ON IRREDUCIBILITY OF AN INDUCED REPRESENTATION OF A SIMPLY CONNECTED NILPOTENT LIE GROUP

ADJIEY JEAN-LUC KOFFI* FHB University of Cocody, Department of Mathematics and computer, Abidjan, Côte d'Ivoire (Ivory Coast)

KINVI KANGNI[†] FHB University of Cocody, Department of Mathematics and computer, Abidjan, Côte d'Ivoire (Ivory Coast)

(Communicated by Mamadou Mboup)

Abstract. Let *G* be a simply connected nilpotent Lie group, *G* the finite-dimensional Lie algebra of *G*, \mathcal{V} a finite-dimensional vector space over \mathbb{C} or \mathbb{R} , and *H* a connected Lie subgroup of *G* such that the Lie algebra of *H* is a subordinate subalgebra to an element π of $Hom(\mathcal{G}, gl(\mathcal{V}))$. In this work, we construct an irreducible representation χ_{π} of *H* such that the induced of χ_{π} on *G* is irreducible.

AMS Subject Classification (2010): 43A65, 22E45, 22D30.

Keywords: Polarization at an operator, subordinate subalgebra to an operator, induced representation.

1 Introduction

Let \mathcal{G} be a finite-dimensional Lie algebra, \mathcal{V} a finite-dimensional \mathbb{K} -vector space ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and $Hom(\mathcal{G}, gl(\mathcal{V}))$ the space of linear operators of \mathcal{G} into $gl(\mathcal{V})$, the Lie algebra of endomorphisms of \mathcal{V} .

Let $B : \mathcal{G} \times \mathcal{G} \longrightarrow gl(\mathcal{V})$ be an alternating bilinear map of $\mathcal{G} \times \mathcal{G}$ into $gl(\mathcal{V})$. For each Lie subalgebra \mathfrak{h} of \mathcal{G} , *the orthogonal* of \mathfrak{h} with respect to B, denoted by \mathfrak{h}^B is defined by: $\mathfrak{h}^B = \{X \in \mathcal{G} \mid B(X, \mathfrak{h}) = 0\}$ and we have: $\mathcal{G}^B \subset \mathfrak{h}^B$.

The Lie subalgebra \mathfrak{h} of \mathcal{G} is said to be totally isotropic with respect to B if $\mathfrak{h} \subset \mathfrak{h}^B$, and maximal totally isotropic with respect to B if $\mathfrak{h} = \mathfrak{h}^B$.

Let *G* be the simply connected Lie group with Lie algebra \mathcal{G} , π an element of $Hom(\mathcal{G}, gl(\mathcal{V}))$ and χ_{π} a generalization of a character of a Lie subgroup of *G* with Lie algebra \mathfrak{h} . The aim of our work

^{*}e-mail address: adjieyjlk@yahoo.fr

[†]e-mail address: kinvi.kangni@univ-fhb.edu.ci

is to define the notions of subordinate subalgebra and polarization on the space $Hom(\mathcal{G}, gl(\mathcal{V}))$, and study the irreducibility of the representation of G induced by χ_{π} , denoted by $\rho(\pi, \mathfrak{h}, \mathcal{G})$, in the case where G is a nilpotent Lie group.

2 Polarizations at a linear operator

Let π be an element of $Hom(\mathcal{G}, gl(\mathcal{V}))$. We consider the alternating bilinear map associated to π denoted by B_{π} defined of $\mathcal{G} \times \mathcal{G}$ into $gl(\mathcal{V})$ by:

$$B_{\pi}(X,Y) = \pi([X,Y]), \forall X,Y \in \mathcal{G}.$$
(2.1)

For each Lie subalgebra \mathfrak{h} of \mathcal{G} , the orthogonal of \mathfrak{h} with respect to B_{π} is $\mathfrak{h}^{B_{\pi}}$ denoted by \mathfrak{h}^{π} . In particular, the orthogonal of \mathcal{G} with respect to B_{π} is the kernel of B_{π} denoted by $\mathcal{G}(\pi)$ i.e. $\mathcal{G}(\pi) = \mathcal{G}^{\pi}$.

Definition 2.1. A Lie subalgebra h of G is *subordinate to* the operator π if $\pi([\mathfrak{h},\mathfrak{h}]) = 0$. The set of all Lie subalgebras of G subordinate to π will be denoted by $Sub(\pi)$. The Lie subalgebra h of G is a *polarization* at π if h is maximal totally isotropic with respect to B_{π} . The set of all polarizations at π will be denoted by $Pol(\pi)$.

We will establish a relation between polarization at $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$ and polarization at a linear form $f \in \mathcal{G}^*$ such that $\pi = f \otimes u$ where $u \in gl(\mathcal{V})$.

Theorem 2.2. Let π be an element of $Hom(\mathcal{G}, gl(\mathcal{V}))$ and \mathfrak{h} a Lie subalgebra of \mathcal{G} subordinate to π .

Let $(f, u) \in \mathcal{G}^* \times gl(\mathcal{V})$ such that $\pi = f \otimes u$. We have: $\mathfrak{h}^{\pi} = \mathfrak{h}^f$, $Sub(\pi) = Sub(f)$ and $Pol(\pi) = Pol(f)$.

Proof. For all Lie subalgebra \mathfrak{h} of \mathcal{G} and for all $X \in \mathcal{G}$, we have:

$$\begin{split} X \in \mathfrak{h}^{\pi} & \longleftrightarrow \quad \pi([X,\mathfrak{h}]) = 0 \Longleftrightarrow f \otimes u([X,\mathfrak{h}]) = 0 \Longleftrightarrow f([X,\mathfrak{h}]) u = 0 \\ & \longleftrightarrow \quad f([X,\mathfrak{h}]) = 0 \Longleftrightarrow X \in \mathfrak{h}^{f}, \end{split}$$

$$\begin{split} \mathfrak{h} &\in Sub(\pi) & \iff \pi([\mathfrak{h},\mathfrak{h}]) = 0 \Longleftrightarrow f \otimes u([\mathfrak{h},\mathfrak{h}]) = 0 \Longleftrightarrow f([\mathfrak{h},\mathfrak{h}])u = 0 \\ & \iff f([\mathfrak{h},\mathfrak{h}]) = 0 \Longleftrightarrow \mathfrak{h} \in Sub(f), \end{split}$$
$$\mathfrak{h} \in Pol(\pi) & \iff \mathfrak{h}^{\pi} \subset \mathfrak{h} \Longleftrightarrow \mathfrak{h}^{f} \subset \mathfrak{h} \Longleftrightarrow \mathfrak{h} \in Pol(f), \text{ since } \mathfrak{h}^{\pi} = \mathfrak{h}^{f}. \end{split}$$

Remark 2.3. *In the case where G* is a simply connected nilpotent Lie group *with finite-dimentinal Lie algebra* \mathcal{G} , for all $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$, the set $Pol(\pi)$ is not empty.

3 Irreducibility of an induced representation

Let *G* be a simply connected Lie group with Lie algebra \mathcal{G} , \mathcal{V} a finite-dimensional \mathbb{K} -vector space ($\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C}$), $\pi : \mathcal{G} \longrightarrow gl(\mathcal{V})$ a linear operator of \mathcal{G} into $gl(\mathcal{V})$, \mathfrak{h} a Lie subalgebra of \mathcal{G} subordinate

to π and *H* the connected Lie subgroup of *G* with Lie algebra h. We denote by χ_{π} the representation of *H* in \mathcal{V} which is defined by:

$$\chi_{\pi}(\exp X) = e^{i\pi(X)}, \forall X \in \mathfrak{h}.$$
(3.1)

We denote by $\rho(\pi, \mathfrak{h}, \mathcal{G})$ the unitary representation of *G* induced by the representation χ_{π} of *H* i.e. $\rho(\pi, \mathfrak{h}, \mathcal{G}) = Ind_{H^{1}G}\chi_{\pi}$.

In the following, we assume that G is a *simply connected nilpotent* Lie group.

Lemma 3.1. Let $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$ and $\mathfrak{h} \in Sub(\pi)$. If the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ of G is irreducible then \mathfrak{h} contains the center of the Lie algebra \mathcal{G} .

Proof. Let's suppose that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ of G is irreducible.

Let Z be the center of G and Z' supplementary of $\mathfrak{h} \cap Z$ in Z. We have $Z = Z' \oplus (\mathfrak{h} \cap Z)$ and we denote by $\mathfrak{h}' = \mathfrak{h} + Z = \mathfrak{h} \oplus Z'$. Let $H' = \exp \mathfrak{h}', Z' = \exp Z'$, and $H = \exp \mathfrak{h}$ be the analytic subgroups of G with Lie algebras \mathfrak{h}', Z' and \mathfrak{h} respectively. Let $q' : \mathfrak{h} \longrightarrow \mathfrak{h}'/Z'$ be the restriction to \mathfrak{h} of the canonical homomorphism $p' : \mathfrak{h}' \longrightarrow \mathfrak{h}'/Z'$, and e the neutral element of G. Since $\mathfrak{h}' = \mathfrak{h} \oplus Z', q'$ is a Lie algebra isomorphism. q' is the differential at e of the homomorphism $q : H \longrightarrow H'/Z'$, the restriction to H of the canonical homomorphism $p : H' \longrightarrow H'/Z'$. Then, q is a covering map of H'/Z', and since H'/Z' is a simply connected Lie group, q is a Lie group isomorphism. Let $s : H'/Z' \longrightarrow H$ be the inverse isomorphism of q. The map s is an analytic section of p, i.e. $p \circ s = Id_{H'/Z'}$.

Let $\varphi: H' \longrightarrow Z' \times H$ be the analytic map which is defined by

$$\varphi(x) = \left(xs\left(p\left(x^{-1}\right)\right), s\left(p\left(x\right)\right)\right), \ \forall x \in H'.$$
(3.2)

The analytic map $\theta: Z' \times H \longrightarrow H'$ which is defined by

$$\theta(z,h) = zh , \ \forall (z,h) \in Z' \times H, \tag{3.3}$$

is an isomorphism of the direct product $Z' \times H$ into H', and φ is the inverse isomorphism of θ . Hence, $H' \cong Z' \times H$.

Let's suppose that \mathfrak{h} does not contain the center \mathcal{Z} of \mathcal{G} . Then the dimension of \mathcal{Z}' is strictly positive and the representation $\rho(\pi, \mathfrak{h}, \mathfrak{h}')$ of H' is not irreducible. Indeed, if we consider the representation $\rho(\pi, \mathfrak{h}, \mathfrak{h}')$ on the space $L^2(Z')$, its restriction to Z' is the regular representation of Z', and its restriction to H is scalar. Hence, any closed subspace of $L^2(Z')$ which is invariant by Z' is also invariant by H'. Therefore, the representation $\rho(\pi, \mathfrak{h}, \mathfrak{h}')$ is not irreducible. Moreover, since $Ind_{H'\uparrow G}\rho(\pi, \mathfrak{h}, \mathfrak{h}') = Ind_{H'\uparrow G}\left(Ind_{H\uparrow H'}\chi_{\pi}\right) = Ind_{H\uparrow G}\chi_{\pi} = \rho(\pi, \mathfrak{h}, \mathcal{G})$, then $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is not irreducible. It follows that $\mathcal{Z} \subset \mathfrak{h}$.

Remark 3.2. When dim $\mathcal{V} = 1$, we have $Hom(\mathcal{G}, gl(\mathcal{V})) \cong \mathcal{G}^*$ and it has been proved by A. A. Kirillov, that for all $\pi \in \mathcal{G}^*$, there exists a polarization \mathfrak{h} at π such that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible, and $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible if and only if \mathfrak{h} is a polarization at π (Cf.[7], [14], [15]).

Theorem 3.3. Let *G* be a non-abelian simply connected nilpotent Lie group with finite-dimentinal Lie algebra \mathcal{G} , \mathcal{Z} the center of \mathcal{G} , \mathcal{V} a finite-dimensional \mathbb{K} -vector space of dimension ≥ 2 , and an operator $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$ such that $\mathcal{Z} \cap \ker(\pi) \neq \{0\}$.

1) There exists a polarization \mathfrak{h} at π such that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible.

2) If a non-abelian Lie subalgebra $\mathfrak{h} \in Sub(\pi)$, the representation $\rho(\pi,\mathfrak{h},\mathcal{G})$ of G is irreducible if and only if \mathfrak{h} is a polarization at π .

Proof. 1) If \mathcal{G} is abelian, \mathcal{G} is the only polarization at π , and the representation $\rho(\pi, \mathcal{G}, \mathcal{G})$ is not irreducible by the lemmas of Schur (Cf. [3], [7], [8]) since the dimension of $\rho(\pi, \mathcal{G}, \mathcal{G})$ is dim $\mathcal{V} \ge 2$. Consequently, there is no polarization b at π such that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible.

We assume that \mathcal{G} is non-abelian and $\mathcal{Z} \cap \ker(\pi) \neq \{0\}$.

If dim $\mathcal{G} = 3$, since \mathcal{G} is nilpotent non-abelian, we have dim $\mathcal{Z} = 1$ and π is trivial on \mathcal{Z} . Let (X_0, Y_0, Z_0) be a basis of \mathcal{G} such that Z_0 generates \mathcal{Z} and $[X_0, Y_0] = Z_0$. We have $\pi(Z_0) = 0$, and $\forall X = a_1X_0 + a_2Y_0 + a_3Z_0 \in \mathcal{G}$ and $\forall Y = b_1X_0 + b_2Y_0 + b_3Z_0 \in \mathcal{G}$ with $a_i, b_i \in \mathbb{K}, \forall i \in \{1, 2, 3\}$, we have:

$$\pi([X, Y]) = \pi([a_1X_0 + a_2Y_0 + a_3Z_0, b_1X_0 + b_2Y_0 + b_3Z_0])$$

= $\pi([a_1X_0, b_2Y_0] + [a_2Y_0, b_1X_0])$
= $(a_1b_2 - a_2b_1)\pi([X_0, Y_0])$
= $(a_1b_2 - a_2b_1)\pi(Z_0)$
= 0.

Hence, $\mathcal{G}^{\pi} = \mathcal{G}$ and so \mathcal{G} is a polarization at π .

Since $\rho(\pi, \mathcal{G}, \mathcal{G}) = \chi_{\pi}$ and *G* is non-abelian, the only operators which commute with $\chi_{\pi}(\exp X)$ for all $X \in \mathcal{G}$ are the scalar multiples of the identity of \mathcal{V} . Consequently, the representation $\rho(\pi, \mathcal{G}, \mathcal{G})$ is irreducible by the lemmas of Schur.

Let's suppose that for all non-abelian nilpotent Lie algebra \mathcal{G}_0 with center \mathcal{Z}_0 such that dim $\mathcal{G}_0 < \dim \mathcal{G}$, and $\pi_0 \in Hom(\mathcal{G}_0, gl(\mathcal{V}))$ such that $\mathcal{Z}_0 \cap \ker(\pi_0) \neq \{0\}$, there exists a polarization \mathfrak{h}_0 at π_0 such that the representation $\rho(\pi_0, \mathfrak{h}_0, \mathcal{G}_0)$ is irreducible.

Then, there exists a polarization h at π such that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible. Indeed: If $\mathcal{G}(\pi) = \mathcal{G}$, then \mathcal{G} is the only polarization at π and the representation $\rho(\pi, \mathcal{G}, \mathcal{G})$ is irreducible.

If $\mathcal{G}(\pi) \neq \mathcal{G}$, and if $\mathcal{Z}' = \mathcal{Z} \cap \ker(\pi)$, the operator $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$ induces an operator π' of the nilpotent Lie algebra $\mathcal{G}' = \mathcal{G}/\mathcal{Z}'$ into the space $gl(\mathcal{V})$ such that $\pi = \pi' \circ p$ where $p : \mathcal{G} \longrightarrow \mathcal{G}'$ is the canonical surjection of \mathcal{G} onto \mathcal{G}' .

Let $\mathcal{Z}(\mathcal{G}')$ be the center of \mathcal{G}' and $\mathcal{Z}^2\mathcal{G} = \{X \in \mathcal{G} \mid [X,\mathcal{G}] \subset \mathcal{Z}\}$. We have:

$$\mathcal{Z}(\mathcal{G}') = \left\{ \overline{X} \in \mathcal{G}' \mid \forall \overline{Y} \in \mathcal{G}', \left[\overline{X}, \overline{Y} \right] = \overline{0} \right\} \text{ (where } \overline{X} = p(X), \forall X \in \mathcal{G})$$
$$= \left\{ \overline{X} \in \mathcal{G}' \mid \forall Y \in \mathcal{G}, [X, Y] \in \mathcal{Z} \cap \ker(\pi) \right\}$$
$$= \left\{ \overline{X} \in \mathcal{G}' \mid [X, \mathcal{G}] \subset \mathcal{Z} \text{ and } \pi([X, \mathcal{G}]) = 0 \right\}$$
$$= \left\{ \overline{X} \in \mathcal{G}' \mid X \in \mathcal{Z}^2 \mathcal{G} \cap \mathcal{G}(\pi) \right\}.$$

Since $\mathcal{G}(\pi) \neq \mathcal{G}$, we have $\mathcal{Z}(\mathcal{G}') \neq \mathcal{G}'$ and so \mathcal{G}' is non-abelian.

$$\ker(\pi') = \left\{ \overline{X} \in \mathcal{G}' \mid \pi'(\overline{X}) = 0 \right\}$$
$$= \left\{ \overline{X} \in \mathcal{G}' \mid \pi(X) = 0 \right\}$$
$$= \left\{ \overline{X} \in \mathcal{G}' \mid X \in \ker(\pi) \right\}$$

Then, we have $\mathcal{Z}(\mathcal{G}') \cap \ker(\pi') = \{\overline{X} \in \mathcal{G}' \mid X \in \mathcal{Z}^2 \mathcal{G} \cap \mathcal{G}(\pi) \cap \ker(\pi) \}.$

Since $Z' \subsetneq Z^2 \mathcal{G} \cap \mathcal{G}(\pi) \cap \ker(\pi)$, then, we have $Z(\mathcal{G}') \cap \ker(\pi') \neq \{\overline{0}\}$. Since dim $\mathcal{G}' < \dim \mathcal{G}$, by the inductive hypothesis, there exists a polarization b' at π' such that $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ is a representation irreducible of the simply connected nilpotent Lie group G' with Lie algebra \mathcal{G}' .

Let $\mathfrak{h} = p^{-1}(\mathfrak{h}')$ a Lie subalgebra of \mathcal{G} .

For all *X*, $Y \in \mathfrak{h}$, since $\mathfrak{h}' \in Sub(\pi')$ and $p(X), p(Y) \in \mathfrak{h}'$ we have:

$$\pi([X,Y]) = \pi' \circ p([X,Y]) = \pi'([p(X), p(Y)]) = 0.$$

Therefore $\mathfrak{h} \in Sub(\pi)$.

For any $X \in \mathfrak{h}^{\pi} = \{X \in \mathcal{G} \mid \pi([X,\mathfrak{h}]) = 0\}$, we have:

$$\begin{split} X \in \mathfrak{h}^{\pi} & \implies \pi([X,\mathfrak{h}]) = 0 \\ & \implies \pi'([p(X), p(\mathfrak{h})]) = 0 \\ & \implies \pi'([p(X), \mathfrak{h}']) = 0 \\ & \implies p(X) \in \mathfrak{h'}^{\pi'} = \mathfrak{h'}(\text{since } \mathfrak{h'} \in Pol(\pi'), \mathfrak{h'}^{\pi'} = \mathfrak{h'}) \\ & \implies X \in p^{-1}(\mathfrak{h'}) = \mathfrak{h}. \end{split}$$

Hence \mathfrak{h} is a polarization at π .

The representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ of G is irreducible. Indeed, let $Z' = \exp Z'$, $H = \exp \mathfrak{h}$ be the connected Lie subgroups of G with Lie algebras Z', \mathfrak{h} respectively, and G' = G/Z' the simply connected nilpotent Lie group with Lie algebra $\mathcal{G}' = \mathcal{G}/\mathcal{Z}'$. Let $q : G \longrightarrow G'$ be the canonical morphism of G onto G'. We have $\rho(\pi, \mathfrak{h}, \mathcal{G}) = \rho(\pi', \mathfrak{h}', \mathcal{G}') \circ q$. Moreover, since $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ is irreducible, the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible.

2) For dim $\mathcal{G} = 3$, since \mathcal{G} is non-abelian nilpotent Lie algebra, we have dim $\mathcal{Z} = 1$ and π is trivial on \mathcal{Z} . Let (X_0, Y_0, Z_0) be a basis of \mathcal{G} such that Z_0 generates \mathcal{Z} and $[X_0, Y_0] = Z_0$. The Lie subalgebras of \mathcal{G} which contain the center \mathcal{Z} are: \mathcal{Z}, \mathcal{G} , and those of the form $\mathfrak{h}_{(\alpha,\beta,\gamma)} = \mathbb{K}(\alpha X_0 + \beta Y_0 + \gamma Z_0) \oplus \mathbb{K}Z_0$ where $\alpha, \beta, \gamma \in \mathbb{K}$ such that $(\alpha X_0 + \beta Y_0 + \gamma Z_0, Z_0)$ is linearly independent.

We have $\mathfrak{h}_{(\alpha,\beta,\gamma)}^{\pi} = \mathcal{G}$, $\mathbb{Z}^{\pi} = \mathcal{G}$ and $\mathcal{G}^{\pi} = \mathcal{G}$. Hence, \mathcal{G} is the only polarization at π and $\rho(\pi,\mathcal{G},\mathcal{G})$ is irreducible. Also, since $\mathfrak{h}_{(\alpha,\beta,\gamma)}$ and \mathbb{Z} are abelian, the representations χ_{π} defined respectively on $H_{(\alpha,\beta,\gamma)} = \exp \mathfrak{h}_{(\alpha,\beta,\gamma)}$ and $\mathbb{Z} = \exp \mathbb{Z}$, are not irreducible. Therefore, the representations $\rho(\pi,\mathfrak{h}_{(\alpha,\beta,\gamma)},\mathcal{G})$ and $\rho(\pi,\mathbb{Z},\mathcal{G})$ of G are not irreducible. Consequently, the representation $\rho(\pi,\mathfrak{h},\mathcal{G})$ of G is irreducible if and only if \mathfrak{h} is a polarization at π , for all $\mathfrak{h} \in Sub(\pi)$.

Let's suppose that for all non-abelian nilpotent Lie algebra \mathcal{G}_0 of center \mathcal{Z}_0 such that dim $\mathcal{G}_0 < \dim \mathcal{G}$ and $\pi_0 \in Hom(\mathcal{G}_0, gl(\mathcal{V}))$ such that $\mathcal{Z}_0 \cap \ker(\pi_0) \neq \{0\}$, we have: the representation $\rho(\pi_0, \mathfrak{h}_0, \mathcal{G}_0)$ is irreducible if and only if \mathfrak{h}_0 is a polarization at π_0 , for all non-abelian Lie subalgebra $\mathfrak{h}_0 \in Sub(\pi_0)$. Then, the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ of G is irreducible if and only if \mathfrak{h} is a polarization at π , for all $\mathfrak{h} \in Sub(\pi)$. Indeed:

If $\mathcal{G}(\pi) = \mathcal{G}$, then \mathcal{G} is the only polarization at π and the representation $\rho(\pi, \mathcal{G}, \mathcal{G})$ is irreducible. If $\mathcal{G}(\pi) \neq \mathcal{G}$, and if $\mathcal{Z}' = \mathcal{Z} \cap \ker(\pi)$, the operator $\pi \in Hom(\mathcal{G}, gl(\mathcal{V}))$ induces an operator π' of the nilpotent Lie algebra $\mathcal{G}' = \mathcal{G}/\mathcal{Z}'$ into the space $gl(\mathcal{V})$ such that $\pi = \pi' \circ p$ where $p : \mathcal{G} \longrightarrow \mathcal{G}'$ is the canonical surjection of \mathcal{G} onto \mathcal{G}' . We have $\mathcal{Z}(\mathcal{G}') \cap \ker(\pi') \neq \{0\}$ where $\mathcal{Z}(\mathcal{G}')$ is the center of \mathcal{G}' . b' = $p(\mathfrak{h}) \in Sub(\pi')$ since $\pi'([\mathfrak{h}',\mathfrak{h}']) = \pi'([p(\mathfrak{h}), p(\mathfrak{h})]) = \pi' \circ p([\mathfrak{h}, \mathfrak{h}]) = \pi([\mathfrak{h}, \mathfrak{h}]) = 0$.

Moreover, if $\mathfrak{h} \in Pol(\pi)$ then $\mathfrak{h}' \in Pol(\pi')$. Indeed, let's suppose that \mathfrak{h} is a polarization at π , for all

 $X \in \mathfrak{h}$, we have:

$$p(X) \in \mathfrak{h}^{r^{n'}} \implies \pi'([p(X), \mathfrak{h}']) = 0$$

$$\implies \pi' \circ p([X, \mathfrak{h}]) = 0$$

$$\implies \pi([X, \mathfrak{h}]) = 0$$

$$\implies X \in \mathfrak{h}^{\pi} = \mathfrak{h}(\text{since } \mathfrak{h} \in Pol(\pi), \ \mathfrak{h}^{\pi} = \mathfrak{h})$$

$$\implies p(X) \in p(\mathfrak{h}) = \mathfrak{h}'.$$

Consequently, $\mathfrak{h'}^{\pi'} \subset \mathfrak{h'}$ and hence $\mathfrak{h'} \in Pol(\pi')$.

Conversely, if $\mathfrak{h}' \in Pol(\pi')$ then $p^{-1}(\mathfrak{h}') = \mathfrak{h} + \mathbb{Z}' \in Pol(\pi)$. Indeed, we suppose that $\mathfrak{h}' \in Pol(\pi')$. Then for all $X \in \mathcal{G}$, we have:

$$\begin{aligned} X \in \left(p^{-1}\left(\mathfrak{h}'\right)\right)^{\pi} & \iff X \in \left(p^{-1}\left(\mathfrak{h}'\right)\right)^{\pi' \circ p} \\ & \iff \pi'\left(\left[p\left(X\right), p\left(\mathfrak{h} + \mathcal{Z}'\right)\right]\right) = 0 \\ & \iff \pi'\left(\left[p\left(X\right), \mathfrak{h}'\right]\right) = 0 \\ & \iff p\left(X\right) \in \mathfrak{h}'^{\pi'} = \mathfrak{h}'(\text{since } \mathfrak{h}' \in Pol(\pi'), \, \mathfrak{h}'^{\pi'} = \mathfrak{h}') \\ & \iff X \in p^{-1}(\mathfrak{h}') = \mathfrak{h} + \mathcal{Z}'. \end{aligned}$$

Consequently $(p^{-1}(\mathfrak{h}'))^{\pi} = p^{-1}(\mathfrak{h}')$. Therefore $p^{-1}(\mathfrak{h}') = \mathfrak{h} + \mathcal{Z}' \in Pol(\pi)$. Hence,

$$if \ \mathcal{Z}' \subset \mathfrak{h} \ then : \mathfrak{h} \in Pol(\pi) \iff \mathfrak{h}' \in Pol(\pi').$$
 (I)

Let $Z' = \exp Z'$, $H = \exp \mathfrak{h}$ be the connected Lie subgroups of G with Lie algebras Z', \mathfrak{h} respectively, and G' = G/Z' the simply connected nilpotent Lie group with Lie algebra $\mathcal{G}' = \mathcal{G}/\mathcal{Z}'$. Let $q: G \longrightarrow G'$ be the canonical morphism of G onto G'. If $\mathcal{Z}' \subset \mathfrak{h}$, then $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ is the representation of G' such that

$$\rho(\pi,\mathfrak{h},\mathcal{G}) = \rho(\pi',\mathfrak{h}',\mathcal{G}') \circ q.$$
(a)

Hence,

if
$$\mathcal{Z}' \subset \mathfrak{h}$$
 then : $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible $\iff \rho(\pi', \mathfrak{h}', \mathcal{G}')$ is irreducible. (II)

Indeed:

Let's suppose that the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible.

Then, $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ is irreducible. If not, the representation $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ would admit a nontrivial closed invariant subspace *W*, i.e. $\rho(\pi', \mathfrak{h}', \mathcal{G}')_{\bar{x}}(W) \subset W$, $\forall x \in G$ (where $\bar{x} = q(x) \in G'$). Then, we would have:

$$\begin{split} \rho(\pi',\mathfrak{h}',\mathcal{G}')_{\bar{x}}(W) \subset W &\implies \rho(\pi',\mathfrak{h}',\mathcal{G}')_{q(x)}(W) \subset W \\ &\implies \rho(\pi',\mathfrak{h}',\mathcal{G}') \circ q_x(W) \subset W \\ &\implies \rho(\pi,\mathfrak{h},\mathcal{G})_x(W) \subset W \text{ (by (a)).} \end{split}$$

Hence, W would be a nontrivial closed invariant subspace with respect to $\rho(\pi, \mathfrak{h}, \mathcal{G})$.

Conversely, let's suppose that the representation $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ is irreducible. Then, $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible. If not, the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ would admit a nontrivial closed invariant subspace *F*, and for all $x \in G$, we would have:

$$\rho(\pi,\mathfrak{h},\mathcal{G})_{x}(F) \subset F \implies \rho(\pi',\mathfrak{h}',\mathcal{G}')_{q(x)}(F) \subset F \text{ (by (a))}$$
$$\implies \rho(\pi',\mathfrak{h}',\mathcal{G}')_{\bar{x}}(F) \subset F \text{ (where } \bar{x} = q(x) \in G'\text{)}.$$

Hence, *F* would be a nontrivial closed invariant subspace with respect to $\rho(\pi', \mathfrak{h}', \mathcal{G}')$.

If $\rho(\pi, \mathfrak{h}, \mathcal{G})$ is irreducible then $\mathcal{Z} \subset \mathfrak{h}$ by the *lemma 3.1*, and hence we have $\mathcal{Z}' \subset \mathfrak{h}$. Therefore, the representation $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ of G' is irreducible by (II). Moreover, since dim $\mathcal{G}' < \dim \mathcal{G}$, by the inductive hypothesis, we have $\mathfrak{h}' \in Pol(\pi')$. Hence $\mathfrak{h} \in Pol(\pi)$ by (I).

If $\mathfrak{h} \in Pol(\pi)$ then $\mathcal{Z} \subset \mathfrak{h}$, and therefore $\mathcal{Z}' \subset \mathfrak{h}$. Hence $\mathfrak{h}' \in Pol(\pi')$ by (**I**). Since dim $\mathcal{G}' < \dim \mathcal{G}$, by the inductive hypothesis, the representation $\rho(\pi', \mathfrak{h}', \mathcal{G}')$ of \mathcal{G}' is irreducible. Consequently, the representation $\rho(\pi, \mathfrak{h}, \mathcal{G})$ of \mathcal{G} is irreducible by (**II**).

Corollary 3.4. Let G be a non-abelian simply connected nilpotent Lie group with finite-dimentinal Lie algebra G, Z the center of G, V a finite-dimensional K-vector space of dimension $\geq 2, \pi \in$ Hom(G,gl(V)) such that $Z \cap \ker(\pi) \neq \{0\}$, b a non-abelian Lie subalgebra of G subordinate to π and $(f,u) \in G^* \times gl(V)$ such that $\pi = f \otimes u$. The representation $\rho(\pi, \mathfrak{h}, G)$ of G is irreducible if and only if the representation $\rho(f, \mathfrak{h}, G)$ of G is irreducible.

Proof.

$$\rho(\pi, \mathfrak{h}, \mathcal{G}) \text{ is irreducible } \iff \mathfrak{h} \in Pol(\pi) \text{ (by the theorem 3.3)} \\ \iff \mathfrak{h} \in Pol(f) \text{ (by the theorem 2.2)} \\ \iff \rho(f, \mathfrak{h}, \mathcal{G}) \text{ is irreducible (Cf.[7])}$$

	L	
	L	

4 Examples

We suppose that dim $\mathcal{V} = 2$. Let (v_1, v_2) be a basis of \mathcal{V} and (u_1, u_2, u_3, u_4) a basis of $gl(\mathcal{V})$ where u_1, u_2, u_3 and u_4 are the endomorphisms of \mathcal{V} such that their matrices with respect to (v_1, v_2) are respectively: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Let U_4 be the unipotent standard Lie group of order 4 with Lie algebra \mathcal{U}_4 i.e.:

$$U_{4} = \left\{ \begin{pmatrix} 1 & a_{1} & a_{2} & a_{3} \\ 0 & 1 & a_{4} & a_{5} \\ 0 & 0 & 1 & a_{6} \\ 0 & 0 & 0 & 1 \end{pmatrix} \in GL(4, \mathbb{R}), \ a_{i} \in \mathbb{R}, \ \forall i \in \{1, ..., 6\} \right\} \text{ and}$$
$$\mathcal{U}_{4} = \left\{ \begin{pmatrix} 0 & b_{1} & b_{2} & b_{3} \\ 0 & 0 & b_{4} & b_{5} \\ 0 & 0 & 0 & b_{6} \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}(4, \mathbb{R}), \ b_{i} \in \mathbb{R}, \ \forall i \in \{1, ..., 6\} \right\}.$$

Let $(X_1, X_2, X_3, X_4, X_5, X_6)$ be a basis of \mathcal{U}_4 where the elements X_1, X_2, X_3, X_4, X_5 and X_6 are defined as follows:

The non trivial Lie brackets among basis elements are described as follows:

$$[X_1, X_4] = X_2$$
, $[X_1, X_5] = [X_2, X_6] = X_3$, and $[X_4, X_6] = X_5$

We consider the Lie algebra $\mathcal{G} = \mathbb{K}X_1 \oplus \mathbb{K}X_2 \oplus \mathbb{K}X_3 \oplus \mathbb{K}X_4 \oplus \mathbb{K}X_5$, a Lie subalgebra of \mathcal{U}_4 , and $G = \exp \mathcal{G}$.

The center of \mathcal{G} is $\mathcal{Z} = \mathbb{K}X_2 \oplus \mathbb{K}X_3$. We denote by \mathfrak{h}_1 and \mathfrak{h}_2 the Lie subalgebras of \mathcal{G} such that :

$$\mathfrak{h}_1 = \mathbb{K}X_1 \oplus \mathbb{K}X_2 \oplus \mathbb{K}X_3 \oplus \mathbb{K}X_4$$
 and $\mathfrak{h}_2 = \mathbb{K}X_1 \oplus \mathbb{K}X_2 \oplus \mathbb{K}X_3 \oplus \mathbb{K}(X_4 + X_5)$.

Let π_1, π_2, π_3 , and π_4 be the linear operators defined on \mathcal{G} into $gl(\mathcal{V})$ by:

$\pi_1(X_1) = u_1$	$\pi_2(X_1) = 0$	$(\pi_3(X_1) = u_1)$	1	$\pi_4(X_1) = 0$
$\pi_1(X_2) = 0$	$\pi_2(X_2) = u_2$	$\pi_3(X_2) = 0$		$\pi_4(X_2) = u_2$
$\pi_1(X_3) = u_3$,	$\pi_2(X_3) = -u_2$,	$\pi_3(X_3) = 0$	and {	$\pi_4(X_3) = u_3$
$\pi_1(X_4) = 0$	$\pi_2(X_4) = 0$	$\pi_3(X_4) = u_2$		$\pi_4(X_4) = 0$
$\pi_1(X_5) = 0$	$\pi_2(X_5) = 0$	$\pi_3(X_5) = u_3$		$\pi_4(X_5) = 0$

We have:

$$\mathcal{Z} \cap \ker(\pi_1) \neq \{0\}, \ \mathcal{Z} \cap \ker(\pi_2) \neq \{0\},$$
$$\mathcal{Z} \cap \ker(\pi_3) \neq \{0\}, \ \mathcal{Z} \cap \ker(\pi_4) = \{0\}.$$

 $𝔥_1 and 𝑘_2 are polarizations respectively at π₁ and π₂. Indeed:$ For all $X = \sum_{i=1}^{5} t_i X_i \in G$, with $t_i \in \mathbb{K}$, $\forall i \in \{1, ..., 5\}$, we have:

$$[X, X_2] = [X, X_3] = 0,$$

$$[X, X_1] = t_4 [X_4, X_1] + t_5 [X_5, X_1] = -t_4 X_2 - t_5 X_3,$$

$$[X, X_4 + X_5] = t_1 [X_1, X_4] + t_1 [X_1, X_5] = t_1 X_2 + t_1 X_3.$$

Then, we have:

$$\begin{aligned} \pi_2([X,X_2]) &= \pi_2([X,X_3]) = 0, \\ \pi_2([X,X_1]) &= \pi_2(-t_4X_2 - t_5X_3) = -t_4u_2 + t_5u_2 = (t_5 - t_4)u_2, \\ \pi_2([X,X_4 + X_5]) &= \pi_2(t_1X_2 + t_1X_3) = t_1u_2 - t_1u_2 = 0. \end{aligned}$$

Since $(X_1, X_2, X_3, X_4 + X_5)$ is a basis of \mathfrak{h}_2 , we have:

$$\begin{split} X \in \mathfrak{h}_{2}^{\pi_{2}} & \iff & \pi_{2}\left([X,\mathfrak{h}_{2}]\right) = 0 \\ & \iff & \begin{cases} \pi_{2}\left([X,X_{1}]\right) = 0 \\ \pi_{2}\left([X,X_{2}]\right) = 0 \\ \pi_{2}\left([X,X_{3}]\right) = 0 \\ \pi_{2}\left([X,X_{3}]\right) = 0 \\ \pi_{2}\left([X,X_{4}+X_{5}]\right) = 0 \end{cases} \\ & \iff & (t_{5}-t_{4})u_{2} = 0 \\ & \iff & t_{4} = t_{5} \\ & \iff & X = t_{1}X_{1} + t_{2}X_{2} + t_{3}X_{3} + t_{4}\left(X_{4} + X_{5}\right) \\ & \iff & X \in \mathfrak{h}_{2}. \end{split}$$

Therefore, $\mathfrak{h}_2^{\pi_2} = \mathfrak{h}_2$. Moreover, in the same way, we prove that $\mathfrak{h}_1^{\pi_1} = \mathfrak{h}_1$.

Hence the representations $\rho(\pi_1, \mathfrak{h}_1, \mathcal{G})$ and $\rho(\pi_2, \mathfrak{h}_2, \mathcal{G})$ of *G* are irreducible.

 \mathfrak{h}_1 and \mathfrak{h}_2 are subordinate subalgebras to π_3 but they are not polarizations at π_3 . Indeed, we have $\mathfrak{h}_1^{\pi_3} = \mathcal{G}$ and $\mathfrak{h}_2^{\pi_3} = \mathcal{G}$. Hence the representations $\rho(\pi_3, \mathfrak{h}_1, \mathcal{G})$ and $\rho(\pi_3, \mathfrak{h}_2, \mathcal{G})$ of \mathcal{G} are not irreducible by the *theorem 3.3*.

G is a polarization at π_3 since $G^{\pi_3} = G$.

The Lie subalgebras of \mathcal{G} of the form $\mathfrak{h}_3 = \mathbb{K}\left(\sum_{i=1}^5 \alpha_i X_i\right) \oplus \mathbb{K} X_2 \oplus \mathbb{K} X_3$ with $\alpha_i \in \mathbb{K}, \forall i \in \{1, ..., 5\}$ and $\alpha_1 \neq 0$, such that the family $\left(X_2, X_3, \sum_{i=1}^5 \alpha_i X_i\right)$ is linearly independent, are polarizations at π_4 . Indeed:

For all $X = \sum_{i=1}^{5} t_i X_i \in \mathcal{G}$, with $t_i \in \mathbb{K}$, $\forall i \in \{1, ..., 5\}$, we have

$$\begin{aligned} X \in \mathfrak{h}_{3}^{\pi_{4}} & \longleftrightarrow & \left\{ \begin{array}{l} \alpha_{1}t_{4} = t_{1}\alpha_{4} \\ \alpha_{1}t_{5} = t_{1}\alpha_{5} \end{array} \right. \\ & \longleftrightarrow & X = t_{1}\left(X_{1} + \frac{\alpha_{4}}{\alpha_{1}}X_{4} + \frac{\alpha_{5}}{\alpha_{1}}X_{5}\right) + t_{2}X_{2} + t_{3}X_{3}. \end{aligned}$$

Therefore $\mathfrak{h}_{3}^{\pi_{4}} = \mathbb{K}\left(X_{1} + \frac{\alpha_{4}}{\alpha_{1}}X_{4} + \frac{\alpha_{5}}{\alpha_{1}}X_{5}\right) \oplus \mathbb{K}X_{2} \oplus \mathbb{K}X_{3}.$ Since $X_{1} + \frac{\alpha_{4}}{\alpha_{1}}X_{4} + \frac{\alpha_{5}}{\alpha_{1}}X_{5} = \frac{1}{\alpha_{1}}\left(\sum_{i=1}^{5} \alpha_{i}X_{i}\right) - \frac{\alpha_{2}}{\alpha_{1}}X_{2} - \frac{\alpha_{3}}{\alpha_{1}}X_{3} \in \mathfrak{h}_{3}$, we have $\mathfrak{h}_{3}^{\pi_{4}} = \mathfrak{h}_{3}$. Hence, \mathfrak{h}_{3} is a polarization at π_{4} .

However, the representation $\rho(\pi_4, \mathfrak{h}_3, \mathcal{G})$ of *G* is not irreducible. Indeed:

the *theorem 3.3* can not be applied in this case, since $\mathcal{Z} \cap \ker(\pi_4) = \{0\}$.

Since \mathfrak{h}_3 is abelian, the representation χ_{π_4} of $H_3 = \exp \mathfrak{h}_3$ in \mathcal{V} is not irreducible by the lemmas of Schur.

Therefore, $\rho(\pi_4, \mathfrak{h}_3, \mathcal{G})$ is not irreducible.

References

- L. AUSLANDER, B. KOSTANT: Polarization and Unitary Representations of Solvable Lie Groups, Inventiones Math., vol 14, 255-354 (1971)
- [2] A. BAKLOUTI, H. FUJIWARA, J. LUDWIG: Analysis of restrictions of unitary representations of a nilpotent Lie group, Bull. Sci. Math. 129 (2005) 187-209
- [3] A. O. BARUT et R. RACZKA, Theory of group representations and applications, Polish Scientific Publishers, Warszawa 1980
- [4] .M. BERGER, B. GOSTAUX, Géométrie diffé rentielle : variétés, courbes et surfaces, Presses Universitaire de France, 1987
- [5] P. BERNAT, N. CONZE, M. DUFLO, M. LEVY-NAHAS, M. RAIS, P. RENOUARD, M. VERGNE: Représentations des groupes de Lie ré solubles, Dunod, Paris, 1972
- [6] M. BOYARCHENKO: Representations of unipotent groups over local fields and gutkin's conjecture, Math. Res. Lett. 18 (2011), n° 03, 539-557

- [7] J-L. CLERC, J. FARAUT, M. RAIS, P. EYMARD et R. TAKAHASHI : Analyse Harmonique, Les Cours du C.I.M.P.A. 1982
- [8] J. FARAUT : Analyse sur les groupes de Lie, Calvage & Mounet, Paris 2006
- [9] T. A. FARMER: A New Construction of Polarizations of Solvable Lie Algebras, Linear & Multilinear Algebra, Vol. 35, pp. 185-190 (1993)
- [10] M. FETIZON, H-P. GERVAIS, A. GUICHARDET: Th éorie des groupes et de leurs représentations, Application à la spectroscopie moléculaire, Ellipses, Paris 1987
- [11] E. GALINA and A. KAPLAN : On unitary representations of nilpotent Gauge groups; Commun. Math. Phys. 236, 187-198 (2003)
- [12] G. HOCHSCHILD: La structure des groupes de Lie, Dunod, Paris, 1968
- [13] K. KANGNI et S. TOURE : Analyse Harmonique abstraite, Presses Académiques Francophones, 2014, ISBN-13: 978-3838145167
- [14] A. A. KIRILLOV : Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk, 1962, p. 57-110 (in Russian)
- [15] A. A. KIRILLOV : Elements of the theory of Representations, English transl. by E. Hewitt, Springer-Verlag Berlin Heidelberg New-York 1976
- [16] G.W. MACKEY: The theory of unitary group representations, The Univ.of Chicago Press, Chicago lectures in Math, 1976
- [17] V. OUSSA: Sinc Type Functions on a Class of nilpotent Lie groups, Advances in Pure and Applied Mathematics, Volume 5, Issue 1, Pages 519 (2014)
- [18] V. OUSSA: Computing Vergne Polarizing Subalgebras, to appear in Linear and Multilinear Algebra, Published online: March 2014, doi:10.1080/03081087.2014.880434
- [19] V. OUSSA: Shannon-Like Wavelet Frames on a Class of Nilpotent Lie Groups, Int. Jour. of Pure and Applied Mathematics, vol. 84, n°4 (2013)
- [20] V. OUSSA: Bandlimited Spaces on Some 2-step Nilpotent Lie Groups with one Parseval Frame Generator, Rocky Mountain Journal of Mathematics, Volume 44, Number 4 (2014), 1343-1366
- [21] A. N. PANOV: Representation of solvable Lie algebras with filtrations, Math. Sbornik, 2012, vol. 203, n°1, 77-91
- [22] A. SAGLE and R. WALDE, Introduction to Lie groups and Lie algebras, Academic Press New-York and London 1973
- [23] H. SALMASIAN, Unitary Representations of Nilpotent Super Lie Groups, Commun. Math. Phys. 297, 189-227 (2010)
- [24] S. TOURE : Introduction à la théorie des repr ésentations des groupes topologiques, publication de l'I.R.M.A n °17, Université de Cocody, Mai 1991
- [25] Y. G. ZARHIM ; Actions of semi-simple Lie groups and orbits of Cartan subgroups; Arch. Math. Vol. 56, 491-496 (1991)