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Abstract. In this paper we study in quantum calculus the theory of inverse problem and approxi-
mation in a large class of Hilbert spaces with reproducing kernels.
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1 Introduction

Inverse problem theory is driven by applied problems in sciences and engineering. Studies on in-
verse problems represent an exciting research area in recent decades. The special importance of
inverse problems is that it is an interdisciplinary subject related with mathematics, physics, chem-
istry, geoscientific problems, biology, financial and business, life science, computing technology
and engineering.

In this work we study in quantum calculus context the theory of inverse problem and approxi-
mation in a large class of Hilbert spaces with reproducing kernels using some result established by
S. Saitoh [11]. Moreover, the approximate inverse method is adapted to bounded operators which
are convolution products in the context of the quantum calculus. In fact for a given function e we
can define a bounded linear operator T : H — H as follows : put :

Tf=ex,f,

where H is a Hilbert space with reproducing kernel. For a particular choose of the function e we
can find particular operators as in the classic case (Weierstrass transform [10], Gabor transform [9],
Laguerre-Type Weierstrass Transform [7]).
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The present dissertation consists of three sections which deal with a bounded linear operator
and some of its properties in special Hilbert spaces with their reproducing kernels. In section 2, we
recall the main results about the g-harmonic analysis. In section 3, we study the operator T. If the
space of departure of the operator T is a Sobolev space H,, included in H, we lose the subjectivity,
which leads us to study approximations of inverse problem and in this context, we use the theory
of Saitoh [11, 12] to characterize the extremal functions. In section 4, we consider the continuous
linear operator T, : H — H as follows

th:et*qf,

where e;(1) = e(Af). We give the associated inversion and Plancherel formulas.

2 Preliminaries on g-Harmonic analysis

Throughout this paper, we will assume that 0 < ¢ < 1 and v > —1. We refer to [5] for the definitions,
notations and properties of the g-shifted factorials, the Jackson’s g-derivative and the Jackson’s
g-integrals.

Let a € C, the g-shifted factorial is defined by

n—1 )
@9o=1, (@q@n=]]0-ad (@9e=]]0-ad)
k=0 k=0
and
R, ={q" : neZ}

The g-Jackson integrals from O to a and from O to oo are defined by

[ o= =gy’ g
n=0

fﬂmxamme,

n=—oo

provided the sums converge absolutely.

The space L, denotes the sets of real functions on Ry for which

00 1/2
umwﬁﬁumwM%4,

The third Jackson g-Bessel function J,(.;q) (also called Hahn-Exton g-Bessel function) is defined
by the power series [13]

v+l n(n+l)

(CI ’Q)OO v n Sz 2n
J(x;q) = ——1= —) 7
0 = e §()memmK

The normalized form of the g-Bessel function is defined by

n(n+ 1)

— 4 -  2n
Mg = Z( (q; q)n(qV+1 e
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It satisfies the following estimate ( see [1] )

. %) (=" D) [ 1 if n>0
(") < —L-1 7 -9

(qu+2;qZ)Oo qnz—(21’+1)n if n<0
The function x — j,(Ax;¢%) is a solution of the following g-difference equation
Agf(x) = =2 f(0),
where A, is the g-Bessel operator
1 _
Agrf () = | fg™ 0= A+ g0+ flgm)|.

The g-Bessel Fourier transform ¥, was introduced and studied in [1, 2, 4, 8]

Forf0) = o f FOIMEDP dyt,
0
where
1 (q2v+2;q2)oo

C = .
-9 (@)
The g-Bessel translation operator is defined as follows [1, 2]

Ty ) = cqy fo Fao (DD jr(xt:q7) jy g d gt

and the g-convolution product of two functions is given by

Frgg(X) = o fo TV OISO dyy.

The following Theorem summarizes some results about g-Bessel Fourier transform [1, 2].

Theorem 2.1. The g-Bessel Fourier transform satisfies

1. For all functions f € Ly p.,, ﬁfv fO)=f(x), VxeRy.
2. For allﬁ’mCtions f € Lq,Z,w ”ﬁ[,vf”q,Z,v = ||f||q,2,v-
3. Letfel,,,andge L, then f+,8€ Ly, and

Far(f %4 ©)(x) = Fyn (X)X Fyvg(x), VxeRy,

1 1 1
where —+——1=—.
p r s

3 Hilbert spaces with reproducing kernels

We denote by H the space L, , which is a Hilbert space with the inner product

(fog) = fo Fg(2 N d,x.
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Given a positive function w on R:; with support (not necessary compact) I, an interval of R:; which

satisfies
+00 A2v+1
—1,)d, A
fo o)) w(Ddy
is finite, and
o<
W |loo

Here 1, is the characteristic function of I,. We introduce also the following space

H,, = {f € H|suppF5,, (f) € L, and Nw()Fy, (/) (D) € H.

The space H,, is a sufficient large class of functions in the sense that we can find many classical
spaces for the particular choose of the function w.

When
w(A) = 1j0,4)(1),

this functional space is the g-Paley-Wiener space PW, , [3] and for
wD)=1+2¥, B>v+l1,
it is an analogue of the functional space introduced and studied in [10].

Proposition 3.1. Equipped with the inner product

(Foghy = fo OOF s (FD Ty () (D 1D d 1,

the space H,, is a Hilbert space with the reproducing kernel

+oo c 2\ .« 2
0} V(/l-xa )V(/l ’ ) v
% (y)zcz”fo : i)(]@ =LA

Proof. We have
Jo(Ax; ¢%)

Tq,v (7(;0) D= Cq,vw

1,() = K¢ € H,,.

On the other hand if f € H,,, we obtain

fo W(D)F g () (D) F (K (D1(DATH dy A

Jv(Ax:q%)
w ()

<f’ 7(‘;0)(0
= Cq,vf (U(/l)?-q,y (f) (/l) 1(1)(/1)/12v+1dq/l
0
- Cq"'f(; Faw (D jv(/lx;qz)lw(/l)/lz"”dq/l

_— fo o (H) jy (s A2 d A
- ).

In the following we put

1l = Vs e and NIfll = V{f5 -
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Proposition 3.2. Lete€ L, then

T: H, — H
f = e*qf

is a bounded linear operator and we have

1
IITfIIzSIIeIIu/H—H 11l
wlle

Proof. 1f f € H,, then Tf € H,,. Using the Young inequality we show that, for e € L, ,, we
have ex, f € L;5, and

lexy fll < llellillfllz
< el lF g fll2
1
< ||e||1[ f —w1w<r>|ﬁ,yf<r>|2r2V“d,,r]
0 w
1
2
<

el ”le [ f wwlw(t)lﬂ,vf(t)lztzv“dqt]

w

0
< lelh Mlﬂlw-

Proposition 3.3. The space H,, ¢ (underline vector space of H,,) equipped with the inner product

<f’g>a),§ = ‘f<f’g>(u +<T(f),T(g)>

is a Hilbert space with the reproducing kernel

400 sy DNy D
K (y) = 2 f Jr(Ax:7) jy(Ay:q )lw D2
0= ca 0 Ew(d) +E (1) @ a

where
E(1) = Fy,e().

Proof. We have

i, (Ax;¢°)
Fur (K25 (1) = LAl A N
()W = con+ e Y
Hence

7(;)’§€Hw’§.

On the other hand if f € H,, ¢ then we have

(£.9C%), ¢ = E(19C°), + (T, T(KF)),

wE\ 2 w(A) jy(Ax; %) DL DR
(f,) cq,vfo roch s B DLy

T(K) ) = exg K (D)

Jr(xy;gHE ()
vV v lw /l .
Fa (cq, oy )
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Similarly,

T(f)(x) = Fou | EX Fr (D] 3.

Therefore according to the Parseval Theorem we get

(TH.T(KX)) = (FouT(). FouT(KF))

Jr(Ax;¢*)E (D) )>
Vv Vv ) vV 1(4) /l
<7:‘” (74 1) (C"’ £w(d) + E (> @

*® E)? jy(Ax;q)

= Cgy f T N N2
0 EwD)+E )

Fa (N D 1,(DA**dya,
and by the inversion formula for the g-Bessel transform we obtain
—+00
(f, K ’§>w ;T Ca f I F g () (D1, (DA dyA
’ 0

. fo oGP F g () (D 2 d 2
£,

4 Extremal functions

In this section we are interested by extremal functions to solve the problem of inverse approxima-
tion. We use reproducing kernel Hilbert spaces to give the best approximation for the bounded linear
operator T. Using the Saitoh’s Theorem [11] we obtain the following result :

Theorem 4.1. Let £ > 0 and g € H. The approximation problem
. 2 2
nf (115, + 1l =T(NIE) (@.1)

is solvable and
fig = (& T(%))

is the element of H,, with the smallest H,,-norm where the infimum (4.1) is attained.

Corollary 4.2. For all g1,g> € H we have

Proof. The function f; ¢ can be written as follows :

(.7 (77))

= f mg(/l)T(V(;"’f)(/l)/lz"”dq/l
0
- . E Q) ) 21
D) Fgo| 21,00 | () A7 A
fo gD, (gw(y)+E<y>2 m|Wa>*q,

E1)
1,1 S
co0+ B2 )) )

g1 — gl

s * 2
Jeg _ff,gz“w = 28

£,

Fav (7:(1,1/ ® W@
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which implies that

E(1
Frq (fg*,g) ()= mﬁ,q (&) (D 1,(A).
We have )
3% 3% e .]V(/lx’q )E (/l) 2v+1
- = v (81— ) —————1,(D)A77" d,A,
[y — )@ fo Far (8180 (D g o S LD,

and EQ)

Fav (f;,gl —fggz)(/l) = mﬁ,v (81 =82 (D 1,().

According to the fact that a® + b* > 2ab we obtain

’

% % e % % 2 2v+1

ff,gl - ff,gz L w(d) |7_-‘/"’ (ff’gl - ff’gz) (/l)| Lo(DA™" dyA

f+°° Ww(DE (2)?
0 [éw)+EW?]

1 +00 2 5 1
< o2 Faw (81— 8| 2 d1= —llg1 - gall5.-
< 2§fo [T (81~ 82) ()| A= gller =2l

2 'Tq,v (g1 —gz)(/l)|2 1w(/1)/12v+1dq/l

Corollary 4.3. Forall f e H,, and g =T (f) we have

fs:,g_f”i =0.

lim
-0

Moreover, ( fg g) converges uniformly to f as &€ — 0*.

&0

Proof. In fact we have

) E()Frq(2)(A)
v -l = ——M—M—1,(D)-F,, D1,
For(fie— 1)) ro s EQE W T N L@

EQ)F g (T(f) W)
= lw A - v /l lw /l
(D) +E)? (D)= F g (N (D 1(D)

~£w(d)
= ——F., D1,(2).
ro s B DLW

Then

fo T o|Fn (2, - [ L0222

oo —£w(A) 2
D)|————=F A
fo [ S T (DD

f;,g _f”i

1,()A**d, 2

+00 2 1 3
- f o) S|P (D[ 1022 d A
0 [éw()+E)]

For le Rg we have,
2 3
A
li ] & w()
U e+ E)?

S|P (DI =0,
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and 5 ;
w(d) 2 2
£ NP D < 0|Frg (D
() +E @)
Since f € H,, and using the dominated convergence Theorem, we deduce that
. . 2
Jim (|7 - £1[, =©.

Therefore by the inversion formula in Theorem 2.1 we have for all x € R:;

(72 1) )| ‘ fo m?’q,v(f;g—f)u)jv(ﬂx;qz)ﬂ”ld{,a‘

f * =Ew(D)F g,y () (D) i, (ﬁx; qz)ﬁz"”dq/l
0

Ew(A) + E (1)
- gw(/l) 2v+1
On the other hand fol)
w
————— T (N (V)| < [T (H D).
o P Dl
Note that

1/2

fo [Far D@2y < ( fo wwI?‘q,v<f>u)|21wu>a2v+ldqﬂ)

| 2v+1 i
x ——1,()2>*d /1) :
(fo w(d) “ !

The result follows from the dominated convergence Theorem.

S Inverse problem

In this section, we will study the inverse formula of the continuous transform 7, from the Hilbert
space H into itself :
T,: H — H
f e e *q f
where
e(d) = e (1) = Ey(x) = f2<v+1>E(§) >0,

and

—+00
B, = f |E (2)]dyz < oo,
0

This transformation can be considered as a g-version of the wavelet transform. In our case we can
recover the original signal via a unified inversion formula (modulo a constant).

Theorem 5.1. Let f € H then we have the following inversion formula :

f) =

Cay +00 +00

q, f f 7—‘%‘, o th(/l)jv(/lx; qz)/12v+2t2vdq/ldqt,
B, Jo 0
where

+00
B, = f E(z)dyz #0.
0
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Proof. For t > 0, we have

Cqv

+00 +00
B f Faw © Tef (V) (A, @)A1 dyAdyt
v JO 0

+00

+oo/l
=Car | ﬂ,vf(/l)jv(/baqz)[ f 7Et(/1)tzy+1dqf]/lzv+ldqfl

1
B, Jo
= +oo7: j - q? 1 o A 2v+1
=Cqy q,vf(/l)]v(/lx,q ) B_ —2E - dqt A dq/l
0 v JO t t
- — 2y 2v+1 I
=Cqy ?dq,vf(/l)]v(/baq )A dq/l B_ E(2) qu
0 v JO
+00
~cn [ Fant Wi AR d = )
0
The computations are justified by the Fubini’s theorem
400 oo
f f [P 0 Tuf (D] (x| 422> dy Ad 1
0 0
+00 ) 1 +00
< fo |Tq,vf(/l)|']v(/IX,QZ)|/12V+1dq/l[B— fo IE(Z)quz]
v

B
< 2 WL i), VxeRy,
v

We can recover the energy of the original signal by the following Plancherel formula :

Theorem 5.2. For f in H, we have

1 +00 +00
= [ [ e T R 0y
v JO 0

where .
B, = f |E (2)[*dyz < co.
0

Proof. Let t > 0. We have
1 e e 2 32v+2 4v+2
B; Jo fo [Fao o Tf (D P26 *2d, d gt
+00 1 +00
= f |ﬂ,vfu)|2[ﬁ f Et(@zt“mdqt]ﬂ””dqﬂ
0 v JO
+00 1 —+00 /l /l 2
- D= —E(—) Ao 2
[ el [ 5E(5) anla
+00 1 +00
z[ f m,vfu)ﬁﬁvﬂdqa][ﬁ f E(z)quz}
0 y JO

+00
= fo [Foorf (VP dga

+00
=‘[0 |f(l)|2/l2y+1dq/l.

The computations are justified by the Fubini’s theorem.
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