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Abstract

The first author conjectured in 1990 (see [18]) that for any simply-connected el-
liptic space, the total dimension of the rational homotopy does not exceed that of its
rational cohomology. Our main purpose in this paper is to investigate the following:
does the Hilali conjecture holds for the configuration spaces of a rationally elliptic and
simply connected topological space when it already holds for the space itself. We will
prove that this statement is true for closed manifolds.
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1 Introduction

A topological space X is called rationally elliptic when both of π∗(X)⊗Q and H∗(X;Q) are
of finite dimension, otherwise it is called hyperbolic. For that kind of spaces, the Hilali
conjecture predicts that:
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Conjecture 1.1 (Topological version). If X is an elliptic and simply connected topological
space, then

dimπ∗(X)⊗Q ≤ dim H∗(X;Q).

Until now, this conjecture holds in many interesting cases: for pure spaces ([18]), these
are spaces whose Euler-Poincaré characteristic is nonzero, for H−spaces, for nilmanifolds,
for symplectic and cosymplectic manifolds, for coformal spaces whose rational homotopy
is concentrated in odd degrees, and for formal spaces (see [19]), [20])). Authors in [3]
have extended the Hilali conjecture from pure spaces to the so called hyperelliptic spaces.
Authors in [24] have checked the conjecture for elliptic spaces under some restrictive as-
sumptions on the formal dimension. Our main result in this paper is to prove that:

Theorem 1.4. If M is a closed and simply connected manifold satisfying the Hilali con-
jecture, then it is also for all its configurations spaces F(M,k), provided that F(M,k) is
elliptic.

Let us recall that

F(M,k) = {(x1, x2, ..., xk) ∈ Mk , xi , x j for i , j}

denotes the space of ordered configurations of k distinct points in M.
The paper is organised as follows. In section 2 we will outline the main properties of

the notion of Sullivan minimal models and summarize briefly the description of the rational
cohomology and homotopy of configuration spaces as given in [4], [8], [15], [16]. In section
3, we prove our main result: Theorem 1.4, but also some other interesting results like:

Theorem 1.1. If M is rationally elliptic, and X = M−{pt} has a non-trivial rational homo-
topy group in dimension > 1, then F(X,2) and F(M,k) for k > 2, are rationally hyperbolic.

Theorem 1.2. If M is a simply connected manifold of dimension at least 3, and has at least
two linearly independent elements in its rational cohomology, then F(M,3) and in general
F(M,k),k ≥ 3 is rationally hyperbolic.

Theorem 1.3. If M is a closed and simply connected manifold, then F(M,k) verifies the
Hilali conjecture provided that F(M,k) is elliptic.

In section 4 we ask some open questions, answer some ones and propose some possible
directions of research.
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2 Preliminaries

2.1 Sullivan minimal models

By the theory of Sullivan minimal models (see [13]), there exists a category equivalence
between the homotopical category of rational and simply connected topological spaces X
of finite type and that of 1-connected commutative differential graded Q-algebras of finite
type. Thus, the rational homotopy type of X is encoded in a differential algebra (A,d)
called the Sullivan minimal model of X. This is a free graded algebra A = ΛV , generated
by a graded vector space V =

⊕
k≥2 Vk, and equipped with a decomposable differential

d : Vk→ (Λ≥2V)k+1. It satisfies that:

Vk = Hom(πk(X)⊗Q,Q);
Hk(ΛV,d) = Hk(X;Q).

(2.1)

Therefore, Hilali conjecture can be rewritten in the equivalent algebraic version:

Conjecture 2.1 (Algebraic version). If (ΛV,d) is a 1-connected and elliptic model of Sulli-
van, then

dimV ≤ dim H∗(ΛV,d).

2.2 Configuration spaces

Throughout this paper M denotes a m-dimensional closed and simply connected manifold
and

F(M,k) = {(x1, x2, ..., xk) ∈ Mk , xi , x j for i , j}

its ordered configurations space of k distinct points in M, the importance of such spaces is
well illustrated and detailed in [4] and [14].

F. Cohen and L. Taylor were the first ones who were interested in describing the co-
homology of configuration spaces. They considered the 2-points configuration space of a
closed and oriented manifold M, whose cohomological algebra H∗(M) is a Poincaré duality
algebra and showed that:

Theorem 2.2. If M is a closed and oriented manifold of dimension m, whose cohomological
algebra H∗(M) is a Poincaré duality algebra, then

H∗(F(M,2)) �
H∗(M)⊗H∗(M)

(∆)
.

Where ∆ :=
n∑

i=1

(−1)|ai |ai ⊗ a∗i ∈ (H∗(M)⊗H∗(M))m is called the diagonal class, (ai)1≤i≤N

denotes a homogeneous basis of H∗(M) and (ai)∗1≤i≤N its dual.

Inspired by this result, P. Lambrechts and D. Stanley studied in [23] the rational homo-
topy type of F(M,2) when M is a closed manifold. They specially proved that the rational
homotopy type of F(M,2) is completely determined by that of M in the sense that:
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Theorem 2.3. If M is a connected closed and oriented manifold of dimension m such that
H1(M;Q) = H2(M;Q) = 0. If (A,d) is minimal model of M such that A is a connected
Poincaré duality algebra. Then there exists a model of F(M,2) of the form

A⊗A
(∆)
,

where ∆ :=
n∑

i=1

(−1)|ai |ai ⊗ a∗i ∈ (A⊗ A)m is a well defined diagonal class (unique up to a

multiplicative unit).

3 Results and proofs

Before proving our main theorem, we will check it in some informative special cases: when
M = CPn, when M is a projective complex variety and in general when M is a monogenic
closed manifold.

Let us recall this folkloric results from rational homotopy theory about the so called
formal dimension of any simply connected and elliptic space X denoted f d(X) and defined
to be the greatest k such that Hk(M;Q) , 0. It is well known that f d(M) = dim M when M
is simply connected manifold and (see [11]) that dimV ≤ f d(X).

Proposition 3.1. The Hilali conjecture holds for F(CPn,2).

Proof. We know from the proof of Theorem 1 in [28], that the only non null Betti numbers
of F(CPn,2) are β2k = k+1 and β2m+2k = n−k where 0≤ k≤ n−1. Thus dim H∗(F(CPn,2);Q)=
n(n+1). But F(CPn,2) has the homotopy type of a CW-complex of dimension ≤ 4n. Thus,
we have dimπ∗(F(CPn,2))⊗Q ≤ 4n ≤ n(n+1) = dim H∗(F(CPn,2);Q) if n ≥ 3.

For n = 1, the complex projective space CP1 is nothing but the Riemann sphere S2

which obviously verifies the Hilali conjecture. Moreover F(S2,2) ' S2 verifies also the
Hilali conjecture.

For n= 2, CP2 is the complex projective plane whose cohomological dimension is given
in Theorem 1, [28]. Indeed, given an elliptic topological space X, we define its Poincaré
polynomial to be

PX(t) :=
∑

k

dim Hk(X;Q)tk.

It is proven in Theorem 1, [28] that

PF(CPm,2)(t) =
∏

d|m(m+1)
d,1

ϕd(t2),

where ϕd denote the cyclotomic polynomials. Thus

dim H∗(F(CPm,2)) = ϕ2(1).ϕ3(1) = 6.

On other hands, in the rational homotopy of F(CPn,2) is easy to work out. Loop the space,
and fibre: the base is S1 ×Ω(S2n+1) while the fibre is S1 ×Ω(S 2n−1). So the rank of the
rational homotopy is 4 if n > 1. �
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Second proof. (suggested by S. Kallel to prove that dimπ∗(F(CP2,2))⊗Q = 4). Consider
the fibration

CPn−1 −→ F(CPn,2) −→ CPn

which admits a section. Thus, it can be splitting on a long and right rational exact sequence,
so

πk(F(CPn,2)) = πk(CPn)+πk(CPn−1)
= πk(S2n+1)+πk(S2n−1) for k > 2.

For CP2, we have π5(F(CPn,2)) = Q,π3(F(CPn,2)) = Q and π2(F(CPn,2)) = Q⊗Q, hence
the total rank of the homotopy of F(CPn,2) is indeed 4. �

Proposition 3.2. If M is a smooth projective complex variety, then F(M,2) verify the Hilali
conjecture, provided that F(M,2) is elliptic.

Proof. We know from [9] that smooth projective closed varieties are formal. Corollary
5.6 of [23] states that F(M,2) is formal when M is a closed connected formal manifold
such that H1(M;Q) = H2(M;Q) = 0, and finally (see [19]) all formal and simply connected
elliptic spaces verify the Hilali conjecture. Thus the 2-points ordered configuration spaces
of smooth projective closed varieties verify the Hilali conjecture. �

Proposition 3.3. If M is a closed and simply connected manifold whose rational cohomol-
ogy is generated by one element, then F(M,2) verify the Hilali conjecture.

Proof. Let M be a closed, simply connected and monogenic manifold, then its cohomolog-
ical algebra is one of the the two following forms:

H∗(M;Q) = Q[x]/(xk) with |x| = 2`

or
H∗(M;Q) = Λx with |x| = 2`+1.

• First case: if H∗(M;Q) = Λx, then M and S2`+1 are of the same rational homotopy
type, i.e.,

M 'Q S2`+1.

From [23], we conclude that

F(M,2) 'Q F(S2`+1,2) 'Q S2`+1.

Thus S2`+1 and F(S2`+1,2) satisfy the Hilali conjecture.

• Second case: if H∗(M;Q) = Q[a]/(ak) with k ≥ 3 (the case when k = 2 was already
considered here above). Hence, the Sullivan minimal model of M is of the form

(Λ(a,b),d) with da = 0,db = ak.

The model of F(M,2), as described in Corollary 3.1, [27], is of the form

(Λ(x,y,z, t),d)
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where dx = dz = 0,dy = xk,dt =
k−1∑
i=0

xizk−i−1. To finish the proof, it suffices to re-

mark that dim H∗(F(M,2);Q) ≥ 4, since that in general for any closed and orientable
simply-connected manifold, the cohomology with field coefficients of F(M,2) is ad-

ditively that of M×
◦

M.

�

Let us now prove our main result by announcing some intermediate one. We will use
the following notations

◦

M := M−{point} ,
◦◦

M := M−{2 points}.

Proof of Theorem 1.1. Consider the fibration:

F(M,3) −→ M

with fibre F(X,2) where X =
◦

M. It suffices to give conditions which imply that F(X,2) is
hyperbolic. Notice that there is a fibration

F(X,2) −→ X

with fibre
◦◦

M. Furthermore, this fibration has a cross-section. It suffices to see that
◦◦

M

is rationally hyperbolic. Notice that
◦◦

M has the homotopy type of S m−1 ∨
◦

M. where m =
dim(M). The homotopy fibre of

S m−1∨
◦

M −→ S m−1×
◦

M

is Σ(Ω(
◦

M) ∧Ω(S m−1)), since that in general the homotopy fibre of X ∨ Y −→ X × Y is

Σ[Ω(X)∧Ω(Y)]. If
◦

M has a non-trivial rational homotopy group, then Σ(Ω(
◦

M)∧Ω(S m−1))
is rationally hyperbolic. That suffices. �

Remark 3.4. There is one exception in the case of ’3 configurations’ where M = Sn. In fact,
’3 configurations’ is still elliptic. Indeed, F(Sn,3) is homotopy equivalent to the Stiefel
manifold of orthonormal two frames in Rn+1 which is elliptic,

Proof of Theorem 1.2. In this case,

◦

X =
◦◦

M =
◦

M
∨
Sm−1.

Now by the hypothesis that M is simply-connected of dimension at least 3, the rational

homotopy of
◦

M is non-zero as the rational homology is non-zero. Then the argument below
gives that the fibre of

◦

M
∨
Sm−1 −→

◦

M×Sm−1.

is hyperbolic. Thus
◦◦

M is hyperbolic. This applies to 3 or more configurations in CPn

also. �
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Example 3.5. To well illustrate Theorems 1.2 and 1.1, we propose here below some infor-
mative examples

• If M = Sn or CPn, then F(M,2) is elliptic;

• If M is a product of two spheres Sp×Sq for p,q > 0, then F(M,2) is hyperbolic;

• In the case of 2-configurations of a monogenic simply connected and closed manifold
M, observe that there is a fibration

◦

M −→ F(M,2) −→ M

Thus F(M,2) is hyperbolic if and only if
◦

M is hyperbolic.

Remark 3.6. In Theorem 1.1, the case of manifolds of dimension 1 or 2 are classical:

• In dimension 1: manifolds without boundary are either S1 or disjoint unions of in-
tervals;

• In dimension 2:

– If M is not S2 or RP2, then the configuration space is a K(π,1).

– If M = RP2, this has been considered in [31] and [32]. These arise from a
construction which F. Cohen considered in [6] and given by the S O(3)-Borel
construction for configurations in S2 which is a K(π,1) where π is a certain
choice of mapping class group. However, we read from [12]-page 13, that

π∗(F(Rn,2))⊗Q � π∗(Rn− pt)⊗Q

and that Rn− pt is homotopy equivalent to Sn. Thus dimπ∗(F(Rn,2))⊗Q = 1 or
2.
On other hands, the integral cohomology of F(Rn,2) is well described in [12]-
page 95: It is a graded-commutative algebra over Z on generators (ei j)1≤i< j≤n ∈

Hn−1(F(Rm,2)), subject to the relations

ei j− e ji = 0
e2

i j = 0
ei je jk + e jkeki+ ekiei j = 0,

where 1 ≤ i < j < k ≤ n. In particular, H∗(F(Rn,2);Q) is nonzero only in degrees
p(n−1) for p = 0,1. Thus F(Rn,2) verifies the Hilali conjecture.

– The case of M = S2 is clear: F(S2,k) is hyperbolic if and only if k > 3.

Proof of Theorem 1.3. From theorems 1.1 and 1.2 and from Remarks 3.4 and 3.6, we know
that F(M,k) is elliptic if and only if (k ≤ 2 and M is monogenic) or (k = 3 and M = Sn).

• If k = 2 and M is monogenic. From Theorem 1.1, F(M,2) verifies the Hilali conjec-
ture.
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• If k = 3 and M = Sn. Then F(Sn,3) is homotopy equivalent to the Stiefel manifold
of orthonormal two frames in Rn+1. By a result of Fadell (Theorem 2.4, [10]) there
is a fiber homotopy equivalence between F(Sm,3) and Vm+1,2, the Stiefel manifold.
Stiefel manifolds are homogeneous spaces, and the Hilali conjecture was already
proved for such spaces since there are rationally H-spaces ([20]). Since the finite
rational dimension of the homotopy and cohomology of two spaces joined by a fiber
homotopy equivalence are the same, we conclude that the Hilali conjecture holds for
F(Sm,3).

�

Proof of Theorem 1.4. If k = 1, then F(M,k)=M verifies the Hilali conjecture. If k , 2 then
F(M,k) verifies the Hilali conjecture from 1.3 since F(M,k) is supposed to be elliptic. �

4 Open questions

To enrich this work, we suggest many other directions of research that can be explored. For
example we ask if:

4.1 On the Hilali conjecture for unordered configurations spaces

It is legitimate to try looking after theorem 1.3 for C(M,k) where C(M,k) denotes the un-
ordered configurations of k distinct points in M defined by

C(M,k) := F(M,k)/Σk.

Where Σn denotes the symmetric group whose right action on F(M,k) is given by

σ.(x1, . . . , xk) = (xσ(1), . . . , xσ(k)).

It is well known that the computing of the homology of unordered configuration spaces
is well studied, that of their homotopy is less. For example, it was proved in [25] that
Betti numbers of C(M,n) can be determined by that of M with in F2. This result has been
extended in [2] to F-Betti numbers for odd-dimensional closed manifolds, where F = Fp or
Q. J.-C. Thomas and Y. Félix in [17] were interested in computing rational Betti numbers
of C(M,k) for an even-dimensional orientable closed manifold M.

For example, a cohomological basis for C(CP3,k) when k ∈ {1,2,3} is explicitly de-
scribed in [17] from what we know that dim H∗(C(CP3,2);Q) = 6.

Note that in general there is a strong relation between the rational cohomology of
C(M,2) and that of F(M,2):

H∗(C(M,2);Q) � H∗(F(M,2);Q)Σ2 ,

and that if M is closed, orientable, and simply-connected, then the cohomological dimen-

sion of F(M,2) is equal to dim(M)+dim(
◦

M).
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On the other hand, the map from ordered to unordered configurations is a covering
space projection with covering group given by the symmetric group. So the map is an
isomorphism on homotopy groups above dimension 1 (if M is simply-connected), so now

π∗(C(M,2)) = π∗(F(M,2)).

Thus F(C,k) is rationally elliptic⇒ (n= 1,2) or (n= 3 and M =Sn. In particular dimπ∗(C(CP3,2))⊗
Q = dimπ∗(F(CP3,2))⊗Q = 4 (i.e., Hilali conjecture holds for C(CP3,2)

4.2 On the Hilali conjecture for configuration spaces (ordered or not) of man-
ifolds (compact or not)

One may ask what about this precedent results if we omits the condition that M is closed
or that when M is compact. From Remark 3.4, we have a first positive answer for F(Rn,2).

To cover the case of elliptic manifolds M which are not closed, observe that
◦◦

M is homotopy
equivalent to

M∨S m−1∨S m−1

which is hyperbolic as its rational homotopy contains a free graded Lie algebra with at least
2 generator. [7] is also a well recommended reference that one have to over look.
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Université catholique de Louvain, Belgium.

[8] F. Cohen and L. Taylor, Computations of Gelfand Fuks cohomology, the cohomology
of function spaces and the cohomolgy of configuration spaces. Lectures Notes in Math.
657 (1978) 106-143.



10 M.R Hilali, M.I. Mamouni and H. Yamoul

[9] P. Deligne, P. A. Griffiths, J. W. Morgan and D. Sullivan, Real homotopy theory of
Kähler manifolds. Invent. Math. 29 (1975), 245-274.

[10] E. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac.
Duke Math. J. 29 (1962), 231242.

[11] J. Friedlander and S. Halperin, An arithmetic characterization of the rational homo-
topy groups of certain spaces. Invent. Math. 53 (1979) 117133.

[12] E. R. Fadell, S. Y. Husseini, Geometry and Topology of Configuration Spaces. Mono-
graphs in Mathematics (2001), Springer.

[13] Y. Félix, S. Halperin and J. -C. Thomas, Rational Homotopy Theory. Graduate Texts
in Mathematics 205 (2000), Springer.

[14] E. Fadell and L. Neuwirth, Configuration spaces. Math. Scand. 10 (1962), 111-118.
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