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Abstract. Let G be a simply connected nilpotent Lie group, G the finite-dimensional Lie algebra of
G, V a finite-dimensional vector space over C or R, and H a connected Lie subgroup of G such that
the Lie algebra of H is a subordinate subalgebra to an element 7 of Hom (G, gl(V)). In this work,
we construct an irreducible representation y, of H such that the induced of y, on G is irreducible.
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1 Introduction

Let G be a finite-dimensional Lie algebra, ‘V a finite-dimensional K-vector space (K =R or C ) and
Hom (G, gl (V)) the space of linear operators of G into gl(V), the Lie algebra of endomorphisms of
V.

Let B: GXG — gl(‘V) be an alternating bilinear map of G X G into gl (V).
For each Lie subalgebra h of G, the orthogonal of b with respect to B, denoted by h? is defined by:
b2 ={X € G/ B(X.,h) = 0} and we have: G¥ c h5.
The Lie subalgebra b of G is said to be totally isotropic with respect to B if h c b5, and maximal
totally isotropic with respect to B if h = 5.

Let G be the simply connected Lie group with Lie algebra G, 7 an element of Hom (G, gl(V))
and y a generalization of a character of a Lie subgroup of G with Lie algebra ). The aim of our work
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is to define the notions of subordinate subalgebra and polarization on the space Hom (G, gl(V)), and
study the irreducibility of the representation of G induced by y,, denoted by p (71,),G), in the case
where G is a nilpotent Lie group.

2 Polarizations at a linear operator

Let 7 be an element of Hom (G, gl(V)). We consider the alternating bilinear map associated to 7
denoted by B, defined of G X G into gl(V) by:

B, (X,Y)=n(X,Y]),VX,Y €G. 2.1

For each Lie subalgebra Iy of G, the orthogonal of h with respect to B, is HP~ denoted by H".
In particular, the orthogonal of G with respect to By is the kernel of B; denoted by G (n) i.e. G () =

g

Definition 2.1. A Lie subalgebra Iy of G is subordinate to the operator « if 7([h,h]) = 0.

The set of all Lie subalgebras of G subordinate to = will be denoted by S ub ().

The Lie subalgebra I of G is a polarization at & if I) is maximal totally isotropic with respect to B.
The set of all polarizations at & will be denoted by Pol(r).

We will establish a relation between polarization at 7 € Hom (G, g/(“V)) and polarization at a
linear form f € G* such that 7 = f ® u where u € gl(V).

Theorem 2.2. Let 7 be an element of Hom (G, gl(V)) and b a Lie subalgebra of G subordinate to
.

Let (f,u) € G* X gl(V) such that 1 = f Qu.

We have: ¥ =1/, Sub(n) = Sub(f) and Pol () = Pol(f).

Proof. For all Lie subalgebra ) of G and for all X € G, we have:
Xel' = n(X,h)=0= feu(X,h)) =0 f([X,hDu=0
= f(Xbh)=0= Xel/,

b e Sub(m) 7([h,0) =0 &= fRu([h,h) =0 = f([h,)Du=0

—
= f(b,b)=0=DbeSub(f),

hePol(n) & W chebh/ chehePol(f), since " =p/.
o
Remark 2.3. In the case where G is a simply connected nilpotent Lie group with finite-dimentinal
Lie algebra G, for all € Hom(G,gl(‘V)) , the set Pol(rr) is not empty.
3 Irreducibility of an induced representation

Let G be a simply connected Lie group with Lie algebra G, V a finite-dimensional K-vector space
(K=RorC),n: G —gl(“V)alinear operator of G into g/ (V), I a Lie subalgebra of G subordinate
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to m and H the connected Lie subgroup of G with Lie algebra ). We denote by y, the representation
of H in V which is definied by:

X (expX) = ™® vX e, (3.1)

We denote by p (b, G) the unitary representation of G induced by the representation y, of H i.e.
p(ﬂ-’b’g) = IndHTGXﬂ-

In the following, we assume that G is a simply connected nilpotent Lie group.

Lemma 3.1. Let 1 € Hom(G,gl(V)) and by € Sub (). If the representation p(n,h,G) of G is irre-
ducible then Y contains the center of the Lie algebra G.

Proof. Let’s suppose that the representation p (71, ), G) of G is irreducible.

Let Z be the center of G and Z’ supplementary of hn Z in Z. We have Z = Z' & (hN Z) and we
denoteby iy =h+Z=heZ’". Let H =exply, Z’ =expZ’, and H = exp})) be the analytic subgroups
of G with Lie algebras Iy, Z’ and ) respectively. Let ¢’ : h — b’/ Z’ be the restriction to § of the
canonical homomorphism p’ : )/ — )’/ Z’, and e the neutral element of G. Since )y =ho Z’, ¢
is a Lie algebra isomorphism. ¢’ is the differential at ¢ of the homomorphism ¢ : H — H’/Z’,
the restriction to H of the canonical homomorphism p : H — H’/Z’ . Then, g is a covering
map of H’'/Z’, and since H'/Z’ is a simply connected Lie group, ¢ is a Lie group isomorphism.
Let s: H'/Z' — H be the inverse isomorphism of g. The map s is an analytic section of p, i.e.
pos=Idyz.

Let ¢ : H — Z’ X H be the analytic map which is defined by

o(x)= (xs(p(x_l)),s(p(x))) ,Vxe H . (3.2)
The analytic map 0 : Z’ Xx H — H’ which is defined by
0(z,h)=zh, Y (z,h) e Z' x H, (3.3)

is an isomorphism of the direct product Z’ x H into H’, and ¢ is the inverse isomorphism of 6.
Hence, H =7’ x H.

Let’s suppose that ) does not contain the center Z of G. Then the dimension of Z’ is strictly
positive and the representation p (,h,)") of H’ is not irreducible. Indeed, if we consider the re-
presentation p (rr,b,}’) on the space L?(Z’), its restriction to Z’ is the regular representation of Z’,
and its restriction to H is scalar. Hence, any closed subspace of L?(Z’) which is invariant by Z’
is also invariant by H’. Therefore, the representation p (,5,H”) is not irreducible. Moreover, since
IndH,TGp (m,h,p) = I”dmc (IndHTH,)(,,) = Ind, . xr = p(1,),G), then p(r,h,G) is not irreducible. It
follows that Z C b. O

Remark 3.2. When dimV = 1, we have Hom(G,gl(‘V)) = G* and it has been proved by A. A.
Kirillov, that for all 7 € G*, there exists a polarization b at r such that the representation p (7, b, G) is
irreducible, and p (71,0, G) is irreducible if and only if ) is a polarization at & (Cf.[7], [14], [15]).

Theorem 3.3. Let G be a non-abelian simply connected nilpotent Lie group with finite-dimentinal
Lie algebra G, Z the center of G, V a finite-dimensional K-vector space of dimension > 2, and an
operator m € Hom (G, gl(V)) such that Z Nker (1) # {0}.

1) There exists a polarization Yy at m such that the representation p (m,Y),G) is irreducible.

2) If a non-abelian Lie subalgebra ) € Sub(x) , the representation p (n,9,G) of G is irreducible if
and only if Yy is a polarization at n.



4 J-L. K. Adjiey and K. Kangni

Proof. 1) If G is abelian, G is the only polarization at 7, and the representation p (7,G,G) is not
irreducible by the lemmas of Schur (Cf. [3], [7], [8]) since the dimension of p (7,G,G) is dimV > 2.
Consequently, there is no polarization ) at & such that the representation p (7, 1), G) is irreducible.

We assume that G is non-abelian and Z Nker (r) # {0} .

If dimG = 3, since G is nilpotent non-abelian, we have dimZ = 1 and 7 is trivial on Z.

Let (Xo, Yo,Zo) be a basis of G such that Zj generates Z and [Xy, Yy] = Zy. We have 7(Zy) = 0, and
YVX=a1Xg+ayYy+a3Zy € G and

VY =bXo+bYo+b3Zy € G with a;,b; €K, Vie{l,2,3}, we have:

n([X,Y])

JT([a1X0 +ar Yy + a3Z0,b1X0 + b2Y0 + b3Zo])
= n([a1Xo,b2Yo] +[a2Y0,b1Xo])

= (a1by —azxby) 7 ([Xo, Yol)

= (a1by—axby) n(Zp)

0.

Hence, G" = G and so G is a polarization at .

Since p(7,G,G) = xr and G is non-abelian, the only operators which commute with y, (exp X) for
all X € G are the scalar multiples of the identity of V. Consequently, the representation p (7,G,G)
is irreducible by the lemmas of Schur.

Let’s suppose that for all non-abelian nilpotent Lie algebra Gy with center Zy such that dimGy <
dim@G, and my € Hom (G, gl (V)) such that ZyNker(my) # {0}, there exists a polarization by at 7
such that the representation p (7o, ho, Go) is irreducible.

Then, there exists a polarization ) at & such that the representation p (7,1, G) is irreducible. Indeed:
If G(7) = G, then G is the only polarization at 7 and the representation p (7, G, G) is irreducible.

If G(n) # G, and if Z' = ZNker(n), the operator 7 € Hom (G, gl(V)) induces an operator i’ of the
nilpotent Lie algebra G’ = G/Z’ into the space gl (V) such that 7 = 7’ o p where p: G — G’ is the
canonical surjection of G onto G’.

Let Z (@) be the center of G’ and Z?’G ={X € G/ [X,G] € Z}. We have:

Z(@) = [XeG /V¥eg [X.Y|=0) (where X = p(X).VX € G)

{(Xeg /vreg.[x.Y]1e Znker(n)
{Xeg | 1X.61c Z and x(1X,G1) =0
(Xeg' /1 xeZ26nGm)|.

Since G () # G, we have Z(G’) # G’ and so G’ is non-abelian.

ker (n') (xeg /x(X)=0]
xeg 17 =0}

{)_(e G /Xe ker(ﬂ)}.

Then, we have Z(G')Nker(n') = {)_( €eG | XeZ’GnG(n)n ker(ﬂ)}.

Since Z’ ¢ Z?°G NG (r) Nker (), then, we have Z(G’) Nker (1) {6}
Since dimG’ < dim@G, by the inductive hypothesis, there exists a polarization Iy’ at 7’ such that
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p(',Y,G") is a representation irreducible of the simply connected nilpotent Lie group G’ with Lie
algebra G’.

Leth=p~l(p)alLie subalgebra of G.

Forall X ,Y € b, since ) e Sub(n’) and p(X),p(Y) € )’ we have:

n((X.YD=n"op(X.Y]) =7"([p(X).p(V)]) =0.

Therefore ) € Sub (7).

Forany X € )" ={X € G/ n([X,D]) = 0}, we have:
Xepy n([X,bD =0

7 ([pX),pM]) =0

7 ([p(X),5']) =0

p(X)el” =1 (since iy € Pol(r), b =)

Xep ' (v)=b.

L el

Hence ) is a polarization at .

The representation p (7,5, G) of G is irreducible. Indeed, let Z’ = exp Z’, H = expl) be the connected
Lie subgroups of G with Lie algebras Z’, I respectively, and G’ = G/Z’ the simply connected nilpo-
tent Lie group with Lie algebra G’ = G/Z’. Let g : G — G’ be the canonical morphism of G onto
G’. We have p(n,h,G) = p(n',b’,G’) 0 q. Moreover, since p (n’,}’,G’) is irreducible, the representa-
tion p (m1,},G) is irreducible.

2) For dimG = 3, since G is non-abelian nilpotent Lie algebra, we have dim Z = 1 and 7 is trivial on
Z. Let (Xo, Yo,Zp) be a basis of G such that Z; generates Z and [Xy, Yo] = Zy. The Lie subalgebras of
G which contain the center Z are: Z, G, and those of the form b, s,) = K(aXo +BYo +vZo) @ KZ
where a,f,y € K such that (X +8Yy + yZoy, Zp) is linearly independent.

We have I)zra’ﬁ’y) =G, 7" =G and G" = G. Hence, G is the only polarization at 7 and p(7,G,G)
is irreducible. Also, since b, g,) and Z are abelian, the representations y defined respectively on
Hop.y) =€xphp,) and Z = exp Z, are not irreducible. Therefore, the representations p (71, Dpy)» g)
and p(r,Z,G) of G are not irreducible. Consequently, the representation p (rr,h,G) of G is irre-
ducible if and only if §) is a polarization at r, for all i) € S ub (7).

Let’s suppose that for all non-abelian nilpotent Lie algebra G of center Z( such that dimGy < dimG
and g € Hom (Go, gl (V)) such that ZyNker (g) # {0}, we have: the representation p (719, ho, Go) is
irreducible if and only if by is a polarization at g, for all non-abelian Lie subalgebra by € S ub (7).
Then, the representation p (1), &) of G is irreducible if and only if f) is a polarization at «, for all
h e Sub(r). Indeed:

If G() = G, then G is the only polarization at 7 and the representation p (7, G, G) is irreducible.

If G(n) # G, and it Z' = ZNker (), the operator 7 € Hom (G, gl (V)) induces an operator i’ of the
nilpotent Lie algebra G’ = G/Z’ into the space g/ (V) such that 71 = 7’ o p where p: G — G’ is the
canonical surjection of G onto G’. We have Z(G’) Nker (') # {0} where Z(G’) is the center of G'.
Y =pB) € Sub(n’) since 7’ ([, b)) = =" ([p (), p())]) = 7" o p([h,b]) = 7 ([5,H]) = 0.

Moreover, if ) € Pol(rr) then )’ € Pol(n’). Indeed, let’s suppose that  is a polarization at r, for all
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X €1, we have:

p(X)e [)’"/ 7 ([pX).,v])=0

' op(X,5]) =0

n([X,bD =0

X e " =b(since bh € Pol(rr), ™ =)

pX)ep® =Y.

—
-
-
=

I

Consequently, I)’", c b and hence ) € Pol(n’).

Conversely, if )’ € Pol(x’) then p 1 (0) =b+Z € Pol(n). Indeed, we suppose that §)’ € Pol(n’).
Then for all X € G, we have:

Xe(p™ @)

)

Xe(p'®)
”((pX),p(H+Z)))=0

7 ([p(X),5']) =0

p(X)eb” =y (since i € Pol(x), " =)
Xep ' (v)=p+Z'.

1110107

Consequently (p‘1 (I)’))7r = p~ (). Therefore p~' (1) = h+ Z’ € Pol(n). Hence,
if Z'chthen:be Pol(n) & b € Pol(x’). @O

Let Z' =expZ’, H = exp} be the connected Lie subgroups of G with Lie algebras Z’, b respectively,
and G’ = G/Z’ the simply connected nilpotent Lie group with Lie algebra G’ = G/Z’.

Let ¢ : G — G’ be the canonical morphism of G onto G’. If Z’ c ), then p(#’,}’,G’) is the repre-
sentation of G’ such that

p(m.0,G)=p('.H.G)oq. (a)

Hence,
if Z' chthen:p(n,h,G) isirreducible < p(x’,Y,G’) is irreducible. II)

Indeed:

Let’s suppose that the representation p (7, ), &) is irreducible.

Then, p(n’,1’,G’) is irreducible. If not, the representation p(x’,)’,G’) would admit a nontrivial
closed invariant subspace W, i.e. p(n',1,G"):(W) C W, ¥Yx € G (where x = g(x) € G’). Then, we
would have:

P(ﬂ'/,b’,g’)x(W)CW - p(ﬂ/’b/’gl)q(x)(W)CW
= p@.by.G)ogx (W)W
= p(@h,G)(W)cW (by (a)).
Hence, W would be a nontrivial closed invariant subspace with respect to p (7,5,G).

Conversely, let’s suppose that the representation p (n’,}’,G’) is irreducible.
Then, p (7,h,G) is irreducible. If not, the representation p (,h,G) would admit a nontrivial closed
invariant subspace F, and for all x € G , we would have:

p(mb.G) (F)cF = p('.y.G"),.(F)CF (by (a)
= p@,V,G);(F)cF (wherex=¢g(x)€G’).
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Hence, F would be a nontrivial closed invariant subspace with respect to

p('.b,G").

If p(n,h,G) is irreducible then Z C b by the lemma 3.1, and hence we have Z’ C I). Therefore,
the representation p (7',}’,G’) of G’ is irreducible by (II). Moreover, since dimG’ < dimG, by the
inductive hypothesis, we have §)’ € Pol(n’). Hence t) € Pol () by (I).

If h € Pol(m) then Z C b, and therefore Z’ C h. Hence )’ € Pol(x’) by (I). Since dimG’ < dim@G,
by the inductive hypothesis, the representation p (n’,H’,G’) of G’ is irreducible. Consequently, the
representation p (m,h,G) of G is irreducible by (II). O

Corollary 3.4. Let G be a non-abelian simply connected nilpotent Lie group with finite-dimentinal
Lie algebra G , Z the center of G, V a finite-dimensional K-vector space of dimension > 2, m €
Hom (G, gl(‘V)) such that Z Nker () # {0}, b a non-abelian Lie subalgebra of G subordinate to n
and (f,u) € G* X gl(V) such that m = f Qu. The representation p(n,h,G) of G is irreducible if and
only if the representation p (f,h,G) of G is irreducible.

Proof.
p(m,Dh,G) isirreducible <= 1€ Pol(n) (by the theorem 3.3)
= bhe Pol(f) (by the theorem 2.2)
— p(f,h,G) is irreducible (Cf.[7])
O
4 Examples

We suppose that dimV = 2. Let (v1,v,) be a basis of V and (u;,up,us3,us) a basis of gl(‘V) where
uy, up, u3 and uy are the endomorphisms of V such that their matrices with respect to (vy,v,) are

. 1 0\ (0 11 (O O 00
respectively: o olo of\i o and 0o 1)

Let U4 be the unipotent standard Lie group of order 4 with Lie algebra Uy i.e.:

1 a ar a3
_ 0 1 a4 as . )
Us=1lo o 1 as €GL(4,R), a; eR, Vie(l,....6}  and
0O 0 0 1
0 by by b3
_J|0 0 by bs _ .
U=310 0 0 pg| MEBR),bieR Viell,...6}.
0O 0 0 O

Let (X, X5, X3, X4, X5, Xg) be a basis of U4 where the elements X, X», X3, X4, X5 and Xg are defined
as follows:

0
X =

X4 = , X5 = , Xo =

SO = O OO o0
S o= O OO0 OO

SO OO OO oo
SO OO O o oo
SO OO OO oo
O, OO OO o

SO OO oo o0
SO OO OO o0
SO OO OO o~

SO OO OO o~
SO OO O o oo

S oo O O OO
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The non trivial Lie brackets among basis elements are described as follows:
[X1,X4] = X2, [X1,X5]=1[X2,Xe] =X3, and [X4,Xc] = Xs.

We consider the Lie algebra G = KX & KX, & KX3 & KXy ® KX5, a Lie subalgebra of Uy, and
G =expgG.

The center of G is Z = KX, @ KX3. We denote by §); and b, the Lie subalgebras of G such that :

b =KX KX, @ KX30KX, and h) = KX KX, @ KX3 0K (X4 + X5).

Let mry, m,, 73, and 74 be the linear operators defined on G into gl (V) by:

1 (X1) = uy m (X)) =0 m3(X1) = uy m4(X1) =0
T (X32)=0 m(X2) =up m3(X3) =0 74 (X2) = up
m(X3)=uz ,Q m(X3)=-uy ,{ m3(X3)=0 and { m4(X3)=u3
m(X4) =0 m(X4) =0 73 (Xs) = up m4(X4) =0
m(X5)=0 m(X5)=0 73 (Xs) = us 74 (X5)=0

‘We have:

ZnNker(m) # {0}, Znker(m) # {0},
ZnNker(m3) # {0}, Znker(my) ={0}.

b and b, are polarizations respectively at 11 and 7r,. Indeed:

5
Forall X = ) ,X; € G, with t; e K, Vi € {1,...,5}, we have:
i=1

[X,X2] = [X,X3]=0,
X, X1] = a[Xa,X1]+15[X5,X1] = —14X5 —15X3,
X, X4+X5] = n[X1,Xal+0[X1,X5]=16X+1X3.

Then, we have:

m (X, Xo]) = m(X,X3])=0,
m (X, X1]D) = m(—t4Xo—15X3) = —taur +tsup = (t5 — t4) u2,
m (X, X4+ X5]) = mtiXo+1X3)=tiup—tiup =0.

Since (X1, X2, X3,X4 + X5) is a basis of b, we have:

Xeh? = m(@Xh)=0
(X, X)) =0
o ([X, X2 =0
m (X, X3]) =0
o ([X,Xa +X5]) =0
(ts—t4)up =0
4 =15
X=1uX1+0Xs +t3X3+14 (X4 + X5)
X ebh.

|

1101

Therefore, IE)’ZT2 = by. Moreover, in the same way, we prove that b’lr =D
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Hence the representations p (1, 11,G) and p (72,172,G) of G are irreducible.

b and by, are subordinate subalgebras to w3 but they are not polarizations at 3. Indeed, we have
b’lr3 =G and b’f = G. Hence the representations p (713,51,G) and p (713,12,G) of G are not irreducible
by the theorem 3.3.

G is a polarization at 13 since G = G.
5
The Lie subalgebras of G of the form f; = K(Z aiXi)EBKXZ ®KX;5 with o; € K, Yie {1,...,5} and
i=1
5
ap # 0, such that the family (XZ,X3, Z a/iXi) is linearly independent, are polarizations at 7r4. Indeed:

i=1

5
Forall X = ) ,X; € G, witht; e K, Vi e {1,...,5}, we have
i=1

a1ty =tHay

Xeby =
ayts =1 as

ay as
— X=h|Xi+—Xyu+—Xs5]|+60X,+1X;.
ai aq

Therefore b' = K (X; + 2 X, + 2 Xs) 0 KX, @ KX;.
5
- @ Gy, — 1 Y. |y _® T4 _
Since Xy + T+ X4+ 72 X5 = o~ (El azXz) o X2 — X3 € b3, we have b3* = bs.
Hence, b3 is a polarization at 4.

However, the representation p (7r4,93,G) of G is not irreducible. Indeed:

the theorem 3.3 can not be applied in this case, since Z Nker (74) = {0}.

Since b is abelian, the representation y,, of H3 = exphs in V is not irreducible by the lemmas of
Schur.

Therefore, p (74,h3,G) is not irreducible.
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