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Abstract

In this paper, we will study the existence of solutions in the sense of distributions
for the quasilinear p(x)-elliptic problem,

Au+g(x,u,Vu) = f,
where A is a Leray-Lions operator from Wé’p (')(Q) into its dual, the nonlinear term
g(x,s,€) has a growth condition with respect to & and the sign condition with respect

to 5. The datum f is assumed in the dual space W~'»")(Q), and then in L!(Q).
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1 Introduction.

Let Q be a bounded open subset of R".
In [7], A. Bensoussan, L. Boccardo and F. Murat have studied the nonlinear elliptic problem

Au+gx,u,Vu)=f in Q,
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where A is a Leray-Lions operator from Wé P(Q) into W= (Q), g is a Carathéodory func-
tion satisfying the sign and growth condition, the data f belong to W=7 (Q), they proved
the existence of solution in the sense of distributions u € W&’p (Q) such that g(x,u,Vu) €
LY(Q) and g(x,u,Vu)u € L'(Q). In the case of f € L'(Q), L. Boccardo and T. Gallouét
[8] have proved the existence of solutions u € Wé’p (Q) with g(x,u,Vu) € L'(Q) under the
additional assumption :

there exists o >0,y >0 suchthat |g(x,s,8)|>yEP for |s|>o0.

In the recent years, variable exponent Sobolev spaces have attracted an increasing
amount of attention, the impulse for this mainly comes from there physical applications,
such in image processing (underline the borders, eliminate the noise) and electro-rheological
fluids.

In the framework of variable exponent Sobolev spaces, M. Bendahmane and P. Wittbold
[6] have proved the existence and uniqueness of the renormalized solutions to the nonlinear
elliptic problem
—div (|VulP92Vy) = f in Q,
{ u=0 on 0Q,

where the right-hand side f € LY(Q) and p() : Q> (1,+00) a continuous function.
M. Sanchén and J. M. Urbano have proved in [14] the existence and uniqueness of solution
for a more general problem

—div (a(x,Vu)) = f in Q,
u=0 on 09,

with f e L'(Q) and a: Qx RY — R" is a Carathéodory function which verify the nat-
ural extensions of Leray-Lions assumptions to the variable exponent case, with p(.) is a
measurable function such that

p()e W1’°°(Q) and 1 <essinf p(x) < esssup p(x) < N.
xeQ xeQ
Recently, M. B. Benboubker, E. Azroul and A. Barbara [5] have shown the existence of
solutions for the p(x)-quasilinear elliptic problem

—diva(x,u,Vu) = f(x,u,Vu) in Q,
u=~0 on 09,

by using the calculus of variations operators method, where A is a Leray-Lions operator and
f is a Carathéodory function which satisfies some growth condition.

In this paper, we will study the existence of solutions in the sense of distributions for
the following quasilinear p(x)-elliptic problem

(1.1

—diva(x,u,Vu)+ g(x,u,Vu) = f in Q,
u=0 on 09,

where the second member f is first taken in W~1?"(Q) and then in L'(Q).
Note that, in the case of p(-) = p = cte, the problem (1.1) was studed by L. Boccardo, T.
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Gallouét and F. Murat in [9], when the variational case is treated.

This paper can be seen as a generalization to the variable exponent of the work of Y. Akdim,
E. Azroul and A. Benkirane [2] and of [1, 3, 9], and as a continuation of the works [5, 6, 14].
The paper is organized as follows. In section 2, we recall some important definitions and
results of variable exponent Lebesgue and Sobolev spaces. In section 3 we give the assump-
tions on a(x,s,&) and g(x,s,&) for which our problem has a solutions in the sense of dis-
tributions. We introduce in the section 4 some important lemmas useful to prove our main
results. In the first part of the section 5, we study the problem (1.1) for f € W="7"O(Q),
the second part of the section 5 will be devoted to the study of the problem (1.1) in the case
of fe L'(Q), we will need the assumption

Jo1,p2>0, suchthat: if [s|>p; =  |g(x, 56| = p P,

2 Preliminaries.

Let Q be a bounded open subset of RV (N > 2). The continuous real-valued function p(-)
is log-Holder continuous in Q if

C — 1
Ip(x)—p)| < —— Vx,yeQ suchthat [x—y|< =,
lloglx -yl 2

with possible different constant C. We denote
C+(§) = {log-Holder continuous function p(-) :Q— R suchthat 1< p- < p+ <N},

where . .
p- =min{p(x)/ x € Q} and p+ =max{p(x)/ x € Q}.

Note that the log-Holder continuity of the exponent p(-) is necessary to obtain the general-
ized Poincaré and Sobolev-Poincaré type inequality (see [10], [13]).

We define the variable exponent Lebesgue space for p(-) € C.(Q) by
LPYQ)={u:Q— R measurable / f lu(x)P? dx < o},
Q

the space LP)(Q) under the norm

px)
||M||p(-)=inf{/1>0, f dx < 1}
Q

is a uniformly convex Banach space, and therefore reflexive. We denote by L”(Q) the

conjugate space of Lp(’)(Q) where p(lx) + ﬁ =1 (see[11], [15]).

)

Proposition 2.1. (see [11], [15]) (Generalized Holder Inequality)
(i) Forany ue LPO(Q) and v e LPO(Q), we have

fuvdx
Q

1 1
<(—+ = lutllpey IVl -
(p_ p) p( 14Q]



4 E. Azroul, A.Barbara and H. Hjiaj

(ii) Forall py, p2 € C+(ﬁ) such that p1(x) < p2(x) a.e in Q, then LP2O(Q) s LPI(Q)
and the embedding is continuous.

Proposition 2.2. (see [11], [15])
We denote the modular

pu) = f @ dx,  Yue LPY(Q),
Q

then, the following assertions hold

@ Nullpey<1 (resp,=1,>1) < pw)<1l (resp,=1,>1),

@) lullpy> 1 = Wl <p@) <N, and Nullpey <1 = %2, < p) < [lull” .
(§ii) lullpy =0 &= p(un) =0, and llugllpy = 0 & pluy) = .

Which implies that the norm convergence and the modular convergence are equivalent.

Now, we define the variable exponent Sobolev spaces by
WhPOQ) = {u e LPO(Q) and |Vul € LPO(Q)),

normed by
Nulli py = ltllpey + IVullpy — Yue WHPOQ).

We denote by Wé’p (')(Q) the closure of Cg"(Q) in WHrO(Q) and we define the Sobolev
N p(x)
N-p(x)

Proposition 2.3. (see [11, 13])

exponent by p*(x) = for p(x) < N.

() Assuming 1 < p_ < p, < oo, the spaces WP (Q) and Wé’p (x)(Q) are separable and
reflexive Banach spaces.

() If q(-) € C4(Q) and q(x) < p*(x) for any x € Q, then embedding Wé’p D(Q) >
LIO(Q) is continuous and compact.

(iii) Poincaré type inequality : there exists a constant C > 0, such that

lullpey < ClIVullpey Ve Wy (<.

(vi) Sobolev type inequality : there exists an other constant C >0, such that

1,p(-
lllpecy < CllVullyy — Yu e Wy ().

Definition 2.4. By (iii) of the proposition 2.3, we deduce that ||Vu||,.) and [|u|l; ) are
equivalent norms in Wé’p (')(Q).
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Theorem 2.5. (see [10]) We denote the dual space of the Sobolev space Wé’p (')(Q) by
WL OQ), and for each F € W-LP'O(Q) there exists o, f1,--» N € LY O(Q) such that

N
0 .
F=fy+ Z _(%j:l-’ and for all u e Wé’p()(Q) we have
i=1 !

N
ou
<F,u>WLP,O(Q),W(;,[,(.)(Q):fgf()udx—z‘fg;fia—xjdx.
i=1
Moreover,
N
1F-1p0 = Y Wil
i=0

Definition 2.6. For all k>0 and s € R, the truncation function T%(-) can be defined by

s it |s| <k,

Tk(s):{ kl_sl it |s|> k.
S

and we define

Té’p Q) := {measurable function u such that Tj(u) € Wé’p Y@ Vk>o).

Proposition 2.7. Letue Té’p (')(Q), there exists a unique measurable function v: Qv+ RN
such that

VX (lu<ky = VTi(u) for ae. . xeQ and  forall k>0.

We will define the gradient of u as the function v, and we will denote it by v = Vu. Moreover,
ifue WS’I(Q), then v coincides with the standard distributional gradient of u, (see. [14]).

Lemma 2.8. Let A € R and let u and v be two functions which are finite almost everywhere,
and belong to 7'0l P (')(Q), then

Vu+Av)=Vu+AVv a.e. inQ,

where Vu, Vv and V(u+ Av) are the gradients of u, v and u+ Av introduced in the Proposition
2.7.

Proof. Let E, = {|u| < n}n{lv| < n}. We have T,(u) = u and T,,(v) = v in E,, then for
every k>0
T (T,(u) + AT,,(v)) = T(u+ Av) a.e. in E,,,

and therefore, since both functions belong to W(;’p (')(Q),
VT (T (u)+ AT, (v)) = VT (u+ Av) a.e. in E,,. 2.1

Since T, (u) and T,(v) belong to Wé’p (')(Q), we have by using a classical property of the
truncates functions in WS 0) (Q), and the definition of Vu and Vv,

VTi(Ty(u) + AT, (v)) = xT0)+ AT, )<k} (VT () + AV T, (v))
= X (T w+aT, i<k (VX luj<n) + AVV X (hi<n) a0 in Q.
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Therefore
VTk(Tn(u) + ATH(V)) :)({|u+,1v|§k}(Vu + /1Vv) a.e. in E,. (22)

On the other hand, by definition of V(i + Av),
VTi(u+ Av) = xusav<iy V(e + Av) ace. in Ej,. 2.3)
Putting together (2.1), (2.2) and (2.3), we obtain
Xtluravi<iy VU +Av) = xur < (Vu+AVv) a.e. in E,,. 2.4)

We have U E, (resp. U{lu + Av| < k}) differs at most from € by a set of zero Lebesgue

neN keN
measure, since # and v are almost everywhere finite, then (2.4) holds almost everywhere in

Q. which conclude the proved of Lemma 2.8.
3 Main assumptions.

Let Q be a bounded open subset of RV (N >2) and p(-) € C,(Q), we consider a Leray-Lions
operator A from Wé’p “(Q) into its dual W-17'0(Q), defined by

Au = —=div a(x,u,Vu) 3.1

where a: QxRxRY +— R¥ is a Carathéodory function (measurable with respect to x in
Q for every (s,&) in RxRY, and continuous with respect to (s,&) in RxRY for almost every
x in Q) satisfying the following conditions

la(x, 5,6 < B(K(x) +[s|PO~1 4 |groh, (3.2)
a(x, s,€)-& > alélP™, (3.3)
(a(x,5,6)—a(x,5,6))-(E—&) >0 forall £#& inRY, (3.4)

fora.e. x e Q, all (5,&) e RxRY, where K(x) is a nonnegative function lying in LPOQ)
and «a,8> 0.
The nonlinear term g(x, s,&) is a Carathéodory function which satisfies

8(x,5,6)s 20, (3.5)

180x, 5,6 < b(Isl)(c(x) + [P, (3.6)

where b:R* — R* is a continuous, nondecreasing function, and ¢ : Q@ — R* with ce L1(Q).
We consider the problem

{ —diva(x,u,Vu)+ gx,u,Vu) = f in Q, 3.7)

u=0 on 09,

with € W-L7"O(Q) and later in L'(Q).
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4 Some technical lemmas.

Lemmad4.1. (see [5]) Let g€ L'(Q) and g, € L")(Q) with ||gull,.) < C for 1 <r(-) < co.
If g.(x) — g(x) a.e. on Q, then g, — g in L'OWQ).

Lemma4.2. Let ue Wé’p(')(Q) then Ty (u) € Wé’p(')(Q) for all k > 0. Moreover we have
Tw) —u in Wy Q) as k- co.

Proof. We have u € Wy""(Q), by the Proposition 2.7 it’s clear that T(u) € Wy " (),
and

flTk(M)—ulp(x)dx+f|VTk(u)—Vu|P(X>dx
Q Q

= f T3 (u) — ulPPdx + f Ty (u) — ulPPdx
{lul<k} {lu>k}

+ VT3 (u) — VulPPdx + VT3 () — Vi Pdx
(lul<k) (oA

= T (u0) — ulPdx + IVulP™dx.
{lu>k} {lul>k}

Since Ty(u) — u as k — co and by using the dominated convergence theorem, we obtain

f I T(u) — ulPPdx + f IVulPDdx — 0 as  k — oo,
[ul>k} {lul>k}

Finally [|Tx) ~uf|, ) — 0 as k — co.

Lemma 4.3. Let (u,),en be a bounded sequence in Wé’p (')(Q).

If uy—u in WyPQ) (weak)  then  Ti(up) — Ti(u) in Wy"(Q)(weak).
Proof. We have

U, — uin Wé’p(')(Q) (weak) = u, — u in LYYQ) (strong), Y1 < g(x) < p*(x),

= u,—>u a.e inQ,
= Ti(u,) = Tr(u) a.e in{,
and since
oo 1 if |s] <k,
Tk(s)‘{ 0 if IsI>k
then

™) 4

aTk(’/‘n)
|OTk) ) f T
L IZI: a Z {lunl<k} k
ﬂ p(x)
S;fglax,-' dx < oo,

and we deduce that (T (u,)), is bounded in Wé’p (')(Q), then Ty (u,) — vi a.ein Q, therefore
vi = Tr(u) and we obtain

Ti(uy) = Ti(w) in Wy (Q) (weak).



8 E. Azroul, A.Barbara and H. Hjiaj

Lemma 4.4. (see [4]) Assuming that (3.2) —(3.4) hold, and let (u,)neny be a sequence in
Wé’p(')(Q) such that u, — u in Wé’p(')(Q) and

f (a(x, un, Vuy) —a(x,u,,Vu)) - (Vu, — Vu)dx — 0, 4.1)
Q

then u, — u in Wé’p (')(Q) for a subsequence.

5 Strongly nonlinear problems.

5.1 The case of fe W 1r'OQ).

Definition 5.1. In the case of f € W~1""0)(Q), A measurable function u is solution in the
sense of distributions to the problem (3.7), if

{ f a(x,u,Vu)- Vvdx + f g(x,u, Vuyvdx = f frdx  Yve WP Q)N LY (@),
Q Q Q

ue W,"0Q), glxu,Vu)e L'(Q),  gx,u, Vuyu € L'(Q).
5.1

Theorem 5.2. Assuming that (3.2) —(3.6) holds and f € W-LP'O(Q). Then the problem
(3.7) has at least one solution in the sense of distributions.

Proof of the Theorem 5.2.

Step 1 : Approximate problems.

We consider for all n > 1, the approximate problems

Auy + gn(x,u,, Vuy,)=f in Q. (5.2)
s € Wy (Q) ‘
where g,(x,s,&) = M, note that
1 + Zlg(x’ S,§)|
gn(x, 58,6520 gn(x, 5, < lg(x, 8,6  and  |gn(x,s,6)| <n.
We define the operator G, : Wé’p (')(Q) — W‘l”l’/(')(Q), by
(Guu,v) = fg,,(x, u,Vu)vdx Yve Wg’p(')(Q),
o)
by using the Holder inequality, we have for all u, v € W(;’p (')(Q)
Vuyvdx| < ! ! \Y
‘ | gl Vuyy x’ < (Z + p—,_) lgnCr., V||, M,
1 1 f , €
<(—+— |gn(x, 1, Vi) [P dix + 1) 77 || 1.
(P— p_)( o &n ) Lp() (53)

1 1 , L

< (—+ =) (| a" O dx+1)7 Vil pey
pP- p- Q

< ColVllipe) -
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Lemma 5.3. The operator B, = A + G,, is pseudo-monotone from W(;’p (')(Q) into WP O(Q).
Moreover, By, is coercive in the following sense

(Bpv,v)

VI, pc)

— +00 as |ll,pe) — +o0 for ve Wé’p(')(Q),

Proof of Lemma 5.3

Using the Holder’s inequality and the growth condition (3.2) we can show that the operator
A 1is bounded, by using (5.3) we conclude that B, is bounded. For the coercivity, in view
of the Poincaré type inequality and (3.3)

<&wo=j}mmwyww+f&mmwmw Yue W@
Q Q

>a | |VulP™ dx

0 o
> of|Vull,,
0
= a'llully

with
5= { P- lf ||Vbt||p(.) > 1,
peif [Vully < 1,

then, we obtain
(Bput, u)

lleell1, -y

as |lully,p) — +eoo.

It remain to show that B, is pseudo-monotone. Let (ux)reny be a sequence in Wé’p (')(Q)
such that

we — u in W,"(Q),
B —x in WOQ), (5.4)
lim sup{B,uy, ur) < {x,u).

k—o0

We will prove that
x=B,u and (Bjug,ur) — {(x,u) as k — +oo.

Firstly, since WS’” Q) > LPO(Q), then ux — u in LPO(Q) for a subsequence still de-
noted by uy.
We have (up)reny is a bounded sequence in Wé’p (')(Q), then by the growth condition
a(x,ug, Vuy) is bounded in (L?O(Q))V, therefore there exists a function pe (L7 O@Q)N
such that

a(x,u, Vup) — ¢ in - (LPO@Q)Y as k - . (5.5)

Similarly, since g,(x,ux, Vuy) is bounded in L O(Q), there exists a function /S L7 OQ)
such that

gn(ug, Vi) — v, in - LPO(Q) as k - oo. (5.6)
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Forallve W(;’p “(Q), we have

Oy = lim (B, v)

k—o0

= lim a(x,uk,Vuk)-Vvdx+klimfg,,(x,uk,Vuk)vdx (5.7)
—0 O °
:f(p-Vvdx+fwnvdx.
Q Q

Combining (5.4) and (5.7), we obtain

lim sup{Byu, ur) :limsup{fa(x,uk,Vuk)-Vukdx+fg,,(x,uk,Vuk)ukdx}
Q Q

k—o0 k—o0 (58)
< f ¢-Vudx+ f Ypudx,
Q Q
using (5.6), we have
f 8n(X, ug, Vug)ug dx — f Ypudx, (5.9)
Q Q
therefore
lim supf a(x,ug, Vuy) - Vur dx < f ¢-Vudx. (5.10)
k—oo JQ Q
On the other hand, thanks to (3.4) we have
f(a(x, uy, Vuy) —a(x,ux, Vi) - (Vu — Vu) dx > 0, (5.11)
Q

then
La(x, U, Vuy) - Vg dx > La(x, ug, Vuyg) - Vudx + La(x, ug,Vu) - (Vur —Vu)dx,
since a(x, ug, Vu) — a(x,u, Vu) in (L7 O(Q))N and Vuy — Vu in (LPO(Q))Y, it follows that
La(x, ug,Vu) - (Vur —Vu)dx — 0 as k — oo,
and by (5.5), we get

liminffa(x,uk,Vuk)-Vukdxzf(p-Vudx.
Q Q

k—o0

Using (5.10), we obtain

lim a(x,uk,Vuk)-Vukdx=fgo-Vudx. (5.12)
Q

k—co Q

By combining (5.7), (5.9) and (5.12), we deduce that

(Bputg, u)y —> {x,u) as k — +oo.
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Now, thanks to (5.12) we have

klim f(a(x, uy, Vuy) —a(x,ux, Vi) - (Vui, — Vu) dx = 0,
—+00 Q
in view of the Lemma 4.4,

Uy — u in Wé’p(')(g) and Vu, — Vu a.ein Q,

then
a(x,up, Vi) = a(x,u,Vu) in  (LFO@Q)Y,

and
gn(X U, Vi) = gn(x,u, Vi) in LP'O(Q),

we deduce that y = B,u, which completes the proof the Lemma 5.3.
In view of Lemma 5.3, there exists at least one weak solution u, € Wé’p (')(Q) of the
problem (5.2), (cf.[12]).

Step 2 : Weak convergence.

Taking u, as a test function in (5.2), we obtain

f a(x, Mna V”n) : V”n dx + f gl’l(-x’ Mna V”n)un d-x = <f9 un>W—l,p'(-)(Q) W(;'P(')(Q)
Q Q ’

since g,(x,uy,, Vu,)u, >0, and by (3.3) we deduce that

ozf |V1/tn|p(x) dx < (f, un>W—l,p'(»)(Q) Wé’p(')(Q)
o ,

thanks to the Holder inequality, we get

1 1 ) p- it |[Vuullyo > 1
Vo< (—+— , - nllp(y > 1
al[Vull, ) < (p_ +p’_ WALy olluallipe  withy { pe it Vil < 1,

therefore, by the Poincaré type inequality, we obtain
lnll1,pey < Ci. (5.13)

with Cj is a constant that does not depend on n. Then there exists a subsequence still
denoted (u,),en such that

Up — U %n Wo' Q) (5.14)
u, —»u in LPOQ).
and in view of the Lemma 4.3, we get
R : Lp(x)
Tk(l/in) Tk(u) ?n Wo (Q) (5 15)
Ti(uy) = Ti(u) in  LPYOQ).
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Step 3 : Strong convergence.

In the sequel, the functions of real numbers which converges to 0 as n — oo will be denoted
by ei(n),i=1,2,...
Let ¢(s) = s.exp(ys?) where y = (%)2, it is obvious that

, b(k) 1
0 () = — () = 5 Vs eR,
a 2
we consider &> k>0 and M =4k+ h, we set
wy = Tox(uy — Tr(up) + T (uy) — Ti ().
By taking ¢x(w;) as a test function in the approximate problem (5.2), we obtain

fa(X,un,Vun)'VQOk(wn)derfgn(x,un,VMn)¢k(wn)dx=ff%(%)dx.
Q o Q

itis clear that Vw, =0 on {|u,| > M}, and since g,(x, u,, Vu,)pr(wy,) =0 on {|u,| > k}, then

f a(x, Ty (un), VT ()1 (wp) - Vew, dx+ f
Q

8n (X, 1y, Vi )i (wy) dx < f for(wy)dx.
{lutn| <k} Q

(5.16)
We have
f a(x, Ty (up), VTM(un))(p];(wn) -V, dx
Q
= L » a(x, Ti(un), VT () (wn) - VT (1t — Tie(u0)) d x
+ . a(x, Ty (), VT py ()i () - VT (uty, — T (uty) + Ty () = T(u)) dx.
" (5.17)
On the one hand, since |u, — Ty (u)| < 2k on {|u,| < k}, then
L - a(x, Ti(up), VT () (W) - VT ok (1t — Ti(u)) dx
= f a(x, Ti(un), VT i(un) i (wn) - (VTi(un) = VTi(u)) dx (5.18)

+ j. a(x, Tr(up), VT (un) @) (wp) - VT (1) dx.
{lun|>k}

For the second term on the right hand side of (5.17), taking z,, = u,, — Th(u,) + Ty (u,) — Ti (),
then

L ” a(x, Tpg (), VT y1 ()i () - VT og (= T (ua) + Ti(u) = Tie(w)) dx
= f a(x, Ty (), VT a1 () (wn) - V(g = Tie(W)) - X {ju,|>hy dX
{utal>K)N{l20|<2K) (5.19)
- f a(x, Tag(n), VT p1 ()0 (wn) - VT (1) - X (juy|<hy dX

Uy |>k}N{|z,|<2k}

{l
2—]{: | k}Ia(x,TM(un),VTM(un))IIVTk(M)kD;{(wn)dx.
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By combining (5.17), (5.18) and (5.19), we get

f a6, T (), VT3 1)) (o) - Vo dix
Q
> f e, Tetn), VTt (@00) -V (Ti(ttr) = Te0)) dix
(5.20)
e[ A T, VTl (@) - YTk dx

] >k)
- j: la(x, Ty (uan), VT p(unDHV T (1)l (w),) dx,

up| >k}

since 1 < ¢ (wn) < ¢ (2k), we get

fQ (a(x, Ti(un), VTi(un)) — a(x, Ti(un), VT (W) - (VTi(un) — VT (1)) gy (wn) dx
< Lunbk} laCx, Ty (un), VT aa )| VT 1 (w)ly (wn) dx
i a(x, Ti(un), VTi(un))p(wp) - VTi(u) dx
+ f a(x, Tag (), VT ()@ (@n) - Ve, dx
-, a(x, Ti(un), VTi(w)) - (VT (un) = VT i)y (wy) dx (5.21)
< ¢ (2k) la(x, Tas ), VT m ) [V T k()| dx

{ln >k}

+ ¢ (2k) laCx, Tie(un), VT ) [V i ()l dx
(g >k}

" f a(, T (), VT sr )@ (n) - Vo dix

Q
+ (2K fg (0, TeGtn), VT [V T t) = VTG0 .

We will study each term on the right hand side of the above inequality.
For the first and second terms on the right hand side of (5.21), we have (la(x, Ta(u,), VT p (1)) )n
and (|la(x, Te(up), VTk(u)))), are bounded in L7 ©(Q), and since

VT @)Px iy < IV Tk @)P,

with
|VTk(u)|p(x)X{|un|>k} — 0, ae. in Q as n— oo,

in view of the Lebesgue dominated convergence theorem, we deduce that
VT x50 — 0 in LPOQ)  as n— oo,

which implies that the first and second terms in the right hand side of (5.21) tends to 0 as n
tends to oo, we can write

&1(n) = ¢ (2k) laCe, Tr(un), VT y u))IVTk(w)|dx — 0 as n— oo, (5.22)

{lun|>K}
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and

e2(n) = ¢(2k) laCx, T (), VT (u))IVT (1) dx — 0 as n—ooo. (523
{lun >k}

For the last term on the right hand side of (5.21), we have
laCx, Te(un), VT@)| — la(x, Te(w), V@) in  L7O@Q),

and since VT (u,) tends weakly to VT (u) in (LPO(Q))N, we obtain
g3(n) = go,’c(Zk)f la(x, Tr(un), VT (). |V T (uy) — VTi(u)|dx — 0 as n—oo. (5.24)
Q
We conclude, by (5.21) that

f (a(x, Tiup), VTi(un)) — a(x, T(un), VT (W) - (VT i(un) = VTi(u)py (wy) dix
Q (5.25)

< f a(x, Ty (un), VT y () (wn) - Vw, dx + £4(n).
Q

Now, we turn to the second term on the left hand side of (5.16), in view of the growth
condition (3.6) we have

\ f 2%, 1, Vity)pr(wy) dx| < f b(Junl)(c(x) + VT ()P pr(wy)| dx
{lun <k} |un|<k}

b
< b(k) f{ | k}C(x)l‘Pk(wn”dx‘*'% fg a(x, Ti(un), VTi(un)) - VTi(up)lr(wn)| dx
< b(k) J: » c(X)|r(wp)| dx
bk Up|<
+Q f (a(x, Ti(un), VTi(uy)) — a(x, Ti(un), VT (w))) - (VT () — VT (w)|(wn)| dx

a
b(k
L0 f a(x, Ti(up), VTi(w) - (VTi(up) = VTi(u))lr(wn)| dx

a
b(k
i % jz a(x, Ti(un), VTi(un)) - VT (w)lr(wn)l dx,

then

b(k
= f (@, TeC1tn). V) = 4, TeCitn). VTe(0))) - (Vi) — VT ()lpr(on)l dx

>

—b(k) c(X)|pr(wp)l dx
{Jutn|<k}

&n(x, n, Vty)pi(wy) dx
{Junl<k)

b(k
—% a(x, Ti(un), VTi(w)) - (VT () = VTi()lpr(wn)| dx
—? Qa(x, Tie(un), VTi(un)) - VT ()lpr(wp)l dx.

(5.26)
We have |@r(wn)l X (uai<ky = 10k(Tox(u = Tr(w)))| - X (u<ky Weak-+ in L*(Q), then

f cO)lpr(wp)l dx — cOlpr(Tor(u=Tp(w))dx =0 as n— co.
{len <k} {lul<k)
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Concerning the third term on the right hand side of (5.26), we have

L a(x, T(un), VTi(u)) - (VT i (un) = VT () lpr (wn)l d x
< ¢i(2k) fg la(x, Ti(un), VT @IV Tk (un) = VT ()| dx,
and thanks to (5.24), we obtain
fg a(x, Te(un), VTe(w)) - (VTi(tn) = VT@)loe(wp) dx — 0 as n—oo. (527

For the last term of right hand side of (5.26), we have (a(x, Ti(u,), VTi(1,))), is bounded
in (L'O@Q))N then there exists ¢ € (L7 O(Q))N such that a(x, Ti(un), VTi(un)) — ¢ in
(LPO(Q))N, and since

VTlpr(wn)l — VT@lor(Tor(u—Tp@)l  in  (LPO@Q)Y,

it follows that

fg (T, VT (t)) - VT 0l (@) dx — fg VTl (ot = Tr(w))| dx = 0.

(5.28)
Putting together (5.26) —(5.28), we get

b(k
% f (a(x, T(un), VTi(un)) — a(x, Ti(un), VT (w))) - (VT i (un) = VTi()lpr(wp)| dx

2 j\ 8n(x, uy, Vup)or(wp) dx
{lun|<k}

+é&s5(n),

(5.29)
By combining (5.25) and (5.29), we obtain

bk
@O0, 710 =0 i), 000 (V) = T ) = * o)

f a5, Ty (), VT a1 1) (on) - Vo d— ] f 2nCs Vit )ox () ] + 86(1)
|un|<k
f Sor(wn) dx +ee(n)
Qf<,0k(T 2 —Tp(u))) dx + &7(n).
(5.30)

since gr(wn) — @e(Tax(u—Ty(w))) in Wy"(Q). Then by letting & tends to infinity in
(5.30), we conclude

f (a(x, Ti(un), VT (un)) — a(x, T(un), VT () - (VT3 (up) = VTi(u))dx - 0 as  n — oo
Q

(5.31)
In view of the Lemma 4.4, we deduce that
Tiw) — Telw) — in Wy (. (5.3)
Vu, — Vu ae. in Q. '
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Step 4 :Equi-integrability and passage to the limit.
Thanks to (5.32), we have

a(x,u,,Vu,) — a(x,u,Vu) a.ein £,
gn(x,u,, Vu,) — gx,u,Vu) a.einQ,
gn(x,un, Vuy)u, — gl,u,Vuu a.ein Q,

In the view of (5.13), we have [lu,ll1 p) < C1, then (a(x, u,, Vi), is bounded in (L7 O(Q))V,
and by using the Lemma 4.1, we obtain

a(x, un, Viy) — a(x,u,Vu) in (L7 OQ)N (weak).
Now, we prove that
gn(xX, 1y, Vity) — g(x,u,Vu) stronglyin L'(Q),

using the Vitali convergence theorem, it is sufficient to show that g, (x,u,,Vu,) is uniformly
equi-integrable. Indeed, taking T (u, — T(u,)) as a test function in (5.2), we obtain

f a(x,un, Vuy) - VT (uy, — Th(uy,))dx + f 8n(X, up, Vup)T1 (uy, — Th(uy))dx
Q Q
= fle (un — T(un))dx,
Q
it follows that

f 2t Vit )Tt — Tt dx < f FTn=To)dx,  (5.33)
{h<|u,|} {h<|uyl}

then

f lgn(x,un, Vuy)ldx < f &n(x, 1y, Vun)T1 (up — Th(uy)) dx
{h+1<|up|} {h<lun|}
< ST1(up = T(uy)) dx
{h<|un|}

< (p— + p_,)”f”—l,p’(~)||T1 (ttn = T (up)ll py — 0 as h— oo,

thus, for all > 0, there exists h(n) > 0 such that

f lgn(x, up, Vi) dx <
{h(D <]}

On the other hand, for any measurable subset E C 2, we have

N3

(5.34)

f |gn(x,un, Vi)l dx < f b(h)(c(x) + [V T3 )PP dox + f lgn(x, un, Vuy)l dx,
E E {

|uan|2N()}
(5.35)
there exists B(17) > 0 such that

b(h) f(c(x) + IVTh(un)lp("))dx < for meas(E) < B(n). (5.36)
E

N3
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By combining (5.34), (5.35) and (5.36), we obtain

f |gn (X, un, Vup)ldx <m,  with  meas(E) < B(1), (5.37)
E

in view of the Vitali convergence theorem we deduce that g,(x,u,, Vu,) — g(x,u,Vu) in
L'(Q). Now, taking v € WS”’ (')(Q) NL*(Q) as a test function in (5.2), we have

fa(x,u,,,Vu,,)Vvdx+fgn(x,u,,,Vu,,)vdxzffvdx,
Q Q Q

by letting n tends to co, we obtain

f a(x,u, Vu)Vvdx + f g(x,u, Vu)vdx = f frdx e W,PO@QNLYQ). (5.38)
Q Q Q

Moreover, by using u, as a test function in (5.2), we have

fa(x, un, Vu,)Vu, dx+fgn(x, Up, Vi), dx = ffun dx
Q Q Q

thanks to (5.13), we get
1 1 1 1
an(-x’ Up, Vit )y dx < (Z + p_,_)”fH—l,p’(x)”Mn”l,p(‘) < (; + p_,_)”fH—],p’(x)Cl = (s,

since gn(x,u,, Vu)u, =0 and g,(x,u,, Vu)u, — g(x,u, Vu)u a.e in Q, in view of the
Fatou’s lemma, we deduce that

0< fg(x,u,Vu)udx <Cp, then g(x,u,Vu)ue LI(Q).
Q
which ended the demonstration of the Theorem 5.2.

5.2 The case of e L'(Q).

Assuming that

feLllQ, (5.39)
Jp1, p2 >0, such that: if |s|>p; then lg(x, 5,6)| > pa |€PW. :

Definition 5.4. In the case of f € L!(Q), A measurable function u is solution in the sense
of distributions to the problem (3.7), if

{ f aCx,u,Vu)-Vvdx+ f g(x,u, Vu)vdx = f frdx Ve W,PYQ)n LR (@),
Q Q

Q
uec Wé’l’()(g), g(x’ u, VM) c Ll (Q)
(5.40)

Theorem 5.5. Let f € L'(Q), assuming that (3.2)—(3.6) and (5.39) holds, then the problem
(3.7) has at least one solution in the sense of distributions.
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Proof of the Theorem 5.5.
Step 1 : Approximate problems.

Let (f,)nen- a sequence in W="7"O(Q)N LY (Q) such that f, — f in L1(Q) with |f,| < |f]
(for example f, = T,,(f)). We consider the approximate problem

Aup +g(xX,un, Vup) = f in Q, 541
Thanks to the Theorem 5.2, there exists at least one solution in the sense of distributions
ty € Wy " (Q) for the p(x)-elliptic problem (5.41).
Step 2 : Weak convergence.

Taking Ty(u,) as a test function in (5.41), we obtain

f a(x,u,, Vu,) - VTi(u,) dx + f 8(x, up, Vi) Ti(u,) dx = f JaTi(uy,) dx,
Q Q Q

and since
f 8(x,un, Vuy)Ti(uy) dx > 0,
Q

then
fga(x, Ti(un), VTi(uy)) - VTi(uty) dx < kfg |fnldx <Kl f1lh,

and by (3.3), we obtain
k
f IV T3 (1) 1P dx < Ellflh, (5.42)
Q

also, we have
k f lg(x, un, Vuy)| dx < K||f1l1, (5.43)
{lun|>k}

By combining (5.39), (5.42) and (5.43), for k > p; we deduce that

f|Vun|P(X)dx :f|VTk(un)|P(x)dx+f |Vl/tn|p(x)dx,
Q Q {unl>K)

k 1
<=l +— lg(x, uy, Vi, )| dx.
a P2 Huy|>k}
k Il
< —=|lfllh + — =Cs3,
@ P2

using the Poincaré type inequality we obtain
Y < . _| p- it |[Vullpe) > 1,
”M””l,p(-) - C4 Wlth y { p+ lf ”Vuan() < 1,
then
lnll1,py < Cs,

and we conclude that

(5.44)

Te(ua) = Tew)  in W70,
Te(uy) — Ti(u) in  LPOQ).



Strongly nonlinear p(x)-elliptic problems with L!-data 19

Step 3 : Strong convergence.

By taking ¢x(w;) as a test function in the approximate problem (5.41), we have

f 4%,y Vity) - Veor(on) dx + f 2%, Vit oe(con) dx = f Fupn(wn) dx,
Q Q Q
it follows that

f a(x, Ty (uy), VTM(“n))Sol,c(wn) -V, dx+ f
Q

8(x, uy, Vuy)pr(wy) dx < f Jnor(wp)dx.
{lun| <k} Q

Using the same way as in (5.25) and (5.29), we can prove that

L (a(x, Ti(up), VT () — a(x, Tr(un), VT () - (VT () — VT ()@ (wy) dx

< f 0%, T (), VT a1 1))@ (0) - Vo dx + 5(0).
Q
and

b(k
° fQ (aCx, Ti(utn), V(1)) = a(, TeCtn), V() - (V) = VTl pi(p)l dx

> f 906t Vit (@) dx| + £0(n).
{Jutal <k}
‘We conclude that
p b(k)
fg (a(x, Ti(un), VTi(un)) — a(x, Ti(uy), VT (u))) - (VTi(u,) — VTk(u))((Pk(wn) - Isok(wn)l) dx
< f a(x, Tag(n), VT p1 ()@ (W) - Ve, dx — ‘ » k}g(x, Un, Vip)pr(wp) dx| + £10(n)
Q u,|<

< f Fopr(wn)dx +£10(n)

< f;f‘ﬁk(TZk(u—Th(”)))dx"'sll(”),

since f, — f in LY(Q) and er(wn) = orp(Tox(u — Th(u))) weak-+ in L>(€2). By letting &
tends to infinity in the previews inequality, we get

f(a(x, Ty (un), VTi(up)) = a(x, Ti(un), VI () - (VT k() = VI (u))dx — 0 as  n — oo,
Q

using the Lemma 4.4, we deduce that

{ Ti(ttn) — Ti(u) in - W, (),

4
Vu, — Vu ae. in Q. (5:45)
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Step 4 : :Equi-integrability and passage to the limit.
Thanks to (5.45), we have

a(x,u,,Vu,) — a(x,u,Vu) a.eint,
g(x,u,,Vu,) — g(x,u,Vu) a.ein Q,

since a(x,u,, Vu,) is bounded in (L” O(Q))V and using the Lemma 4.1, we obtain
a(x,un, Vup) — a(x,u, V) in (L7 O@Q)N (weak).

Now, let E be a measurable subset of 2, for all m > 1 we have

flg(x,un,Vun)ldx =f Ig(x,un,Vun)ldX+f g (x, tn, Vuy)| dx
E En{luy|<m}

En{|u,|>m}

< b(m) f (c(X) + [V T ()PP dix + |g(x, i, Vity)| dx.
E

{lun|>m}

For any € > 0, there exists () > 0 such that
b(m) f(c(x) + IVTm(un)lp(x))dx < g for meas(E) < B(e). (5.46)
E

Taking T(u, — T,u-1(u,)) as a test function in (5.41), we obtain

[ et uiar < [ iplax
{lun|>m} up|>m—1}
Sf |fldx — 0 as m— oo,
{l

uy|>m—1}

then, there exists mg(g) > 0 such that
f (%, Vi) dx < & Ym > mo(e). (5.47)
{lta>m} 2

Using (5.46) and (5.47), we deduce the equi-integrability of g(x,u,, Vu,). In view of the
Vitali convergence theorem, we obtain

g(x,up, Vu,) — g(x,u,Vu) strongly in L! Q).

Let ve Wé’p (')(Q) N L®(Q), it is easy to pass to the limit in

fa(x,un,Vun)Vvdx+fg(x,un,Vun)vdx=ffnvdx,
Q Q Q

to obtain

fa(x,u,Vu)Vvdx+fg(x,u,Vu)vdxzffvdx, (5.48)
Q Q Q

which completes our proof.
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Example 5.6. We consider the following functions
a(x,u,Vu) = |VulPP72Vu  and  g(x,u, V) = (1 + [Vl )|ulPO 2y,

it is clear that a(x,u,Vu) and g(x,u,Vu) verifies (3.2)—(3.4) and (3.5) — (3.6) respectively,
then by the theorem 5.2, the problem

u=0 on 09, (5.49)

{ —div(|VulPO72Vu) + (1 + |VulPO)ulfY2u = f  in Q,
has at least one solution in the sense of distributions for all f e W‘l’p/(')(Q).
Moreover, in the case of f € L'(Q), since g(x,u,Vu) verifies the condition (5.39) (taking
p1 =p2 = 1), in view of the theorem 5.5, the problem (5.49) has at least one solution in the
sense of distributions.
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