1]. It is easy to see that (2.1) and (2.2)
holds for s = 0 as well.

In the same paper, Aziz and Rather also proved

Lemma 2.2. If P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then for 1 ≤ s < n,

M
(
P(s),1

)
≤ n(n−1) · · · (n− s+1)

{ c(n, s)+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
1+ ks+1)+ ∣∣∣ as

a0

∣∣∣(ks+1+ k2s)
}

M(P,1). (2.3)

From Lemma (2.2), we easily get

Lemma 2.3. If P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then for 0 ≤ s < n,

M
(
P(s),1

)
≤

{ c(n, s)+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
1+ ks+1)+ ∣∣∣ as

a0

∣∣∣(ks+1+ k2s)
}[{

d(s)

dx(s) (1+ xn)
}

x=1

]
M(P,1). (2.4)

Lemma 2.4. If P ∈ Pn and P(z) , 0 in |z| < k,k > 0, then |P(z)| > m for |z| < k, and in
particular

|a0| > m.

The above Lemma is due to Gardner, Govil and Musukula [5].

Lemma 2.5. If P ∈ Pn and P(z) , 0 in |z| < k,k > 0, then for 0 < r ≤ R ≤ k,

M(P,r) ≥
( r+ k
R+ k

)n
M(P,R). (2.5)

The above Lemma is due to Jain [8].

Lemma 2.6. If P(z) = a0 +
n∑

j=µ
a jz j, 1 ≤ µ ≤ n is a polynomial of degree n having no zeros

in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,

M(P,r) ≥
( rµ+ kµ

Rµ+ kµ

) n
µ

M(P,R)+
[
1−
( rµ+ kµ

Rµ+ kµ

) n
µ
]
m. (2.6)
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The above Lemma is due to Dewan, Yadav and Pukhta [4].

Lemma 2.7. The function

T (x) = ks+1
{1+

1
c(n, s)

(
|as |
x

)
ks−1

1+
1

c(n, s)

(
|as |
x

)
ks+1

}

is an increasing function of x.

Proof. The proof follows by considering the first derivative test of T (x). �

Lemma 2.8. If P ∈ Pn and P(z) , 0 in |z| < k,k ≥ 1 and Q(z) = znP( 1
z ), then for |z| ≥ 1/k,∣∣∣Q(s)(z)

∣∣∣ ≥ mn (n−1) . . . (n− s+1)|z|n−s. (2.7)

The above Lemma is due to Govil [6].

Lemma 2.9. If P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then for 1 ≤ s < n,

M
(
P(s),1

)
≤ n(n−1) · · · (n− s+1)

×

{ c(n, s)+ |as |ks+1

|a0 |−m

c(n, s)
(
1+ ks+1)+ |as |

|a0 |−m (ks+1+ k2s)
}(

M(P,1)−m
)
. (2.8)

Proof. Since P(z) has all its zeros in |z| ≥ k ≥ 1 and m =min
|z|=k
|P(z)|, therefore,

m ≤ |P(z)| for |z| = k.

Hence it follows by Rouche’s theorem that for m > 0 and for every real or complex number
λwith |λ|< 1, the polynomial P(z)−λm does not vanish in |z|< k,k ≥ 1. Applying inequality
(2.1) of Lemma (2.1) to the polynomial P(z)−λm, we get on |z| = 1 that

ks+1
{1+

1
c(n, s)

(
|as |
|a0−λm|

)
ks−1

1+
1

c(n, s)

(
|as |
|a0−λm|

)
ks+1

}∣∣∣∣∣P(s)(z)
∣∣∣∣∣

≤

∣∣∣∣∣Q(s)(z)−λmn(n−1) . . . (n− s+1)zn−s
∣∣∣∣∣. (2.9)

Since for every λ with |λ| < 1, we have

|a0−λm| ≥ |a0| − |λ|m ≥ |a0| −m, (2.10)

and |a0| > m by Lemma (2.4), we get on combining (2.9), (2.10) and Lemma (2.7) that for
every λ with |λ| < 1,

ks+1


1+

1
c(n, s)

(
|as |
|a0 |−m

)
ks−1

1+
1

c(n, s)

(
|as |
|a0 |−m

)
ks+1


∣∣∣P(s)(z)

∣∣∣
≤
∣∣∣Q(s)(z)−λmn(n−1) . . . (n− s+1)zn−s

∣∣∣ , for |z| = 1. (2.11)
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Now choosing the argument of λ on the right hand side of (2.11) so that on |z| = 1,∣∣∣∣Q(s)(z)−λmn(n−1) . . . (n− s+1)zn−s
∣∣∣∣

=
∣∣∣∣Q(s)(z)

∣∣∣∣− |λ|mn(n−1) . . . (n− s+1), (2.12)

which is possible by inequality (2.7) of Lemma (2.8). Hence we conclude from (2.11) that
on |z| = 1,

φk,s
∣∣∣P(s)(z)

∣∣∣ ≤ ∣∣∣Q(s)(z)
∣∣∣− |λ|mn(n−1) . . . (n− s+1), (2.13)

where φk,s = ks+1
{1+

1
c(n, s)

(
|as |
|a0 |−m

)
ks−1

1+
1

c(n, s)

(
|as |
|a0 |−m

)
ks+1

}
.

Letting |λ| → 1 in (2.13), we obtain

φk,s
∣∣∣P(s)(z)

∣∣∣ ≤ ∣∣∣Q(s)(z)
∣∣∣−mn(n−1) . . . (n− s+1). (2.14)

Now, if p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then g(z) = zn p( 1
z ) has

no zero in |z| < 1. Hence by inequality (2.1) of Lemma (2.1) with k = 1, we have for |z| = 1,∣∣∣g(s)(z)
∣∣∣ ≤ ∣∣∣p(s)(z)

∣∣∣. (2.15)

Let M =max
|z|=1
|P(z)|, then for every γ with |γ| > 1, it follows by Rouche’s theorem that the

polynomial T (z) = P(z)−γMzn has all zeros in |z| < 1. Taking S (z) = znT ( 1
z ) = Q(z)−γM

and apply inequality (2.15) to T (z), we get for 1 ≤ s < n and for |z| = 1,∣∣∣S (s)(z)
∣∣∣ ≤ ∣∣∣T (s)(z)

∣∣∣,
which implies ∣∣∣Q(s)(z)

∣∣∣ ≤ ∣∣∣P(s)(z)−γMn(n−1) · · · (n− s+1)zn−s
∣∣∣ for |z| = 1. (2.16)

Since P(z) is of degree n, it follows for every 1 ≤ s < n,that the polynomial P(s)(z) is of
degree (n− s). By the repeated application of (1.1), we obtain for |z| = 1,∣∣∣P(s)(z)

∣∣∣ ≤ n(n−1) · · · (n− s+1)M. (2.17)

Choose argument of γ suitably and note inequality (2.17), we obtain from inequality (2.16)
for |z| = 1, ∣∣∣Q(s)(z)

∣∣∣ ≤ M|γ|n(n−1) · · · (n− s+1)−
∣∣∣P(s)(z)

∣∣∣. (2.18)

Letting |γ| → 1 in (2.18), we get∣∣∣P(s)(z)
∣∣∣+ ∣∣∣Q(s)(z)

∣∣∣ ≤ Mn(n−1) · · · (n− s+1). (2.19)

Combining inequalities (2.14) and (2.19), we have for |z| = 1,(
1+φk,s

)∣∣∣P(s)(z)
∣∣∣ ≤ ∣∣∣P(s)(z)

∣∣∣+ ∣∣∣Q(s)(z)
∣∣∣−mn(n−1) . . . (n− s+1)

≤ Mn(n−1) · · · (n− s+1)−mn(n−1) . . . (n− s+1)

= n(n−1) . . . (n− s+1)(M−m),

which is equivalent to (2.8) and this completes the proof of Lemma (2.9). �
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3 Proofs of theorems

Proof of theorem (1.1). Since P(z) , 0 in |z| < k, k > 0, the polynomial P(Rz) has no zero in
|z| < k

R ,
k
R ≥ 1. Hence using Lemma (2.3), we have for 0 ≤ s < n,

RsM
(
P(s),R

)
≤

{ c(n, s)+
∣∣∣ as
a0

∣∣∣Rs( k
R
)s+1

c(n, s)
(
1+
( k

R
)s+1)

+
∣∣∣ as
a0

∣∣∣Rs(( k
R
)s+1
+
( k

R
)2s)}

×

[{
d(s)

dx(s) (1+ xn)
}

x=1

]
M(P,R),

which gives

M
(
P(s),R

)
≤

{ c(n, s)R+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
ks+1+Rs+1)+ ∣∣∣ as

a0

∣∣∣(ks+1Rs+Rk2s)
}

×

[{
d(s)

dx(s) (1+ xn)
}

x=1

]
M(P,R). (3.1)

Now, if 0 < r ≤ R ≤ k, then by Lemma (2.5), we get,

M(P,R) ≤
(R+ k

r+ k

)n
M(P,r). (3.2)

Combining (3.1) and (3.2), we obtain

M
(
P(s),R

)
≤

{ c(n, s)R+
∣∣∣ as
a0

∣∣∣ks+1

c(n, s)
(
ks+1+Rs+1)+ ∣∣∣ as

a0

∣∣∣(ks+1Rs+Rk2s)
}[{

d(s)

dx(s) (1+ xn)
}

x=1

]
×

(R+ k
r+ k

)n
M(P,r),

which proves Theorem (1.1).
Proof of theorem (1.5). Since P(z) has no zero in |z| < k, k > 0, the polynomial P(Rz) has no
zero in |z| < k

R ,
k
R ≥ 1. Hence using Lemma (2.9), we have for 1 ≤ s < n,

RsM
(
P(s),R

)
≤

{ c(n, s)+ |as |
|a0 |−m′R

s( k
R
)s+1

c(n, s)
(
1+
( k

R
)s+1)

+
|as |
|a0 |−m′R

s(( k
R
)s+1
+
( k

R
)2s)}

×

[{
d(s)

dx(s) (1+ xn)
}

x=1

](
M(P,R)−m′

)
, (3.3)

where m′ = min
|z|= k

R

|P(Rz)| =min
|z|=k
|P(z)| = m.

This gives

M
(
P(s),R

)
≤

{ c(n, s)R+ |as |
|a0 |−m ks+1

c(n, s)
(
ks+1+Rs+1)+ |as |

|a0 |−m
(
ks+1Rs+Rk2s)

}

×

[{
d(s)

dx(s) (1+ xn)
}

x=1

](
M(P,R)−m

)
. (3.4)

The above inequality when combined with Lemma (2.6) (for µ = 1) gives inequality (1.11)
and this completes the proof of Theorem (1.5).
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