Inequalities for the Growth and Derivatives of a Polynomial

Abdullah Mir*
Department of Mathematics, University of Kashmir, Srinagar, 190006, (India).
(Communicated by Mamadou Mboup)

Abstract

In this paper, we present some inequalities for the growth and derivatives of a polynomial with zeros outside a circle of arbitrary radius $k>0$. Our results provide improvements and generalizations of some well known polynomial inequalities.

AMS Subject Classification: 30A10, 30C10, 30C15.
Keywords: Polynomial, Maximum Modulus, Zeros.

1 Introduction and statement of results

Let P_{n} be the class of polynomials $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ of degree n. For $P \in P_{n}$, define

$$
M(P, r):=\max _{|z|=r}|P(z)| \text { and } m:=\min _{|z|=k}|P(z)| .
$$

If $P \in P_{n}$, then it is known that

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq n M(P, 1) . \tag{1.1}
\end{equation*}
$$

Further, if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq \frac{n}{2} M(P, 1) . \tag{1.2}
\end{equation*}
$$

The inequality (1.1) is better known as S. Bernstein's inequality (for reference, see [12]), although it first appeared in a paper of M.Riesz [11] and the inequality (1.2) is a well-known result due to Lax [9] conjectured by Erdös.

[^0]In the literature, there already exists some refinements and extensions of (1.2) (for example, see Malik [10], Bidkham and Dewan [2], Dewan and Mir [3], Jain [7]).

It was shown by Malik [10] that if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq \frac{n}{1+k} M(P, 1) . \tag{1.3}
\end{equation*}
$$

As a generalization of (1.3), Dewan and Bidkham [2] proved that if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq r \leq R \leq k$,

$$
\begin{equation*}
M\left(P^{\prime}, R\right) \leq \frac{n(R+k)^{n-1}}{(r+k)^{n}} M(P, r) . \tag{1.4}
\end{equation*}
$$

The above inequality (1.4) (for $r=1$) was further generalized to the $s^{t h}$ derivative by Jain [[7], inequality (1.2)] by proving the following result.
Theorem A. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq s<n$ and $1 \leq R \leq k$,

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{1+k}\right)^{n} M(P, 1) . \tag{1.5}
\end{equation*}
$$

Equality holds in (1.5) (with $s=1$) for $P(z)=(z+k)^{n}$.
In this paper, we obtain certain extensions and refinements of (1.5) and hence of inequalities (1.2), (1.3) and (1.4) as well. More precisely, we prove

Theorem 1.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{\mid s_{s}}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left(\frac{R+k}{r+k}\right)^{n} M(P, r) . \tag{1.6}
\end{align*}
$$

The result is best possible (with $s=1$) and equality in (1.6) holds for $P(z)=(z+k)^{n}$. Remark 1.2. Since if $P(z) \neq 0$ in $|z|<k, k>0$, the polynomial $P(t z) \neq 0$ in $|z|<\frac{k}{t}, \frac{k}{t} \geq 1,0<$ $t \leq k$. Hence applying inequality (2.2) of Lemma (2.1) to $P(t z$), we get for $0 \leq s<n$,

$$
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| t^{s}\left(\frac{k}{t}\right)^{s} \leq 1,
$$

or

$$
\begin{equation*}
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| k^{s} \leq 1 . \tag{1.7}
\end{equation*}
$$

The above inequality (1.7) gives

$$
\begin{equation*}
\frac{c(n, s) t^{s+1}+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1} t^{s}}{c(n, s)\left(k^{s+1}+t^{s+1}\right)+\left|\frac{\left\lvert\, \frac{s_{s}}{a_{0}}\right.}{a_{0}}\right|\left(k^{s+1} t^{s}+t k^{2 s}\right)} \leq \frac{t^{s}}{t^{s}+k^{s}}, \text { for } 0<t \leq k \tag{1.8}
\end{equation*}
$$

Since $R \leq k$, if we take $t=R$ in (1.8), we get

$$
\begin{equation*}
\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)} \leq \frac{1}{R^{s}+k^{s}} . \tag{1.9}
\end{equation*}
$$

Using (1.9) in (1.6), the following result immediately follows from Theorem (1.1).

Corollary 1.3. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{r+k}\right)^{n} M(P, r) \tag{1.10}
\end{equation*}
$$

The result is best possible (with $s=1$) and equality in (1.10) holds for $P(z)=(z+k)^{n}$.
Remark 1.4. For $r=1$, Corollary (1.3) reduces to Theorem A and for $s=1$ it gives (1.4).
Next we prove the following theorem which gives an improvement of Corollary (1.3) (for $1 \leq s<n$), which in turn as a special case provides an improvement and extension of Theorem A. In fact, we prove

Theorem 1.5. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $1 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left(\frac{R+k}{r+k}\right)^{n}(M(P, r)-m) \tag{1.11}
\end{align*}
$$

The result is best possible (with $s=1$) and equality in (1.11) holds for $P(z)=(z+k)^{n}$.

Remark 1.6. Since $P(z) \neq 0$ in $|z|<k, k>0$, therefore, for every λ with $|\lambda|<1$, it follows by Rouche's theorem that the polynomial $P(z)-\lambda m$, has no zeros in $|z|<k, k>0$ and hence applying inequality (1.7) of Remark (1.2), we get for $1 \leq s<n$,

$$
\begin{equation*}
c(n, s)\left|a_{0}-\lambda m\right| \geq\left|a_{s}\right| k^{s} . \tag{1.12}
\end{equation*}
$$

If in (1.12), we choose the argument of λ suitably and note $\left|a_{0}\right|>m$, from Lemma (2.4), we get

$$
\begin{equation*}
c(n, s)\left(\left|a_{0}\right|-|\lambda| m\right) \geq\left|a_{s}\right| k^{s} . \tag{1.13}
\end{equation*}
$$

If we let $|\lambda| \rightarrow 1$ in (1.13), we get

$$
\frac{1}{c(n, s)} \frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s} \leq 1
$$

which further implies by using the same arguments as in Remark (1.2), that

$$
\begin{equation*}
\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)} \leq \frac{1}{R^{s}+k^{s}} . \tag{1.14}
\end{equation*}
$$

Now, using (1.14) in (1.11), the following improvement of Corollary (1.3) (for $1 \leq s<n$) and hence of Theorem A immediately follows from Theorem (1.5).

Corollary 1.7. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $1 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{r+k}\right)^{n}(M(P, r)-m) \tag{1.15}
\end{equation*}
$$

The result is best possible (with $s=1$) and equality in (1.15) holds for $P(z)=(z+k)^{n}$.

2 Lemmas

For the proof of these theorems, we need the following lemmas.
Lemma 2.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, and $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then for $1 \leq s<n$ and $|z|=1$,

$$
\begin{equation*}
k^{s+1}\left\{\frac{1+\frac{1}{c(n, s)}\left(\left|\frac{a_{s}}{a_{0}}\right|\right) k^{s-1}}{1+\frac{1}{c(n, s)}\left(\left|\frac{a_{s}}{a_{0}}\right|\right) k^{s+1}}\right\}\left|P^{(s)}(z)\right| \leq\left|Q^{(s)}(z)\right| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| k^{s} \leq 1 \tag{2.2}
\end{equation*}
$$

The above Lemma is due to Aziz and Rather [1]. It is easy to see that (2.1) and (2.2) holds for $s=0$ as well.

In the same paper, Aziz and Rather also proved

Lemma 2.2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $1 \leq s<n$,

$$
\begin{equation*}
M\left(P^{(s)}, 1\right) \leq n(n-1) \cdots(n-s+1)\left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(1+k^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1}+k^{2 s}\right)}\right\} M(P, 1) . \tag{2.3}
\end{equation*}
$$

From Lemma (2.2), we easily get
Lemma 2.3. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq s<n$,

$$
\begin{equation*}
M\left(P^{(s)}, 1\right) \leq\left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(1+k^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1}+k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, 1) . \tag{2.4}
\end{equation*}
$$

Lemma 2.4. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then $|P(z)|>m$ for $|z|<k$, and in particular

$$
\left|a_{0}\right|>m .
$$

The above Lemma is due to Gardner, Govil and Musukula [5].
Lemma 2.5. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0<r \leq R \leq k$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{r+k}{R+k}\right)^{n} M(P, R) . \tag{2.5}
\end{equation*}
$$

The above Lemma is due to Jain [8].
Lemma 2.6. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu \leq n$ is a polynomial of degree n having no zeros in $|z|<k, k>0$, then for $0<r \leq R \leq k$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{r^{\mu}+k^{\mu}}{R^{\mu}+k^{\mu}}\right)^{\frac{n}{\mu}} M(P, R)+\left[1-\left(\frac{r^{\mu}+k^{\mu}}{R^{\mu}+k^{\mu}}\right)^{\frac{n}{\mu}}\right] m . \tag{2.6}
\end{equation*}
$$

The above Lemma is due to Dewan, Yadav and Pukhta [4].
Lemma 2.7. The function

$$
T(x)=k^{s+1}\left\{\frac{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{x}\right) k^{s-1}}{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{x}\right) k^{s+1}}\right\}
$$

is an increasing function of x.
Proof. The proof follows by considering the first derivative test of $T(x)$.
Lemma 2.8. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$ and $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then for $|z| \geq 1 / k$,

$$
\begin{equation*}
\left|Q^{(s)}(z)\right| \geq m n(n-1) \ldots(n-s+1)|z|^{n-s} . \tag{2.7}
\end{equation*}
$$

The above Lemma is due to Govil [6].
Lemma 2.9. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $1 \leq s<n$,

$$
\begin{align*}
& M\left(P^{(s)}, 1\right) \leq n(n-1) \cdots(n-s+1) \\
& \times\left\{\frac{c(n, s)+\frac{\left|a_{s}\right| k^{s+1}}{\left|a_{0}\right|-m}}{c(n, s)\left(1+k^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1}+k^{2 s}\right)}\right\}(M(P, 1)-m) . \tag{2.8}
\end{align*}
$$

Proof. Since $P(z)$ has all its zeros in $|z| \geq k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, therefore,

$$
m \leq|P(z)| \text { for }|z|=k
$$

Hence it follows by Rouche's theorem that for $m>0$ and for every real or complex number λ with $|\lambda|<1$, the polynomial $P(z)-\lambda m$ does not vanish in $|z|<k, k \geq 1$. Applying inequality (2.1) of Lemma (2.1) to the polynomial $P(z)-\lambda m$, we get on $|z|=1$ that

$$
\begin{align*}
& k^{s+1}\left\{\frac{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{\left|a_{0}-\lambda m\right|}\right) k^{s-1}}{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{\left|a_{0}-\lambda m\right|}\right) k^{s+1}}\right\}\left|P^{(s)}(z)\right| \\
& \quad \leq\left|Q^{(s)}(z)-\bar{\lambda} m n(n-1) \ldots(n-s+1) z^{n-s}\right| \tag{2.9}
\end{align*}
$$

Since for every λ with $|\lambda|<1$, we have

$$
\begin{equation*}
\left|a_{0}-\lambda m\right| \geq\left|a_{0}\right|-|\lambda| m \geq\left|a_{0}\right|-m, \tag{2.10}
\end{equation*}
$$

and $\left|a_{0}\right|>m$ by Lemma (2.4), we get on combining (2.9), (2.10) and Lemma (2.7) that for every λ with $|\lambda|<1$,

$$
\begin{align*}
& k^{s+1}\left\{\frac{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\right) k^{s-1}}{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m}\right) k^{s+1}}\right\}\left|P^{(s)}(z)\right| \\
& \leq\left|Q^{(s)}(z)-\bar{\lambda} \operatorname{mn}(n-1) \ldots(n-s+1) z^{n-s}\right|, \text { for }|z|=1 \tag{2.11}
\end{align*}
$$

Now choosing the argument of λ on the right hand side of (2.11) so that on $|z|=1$,

$$
\begin{align*}
& \left|Q^{(s)}(z)-\bar{\lambda} m n(n-1) \ldots(n-s+1) z^{n-s}\right| \\
& =\left|Q^{(s)}(z)\right|-|\lambda| m n(n-1) \ldots(n-s+1), \tag{2.12}
\end{align*}
$$

which is possible by inequality (2.7) of Lemma (2.8). Hence we conclude from (2.11) that on $|z|=1$,

$$
\begin{equation*}
\phi_{k, s}\left|P^{(s)}(z)\right| \leq\left|Q^{(s)}(z)\right|-|\lambda| m n(n-1) \ldots(n-s+1), \tag{2.13}
\end{equation*}
$$

where $\phi_{k, s}=k^{s+1}\left\{\frac{1+\frac{1}{c(n, s)}\left(\frac{\mid a)^{s} \mid}{a_{0} \mid-m}\right)^{k^{s-1}}}{1+\frac{1}{c(n, s)}\left(\frac{\left|a_{s}\right|}{a_{0} \mid-m}\right)^{k^{s+1}}}\right\}$.
Letting $|\lambda| \rightarrow 1$ in (2.13), we obtain

$$
\begin{equation*}
\phi_{k, s}\left|P^{(s)}(z)\right| \leq\left|Q^{(s)}(z)\right|-m n(n-1) \ldots(n-s+1) . \tag{2.14}
\end{equation*}
$$

Now, if $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then $g(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ has no zero in $|z|<1$. Hence by inequality (2.1) of Lemma (2.1) with $k=1$, we have for $|z|=1$,

$$
\begin{equation*}
\left|g^{(s)}(z)\right| \leq\left|p^{(s)}(z)\right| . \tag{2.15}
\end{equation*}
$$

Let $M=\max _{|z|=1}|P(z)|$, then for every γ with $|\gamma|>1$, it follows by Rouche's theorem that the polynomial $T(z)=P(z)-\gamma M z^{n}$ has all zeros in $|z|<1$. Taking $S(z)=z^{n} \overline{T\left(\frac{1}{\bar{z}}\right)}=Q(z)-\bar{\gamma} M$ and apply inequality (2.15) to $T(z)$, we get for $1 \leq s<n$ and for $|z|=1$,

$$
\left|S^{(s)}(z)\right| \leq\left|T^{(s)}(z)\right|
$$

which implies

$$
\begin{equation*}
\left|Q^{(s)}(z)\right| \leq\left|P^{(s)}(z)-\gamma M n(n-1) \cdots(n-s+1) z^{n-s}\right| \text { for }|z|=1 . \tag{2.16}
\end{equation*}
$$

Since $P(z)$ is of degree n, it follows for every $1 \leq s<n$, that the polynomial $P^{(s)}(z)$ is of degree $(n-s)$. By the repeated application of (1.1), we obtain for $|z|=1$,

$$
\begin{equation*}
\left|P^{(s)}(z)\right| \leq n(n-1) \cdots(n-s+1) M . \tag{2.17}
\end{equation*}
$$

Choose argument of γ suitably and note inequality (2.17), we obtain from inequality (2.16) for $|z|=1$,

$$
\begin{equation*}
\left|Q^{(s)}(z)\right| \leq M|\gamma| n(n-1) \cdots(n-s+1)-\left|P^{(s)}(z)\right| . \tag{2.18}
\end{equation*}
$$

Letting $|\gamma| \rightarrow 1$ in (2.18), we get

$$
\begin{equation*}
\left|P^{(s)}(z)\right|+\left|Q^{(s)}(z)\right| \leq M n(n-1) \cdots(n-s+1) . \tag{2.19}
\end{equation*}
$$

Combining inequalities (2.14) and (2.19), we have for $|z|=1$,

$$
\begin{aligned}
\left(1+\phi_{k, s}\right)\left|P^{(s)}(z)\right| & \leq\left|P^{(s)}(z)\right|+\left|Q^{(s)}(z)\right|-m n(n-1) \ldots(n-s+1) \\
& \leq M n(n-1) \cdots(n-s+1)-m n(n-1) \ldots(n-s+1) \\
& =n(n-1) \ldots(n-s+1)(M-m),
\end{aligned}
$$

which is equivalent to (2.8) and this completes the proof of Lemma (2.9).

3 Proofs of theorems

Proof of theorem (1.1). Since $P(z) \neq 0$ in $|z|<k, k>0$, the polynomial $P(R z)$ has no zero in $|z|<\frac{k}{R}, \frac{k}{R} \geq 1$. Hence using Lemma (2.3), we have for $0 \leq s<n$,

$$
\begin{aligned}
R^{s} M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s)+\left|\frac{a_{s}}{a_{0}}\right| R^{s}\left(\frac{k}{R}\right)^{s+1}}{c(n, s)\left(1+\left(\frac{k}{R}\right)^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right| R^{s}\left(\left(\frac{k}{R}\right)^{s+1}+\left(\frac{k}{R}\right)^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, R),
\end{aligned}
$$

which gives

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] M(P, R) . \tag{3.1}
\end{align*}
$$

Now, if $0<r \leq R \leq k$, then by Lemma (2.5), we get,

$$
\begin{equation*}
M(P, R) \leq\left(\frac{R+k}{r+k}\right)^{n} M(P, r) . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we obtain

$$
\begin{aligned}
M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{\left\lvert\, \frac{s}{s}\right.}{a_{0}}\right|\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left(\frac{R+k}{r+k}\right)^{n} M(P, r),
\end{aligned}
$$

which proves Theorem (1.1).
Proof of theorem (1.5). Since $P(z)$ has no zero in $|z|<k, k>0$, the polynomial $P(R z)$ has no zero in $|z|<\frac{k}{R}, \frac{k}{R} \geq 1$. Hence using Lemma (2.9), we have for $1 \leq s<n$,

$$
\begin{align*}
R^{s} M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m^{\prime}} R^{s}\left(\frac{k}{R}\right)^{s+1}}{c(n, s)\left(1+\left(\frac{k}{R}\right)^{s+1}\right)+\frac{\left|a_{s}\right|}{\left|a_{0}\right|-m^{\prime}} R^{s}\left(\left(\frac{k}{R}\right)^{s+1}+\left(\frac{k}{R}\right)^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(M(P, R)-m^{\prime}\right), \tag{3.3}
\end{align*}
$$

where $m^{\prime}=\min _{|z|=\frac{k}{R}}|P(R z)|=\min _{|z|=k}|P(z)|=m$.
This gives

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq & \left\{\frac{c(n, s) R+\frac{\left|a_{s}\right|}{\left|a_{0}\right| a_{n} \mid} k^{s+1}}{c(n, s)\left(k^{s+1}+R^{s+1}\right)+\frac{\left|k_{s}\right|}{\left|a_{0}\right|-m}\left(k^{s+1} R^{s}+R k^{2 s}\right)}\right\} \\
& \times\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right](M(P, R)-m) . \tag{3.4}
\end{align*}
$$

The above inequality when combined with Lemma (2.6) (for $\mu=1$) gives inequality (1.11) and this completes the proof of Theorem (1.5).

Acknowlegement

The author is highly grateful to the referee for the valuable suggestions.

References

[1] A. Aziz and N. A. Rather, Some Zygmund type L^{q} inequalities for polynomials. J. Math. Anal. Appl. 289 (2004), 14-29.
[2] M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative. J. Math. Anal. Appl. 166 (1992), 319-324.
[3] K. K. Dewan and Abdullah Mir, On the maximum modulus of a polynomial and its derivative. Int. J. Math. Mathe. Sci. 16 (2005), 2641-2645.
[4] K. K. Dewan, R. S. Yadav and M. S. Pukhta, Inequalities for a polynomial and its derivative. Math. Ineq. Appl. 2 (1999), 203-205.
[5] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not vanishing inside a circle. J. Ineq. Pure Appl. Math. 6(Issue 2, Art. 53) (2005), 1-9.
[6] N. K. Govil, Some inequalities for derivative of polynomials. J. Approx. Theory. 66(1991), 29-35.
[7] V. K. Jain, A generalization of Ankeny and Rivlin's result on the maximum modulus of polynomials not vanishing in the interior of the unit circle. Turk. J. Math. 31 (2007), 89-94.
[8] V. K. Jain, Converse of an extremal problem in polynomials-II. J. Indian Math. Soc. 60 (1994), 41-47.
[9] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50 (1944), 509-513.
[10] M. A. Malik, On the derivative of a polynomial. J. London Math. Soc. 1 (1969), 57-60.
[11] M. Riesz, Eine trigonometrische interpolationsformel und einige Ungleichungen für Polynome. Jahresbericht der Deutschen Mathematiker-Vereinigung. 23 (1914), 354368.
[12] A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bull. Amer. Math. Soc. 47 (1941), 565-579.

[^0]: *E-mail address: mabdullah_mir@yahoo.co.in

