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Abstract. A hypermodule is a multivalued algebraic system satisfying the module like axioms. In
this paper, we construct quotient hypermodule. Let M be a hypermodule, N be a subhypermodule
of M and I be a hyperideal of R. Then, [M : N∗] is R-hypermodule and [R : I∗]-hypermodule, and
prove that when N is normal subhypemodule, [M : N∗] is a [R : I∗]-module. Hence, the quotient
hypermodules considered by Anvarieh and Davvaz are modules.
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1 Introduction and Basic Definitions

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty [14], at the 8th

Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them
in different contexts: algebraic functions, rational fractions, non commutative groups. Algebraic
hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hyperstructure, the
composition of two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [4, 5, 9, 6, 15]. In [8], Davvaz et al. provided, for the first time, a physical
example of hyperstructures associated with the elementary particle physics, Leptons. They have
considered this important group of the elementary particles and shown that this set along with the
interactions between its members can be described by the algebraic hyperstructures. Mendel, the
father of genetics took the first steps in defining “contrasting characters, genotypes in F1 and F2 . . .

and setting different laws”. The genotypes of F2 is dependent on the type of its parents genotype
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and it follows certain roles. In [10], Ghadiri, Davvaz and Nekouian analyzed the second generation
genotypes of monohybrid and a dihybrid with a mathematical structure. They used the concept
of Hv-semigroup structure in the F2-genotypes with cross operation and proved that this is an Hv-
semigroup. They determined the kinds of number of the Hv-subsemigroups of F2-genotypes. Also,
in [7], inheritance issue based on genetic information is looked at carefully via a new hyperalgebraic
approach. Several examples are provided from different biology points of view, and it is shown that
the theory of hyperstructures exactly fits the inheritance issue. Also, see [3, 11]. The notion of
hypermodules is studied by many authors, for example see [1, 2, 16, 17, 18, 19, 20].

The more general structure that satisfies the ring-like axioms is the hyperring in the general
sense: (R,+, ·) is a hyperring if + and · are two hyperoperations such that (R,+) is a hypergroup
and · is an associative hyperoperation, which is distributive with respect to +. There are different
notions of hyperrings. If only the addition + is a hyperoperation and the multiplication · is a usual
operation, then we say that R is an additive hyperring. A special case of this type is the hyperring
introduced by Krasner[12]. The concept of hypermodule over a hyperring has been investigated by
many authors, for example, see [1, 2, 17]. In this section, we present some notions. These definitions
and results are necessary for the next section. Let H be a non-empty set and ◦ : H ×H → P?(H)
be a hyperoperation, where P?(H) is the family of non-empty subsets of H. The couple (H,◦) is
called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we define A◦B =⋃

a∈A,b∈B a◦b, A◦{x}= A◦ x and {x}◦B= x◦B.A hypergroupoid (H,◦) is called a semihypergroup if
for all a,b,c of H we have (a◦b)◦c = a◦ (b◦c). A hypergroupoid (H,◦) is called a quasihypergroup
if for all a of H we have a◦H = H ◦a = H. This condition is also called the reproduction axiom. A
hypergroupoid (H,◦) which is both a semihypergroup and a quasihypergroup is called a hypergroup.
A special case of this type is the hyperring introduced by Krasner [12]. Also, Krasner introduced
a new class of hyperrings and hyperfields: the quotient hyperrings and hyperfields. A Krasner
hyperring is an algebraic structure (R,+, ·) which satisfies the following axioms: (1) (R,+) is a
canonical hypergroup, i.e., (i) for every x,y,z ∈ R; (x+ y)+ z = x+ (y+ z), (ii) for every x,y ∈ R;
x+ y = y+ x, (iii) there exists 0 ∈ R such that x = x+ 0, for all x ∈ R, (iv) for every x ∈ R there
exists a unique element x

′

such that 0 ∈ x+ x
′

(we shall write −x for x
′

and we call it the opposite
of x), (v) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z− y; (2) Relating to the multiplication, (R, ·) is
a semigroup having zero as a bilaterally absorbing element; (3) The multiplication is distributive
with respect to the hyperoperation +. Let (R,+, ·) be a hyperring and I be a non-empty subset of
R. Then, I is said to be a subhyperring of R if (I,+, ·) is itself a hyperring. A subhyperring I of a
hyperring R is a left (right) hyperideal of R if r · a ⊆ I (a · r ⊆ I) for all r ∈ R, a ∈ A. I is called a
hyperideal if I is both a left and a right hyperideal. An ideal I of hyperring R is called normal if
x+ I − x ⊆ I, for every x ∈ R. Let (H,◦) be a semihypergroup and ρ be an equivalence relation on
H. If A and B are non-empty subsets of H, then AρB means that for every a ∈ A, there is b ∈ B
such that ρ(a) = ρ(b) and for every b ∈ B there is a ∈ A such that ρ(a) = ρ(b), and AρB, means
that for every a ∈ A and b ∈ B, we have ρ(a) = ρ(b). The equivalence relation ρ is called regular
on the right (on the left) if for all x of H, from aρb, it follows that (a ◦ x)ρ(b ◦ x) ((x ◦ a)ρ(x ◦ b)
respectively) and ρ is called strongly regular on the right (on the left) if for all a,b of H, from aρb,
it follows that (a◦ x)ρ(b◦ x) ((x ◦a)ρ(x ◦b) respectively), and ρ is called regular (strongly regular)
if it is regular (strongly regular) on the right and on the left. Let (H,◦) be a semihypergroup and ρ
be an equivalence relation on H. If ρ is regular, then H/ρ = {ρ(a) : a ∈ H} is a semihypergroup, with
respect to the hyperoperation ρ(a)�ρ(b) = {ρ(c) : c ∈ a◦b} and if this hyperoperation is well defined
on H/ρ, then ρ is regular (see Theorem 2.5.2 in [9]). Moreover, if (H,◦) is a hypergroup and ρ is an
equivalence relation on H, then ρ is strongly regular if and only if (H/ρ,◦), is a group (see Corollary
2.5.6 in [9]).

In this paper, the notion of quotient hypermodules are studied. Let M be a R-hypermodule, I be
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a hyperideal of R and N be a subhypermodule of M. Then, the quotient [M : N∗] is also [R : I∗]-
hypermodule. But if N is a normal subhypermodule and I is a normal hyperideal of R, then the
quotient [M : N∗] is a [R : I∗]-module.

2 Quotient Hypermodule

Let N be a subhypermodule of a hypermodule M. In this section, we construct quotient canonical
hypergroup [M : N∗] and prove that when N is normal, [M : N∗] is an abelian group. Let (R,+, ·)
be a hyperring and (M,+) be a hypergroup. We say that M is a hypermodule over a hyperring
R, if there exists an external hyperoperation · : R×M → P?(M) with (r,m) 7→ r ·m such that (i)
r · (m1 +m2) = r ·m1 + r ·m2, (ii) (r1 + r2) ·m = r1 ·m+ r2 ·m, (iii) (r1 · r2) ·m = r1 · (r2 ·m), for every
r1,r2,r ∈ R and m1,m2,m ∈ M. Let M be a hypermodule and N be a non-empty subset of M. Then,
N is called a subhypermodule of M if (N,+) is a canonical subhypergroup of (M,+) and for every
r ∈ R and n ∈ N, r ·n ⊆ N. A subhypermodule N is called normal if for every m ∈ M, m+N−m ⊆ N.
Let X be a subset of a hypermodule of M and {Mi : i ∈ I} be the family of all subhypermodule of
M which contain X. Then,

⋂
i∈I Mi is called the hypermodule generated by X. This hypermodule is

denoted by 〈X〉. If X = {m1,m2, . . . ,mn}, then the hypermodule 〈X〉 is denoted by 〈m1,m2, . . . ,mn〉.
Let M be an R-hypermodule, R1 and M1,M2 be nonempty subsets of R and M, respectively. We
define

R1 ·M1 =
{
x ∈ M : x ∈

∑n
i=1 ri ·mi,ri ∈ R1,mi ∈ M1,n ∈ N

}
,

M1+M2 = {x ∈ M : x ∈ m1+m2,m1 ∈ M1,m2 ∈ M2},

ZX = {m ∈ M : m ∈
∑n

i=1 nixi,ni ∈ Z, xi ∈ X}.

Proposition 2.1. Let M be an R-hypermodule and X ⊆ M. Then, 〈X〉 = ZX+R ·X.

Definition 2.2. Let M be an R-hypermodule such that (M,+) be an abelian group. Then, M is called
multiplicative hypermodule.

If N is a subhypermodule of a hypermodule M, then we define the relation m1 ≡ m2 if and only
if m1 ∈ m2+N, for every m1,m2 ∈ M. This relation is denoted by m1N∗m2.

Proposition 2.3. Let N be a subhypermodule of hypermodule M. Then, N∗ is an equivalence
relation.

Proof. Suppose that m ∈ M. Since 0 is neutral element and 0 ∈ N, it follows that m =m+0 ∈m+N,
the relation N∗ is reflexive. Let m1,m2 ∈ M and m1N∗m2. Then, m1 ∈ m2 + n, for some n ∈ N.
Hence, m2 ∈ m1 −n ∈ m1 +N. So this relation is symmetric. Let m1,m2,m3 ∈ M such that m1N∗m2
and m2N∗m3. Then, for some n1,n2 ∈ N, m1 ∈m2+n1,m2 ∈m3+n2. So, m1 ∈m2+n1 ⊆m3+n1+n2 ⊆

m3+N. Therefore, m1N∗m3. This completes the proof. �

If I is a hyperideal of a hyperring R, then we define the relation with the following hyperopera-
tions: x ≡ y if and only if x ∈ y+ I. This relation is denoted by xI∗y.

Proposition 2.4. Let I be a hyperideal of R. Then, [R : I∗] is a hyperring with the following hyper-
operations:

I∗(x)⊕ I∗(y) = {I∗(z) : z ∈ I∗(x)+ I∗(y)},
I∗(x)� I∗(y) = {I∗(z) : z ∈ I∗(x) · I∗(y)}.

Proof. The proof is straightforward. �
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Theorem 2.5. Let M be an R- hypermodule, I be an ideal of R and N be a subhypermodule of M.
Then, [M : N∗] is a [R : I∗] hypermodule with the following hyperoperations:

N∗(m1)⊕N∗(m2) = {N∗(m) : m ∈ N∗(m1)+N∗(m2)},
I∗(r)�N∗(m) = {N∗(m) : m ∈ I∗(r) ·N∗(m)},

and [M : N∗] is R-hypermodule with the following hyperoperations:

N∗(m1)⊕N∗(m2) = {N∗(m) : m ∈ N∗(m1)+N∗(m2)},
r�N∗(m) = {N∗(m) : m ∈ r ·N∗(m)}.

Proof. The proof is straightforward. �

Let M be an R-hypermodule and N be a subhypermodule of M. Then, the zero element of
[M : N∗] is {N} and |〈{N}〉| = 1.

Proposition 2.6. Let N be a normal subhypermodule of hypermodule M. Then, for every m1,m2 ∈M
the following are equivalent:

(i) m2 ∈ m1+N,

(ii) m1−m2 ⊆ N,

(iii) (m1−m2)∩N , ∅.

Proof. Suppose that (m1 −m2)∩ N , ∅. Then there exists m ∈ (m1 −m2)∩ N. So −m2 +m1 ⊆

−m2 +m+m2 ⊆ N. If x ∈ −m2 +m1, then x ∈ N. Hence −m2 ∈ x−m1 and m2 ∈ m1 − x ⊆ m1 +N.
Therefore, (iii) implies (i). It is easy to see that (i) implies (ii) and (ii) implies (iii). �

Definition 2.7. Let M be an R-hypermodule and N be a subhypermodule of M. We denote Ω(N) =
{m ∈ M : m−m ⊆ N}.

Proposition 2.8. Let M be an R-hypermodule and N be a subhypermodule of M. Then, Ω(N) is a
subhypermodule of M and N ⊆Ω(N).

Proof. Since N , ∅, the setΩ(N) is non-empty. Let m1,m2,m ∈Ω(N), r ∈R, x ∈m1−m2 and y ∈ r ·m.
Then,

x− x ⊆ (m1−m2)− (m1−m2) = (m1−m1)+ (m2−m2) ⊆ N +N = N,
y− y ⊆ r ·m− r ·m = r · (m−m) ⊆ N.

Hence, m1−m2 ⊆ Ω(N) and r ·m ⊆ Ω(N). Moreover, for every n ∈ N, since N is a subhypermodule
of M, n−n ⊆ N. Therefore, Ω(N) is a subhypermodule of M containing N. �

Proposition 2.9. Let M be an R-hypermodule and m1,m2 ∈Ω({0}). Then, m1+m2 is a singleton set.

Proof. The proof is straightforward. �

Proposition 2.10. Let M be an hypermodule. Then, Ω({0}) is an abelian group and for every
submodule M1 of M, M1 ⊆Ω({0}).



94 S. Ostadhadi-Dehkordi and B. Davvaz

Proof. Suppose that m1,m2 ∈Ω({0}) and x,y ∈ m1+m2. Then

x− y ⊆ (m1+m2)− (m1+m2) = (m1−m2)− (m1−m2) = 0,

This implies that m1+m2 is a singleton and Ω({0}) is a subgroup. Let M1 be any subgroup of M and
x ∈ M1. Then, x− x = {0}. Hence x ∈Ω({0}) and M1 ⊆Ω({0}). This completes the proof. �

Corollary 2.11. Let M be an R-hypermodule and N be a subhypermodule of M. Then, N is normal
if and only if Ω(N) = M. Moreover, (M,+) is an abelian group if and only if Ω({0}) = M.

Let H(M) = {x | x ∈ m−m,∀m ∈ M}.

Proposition 2.12. Let M be an R-hypermodule and N be a subhypermodule of M. Then, N is
normal if and only if H(M) ⊆ N.

Proof. Suppose that N be a subhypermodule and H(M) ⊆ N. Then for every m ∈ M and n ∈ N
we have m+ n−m = m−m+ n ⊆ H(M)+ n ⊆ N +N = N. Hence, N is normal. Let N be a normal
subhypermodule and m ∈ M. This implies that m+ 0−m ⊆ m+N −m ⊆ N. Hence m−m ⊆ N, for
every m ∈ M. Therefore, H(M) ⊆ N. This completes the proof. �

Corollary 2.13. Let M be an R-hypermodule. Then, H(M) is the smallest normal subhypermodule
of M.

Corollary 2.14. Let N1 and N2 be subhypermodules of M such that N1 ⊆ N2 and N1 be normal
subhypermodule. Then, N2 is also normal.

Corollary 2.15. Let M be an R-hypermodule such that {0} is normal. Then, all subhypermodules
of M are normal.

Theorem 2.16. Let M be an R-hypermodule. Then, (M,+) is abelian group if and only if H(M) =
{0}.

Proof. We know that (M,+) is abelian group if and only if Ω({0}) = M. Moreover, Ω({0}) = M if
and only if {0} is a normal subhypermodule. Hence, (M,+) is an abelian group if and only if {0} is a
normal subhypermodule of M. Since H(M) is a smallest subhypermodule of M, then {0} is normal
if and only if H(M) = {0}. This completes the proof. �

Corollary 2.17. Since H(M) is the smallest normal subhypermodule of M, it follows that M is a
module if and only if all subhypemodules of M are normal.

Corollary 2.18. Let N be a normal subhypermodule of hypermodule M. Then, the equivalence
relation defined in Proposition 2.3, is a strongly regular relation. Hence [M : N∗] is abelian group.

Theorem 2.19. Let M be an R-hypermodule and N be a normal subhypermodule of M. Then,
[M : N∗] is a multiplicative hypermodule.

Proof. Suppose that N is a normal subhypermodule of M. The zero element of this quotient hyper-
module is {N}. Moreover, {N} is normal. By Theorem 2.16, [M : N∗] is a multiplicative hypermod-
ule. �

Theorem 2.20. Let M be a multiplicative hypermodule. Then, the following statements are equiv-
alent:

(i) there exists m ∈ M such that |0 ·m| = 1,
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(ii) there exists r ∈ R, such that |r ·0| = 1,

(iii) |0 ·0| = 1,

(iv) ∀r ∈ R,m ∈ M, we have |r ·m| = 1.

Proof. (ii)⇒ (iii). Suppose that r ∈ R. We have 0 ·0 = (r− r) ·0 = r ·0− r ·0 and by (ii), it follows
that 0 ·0 = {0}, whence we obtain (iii).

(iii)⇒ (iv). Let r , 0 be an element of R. We have 0 ·0 = (r− r) ·0 = r ·0− r ·0. If there exists
x , y elements of r ·0, then 0 ·0 would contain x−y , 0 and 0, and it is a contradiction. On the other
hand, for every r ∈ R and m ∈M, r · (m−m)= r ·m−r ·m, whence it follows that r ·m contains only an
element. The other implications (iv)⇒ (i) are immediate. Similarly, the condition (i) is equivalent
to (iii), (iv). �

Proposition 2.21. Let M be a multiplicative hypermodule. Then,

(i) 0 ∈ r ·0, for every r ∈ R,

(ii) 0 ∈ 0 ·m, for every m ∈ M,

(iii) if there exist r0 ∈ R and m0 ∈ M such that |r0 ·m0| = 1, then |0 ·0| = 1,

(iv) if N is a subhypermodule of M, then for any element
N∗(m) ∈ [M : N∗], we have |N∗(m)�N∗(0)| = 1.

Proof. By Theorem 2.20, we obtain (i), (ii), (iii) and (iv). �

Proposition 2.22. Let M be a multiplicative hypermodule over hyperring R. Then, the external
hyperoperation R×M→P?(M) is operation if and only if there exist r0 ∈ R and m0 ∈ M such that
|r0 ·m0| = 1.

Proof. By Theorem 2.20, it is sufficient to check that |r0 ·0| = 1. We have

r0 ·0 = r0 · (m0−m0) = r0 ·m0− r0 ·m0,

whence we obtain that r0 ·0 contain only 0. �

Corollary 2.23. Let M be an R-hypermodule and N be a subhypermodule of M. Then, [M : N∗] is
also an R-hypermodule. Moreover, if N is a normal subhypermodule of M, then by the Corollary
2.18, [M : N∗] is a multiplicative hypermodule and by Theorem 2.20, the external hyperoperation
in this quotient is operation.

Proposition 2.24. Let R be a Krasner hyperring and I be a normal ideal of R. Then, [R : I∗] is a
ring.

Proof. Since R is an R-hypermodule, by Corollary 2.23, [R : I∗] is a ring. �

Corollary 2.25. Let M be an R-hypermodule, I be a normal hyperideal and N be a normal subhy-
permodule of M. Then, the relation I∗ and N∗ are strong regular. This implies that the quotients
[R : I∗] and [M : N∗] are ring and module, respectively. So, by the isomorphism theorems proved in
[1], all the quotient hypermodules considered are modules.
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