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Abstract

In this paper, we are concerned in a non-classical boundary value problem for heat
equation. More precisely, we study a linear heat equation without initial condition but
with a homogeneous Dirichlet condition on the whole boundary and a nonhomoge-
neous Neumann condition on a part of the boundary. Under sufficient conditions on
the data, we prove that the problem has a unique solution. The proof combines optimal
control and controllability theories.
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1 Statement of problem

Let N ∈ N∗ and Ω be a bounded open subset of RN with boundary Γ of class C2. Let also
Γ0 be a nonempty open and connected subset of Γ. For a time T > 0, we set Q = Ω× (0,T ),
Σ = Γ× (0,T ) and Σ0 = Γ0× (0,T ). Then, we consider the following linear heat equation:

y′−∆y = f in Q (1.1)
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where

y′ =
∂y
∂t
, ∆ =

∂2

∂x2
1

+ ...+
∂2

∂x2
N

,

and f ∈ L2(Q).
We are interested by the following problem: Given h ∈ L2(Σ0), find y solution of (1.1)

which satisfies
y = 0 on Σ, (1.2)

∂y
∂ν
= h on Σ0. (1.3)

In (1.3), ν is the unit normal vector of Γ directed towards the exterior of Ω.

The usual conditions, that permit existence and uniqueness of solution of the heat equa-
tion, are an initial condition or Cauchy data and a condition on the whole lateral boundary Σ
that can be of Dirichlet type, Neumann type, Newton type, etc., or combination of the differ-
ent types ([7]). Actually, classical boundary problems associated to heat equation represent
the evolution of the state y of a physical, chemical or economical system,etc. And if we want
to act on that system in order to get a precise goal we talk about control theory, we look
generally for the optimal control or the controllability of the system [7, 15, 19, 20, 18, 2].

But for problem (1.1)-(1.3) the boundary conditions (1.2), (1.3) are not classical because
(1.2) is already a condition on Σ, consequently (1.3) is over-determined and there is no
Cauchy data. Consequently, Problem (1.1), (1.2), (1.3) is nonclassical problem.

In [9] J.-L. Lions studied a similar problem in the case of the waves equation; he used
the HUM method and an inverse observability inequality [4, 1]. As far as we know Problem
(1.1)-(1.3) is an open problem because the case of heat equation is not yet treated. At last,
in order to end these survey, we recall that these kind of problems is encountered in matter
related to geophysical [9, 16].

In these paper we give necessary and sufficient condition to obtain a unique solution of
Problem (1.1)-(1.3) . The method combines optimal control and null controllability. So, for
v ∈ L2(Σ0), let ϕ = ϕ(v) ∈ L2((0,T ),H2(Ω))∩H1((0,T ),L2(Ω)) be the unique solution of the
backward problem:

ϕ′+∆ϕ = 0 in Q, (1.4a)

ϕ = vχΣ0 on Σ, (1.4b)

ϕ(T ) = 0 in Ω. (1.4c)

Set
U =

{
v ∈ L2(Σ0) , ϕ(v)(0) = 0

}
, (1.5)

the space of controls v which brings the solution ϕ(v) of (1.4) to zero at initial time.

Remark 1.1. U is not reduced to
{
0
}
. Indeed, let

v =
{

w ∈ L2(T
2 ,T ; L2(Γ0)

)
, w , 0,

ŵ ∈ L2(0, T2 ; L2(Γ0)
)
,
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where w is such that ϕ(w) is solution of the backward system
ϕ′+∆ϕ = 0 in Ω×] T

2 ,T [,
ϕ = w on Γ0×] T

2 ,T [,
ϕ = 0 on

(
Γ \Γ0

)
×] T

2 ,T [,
ϕ(T ) = 0 in Ω,

and ŵ such that if ϕ(ŵ) is solution of
ϕ′+∆ϕ = 0 in Ω×]0, T2 [
ϕ = ŵ on Γ0×]0, T2 [
ϕ = 0 on

(
Γ \Γ0

)
×]0, T2 [

ϕ( T
2 ) = 0 in Ω,

then
ϕ(ŵ)(0) = 0.

Then, v , 0 and v ∈ U.

Now, the main result of the paper is the following:

Theorem 1.2. Let f ∈ L2(Q), h ∈ L2(Σ0) and ϕ be the solution of (1.4). Then the following
properties are equivalent :

(i) Problem (1.1)-(1.3) admits unique solution y.

(ii)
∫

Q
fϕ(v)dxdt +

∫
Σ0

hvdσdt = 0 ∀v ∈ U.

The paper is devoted to the proof of theorem 1.2. First, in Section 2 we deal with an
optimal control problem . We then prove theorem 1.2 in Section 3.

2 Optimal control problem

From now on, we adopt, the following notation for heat operator:

L =
∂

∂t
−∆;

and the adjoint operator

L∗ = −
∂

∂t
−∆.

We set
V = {ρ ∈C∞(Q) , ρ = 0 on Σ} (2.1)

and we recall the following Carleman inequality [5, 13]:
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Proposition 2.1. There exists a positive function θ with
1
θ

bounded, and a constant C =
C(Ω,Γ0) > 0, such that for all ρ ∈ V,∫

Q

1
θ2
|ρ|2dxdt ≤C

(∫
Q
|Lρ|2dxdt+

∫
Σ0

∣∣∣∣∂ρ
∂ν

∣∣∣∣2dσdt
)
. (2.2)

Consider the application ρ 7→ Π(ρ) =
(∫

Q
|Lρ|2dxdt+

∫
Σ0

∣∣∣∣∂ρ
∂ν

∣∣∣∣2dσdt
) 1

2 . Then Π is a

norm onV. Let be V the completion ofV for this norm. Then V is a Hilbert space.
For any f ∈ L2(Q), let K( f ) be defined by

K( f ) =
{
ρ ∈ V , Lρ = f

}
.

Then the following results hold.

Lemma 2.2. K is nonempty, closed and convex .

Proof. First, it is easy to show that K( f ) is closed. Next, for ρ0 ∈ H1
0(Ω) we know that

there exists a unique ρ ∈ L2((0,T ),H2(Ω)∩H1
0(Ω))∩H1((0,T ),L2(Ω)) solution of

Lρ = f in Q,
ρ = 0 on Σ,

ρ(0) = ρ0 in Ω.

This means that ρ ∈ K( f ). Finally, K( f ) being an affine vector subspace of V , we have
that K( f ) is convex.

Now, for any z ∈ K( f ), consider the cost function J defined by:

J(z) =
1
2

∥∥∥∥∂z
∂ν
−h

∥∥∥∥2

L2(Σ0)
. (2.3)

Lemma 2.3. J is coercive, i.e.:

lim
‖z‖V→+∞

J(z) = +∞ when z ∈ K( f ).

Proof. We define the norm in K( f ) by induction from the norm of V . According to the
definition of the norm in V , we have

‖ρ‖2V = ‖Lρ‖
2
L2(Q)+

∥∥∥∥∂ρ
∂ν

∥∥∥∥2

L2(Σ0)
. (2.4)

Therefore, for ρ ∈ K( f ) it comes

‖ρ‖2V = ‖ f ‖
2
L2(Q)+

∥∥∥∥∂ρ
∂ν

∥∥∥∥2

L2(Σ0)
. (2.5)
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Observing that the cost function defined by (2.3) can be rewritten as

2J(z) =
∥∥∥∥∂z
∂ν
−h

∥∥∥∥2

L2(Σ0)
=

∥∥∥∥∂z
∂ν

∥∥∥∥2

L2(Σ0)
−2〈
∂z
∂ν
,h〉L2(Σ0)+ ‖h‖

2
L2(Σ0),

using on the one hand the Cauchy-Schwartz inequality , and on the second hand, the
inequality of Young , we get∫

Σ0

∂z
∂ν

hdxdt ≤
∥∥∥∥∂z
∂ν

∥∥∥∥‖h‖ ≤ 1
2ε

∥∥∥∥∂z
∂ν

∥∥∥∥2
+
ε

2
‖h‖2 ∀ε > 0. (2.6)

Thus

2J(z) ≥
(
1−

1
ε

)∥∥∥∥∂z
∂ν

∥∥∥∥2

L2(Σ0)
+ (1−ε)‖h‖2L2(Σ0). (2.7)

Now, let ε > 0 be such that
1
ε
< 1 and α = 1

2

(
1− 1

ε

)
. Then α > 0. Set

β =
1
2
(
1−ε

)
‖h‖2L2(Σ0)−

1
2

(
1−

1
ε

)
‖ f ‖2L2(Q).

Then, it follow from (2.7) that

J(z) ≥ α‖z‖2V +β, ∀z ∈ K( f ). (2.8)

This shows J is coercive.

As J is strictly convex, continuous and coercive on K( f ), the minimization problem:

inf
z∈K( f )

J(z) (2.9)

has a unique solution y characterized by the optimality condition:∫
Σ0

(∂y
∂ν
−h

)∂ρ
∂ν

dσdt = 0, ∀ρ ∈ K(0), (2.10)

where
K(0) =

{
ρ ∈ V , Lρ = 0

}
. (2.11)

The relation (2.10) is not easy to interpret in terms of adjoint problem since it derives
from the minimization problem with constraint (2.9). So, in order to obtain a suitable
characterization of the optimal solution, we proceed by penalization [7]. More precisely,
let ε > 0. Let us considereA the set of z satisfying

Lz ∈ L2(Q)
∂z
∂ν
∈ L2(Σ0)

z = 0 on Σ,

(2.12)
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and define for any z ∈ A, the cost function Jε by:

Jε(z) =
1
2

∥∥∥∥∂z
∂ν
−h

∥∥∥∥2

L2(Σ0)
+

1
2ε

∥∥∥Lz− f
∥∥∥2

L2(Q). (2.13)

Then the penalized problem:
inf
z∈A

Jε(z) (2.14)

has a unique solution yε ∈ A. Furthermore, we have the following results.

Proposition 2.4. yε ∈V is the optimal solution of the penalized problem (2.14) if and only if,
there exists pε ∈ L2(0,T ; H

1
2 (Ω)

)
such that (yε, pε) is solution of the approached optimality

systems: y′ε−∆yε = f −εpε in Q,
yε = 0 on Σ,

(2.15)


−p′ε−∆pε = 0 in Q,

pε =
(
h−
∂yε
∂ν

)
χΣ0 on Σ,

pε(T ) = pε(0) = 0.

(2.16)

Moreover there exists C > 0 such that

‖yε‖V ≤C, (2.17)

‖pε‖L2
(
0,T ;H

1
2 (Ω)

)+ ‖p′ε‖L2
(
0,T ;H−

1
2 (Ω)

) ≤C. (2.18)

Proof.

We express the Euler-Lagrange optimality condition which characterizes yε:

J′ε(yε)(ρ) = 0 ∀ρ ∈ A. (2.19)

After calculations we have∫
Σ0

(∂yε
∂ν
−h

)∂ρ
∂ν

dσdt+
1
ε

∫
Q

(
Lyε− f

)
Lρdxdt = 0 ∀ρ ∈ A. (2.20)

Set
pε = −

1
ε

(
Lyε− f

)
. (2.21)

Then pε ∈ L2(Q) and (2.20) can be rewritten as∫
Σ0

(∂yε
∂ν
−h

)∂ρ
∂ν

dσdt−
∫

Q
pεLρdxdt = 0 ∀ρ ∈ A. (2.22)

Taking ρ ∈ D(Q) in (2.22) and integrating by parts over Q, we get

〈
L∗pε,ρ

〉
D′(Q),D(Q) = 0, (2.23)
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from which we deduce that

L∗pε = −p
′

ε−∆pε = 0 in Q. (2.24)

As pε ∈ L2(0,T ; L2(Ω)), we have p
′

ε ∈ H−1(0,T ; L2(Ω)) which in view of (2.24) yields
∆pε ∈ H−1(0,T ; L2(Ω)). Thus p

′

ε ∈ H−1(0,T ; L2(Ω)) and ∆pε ∈ H−1(0,T ; L2(Ω)). Conse-
quently pε|Σ and ∂pε

∂ν |Σ exist and belong respectively to H−1(0,T ; H−
1
2 (Γ)) and H−1(0,T ; H−

3
2 (Γ)).

On the other hand, in view of (2.24), we have that p
′

ε ∈ L2(0,T ; H−2(Ω)) since pε ∈
L2(0,T ; L2(Ω)) and then ∆pε ∈ L2(0,T ; H−2(Ω)). Therefore, pε ∈ C([0,T ],H−1(Ω)), so
that pε(0) and pε(T ) have a sense in H−1(Ω).

Multiplying (2.24) by ρ ∈C∞(Q) such that ρ = 0 on Σ and integrating by parts over Q, we
obtain that

0 = −〈pε(T ), ρ(T )〉H−1(Ω),H1
0 (Ω)+ 〈pε(0), ρ(0)〉H−1(Ω),H1

0 (Ω)

+

∫
Q

Lρ pε dxdt+ 〈pε,
∂ρ

∂ν
〉

H−1((0,T ),H−
1
2 (Γ)),H1

0 ((0,T ),H
1
2 (Γ))
,

(2.25)

where 〈., .〉X,X′ is the duality bracket between X and its dual X′.

Combining (2.22) and (2.25), we have

0 = −〈pε(T ), ρ(T )〉H−1(Ω),H1
0 (Ω)+ 〈pε(0), ρ(0)〉H−1(Ω),H1

0 (Ω)

+

∫
Σ0

(∂yε
∂ν
−h

)∂ρ
∂ν

dσdt

+ 〈pε,
∂ρ

∂ν
〉

H−1(0,T ;H
1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))
,

∀ρ ∈C∞(Q) such that ρ = 0 on Σ.

(2.26)

Choosing in ρ(T ) = ρ(0) = 0 in Ω in (2.26), we deduce that

0 =
〈[

pε+
(∂yε
∂ν
−h

)
χΣ0

]
,
∂ρ

∂ν

〉
H−1(0,T ;H

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))
.

Thus

pε =
(
h−
∂yε
∂ν

)
χΣ0 on Σ. (2.27)

Choosing again in (2.26) ρ(T ) = 0 in Ω, then ρ(0) = 0 in Ω, we deduce successively,

pε(0) = 0, (2.28)

and
pε(T ) = 0. (2.29)

Equations (2.24), (2.27) (2.28) and (2.29) gives (2.16). It remains to show (2.17) and
(2.18) to complete the proof of Proposition 2.4.
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Observing that K( f ) ⊂A, we have that the optimal solution y of problem (2.9) belongs to
A. Thus, we can write

Jε(yε) ≤ Jε(y) = J(y), (2.30)

Therefore, from the structure of Jε we have∥∥∥∂yε
∂ν
−h

∥∥∥
L2(Σ0) ≤

√
2J(y). (2.31)

and ∥∥∥Lyε− f
∥∥∥

L2(Q) ≤C
√

2εJ(y). (2.32)

Hence we deduce that there exists C > 0 such that

‖yε‖2V =
∥∥∥∥∂yε
∂ν

∥∥∥∥2

L2(Σ0)
+ ‖Lyε‖2L2(Q) ≤C (2.33)

and we have (2.17).
Finally the relations (2.24), (2.27), (2.29) in the one hand and, the estimation (2.31) in the
other hand allow us to conclude that pε is bounded in L2(0,T ; H

1
2 (Ω)

)
and consequently

to obtain that (2.18) holds.

Now we give the singular optimality system which characterizes the optimal control
problem (2.9).

Proposition 2.5. y is an optimal solution of (2.9) if and only if there exists p ∈ L2(0,T ; H
1
2 (Ω)

)
such that (y, p) satisfy the following singular optimality system (SOS)y′−∆y = f in Q,

y = 0 on Σ,
(2.34)


−p′−∆p = 0 in Q,

p =
(
h−
∂y
∂ν

)
χΣ0 on Σ,

p(T ) = p(0) = 0.

(2.35)

Proof. In view of (2.17), there exists ŷ ∈ V such that

yε⇀ ŷ in V weakly. (2.36)

This means that

Lyε ⇀ L̂y in L2(Q) weakly, (2.37)
∂yε
∂ν

⇀
∂̂y
∂ν

in L2(Σ0) weakly (2.38)

because of the definition of the norm on the Hilbert space V . Therefore combining (2.32)
and (2.37), we deduce that

L̂y = f .
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In short we have prove that ŷ ∈ V and L̂y = f . This means that

ŷ ∈ K( f ).

From the definition of Jε, we have∥∥∥∂yε
∂ν
−h

∥∥∥
L2(Σ0) ≤ Jε(yε),

which in view of (2.38) implies that

J(̂y) =
∥∥∥ ∂̂y
∂ν
−h

∥∥∥
L2(Σ0) ≤ lim inf

ε→0

Jε(yε). (2.39)

On the other hand, as from (2.30) one obtains that

liminf Jε(yε) ≤ J(y), (2.40)

combining this latter inequality with (2.39), we get J(̂y) ≤ J(y). Hence, we deduce that

ŷ = y. (2.41)

It remains to establish (2.35).

Using (2.18) we have that there exists p ∈ L2(0,T ; H
1
2 (Ω)

)
such that

pε⇀ p weakly in L2(0,T ; H
1
2 (Ω)

)
; (2.42)

in particular,
pε⇀ p weakly D′(Q). (2.43)

Consequently,
L∗pε⇀ L∗p in D′(Q). (2.44)

Since L∗pε = 0 in Q, we deduce that

L∗p = −p′−4p = 0 in Q. (2.45)

As p ∈ L2(0,T ; L2(Ω)), we have p
′

∈ H−1(0,T ; L2(Ω)) which in view of (2.45) yields ∆p ∈
H−1(0,T ; L2(Ω)). Thus p ∈H−1(0,T ; L2(Ω)) and∆p ∈H−1(0,T ; L2(Ω)). Consequently p|Σ
and ∂p

∂ν |Σ exist and belong respectively to H−1(0,T ; H−
1
2 (Γ)) and H−1(0,T ; H−

3
2 (Γ)).On the

other hand, in view (2.45), we have that p
′

∈ L2(0,T ; H−2(Ω)) since p ∈ L2(0,T ; L2(Ω))
and ∆p ∈ L2(0,T ; H−2(Ω)). Therefore, p ∈ C([0,T ],H−1(Ω)), so that p(0) and p(T ) have
a sense in H−1(Ω).

Multiplying (2.45) by ρ ∈C∞(Q) such that ρ = 0 on Σ we get

0 =

∫
Q

Lρ pε dxdt

+

〈(
h−
∂yε
∂ν

)
,
∂ρ

∂ν

〉
H−1(0,T ;H

1
2 (Γ0)),H1

0 (0,T ;H
1
2 (Γ0))

.
(2.46)
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Passing (2.46) to the limit while using (2.42), (2.38) and (2.41), we obtain that

0 =

∫
Q

Lρ pdxdt+
〈(

h−
∂y
∂ν

)
,
∂ρ

∂ν

〉
H−1(0,T ;H

1
2 (Γ0)),H1

0 (0,T ;H
1
2 (Γ0))

∀ρ ∈C∞(Q) such that ρ = 0 on Σ.

Integrating this latter identity by parts over Q, we have

0 = 〈p(T ), ρ(T )〉H−1(Ω),H1
0 (Ω)−〈p(0), ρ(0)〉H−1(Ω),H1

0 (Ω)

−

〈
∂ρ

∂ν
, p

〉
H−1(0,T ;H

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))

+

〈(
h−
∂yε
∂ν

)
,
∂ρ

∂ν

〉
H−1(0,T ;H

1
2 (Γ0)),H1

0 (0,T ;H
1
2 (Γ0))

∀ρ ∈C∞(Q) such that ρ = 0 on Σ.

(2.47)

Choosing ρ(0) = ρ(T ) = 0 in (2.47) it comes〈(
p+
∂y
∂ν
−h

)
χΣ0 ,

∂ρ

∂ν

〉
H−1(0,T ;H−

1
2 (Γ)),H1

0 (0,T ;H
1
2 (Γ))
= 0,

from which we deduce that
p =

(
h−
∂y
∂ν

)
χΣ0 on Σ. (2.48)

Now, choosing successively in ρ(T ) = 0 and ρ(0) = 0, we get successively

p(0) = 0 in Ω (2.49)

and
p(T ) = 0 in Ω. (2.50)

the relations (2.45), (2.48), (2.49) and (2.50) show that p is solution of system (2.35).

3 Proof of Theorem 1.1

Assume that (i) hold and let v ∈U. If we multiply (1.1) by ϕ(v), solution of (1.4), it follows
from integration by parts over Q that∫

Ω

y(T )ϕ(v)(T )dx−
∫
Ω

y(0)ϕ(v)(0)dx+
∫

Q
yL∗ϕ(v)dxdt−

∫
Σ

∂y
∂ν
ϕ(v)dσdt+

+

∫
Σ

y
∂ϕ(v)
∂ν

dσdt =
∫

Q
fϕ(v)dxdt. (3.1)

That is,

−

∫
Σ0

hvdσdt =
∫

Q
fϕ(v)dxdt. (3.2)

Conversely, assume that (ii) hold and let y be the optimal solution of minimization problem
(2.9). Since y ∈ K( f ) we have y ∈ V and Ly = f . In other words,
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y′−∆y = f in Q, (3.3)

y = 0 on Σ, (3.4)
∂y
∂ν

∈ L2(Σ0). (3.5)

Now, let v ∈U and ϕ(v) be the solution of (1.4). Multiplying (3.3) by ϕ(v) and integrat-
ing by parts over Q, we obtain

−

∫
Σ0

∂y
∂ν

vdσdt =
∫

Q
fϕ(v)dxdt.

Combining this latter identity with Theorem 1.2-(ii), it follows∫
Σ0

∂y
∂ν

vdσdt =
∫
Σ0

hvdσdt ∀v ∈ U,

which can be rewritten as ∫
Σ0

(
∂y
∂ν
−h

)
vdσdt = 0 ∀v ∈ U. (3.6)

since v ∈ U which is a subset of L2(Σ0), choosing v =
(
∂y
∂ν
−h

)
χΣ0 , it comes

∫
Σ0

(∂y
∂ν
−h

)2
dσdt = 0,

from which we deduce that
∂y
∂ν
= h on Σ0.

This complete the proof of Theorem 1.2.�

We end this paper by the stability result. So letW be the vector space of data defined
by:

W =
{(

f ,h
)
∈ L2(Q)×L2(Σ0)

∣∣∣ ∫
Q

fϕ(v)dxdt+
∫
Σ0

hvdσdt = 0 ∀v ∈ U
}
;

ThenW is a vectorial subspace of L2(Q)×L2(Σ0). Define the norm onW by:

‖
(
f ,h

)
‖W =

(
‖ f ‖2L2(Q)+ ‖h‖

2
L2(Σ0)

) 1
2 .

Theorem 3.1. Let y be the solution of (1.1)-(1.3). The application
(
f ,h

)
7→ y = y

(
f ,h

)
is an

isometry fromW to V.
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Proof. It’s clear that
(
f ,h

)
7→ y = y

(
f ,h

)
is linear, and we have

‖y‖V = ‖( f ,h)‖W. (3.7)

In fact by the definition of the norm on V we have

‖y‖2V = ‖Ly‖2L2(Q)+
∥∥∥∥∂y
∂ν

∥∥∥∥2

L2(Σ0)
= ‖ f ‖2L2(Q)+ ‖h‖

2
L2(Σ0)

= ‖( f ,h)‖2
W
.
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Paris, (1988).
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