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Abstract. In this article, we establish some existence results for solutions of a initial value problem
of a nonlinear fractional differential system on half line involving the sequential Riemann-Liouville
fractional derivatives. Our analysis relies on the Schauder fixed point theorem. An efficiency ex-
ample is presented to illustrate the main theorem. As far as the author knows, the present work is
perhaps the first one that deals with such kind of initial value problems for fractional differential
systems on half line.
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1 Introduction

Fractional differential equations have excited in recent years a considerable interest both in mathe-
matics and in applications. They were used in modelling of many physical and chemical processes
and in engineering, see the text books [21, 28, 19] and the references therein. For more details on
the geometric and physical interpretation for derivatives see [22, 14, 30].

Furati and Tatar in [11], Zhang in [33], Agarwal, Benchohra and Hamani [2] established suf-
ficient conditions for the existence of solutions for some boundary value problems of fractional
differential equations with Caputo fractional derivative on the finite intervals.
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Arara, Benchohra, Hamidi and Nieto [3], Zhao and Ge [34], Liu and Jia [18], Su and Zhang
[27] and Agarwal, Benchohra, Hamidi and Pinelas [1] studied the existence of solutions for some
boundary value problems for fractional order differential equations on half line.

Applications of fractional order differential systems are in many fields, as for example, rheology,
mechanics, chemistry, physics, bioengineering, robotics and many others, see [7]. Diethehm [8]
proposed the model of the type (which is called a multi-order fractional differential system):

DEyit) = fit,y1(0), - ya(D)yi = 1,2,

subjected to the initial conditions

vi0)=yo(j=12,---,n).

This system contains many models as special cases, see Chen’s fractional order system [29] with a
double scroll attractor, Genesio-Tesi fractional-order system [13], Lu’s fractional order system [10],
Volta’s fractional-order system [23, 20], Rossler’s fractional-order system [17] and so on.

Boundary value problems of fractional order differential systems on finite intervals are a fasci-
nating subject. See papers [26, 31, 32, 12, 24, 4, 9, 25]. One knows that

D}, Dy, f(1) = D, DY, f(t) = Dyl f(0)
does not hold for p > 0 or g > 0, where Dy+ is Riemann-Liouville fractional derivative. Dg+Dg+ is
called a sequential fractional derivative operator.

Sequential fractional derivative operators can appear in the formulation of various applied prob-
lems in physics and applied science. Indeed, differential equations modelling processes or objects
arise usually as a result of a substitution of one relationship involving derivatives into another one.
If the derivatives in both relationships are fractional derivatives, then the resulting expression (equa-
tion) will contain, in general case, sequential fractional derivative operators ([21], P.88). Therefore
the consideration of sequential fractional derivative operators is of interest [21].

In [3, 34, 15, 29], the authors investigated the global existence of solutions of initial value
problems of nonlinear fractional differential equations on a semi-axis. More precisely, they studied
the folllowing initial value problem

D2 x(0) = f(t,x(1) =0, 1€ (0, +00),

lim '~ x(¢) = xo,

t—0
whereO<a <1, Dg+ is the standard Riemann-Liouville fractional derivative of order «, f : (0, +0c0) X
R — R is continuous.

There has been no paper concerned with the existence of solutions of initial value problems on
half lines for fractional differential systems with sequential fractional derivative operators and the
nonlinearities depending on the lower order derivatives [21].

In this paper, we fill this gap. We discuss the global existence of solutions of the following
initial value problem of nonlinear fractional differential system on half line with sequential fractional
derivative operators

DT x(t) + (O f (1, y(0), D y(0) = 0, 1 € (0,+00),

D ™y(1) +y(0)g(t, x(1), D, x(1) = 0, 1 € (0,+00),
(1.1)

;irr(;tl_“iD(’f*‘x(t) = Xi_1, i € Ny,
-

}E%tl_ﬁfDTf‘ly(I) =Yi-1, L € N1,
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where

e D, is the standard Riemann-Liouville fractional derivative of order * > 0,

e Nj is the set of all nonnegative integers, Ny, = {a,a+ 1,a+2,--- ,b} for a,b € Ny with a < b,

e €(0,)(i€N1y),0j=ai+ - +a;(jEN1,),q€(0,1)withg <o, D7ix= Dg{ ~-DiDylx(j €
N1,) is a sequential fractional derivative operator, D?°x = x,

o Bi €O, 1) €N ), Tj=B1+++B;( € Niw), p €(0,1) with p <7, Dy =D, - D2 DL y(j
N1,) is a sequential fractional derivative operator, D%y =y,

® x; € R(i € No,-1), ¥i € R(i € Non—1) are initial data,

o $,i: (0,+00) — R satisfy that there exist constants k; > —1(i = 1,2) such that

p(0) < 51, ()] < 2,1 € (0,00),

e f,g:(0,+00)x R*> = R and f is a T—Caratheodory function and g a —Caratheodory function
(see Definitions 2.3 and 2.4).

We establish sufficient conditions for the global existence of solutions of IVP(1.1). The methods
used in this paper are based upon the Schauder fixed point theorem. The novelty of this paper is
that IVP(1.1) is defined on a half line, and f,g involved with lower order fractional derivatives
are allowed to be linear or supper linear functions. An example is presented to illustrate the main
theorem.

The remainder of this paper is organized as follows: some preliminary results are given in
Section 2. The main result and its proof are presented in Section 3. In Section 4, an example is
given to show the efficiency of the main theorem.

2 Preliminary results

For the convenience of the reader, we present here the necessary definitions from fixed point theory
and fractional calculus theory. These definitions and properties can be found in the literatures [21,
28, 19]. Denote the Gamma function and Beta function by

T@) = [ s e ds, B@,p)= [ (1-x)"" ¥ dx.

Definition 2.1. . Let ¢ € R. The Riemann-Liouville fractional integral of order @ > 0 of a function
f:(c,+o0) —> R is given by
t -
1% f(0) = g | 6= )" f(s)ds,

provided that the right-hand side exists.

Definition 2.2. Let ¢ € R. The Riemann-Liouville fractional derivative of order a > 0 of a function
f:(c,+00) —> R is given by

__ L ar_f
D¢ f(1) = Je s,

T(n—a) d" Je (1=s)o—H

where n—1 < @ < n, provided that the right-hand side exists.

P
1417

I‘I’Ql
1+17

Suppose that 7 > 7, + k» + 1 and o > 0, + k| + 1. Denote p(¢) = and o(?) =

Definition 2.3. f: (0,+00)x R> — R is called a 7—Caratheodory function if it satisfies the following
assumptions:
(i) t— f(t, oL @VW) is measurable on (0, +oo) for each (x,y) € R?;
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(i) (x,y) — f(t, oL tpgw) is continuous on R? for each 7 € (0, +0);
(iii) for each r > 0 there exists a constant M, > 0 such that |x|,[y| < r imply

X
|f(t’ o)’ t”g(t))l M,,t € (0,+00).

Definition 2.4. g : (0,+00)x R> — R is called a o—Caratheodory function if it satisfies the following
assumptions:
1) t— g( p(t), tqp(t)) is measurable on (0, +oo) for each (x,y) € R?;

() (x,y) — g( p(t), tqp(t)) is continuous on R? for each 7 € (0, +c0);
(iii) for each r > 0 there exists a constant M, > 0 such that |x|,[y| < r imply

|g(t p()’ tqp(t))| < M,,t € (0,+00).

Definition 2.5. Let Z; and Z, be Banach spaces and T : Z; — Z,. T is called completely continuous
if T is continuous and maps bounded sets into relatively compact sets.

For @ > 0 and u > —1, it holds that

Cp+l) i+ [(u+1)
15 = frarn ™ Dot = mon

Let A > B> 0. It is easy to show that

#  _ A-B B)
sup i = 432 (325
te(0,+00)

Leto>o,+ki+1and 7> 71, +ky+ 1. C(0,+00) denotes the set of all continuous functions on
(0,+00). Choose

X, Dg+x € C(0,+c0) and the following limits exist
X<y limp(£)x(t),lim t2p(t)DZ, x(¢),
- . t—0 t—0

. . q q
tglgop(t)x(t), tglgloo t1p(t) D)y, x(1)

and
y,Dg.y € C(0,+00) and the following limits exist

. . p
y=1y: }gg@(t)y(t),}gr(}tl’g(t)DO+y(t),
lim o(t)y(r), lim *o(t)DY, y(1)
f—+00 f—+00

For x € X, define

||X||x=maX{ sup p(D)|x(5)l, sup tqp(t)IDq+X(t)l}.

t€(0,+00) t€(0,+00)
For y € Y, define

IIyIIy=maX{ sup o()ly(®I, sup P Q(t)Dg+y(t)|}-

te(0,+00) t€(0,+00)

Lemma 2.6. X is a Banach space with the norm ||-||x and Y a Banach space with the norm || - ||y.
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Proof. We prove that X is a Banach space. Similarly we can prove that Y is a Banach space.
It is easy to see that X is a normed linear space. Let {x,} be a Cauchy sequence in X. Then
llx, = x,ll = 0, u,v — +o0. It follows that

lirrolp(t)xu(t), [lilp p(t)x,(t) exist,
— — 400

lir%tqp(t)DgJu(t), t1i1+n t1p(t)DI, x, (1) exist,
t— —+00

2.1
sup  p(0)|x, (1) = x,(H)] = 0,u,v — +00,
1€(0,+00)

sup tqp(t)|Dq+xu(t) _Dq+xv(t)|, U,y — +00.
t€(0,+00)

Thus there exists two functions xg,yo defined on (0, +c0) such that
lim p(t)xu(1) = xo(0), lim_19p()) D xu(1) = yo(0).
U—+00 u—+0o

It follows that

sup  [p(1)x,(2) = xo(t)] = 0,u — +00,
te(0,+00)

(2.2)

sup |4p()D. x,(1) = yo (1)

t€(0,+00)

,U — 400,

This means that functions xp, yg : (0, +c0) — R are well defined.
Step 1. Prove that xg,yo € C(0, +00).
We have 1 € (0, +0c0) that

lxo() — x0(t0)| < |x0(t) — p(O)xN (D] + (D) xNn (1) — p()xn (t0)] + |o(D) XN (T0) — X0(t0)

<2 sup |p(O)xn(t) = xo(D]+|p(®)xn(2) — p(H)xn(to)].

te(0,+00)

Since sup |o(#)x,(t) — xo(1)] = 0,u — +0c0 and p(#)x,(¢) is continuous on (0, +co), then for any € > 0
te(0,+00)
we can choose N and 6 > 0 such that sup |o(#)xn(#) — x0(?)| < € and |p(t)xn(t) — p(H)xn(t0)| < € for
1€(0,4+0)

all |t —tp] < 6. Thus |xo(#) — xo(#)| < 3€ foe all |t — 19| < 5. So x¢ € C(0,+00). Similarly we can prove
that yg € C(0, +c0).

Step 2. Prove that the limits lir% xo(1), tlim xo(1), lirré yo(1), tlim yo(r) exist.

1— —+00 — —+00
Suppose that liIISp(t)xu(t) =A,. By sup po(®)|x,(®)—x,(t)] = 0,u,v — +0c0, we know that A, is
- t€(0,+00)

a Cauchy sequence. Then lim A, exists. By sup |o(£)x,(¢) — xo()] = 0,u — +00, we get that
U—+eo 1€(0,+00)

}g%xo(t) = }g%uglglmp(t)xu(t) = ugr;lm }ggp(t)xu(t) = ugrpmAu.

Hence lim xo(#) exists. Similarly we can prove that lim xo(¢), limyg(¢), lim yo(¢) exist.
t—0 t—>+00 t—0 t—+00

Step 3. Prove that ;f;op((tt)) =Dy, (;OT(;)))



32 Y. Liu

We have for some ¢, € R that

X (1) + ¢t l—Iq (zyq(,)a((tt)))

q q ( yo(®)
e Do Xu() = 1, (ﬂp(t))|

1 (t=5)1"" (g yo(s)
0 T (Do+x"(s)‘ﬂp(s>)ds|

1 (t—
< = sp()ds up_ [Fp)DG. 5 =30(0)

1 (t—s)0! 1- q
b T sls aldste(sou}—) 'l‘qp(l‘)D L xu(t) — yo(t)‘

B(q,2
= (120 HEED sup [ip(6)Dfxu(1) = yo(0)
1€(0,+00)

—0asu— +oo.

: - q (Yo Xo(0) 1_ g9 (0 Yo _ nd (%@
So tim (1) +cut?™") = 1§, (#)  Then S5 +cot?™" = I, (745 ) It follows that 325 = D, (%7).
Xo(®)

Sot— o 18 element in X with x, — m as u — +oo. It follows that X is a Banach space.
The proof of Lemma 2.1 is completed.

We define for x € X that p(t)x(?)|,=0 = lin(l)p(t)x(t) and 19p(t)Do+ x(t)|;=0 = lin(l) t9o(t) Do+ x(t). Then
— —

for x € X, both t — p(t)x(¢) and t — tqp(t)DgJ(t) are continuous on [0, +00).
O

Lemma 2.7. Let M be a subset of X. Then M is relatively compact if and only if the following
conditions are satisfied:

(i) both {t — p(H)x(t) : x € M} and {t — tip(t)DI, x(t) : x € M} are uniformly bounded,

(i) both {t — p(H)x(t) : x € M} and {t — tip(t)D, x(t) : x € M} are equicontinuous in any subin-
terval [a,b] in [0, +00),

(iii) both {t — p(H)x(t) : x € M} and {t — t1p(t)DI, x(t) : x € M} are equiconverges as t — +co.

Proof. ” &”. From Lemma 2.1, we know X is a Banach space. In order to prove that the subset M
is relatively compact in X, we only need to show M is totally bounded in X, that is for all €e >0, M
has a finite e-net.

For any given € > 0, by (i) and (iii), there exist constants A, B, T > 0, we have

lo(t)x(t1) — p(22)x(0)| < 5,11, 2 T, x € M,

[tp(t) DY, x(t1) — £3p(12) DY, x(2) < §,11,b > T, x € M,

pOIx()| < A, tip(t)|DI, x(1)| < A,t € [0, +00),x € M.
For T > 0, define

X, Dg+x € C(0,T] and the following limits exist
Xlory=qx: lim p(1)x(0). Lim19p(1)D x(1)
t— t—
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For x € X|,r1, define
llxllr = maX{ sup p(0)[x(7)l, sup lqp(f)IDg+X(t)|}-
1€(0,T] 1€(0,T1

Similarly to Lemma 2.1, we can prove that X 7} is a Banach space. Let M| = {t — x(?),t €
(0,T] : x € M}. Then M|qo,7) is a subset of X[ 7;. By (i) and (ii), and Ascoli-Arzela theorem, we
can know that M| r; is relatively compact. Thus, there exist x1,x2,---,xx € M such that, for any
X € M| 0,71, we have that there exists some i = 1,2,---,k such that

llx = xillr = maX{ sup p()|x(t) - x; ()|, sup 1p(H)|D, x(1) —D‘ﬁxl-(t)l} <3.
1€(0,T] 1€(0.7]

Therefore,

llx — xillx = maX{ sup p(Dlx() —xi(D)l, sup t1p(1)|D, x(t) — DY, xi (1),
1e(0,T] 1e(0,T]

sup p(1)|x(1) — x;(1)l, supt/p(t)|DY, x(t) — DI, xi(t)l} .
t>T t>T
For t,t; > T, we have
pDOIx(1) = x; (D] < |p(D)x(1) — p(t)x(t)] + |o(t1)x(t1) — p(t)xi(81)] + |o(t) xi (1) — p(O)xi (D))

€ _
<z+ +§—E.

wm

€
3
Similarly we have sup t9p(t)|DL, x(t) — DL, xi(t)| < €. Then ||x — xi||x < €. So, for any € > 0, M has a

=T
finite e-net {U,,, Uy,, -+, Uy}, thatis, M is totally bounded in X. Hence M is relatively compact in

X.

=. Assume that M is relatively compact, then for any € > 0, there exists a finite e-net of M. Let
the finite e-net be {Uy,, Us,, -+, Uy, } with Uy, € M. Then for any x € M, there exists U,, such that
x€ Uy, and

PO < p(D)x(®) — xi(D] + p(D)]xi (D] < €+ max {SUIE @l :i=1,2,-- ,k} ;

t1p(1)|Dy+qx(t)| £ € + max {sup t‘fp(t)lD;I+xl~(t)| i=1,2,--- ,k}.
teR

It follows that both M and {p(1)DY, x : x € M} are uniformly bounded. Then (i) holds.
Furthermore, there exists 7 > 0 such that |p(t1)x;(t;) — p(t2)xi(t2)| < € for all ¢, > T and i =
1,2,---,k. Then we have for ¢{,1, > T that

lo(t1)x(11) — p(22)x(22)] < |o(21)x(t1) — p(t1)xi(81)] + [o(81)xi(t1) — p(t2)xi(£2)]
+o(t2)xi(t2) — p(t2)x(12)| < 3€,x € M.
Similarly we have for t;,#, > T that
Ilp(t1) DG, x(11) = 13p(12) DG x(12)] < 3€,x € M.

Thus (iii) is valid. Similarly we can prove that (ii) holds. Consequently, the Lemma is proved. O



34 Y. Liu

Remark 2.8. Let Z = X XY be normed with ||(x,y)|| = max{||x|[x,||ylly} for (x,y) € Z. Then Z is a
Banach space too. Let Q = {(x,y)} € Z. Then Q is relatively compact if and only if both Q|x =
{x : there exists y € Y such that (x,y) € Q} and Q|x = {y : there exists x € X such that (x,y) € Q} are
relatively compact.

Lemma 2.9. Suppose that h : (0,+00) — R satisfies that |h(t)| < * forallt e (0,+00). Thenu e X is
a solution of system
D%ru(t)+h(t) =0, t€(0,00),

(2.3)
lirl(’)ltl_aiDo-i’lu(t) =Xi_1, LE N1,
—
if and only if u € X satisfies
Y L () Tlaj)  oi-1
ut) =— |, o) h( )ds + Z T Xt 2.4)

Proof. Suppose that x € X is a solution of (2.3). From (2.3), we have that there exists a constant ¢
such that

t (1—c\an—1 _
Dyt Dtu(t) = = [ = h(s)ds + ¢yt (2.5)
By
hn(}t1 “ DG Dglu(t) = X1,
11—
we get that
t (f—g)an—1 _
Dyt ---Dglu(t) = b (trgzn) h(s)ds + x,_ 1%

Similarly we use

}m&tl @1 Der? e DEu(t) = X2
m

Then
1 (Z—S)‘y"*I +ap—1

An-2 a1
Dy Dglu(n) = = [ e

h(s)ds

2.6)
[(an)

a1 tap—1 a,_1—1
+X;— 1 T, +ay) 1+tln)t n L S Y .

Using similar methods, by the other boundary conditions, we get

-1
_ t(t_s)a|+...+an—l n . F((lfj+1) Qe 1_]
u(t) = — b Tt h(s)ds+ jgo Xj —F(a1+'-~+a‘f+1)t =l

It is easy to show that

o 1 o . D) 7+
p(Hu(t) = F((T S 5 O(t—s)‘T h(s)ds+ Z xjr(g;ﬂ)v.

Since

p(0) fy (= )7 |(s)lds < ot [1(2—5)7 " s41ds

1
< t]+ Utmﬁkf (t— W)trn wh dw

_ trrn+k1+17(11
1+17

B(oy, ki +1),
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then u € C(0, 00) and both lirrép(t)u(t) and tlim p(Hu(t) exist. One sees that
t— —+00

-1
q _ [t (=g " @) oi—g-1

So

tp(1) [ (1= )74 h()lds < S [ = )70 M ds

tu'n+k1+lfn1
- 1+17

B(o,—q,ki +1).

Similarly we can show that DZ, u € C(0, c0) and both lin& t9p(t)D?, u(t) and tlir+n t1p(£)D?, u(t) exist.
11— —+00

Then u € X satisfies (2.4). On the other hand, if u € X satisfies (2.4), then we can prove that
u € X satisfies (2.3) easily. The proof is completed. O

Lemma 2.10. Suppose that h : (0,+00) — R satisfies that |h(t)| < t** for all t € (0,+c0). Thenv ey
is a solution of system
D™v(t)+h(t) =0, te(0,00),
im¢=A =
}I_{%t w(1) = yo, 2.7)
1inonl—ﬁiDﬂ—'v(z) =Yi-1,1=2,3,--,m
—

if and only if v € Y satisfies

f (+— \Tm—1 m—1 T .
w0 == [y e s + i r&&w 1 (2.8)
J:
Proof. The proof is similar to that of the proof of Lemma 2.3 and is omitted. O

For (x,y) € Xx Y, let us define T by T'(x,y)(t) = (T1y)(¢), (T2x)(t)) with

(T1)(0) =~ [ = 971 $(5)f(5, (), Do+y<s>>ds+"i T S
(2.9)
(T2x)(0) = — 5 [ (0= 9™ y(s)8(s,x(5), D, x(5))ds + z y,ri’f.”:i s
It is easy to show that
DY (T1y)(0) = = [t = )74 9(5) £ (5,3(). D}, ¥(5))ds
oy
Bt
(2.10)

DY (T2x)(1) = — i (6= )™ P y(5)g(s, x(s), DY x(5))ds

+mil F(:Bj+l) TJ+1—P—1
]F(T/Jrl P) :
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Lemma 2.11. Suppose that both f is a T—Caratheodory function and g a o—Caratheodory function.
Then

() bothT,:Y > Xand Ty : X — Y are well defined and so T : X — X is well defined too;

(ii) the fixed point of the operator T coincides with the solution of IVP(1.1);

(iii) both T, :Y - X and T, : X — Y are completely continuous and so T : X — X is completely
continuous.

Proof. (i) ForyeY, we get||y|| = r < +o0. Since f is a r—Caratheodory function, then there exist a
positive number M, such that

ONG) f”@(ﬂDg:ym)

If(t,y(t),D§+y(t))I=‘f(t, o0 e )| S M- (2.11)

It is easy to show by similar methods used in the proof of Lemma 2.1 that 71y € C(0,+00) and
Dg+ le S C(O, 00) and

limp()(T1y)(®),  lim p(D(T1y)(1), and lir%t”g(t)D&y(t), Mim 2 p(t) Dy (T1y)(1) exist.
11— —+00 11— —+00

Hence T1y € X. Then T} : Y — X is well defined.
Similarly we can prove that T, : X — Y is well defined. So T : Z — Z is well defined.

(i1) It follows from Lemma 2.3 and Lemma 2.4 that the fixed point of the operator T coincides
with the solution of IVP(1.1).

To prove that T is completely continuous, we must show that both T and 7> are completely
continuous. We need to prove that

e both T} and T, are continuous,

e both 7 and T, map bounded sets to relatively compact sets.

The remainder of the proof is completed by the following five steps.

Step 1. We prove that both T} and T, are continuous.

Lety, € Y with y, = yg as n — co. We will prove that Ty, — T1yp as n — oo. It is easy to see
that there exists » > 0 such that |[y,|| < r < oo for all n =0,1,2,---,. Then there exists M, > 0 such
that (12) holds with y being replaced by y,. One sees that

n—1 [l
(T1yn)(O) = = [t = )7 p(5) £ (5,yn(5), DY, yu(s))ds + _zox,rﬁz;;;;tw-‘, 2.12)
2T

and
DY (Tiyn)(®) = = rriess [y (¢ = 97707 6() £ (5,30(5), Dl yu(s))dls
(2.13)
RACT; r1—g—1
+J§oxj F(O'm—q)tgj T
It follows from the Lebesgue dominated convergence theorem that

lim p(OI(T1y)(0) — (T1yo)(®)] =0, lim ap()ID. (T1y,)(®) = D, (T1yo)(®)] = 0.

Hence we get
lim 7'y, = T1o.

Then T is continuous. Similarly we can prove that 7, is continuous.
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Let Q) C Y and Q, C X be bounded subsets.

One sees that there exists r > 0 such that ||y|| < r for all y € ;. Since f is a T—Caratheodory
function, then there exist a positive number M, such that (12) holds for all y € Q;.

Step 2. We prove that both 71(Q;) and T>();) are uniformly bounded sets.

By the similar methods used in the proof of Lemma 2.1, it is easy to see that 71€2; is uniformly
bounded. We omit the details. Similarly we can prove that 75(€),) are uniformly bounded.

Step 3. We prove that both 7'1(Q1) and 75(€2,) are equi-continuous on finite closed interval on
(0, +00).

For [a,b] C (0, +c0) with t1,1, € [a,b] with ; > t; and y € Q;, we have

I-ay l-ay

T (T = T (T1y) (1)

1 - —ay

i _ — T(aj) 1
= |~y T f(n—sw L§(5)£(5,yu(5), D} yn<s>>ds+2 ,r(ﬂ‘;g;;W

l

(Yl — 1" . ﬂ/l
B veaters f<t1—s>f’"—1¢<s>f<s Vals),DP yn(s>>ds+z Jrﬁiﬁiitw ]

1 —ay n

1+sz f (t1 = )7 B(5) f(5,yn(5), D, yu(s))d's

I (O'n)

lryl

~ti f (t1 = )7 p(5) f (5, yn(8), DY, yu(s))d's

Ilaj) |!
+ ]g‘o |ler((7'j+l)

1-a1 [”'j+1’“’1
_n
a 0
1+tl 1+t2

‘We know that

1,11 I

i f (t1 = )7 d(8) f(5,Yn(8), D yu(5))d's

I-a

U f(n — 971 $(5) £ (5,yn(s), D, yu(s))ds

II’UI l —ay
< 1
= | 1+ 1+t”'

f (t1 = )7 p(5) f(5,y(s), Db, x(5))ld's

I-a

o f (11 = )71 p(s) £ (5,(5), DL y(s)lds

I-«

o | f (11— ) = (12 = 17 9(5) (5, y(5), DL Y ()l
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l-ay l-ay
t t 1 1 .k
1 _ 2 — )7 1
<M, o T | o (11— 5)" " sds
A 13|
+ r#f(tl—s)‘f"_lsk'ds
2y
l-ay B
t _ _
+M,12+—tgf|(t1—s)”" L (ty— )7 sk ds
0
1- 1-
< M tl o _ t2 “! to—n+k| fl(l _W)()—n_lwkldw
= ] 1+ 71 0

1-a
t 1

otk 1 —1,,k
+Mr12+zgt1n f%(l—w)‘f" wldw

1-ay 5]
2 _ -
+Mr12+_zgf|(tl—s)‘7" Lty — )7 sk ds
0

l-ay l-ay
hoo_h
a0 a0
1+tl 1+t2

<M, (max{a"”*kl bR B (o, ky + 1)

1
+M, 1 _q, max{a®n k1 ponthiy f(l —w)Tr~Lyki gy

)
n

15}
My i-a f|(tl - S)(r"_l —(tr— S)O-”_l |Sk1ds) .
0

It is easy to show that [u” —v"| < vb"~u—v| for all u,v € [0,b], v> 1 and |’ —v"| < [u—v|” for
all u,v €[0,b], ve (0,1].
If o, > 2, then

%) b
[1t1 = 5)7 " = (2 = )7 shrds < [[(11 = )77 = (1 — )7 sk1ds
0 0

b
< [low—10(t1 —t2)sh1ds = (t; — )]0 — 1],{1%19’““ —0ast > 1.
0

If1 <o, <2, then

153 b
[t = 577" =t = )7 shrds < [[(11 = )77 = (1 — )™M sk1ds
0 0

b
< f(tl — 1) skids = (1 —tz)(’"_lﬁbk”l —0ast — 1.
0
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If0< o, <1, then

%) 15}
[l =) = (@ = )7 Nshrds = [[(12 =) = (01 = )7 Ish1ds
0 0

)

1 n
=7 [ =w) = twkdw — 70 (1= w)Ttwkidw
0 0

1
= [0 — 7B (o kg + D+ 17 (1= w) Ttk dw

)
n

1
< [0 — 7B (o, kg + 1)+ max{a R Ttk [(1—w)T ki dw

)
n

—0asn —>1.

Hence
1—(1] 1—a|
! =Ty - 2

on
1+l 1+t2

(Ty)(t2)| = O uniformly in Q as r, — 1. (2.14)

On the other hand, we have

[l+q7a/1 l+g-a)

t
A D (Ty)(0) = S DY (T1y)(1)

l+g-ay 11

oD tlm;r f (t1 = )7 P() £ (5, yn(5), DY, yu($))d's

o ;. -
Jj+1721
Llajr1) 4

+Zj =0 YiTo - 146

_( T(on— q)[1+t"l f(IZ_S)U" TLP(5) [ (5, yn(5), Dy, yu($))ds

Tj+17a
+ Z F(&J+1) l
j= 0 Xj [(ojr1—q) 1+15

¢ gl T [0
= =00 j—g) | 1+15 T+
I+q aq 131 '
S8 Yoo N f (t1 = )7 p(5) f(5,yn(8), DY, yu($))d's

l+g-ay 12
I

—r f (12 = )79 p(5) (5,3n(5), DY, yu(5))ds|.
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Since
1+q aq 1
S f (t = )70 B(8) £ (5, yn(8), DY yn(8))ds
1+q ay 5]
~n f (12 = )74 $() £ (5. yu(8), Dy, yu(8))d's
t1+q—a/1 t1+q ] n 1 k
<\ - f(zl—s)ffn 1Ly s M, ds
l+q ay 1
+ 1+Z(T f(tl _S)O-" q- 1IJ]SkIM ds
[5)
1+q a] [5)
- f (t1 — )79 — (1] — )79V L 551 M,ds
tl+q7n1 [1+q ay cr q+k L &
= M| |~ g |1 1f (1=w)7 4= whidw
1 e +k 1
On—
+21+I(,z 1 1f(l w)T =k dw
1
0
[y I . .
+4 fl(tl —5)7nm () — 5)7na 1| gk ds)
20
t1+q—a| tl+q—w]
< Mr( per ke 21+—tg max{a®" "k pon=RIB(o, — g, ky + 1)
1
+ M1 +q-a, max{a»= 0tk pon=athiy [(1 —y)on=a=Tyki gy
%
l‘1+q ) I | |
+ f (1) — 8)7n =471 — (1) — 5)7n79~ |sk1ds]
If o, —q > 2, then

[5)
[l = )77 = (1 = )74V shrds
0

b b
< [11 =)™ (= )97 sk ds < [[ow— g~ 1)ty ~ )M ds
0 0

= (1 —0)loy—q—ggb"* = 0asn — 1.
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If1 <o,—¢qg<2,then

15}
f|(l1 — §)Tn47L (1, — )41 gk g
0

b
< [1(t1 = )77 = (1 — )74~ sk ds
0

b
< f(l] —l‘z)o-”_q_lsklds =(f —[2)0-"_q_lﬁbkl+l —0asth —1.
0

If0<o,—¢g<1,then

[5)
[t = )70 = (1, — )77 sk ds
0

[5)

= [t = )74 = (1) = 5)7 1 |sMds
0

o)

1 1
= tg”_‘“kl f(l —w)Tn=a-lykigyy — t(lr"_’“k1 f(l — )T Lykigy
0 0

1
= [ T B (o — gk + 1)+ (1= w7t ki
3

f1

<[y~ =B (o, — g + 1)

- - 1 —g—
+max{a” 7tk o qu"‘1}f2(1—w)‘7" ~lyki gw
1
—0asth — 1.

Hence

t1+q7n1 l+g-a;

U DY (T1y)(11) = 2 D%, (T1y)(22)| — O uniformly in Q; as 1> — 11. (2.15)
1 2

From (2.14) nd (2.15), we get that {t — p(£)(T1y)(¢) : y € Q1} is equi-continuous on finite closed
interval on (0, 00).

Similarly we can show that {t — p()(T>x)(¢) : x € Q,} is equi-continuous on finite closed interval
on (0, c0).

Step 4. We prove that both {t — p(£)(T1y)(#) : y € Q1} and {t = p(t)(T2x)(?) : x € Q,} are equi-
convergent as t — 0.
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We see that

1= ‘

7 (Ty)(@) = xo

[(aj1) Zj+17

s f (1= )71 p(5) f(5,3(5). DY, y(sNds + 27} Xjrony T

tl ajy
- F(o‘n) T+

Clajp) 74179
(o ) 1+17

f(t—s)‘fﬂ 'Lishm, ds+2 Ile

M, (Tntky+l-ag _ ou—1. k1 n—1 ) F(ajH) (717
=Ty 1+ f(l w)T T wids + 30 |x1|r(rr,-+1) T+
0

— 0 uniformly in Q; as t — 0.
Furthermore, we have

tl+q—n1 M, ltaa on—q—1 k F(a/H,l) 17+
Pt DY (T () = xo| < s ot f<r—>" 1ds+2|ler<m S

-1 L
_ M, tzrn+k1+l - g1, ki n ) T(ajp1) i1
T Hoy—q 1+7 f(l w)7r whdw + ng |x]|]"(a'j+1—q) T

— O uniformly in Q; as t — 0.

Hence T1(€2;) id equi-convergent as t — 0.
Similarly we can show that 7,(€,) id equi-convergent as ¢ — 0.

Step 5. We prove that both 71(€2) and T, are equi-convergent as ¢ — +co.
We get

D(aji) 717

t -1
tl—nl M, 11 @] op—1 k " .
1+7 |(T1y)(t)| = T(o,) 1+° f(t_ S) s Ids+JZO|xJ|F(a—j+]) 1+17

1

M, ntkptl-eg _Non=l ki n—1 'F((Yj+1) 17

=Ty 1+ Ja—wym=w dw+ Yoo Xty e
0

— 0 uniformly in Q) as t — oo.

Furthermore, we have

+a-a 1+q-ap oa—q—1 kl n— ) F(aj+1) (717
HTI0| < s B f(t $)7r 7 b+ T |
J
1l

1
— M, il —)Tr=a=1 ki n=1,. 1 @D
T Ilow—q) 1+ bf(l w)7 widw + Zj:() |xJ| (Tjr1—q) 1417

— O uniformly in Q) as t — oo.

Hence 71(€2;) is equi-convergent as t — co.
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Similarly we can show that 7(€2;) id equi-convergent as t — co.

From above discussion (Steps 1-5), we see that 7" is completely continuous. The proof is com-
plete. O

3 Main results

We are in the position to prove the main results of the paper. We present the main assumptions:

(H1). fis a v—Caratheodory function and g a o—Caratheodory function and satisfy the follow-
ing assumptions: there exist non-zero functions ®,¥ : (0,+c0) — R measurable on each subinterval
(0,1] of (0,+c0) and non-decreasing functions

|f p(t) ﬂ’p(t) q)(f)| < F(u,v),

‘g 20" tqg(t) \P(f)’ <G(u,v),

hold for all 7 € (0,+00),u,v € R.

Denote

- Dajv o
Do) = rwaﬂWHmwww+z,£ﬂﬂMh

3.1
#00) = =y [(= s+ 5
It is easy to show that
D ®o(1) = _r(#_q) Ofl(f— )7 =471 () D(s5)ds + Jg‘o xj%ta'm—%l’
(3.2)
Dy Yo =~ f (t— )P~ y(s)W(s)ds + i yjr(i(ﬂff;)tr,ﬂ Pl

ForA>B>0,let My p = AAB (A B) be defined in Section 2. Denote

_ B(ogu—¢q.ki+1) B(o,.ki+1)
My —max{r’zo-—q)MtTo',,+k1+l ~arr oy Moo, thi+1 a]}

_ B(t,—p.ka+1) B(t,,ko+1)
No = maX{F(T—_l,)Mrrn+k2+1—ﬁl, TTZ)MTT,,+]€2+1—ﬁ1}’

s—1
a= MO[ZI[Aj"'Bj]”\PO“M_MS +[As+ Bsl|,
J:

r—1
b =No [ Zl[Cj +Dj](|®o| 1% + [Cr+ D, ]|.
J:

Theorem 3.1. Suppose that (HI1) holds. Then IVP(1.1) has at least one solution (x,y) € Z if the
following inequality system

MoF (r> +[Yoll, 72 + [¥oll) < 1, NoG(r1 +[|Doll, 71 +[|Doll) < 72
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has positive solution (ry,rs).

Proof. Let the Banach spaces X, Y and Z with their norms be defined in Section 2. Let T : Z — Z
be defined by (2.9).

By Lemma 2.5, we seek solutions of IVP(1.1) by getting the fixed point of 7 in Z, and T is well
defined and is completely continuous.

It is easy to show that @y € X, Wy € Y. Let r > 0 and define

Qr .y = {(x,y) € Z: lx— Dol < 11, lly—Woll < 12}
For (x,y) € ﬁrm, we have ||x — ®g|| < rq and ||[y — ¥y|| < rp. Then

lxll < llx=D@oll +[|Doll < r1 +[IDoll,
vl < [y ="Foll+llvoll < r2+|¥oll-

Using (H1), using (3.1) and (3.2), we find

LT 1y)(t) — Do ()]

tl —aq

< Top F(o‘ ) o f(t_ )7L p($)| f(5,5(5), DY y(5)) — D(s)lds

l-ay _ 1457 1-B1 1457 1+p-B1
< s f (1= )77 3(5) | (5, T oty (s), A5 2 DY y(5)) — D(s)| ds

1A

B
O I

t
I-a _

< s o [ =9 s
| t
—aq —

< ﬁﬁof(f—s)o—" LAE Iyl Iyl ds

B(o,, .k +1) ontki+l-a;

< Bkt C0 N (i)

B k1 +1
< BObED A atet—an F (LD

Similarly, we have

tl+q7n1
1+17

DG, (T1y)(1) = D, Do (1)

tl+q ay

< o T f (1= $)7 0| £(5,)(5), DL, y(5)) = D(s)ldls

B n k 1
< Bt gty tean F AL I

It follows that
IT1y = @oll < MoF (lIyll, II¥I) < MoF (r2 +[[¥oll, r2 + [[FolD). (3.3)

Similarly we can show that

IT2x = Poll < NoG (llxll; llxlD) < NoG(ry +[1Doll, r1 + [|Dol]).
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From the assumption, we know that there exist r; > 0,r, > 0 such that Mo F (rp +|[Woll, 2 +|[Yoll) < r1
and NoG(ry +|@oll, 71 + [|Doll) < ro. _

Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,,, which is a
solution of IVP (1.1). The proof is completed. O

(H2). f is a r—Caratheodory function and g a o—Caratheodory function and satisfy the follow-
ing assumptions: there exist non-zero functions @, ¥ : (0,+c0) — R measurable on each subinterval
(0, 1] of (0, +0c0) and numbers

Al’Bl(i= 1’2".' ’S)’Cl’Dl(i: ]‘92,". 7r) 209

Us > g1 > >y >0,0,>0,-1>:->01 >0,
such that

N
£ (1 5. )~ 00| < 2 A+ T B,

‘g 2 70 ‘P<f>|<ZCIu|51+Z L DjivP,

hold for all f € (0,+00),u,v € R.

Theorem 3.2. Suppose that (H2) holds. Then IVP(1.1) has at least one solution (x,y) € Z if
(i) w0, > 1 with

(Ot P71 prapy |
s oll )2
Gt DT ||‘I’0||+(T) ’ < o for 6, > 1,

(3.4)

Orps
6r s )/JS [0 1
@,ﬁ‘w[nwu(“ ) } < g Jor s> 1

or
(i) us0, =1 with
1\% 1\&s
either a < (—) orb< (—) (3.5)
b a
or
(iii) u0, < 1.

Proof. Let the Banach spaces X, Y and Z with their norms be defined in Section 2. Let T : Z — Z
be defined by (2.9).
By Lemma 2.5, we seek solutions of IVP(1.1) by getting the fixed point of T in Z, and T is well
defined and is completely continuous.
Let ®y and ¥y be defined by (3.1). Then we get (3.2). It is easy to show that &y € X, ¥y e Y.
Let r > 0 and define
Qo ={(x,y) €Z: |lx = Doll < 1y, |ly —Foll < r2}.

For (x,y) € 5,1,,2, we have ||x — @g|| < rq and |[|[y — Wy|| < ;. Then

lxll < llx=Doll +[|Doll < r1 +[IDoll,
vl < [y ="Foll+llwoll < r2+¥oll-
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Using (H2), using (3.1) and (3.2), we find

(T 1y) (1) — Do (D)

1+17

s o (= 977 $(8)|£(5.3(5). D ¥(5)) — R(s)ldls
0

I-a T 1B T Jd+p-p
< e f (=57 (s) |f (s, 550 oy (s), A28 S DY y(s))—@(s)|ds

ll +p-B1

1A [
1+s7

- f(t S)O—"_l(p(S)[Z A Hj n Zsll Bj
j=

- F(a' ) 1+17

t

R Y L) f(t—s)o-”_lskl [Z [Aj+B; ]IIyII”f}

= T(o,) 1419 =

©

- I'(oy) 1+17

B0y ki +1) on+ki+1-a] S )
< Blitl) s [Z[Aj+Bj]||y||“f]
J=1

< Bkl S )
= (01:(0-1;r )Mrr,a',,+k1+1—w1[Zl[Aj"'Bj]”)’“'u’}-
]:

Similarly, we have

l+g-a
L IDS (T1y) (1) — DY, @o(2)|

1+17

<t T f (t = )74 | f(s5,(s), DY y(5)) — D(s)ldls

< Boa—gki+1 S .
< LD My g ko +1an [zl[AﬁBj]uyuﬂf].

It follows that

||T1y—(1>o||SMo[Zs][A +B,]||y||”’]<M0[Z[A +B;][r +[¥oll }

J=1 J=1

< Mo[rz +[[%oll] ”S[ZIA +Bjl[r2 +[[Woll 7 + [Ay + By]
J=

s—1
< Mo[r +[[oll]# [ _ZI[AJ' + B;]I[WollHs + [Ag + Bi] |-
Jj=

Hence

s—1
D LA+ BINPOIF e + [+ By)
j=1

IT1y = Doll < Mo [r2 + 1ol = alrz +[[¥olllF. (3.6)
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Similarly we can show that

r—1

D [Cj+ DIl +[C, + Dy
j=1

1 T2x —Pol| < No [r1 + 1@l = blry + || Doll]°" (3.7

Consider the following inequality system
{ alry +[[¥olll*s < r1,
blri +[| Dol < 12

We will prove that it has a positive solution (7, 7,). This inequality system is changed to

1
r1 \us
b[’”1+||q)0||]§’ﬁl”2£(zl)” ¥l (3.8)
or '
2 \6r
alrs + ol < ry s(f) ~ [ Dyll. (3.9)

Case (i). us0,> 1.
It is easy to show that ¢! + f < (e+ f)! forall e, f >0 and [ > 1.

If 6, > 1, choose
1
ol \°r
||<D0||+(TO) }

ry =

Orpts — 1

Then we get from

Syt 17051
rMs or
(5rﬂs) [||(D()||+(”\PO”) ] < 1

(Srfts — 1)0rHs~1 b abts
that
W aL Orps
ri+ (0ol +(1520) ] |
< .
r1 Clb”-v
Since
oy |
0 r
blr +1@oll1% + [Woll < b|r1 +||(D0||+(T) ‘ ,
we get
1
1 \nus
blri + I Doll1% < (;1) ¥l
Choose r; such that
1
r1 \us
b[r1+|l®0||]5*SF2£(zl)” ~ %ol (3.10)

Then, for (x,y) € ﬁ,m, using (3.10), we have
IT1y = Doll < alra + [ Foll* < r1, IT2x = Poll < blry +[|@l[1° < 7.

Then T(x,y) = (T1y,T2X) € Q,, ,. B
Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,,, which is a
solution of IVP (1.1).
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If uy > 1, choose

=

1
[Doll
Yol +| —— .
[¥oll ( P

Orpts — 1

Then we get from

G ool [
rHs Hs
LH (S i < —
(Opprs — 1)0rHs a ba°r
that
T e
1Poll \ s
r+ 1%l + (120) |
< .
1¥) ba5r
Since
ol \& |
alr + 1ol + | Doll < a r2+||%||+(7) ] :
we get
1
r \or
alrs + ol < (3) ]l
Choose r; such that
o
alrs + ol < s(;) ~ [ Dyll. (.11

Then, for (x,y) € ﬁrl,rz, using (3.11), we have
IT1y = @oll < alra + IFolll*s < 1, IT2x = Foll < blry +[|@l1” < 72

Then T(x,y) = (T1y,T2x) € Qy, 1, . .

Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,,, which is a
solution of IVP (1.1).

Case (ii). ,ulsér =1.

For a < (}7)‘5’, since

alry + Yol _ _a

)

lim -
ry—+oo - 1
(2)" = looll (3

we can choose r, > 0 sufficiently large such that

<1,

S

1
.

& 5
alrs + ol < (32) — Dol

Then we can choose r; such that

1

72 \ar
alrs + ol < i < (;2) N (3.12)
Then, for (x,y) € ﬁrl > using (3.12), we have
IT1y = Doll < Malra + [[WllF* < r1,

IT2x —Wol| < blry + 1 Doll] < 77.
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Then T(x,y) = (T1y, T2x) € Q. _
Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,, which is a
solution of IVP (1.1).
1

For b < (é)‘z, since
I blri +11Doll b
e T T =TT
() =l (2)"

we can choose r; > 0 sufficiently large such that

<1,

1
1 \nus
bl + Dol < (;1) AT

Then we can choose r» such that

1
r1 \is
bl + 1001 < 72 < () = ol (3.13)
Then, for (x,y) € ﬁrl,rz, using (3.13), we have
171y — Doll < Malry + Yol < r1,

T2 = ¥oll < blry +[IDoll)° < ra.

Then T(x,y) = (T1y,T2x) €y, 1, . .

Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,, which is a
solution of IVP (1.1).

Case (iii). ps0, < 1.

It is easy to see that there exists ; > 0 sufficiently large such that

1
1 \nus
bl + Dol < (;1) AT

This allows us to choose r, such that

1

1 \us
blr1 + | Doll]% < r2 < (51) ol (3.14)

Then, for (x,y) € ﬁrl,z using (3.14), we have
IT1y = Doll < alry + ol < ri, [IT2x = Yoll < blri +[Polll” < ra.
Then T(x,y) = (T1,T2x) € Q, 1, B
Then, Schauder fixed point theorem implies that 7" has a fixed point (x,y) € Q,, ,, which is a
solution of IVP (1.1).
The proof is complete. O

4 An example

In this section, we given an example to illustrate Theorem 3.1.
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Example 4.1. consider the following problem
11 L

D2D; X(D)+ 12 f(1,y(8), D, y(@) = 0, 1€ (0,+00),
11 1

D Dyy(0)+1728(t,x(1), Dgux(1)) = 0, 1€ (0, +00),

4.1)

. 2 . 7
im0 23 x() = xo, lim;023y(7) = xo,

. 1 1 . 3 1
hmt—>OﬁD§x(I) = 'x], 11ml—>0tZD§x(Z) = yl’

where xo,x1,Y0,1 € R, ¢(t) = (1) = 2 and

7 u 43 u
¢3 t0
f(t,u,v):1+A(—u) +B( v] ,

1+1 1+1
2 9 5 5
15 16
g(t,u,v):1+C( 2u] +D( 3"]
1+12 1412

with A,B,C,D > 0,6,u > 0. Then IVP(4.1) has at least one solution for all sufficiently small
A, B,C,D,|xol,[yol-

Proof. Corresponding to (1.1), wehavem=n=2, a; = %,az = % and B = % and B3, = %, p= % and
9=
It is easy to see that
e x;€R(=0,1),y,€R(i=0,1), p,ge(0,1) withg<or=aj+ar=2and p<1, =1+ =3,
eq; €(0,1)(i=1,2),B€(0,1)i=1,2),
o p, i : (0,00) — [0,00) satisfy that

B(1) <11, Y(t) <1,1€(0,00),
with ky =k = 1.

Choose t=1,0 = % Then 7> 1o+ ky+1 and o > 02 + k1 + 1. By computation, one sees that

t,——u,———v

T 1=B1 7 pl4p-p
1+17 1+
g ’ tl—aq u, t1+q—ozl

1+ 1+¢
f( )=1+Au”+Bv”,

v)z 1+Cul + DV,

So
e f,g:(0,00)x R = R and f is a T—Caratheodory function and g a o—Caratheodory function.
It is easy to see that
(H2). fisaart—Caratheodory function and g a c—Caratheodory function satisfying the follow-
ing assumptions: there exist non-zero functions ®(¢) = ¥(¢) = 1 and numbers

A,B>0,C,D>0, u>0,6>0,
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such that

1+ 141
'f( < Alul + B|v|,

t, P u, T A v) —-d(r)

1+ 1+1¢°
8

0 0
s tl_a] u, [1+‘]_a’l < Clul +D|V| N

v) -Y()

hold for all € (0,+00),u,ve Rwithr=s=1and u = u;, 6 = 9.

We have

_ 1 4 =1 -1 T o -1
Do(1) =~y Jo (1= )7 YD) + g X517

_ 1 t 1 1 _2 B(5/6,1/2) .1 _2
———r(5/6)f0(t—s) 65 2ds+ xot 3 —~Tere 10 T X0l 3

1 _ — I'ess I
Wo(t) = — i [ (0= ) ()W (s)ds + By e

1_ _BG1/Y |

1 t -3 1 - 1 -1
I—mfo(t—S) B 2dS+y0[ “TGR) 8 +ypl 8,

1
Dg+q)0(l‘) — D6+ (_B(5/6,1/2)t% +th_%) _ _B(/6.1/2) l"(4/3)t% +xOl"(l/3)t_%

I'(5/6) I'(5/6) TI(7/6) I'(1/6)
1
» Y (_BGSA2) L I\ BGA12) TS B T8 -8
Dy ¥o(t) = Dg. (=Pt s +30r5) =~ rrmm ! +Yorssgyt o
Then
: 2 ph
|0l = max? sup {=[Po()l, sup {+|DS Do)l
te(0,00) te(0,00)
B(5/6,1/2 B(5/6,1/2 4/3 /3
< maX{ sup Il gy T );Eﬁ/ftmml%}
te(0,00) 1€(0,00)
B(5/6,1/2) B(5/6,1/2) I'(4/3) (/3
Smax{ rG/e) M1+l rs76)~ rae M1 +|XO|F<1/6>}
and

43

7 43 1
||‘Po||=maX{ sup —5|do(t)], sup &wwo(m}

3
1€(0,00) 1+12 te(0,00) 1+2

B(3/8,1/2) B(3/8,1/2) T(1/8) r(1/8)
< max{WMyz,s/zx +yol. =378 raraoy M3/2.3/4 + |y0|r(3/40)}'

By direct computation, we get

_ B(2/3,1/2) B(5/6,1/2)
My —max{—r(m) Msp1, =166 M3/2,1},

B(7/40,1/2)

No = max{ T(7740)

B(3/8,1/2)
M 34, (FGTMM/“}’
a=Mo|S5ZHA;+BIINOIF ™ + [As+ By]| = Mo(A + B),

b= No[ZJZ(Cj+D,lIDol1% " +[C, +Dyl] = No(C + D).



52

Y. Liu

or

or

From Theorem 3.2, we have that IVP(4.1) has at least one solution (x,y) € Z if
(i) wo > 1 with

. 1 ou—1
aw%[n%nq@)é] <1fors>1,
. 4.2)
5 L1900
ba® [nwmu(@)“] <1forpu>1
(i) 16 = 1 with
1
either abs < 1 or bak < 1 (4.3)

(i) o < 1.

One sees that for sufficiently small A, B,C, D, we have abt < 1 and baﬁ < 1, then IVP(4.1) has

at least one solution when 6u = 1 and sufficiently small A, B,C, D.

one

One sees that for sufficiently small A, B, C, D, |xg|, |yo| that (4.2) holds. Then IVP(4.1) has at least
solution when 6y > 1 and sufficiently small A, B, C, D, |xg|, |yo.
IVP(4.1) has at least one solution when 6y < 1. The proof is complete.
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